Create an account and get 3 free clips per day.
Chapters
Acute Aortic Intramural Hematoma (Type A), Takotsubo Cardiomyopathy | Ascending Aorta Replacement, EVAR | 68 | Female
Acute Aortic Intramural Hematoma (Type A), Takotsubo Cardiomyopathy | Ascending Aorta Replacement, EVAR | 68 | Female
2016ascendingceliacCook MedicalechoflipfluidgrafthematomaintramuralleakingpericardialproximalscanSIRstent
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
Case 3a: Splenic Trauma | Emoblization: Bleeding and Trauma
Case 3a: Splenic Trauma | Emoblization: Bleeding and Trauma
angiogramangiographybleedingchaptercoilscontrastembolizationembolizeextravasationgradehemodynamicallyimagelacerationlacerationsmicrocatheterNoneorganpainpatientproximalquadrantscanspleensplenicSplenic Traumatrauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
angiogramarteryaxialbleedcatheterizationchaptercontrastcoronalCoverage StentembolizationembolizehematomailiaciliacsimageinjuryNoneoptionpatientpseudoaneurysmRetroperitoneal hematomastentstents
Plastic Bronchitis | Lymphatic Imaging & Interventions
Plastic Bronchitis | Lymphatic Imaging & Interventions
airwaysbronchoscopychaptercopdductembolizegraftlymphlymphaticmichiganpatientspediatricsstentvesselsvibe
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
angiogramarterybrachiocephaliccatheterchapterclickcoilcoilsembolizationmicromicrocatheterNonepseudoaneurysmPseudoaneurysm brachiocephalic arterystenttrachea
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
20 Fr Dryseal7 Fr Aptus TourGuide sheath8 Fr IVUSaccessangioplastyaortaarrowarteryballoonbasicallybrachialceliacchapterdeploydissectionfenestratedflapgraftgroinimagelaserleftlooplumenoriginpatientreentrysagittalsheathSignificant Growth of Descending Thoracic AortasnarestentsubclaviantearTEVARwire
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
AngioDymanicscatheterchapterCordiscritical limb ischemiadeviceenosfootguysiliacocclusionOUTBACKĀ® ELITE Re-Entry Catheterproximalre-entry deviceSOS Omni Selective Catheterstentvessel
Difficulties in provision of care for the Chinese Interventionalist | Across the Pond: The state of Interventional Radiology in China
Difficulties in provision of care for the Chinese Interventionalist | Across the Pond: The state of Interventional Radiology in China
accessBARDBDchapterchinachineseclinicianevaluateinterventioninterventionalpatentspatientsproductsreserestenosissendstentstentsVenovo Stentwestern
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
Vascular Disease | CLI: Cause and Diagnosis
Vascular Disease | CLI: Cause and Diagnosis
arterycardiovascularchaptercoronarydeathdiseaseextremityperipheralstentvascular
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
antiplateletarterybraincarotidchapterdualembolicmedicareplavixprocedureprotectionproximalstenosisstentstentingtherapy
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Malignant Biliary Strictures | Biliary Intervention
Malignant Biliary Strictures | Biliary Intervention
adventBARDcancerceliaccenterschaptercolorectalcookCordiscoveredcysticdataductextremelyfavorfavorablegoregrammalignantMeditechMemothermmetalmetastaticmultipleocclusiononcologyovergrowthpatientsperioperativeportalSmartStentstainsstentstentsstricturestumorunresectablewallstentZilver Stent
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
ablationablationschaptercryocryoablationfreezehemorrhagelesionlungLung Noduleminutesnodulepneumothoraxprobesprotocolproximalthawtriple
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
ablationbiliarybiliary cancercancerchapterchinacirrhosisfactorsgeneticguyshcchepatitisinterventioninterventionalistsInterventionslargestlifestylelunglung cancerneuropiccprevalentproceduresmokingsocietaltrained
Observations working in IR in China | Across the Pond: The state of Interventional Radiology in China
Observations working in IR in China | Across the Pond: The state of Interventional Radiology in China
betadinechapterchinaclinicianfinanceshealthcareinterventionaloncologystent
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
activeangiogramarterybleedingbloodchaptercoilsembolizationembolizeextravasationhematomainjuryleakingliverLiver TraumamelenamicrocatheterNonenoticeportalposteriorpseudoaneurysmtraumavenousvessels
Case 4b: Embolization After a Post Biopsy Renal Bleed | Emoblization: Bleeding and Trauma
Case 4b: Embolization After a Post Biopsy Renal Bleed | Emoblization: Bleeding and Trauma
angiogramarteriesbiopsybleedbleedingchaptercoilsembolizationembolizeextravgoalhematomakidneymassNoneorganpatientpatientsPost biopsy bleedrenalretroperitonealscanvascular
Transcript

68 year old woman with a history of hypertension presents to an outside hospital with sudden onset of severe chest and back pain.

That's what she looks like, now the difference here is she's got type A intramural hematoma, okay, everyone sees that. So that was diagnosed and she had mediastinal and pericardial fluid suggestive leaking

blood. She was transferred to Stanford and the chairman of my department did an ascending aorta replacement with open hemi-arch. Hemi-arch with open distal anastomosis performed. That's the non con just to show you the pericardial fluid and again, pre surgery, the hmatoma within the arch and the ascending.

She recovers sort of unremarkably except for a house officer stuck a chest tube through the liver so she had a big subcapsular hematoma but other than that she did okay and she leaves the hospital and pre-discharged CT performed two weeks post-op before she leaves looks like this. Here's the surgical.

Here is a bunch of felt here and you can see ascending [INAUDIBLE] but something catches your eye if you really notice the thickness of this hematoma is more than it was on the CT right before surgery. It's bulkier, it's thicker but everything looks good. So they send her off.

And at one month she returns for a routine surgical post-op. No complaint, wound is healing well, nobody does on the imaging, it's one month. This is when I do imaging. But this is post surgical, I don't do any imaging.

Now six months post-op she is awakening in the middle of the night with Nausea. Emergency services are called their blood pressure is in the 60's, they administer IB fluid and this was an outside hospital, CT scan was performed, she's transferred by helicopter to Stanford. In the CT scan they're are giving her all sorts of pressure agent.

Giving her APPI, giving her NEO, you know it name it, they are giving it to her. And this is what she looked like when she left and and this is what she looks like now. And this is what she looks like now.

This is the ascending repair. This is this big thing in their proximal descending which looks like this. Again this is not years later, this is less than six months. So this things can be bad actors and the problem is the thing about

intramural hematoma it's a flip of the coin, what's gonna happen? They could just completely resolve and resolve all that hematoma and everybody is happy or they can go off road quickly. And because it's a flip of the coin nobody knows. And it's very difficult to predict. Here you can see this thing.

This is what the celiac look like before, this is the celiac now. So I don't have a landing zone here it's too big. This is the celiac now, this is the SMA. So I do have a landing zone here. >> The proximal landing? >> I will show you in a sec, yeah.

And so you can see again, she's got all sorts of tears and I guess excavation. You're really not sure what's happened. But it's clearly degenerated. Here's what's causing her problem. And she's obviously ulcered here and leaking out from this.

[BLANK_AUDIO] So first thing I did is had to deal with the celiac and this emergent situation I just plugged it. And then I come up here and for the life of me, I couldn't get from here out into the arch. I tried and I tried and it wasn't working and she's has really bad

blood pressure, and I just gotta do something, so I said no problem. Lets prep the arm. We'll come in the left arm, will snare it will come up the bing the bang and the boom. Which I did and I got to here.

And very time I put in a double moniguest/g double J, I wanna tell you in advance, note her coronary's pipes. No problem with coronaries. So I put a [UNKNOWN] double J/g in. And I try to bring a stent graft up.

And I get about to here and the whole thing would buckle up like this. Even on a [UNKNOWN] and I said, what I'm I gonna do now? I'm gonna have to cuz I got up to this and into here through a lap I had given that up,

and I said well, I can do that maneuver again but do I really wanna deploy the stent graft with the wire coming from the, no. What I should really do is come from the right arm now. And that would give me a better sort of angle of attack. So that's what we did instead of we punctured the right arm. And even with that here is the wire coming in.

You can see the first stent graft is shot back into this big sack. But then I just with another one, with this being a roof on it, you could extend up and this was down. So, that looked good and off he went to the ICU and I went to talk to the family. And I went back in the ICU.

And I look in the room, they're coding her. She's coding. I look up, oh, this is terrible. And the surgeon goes, your patient's dying.

And I said, well, this isn't good. What's going on? He says, well, she has no pressure. And I said, but her heart's not moving, cuz they had an echo in there.

It's not moving. And I said, heart's not moving? Her coronaries are huge, what's the deal? That's the deal. Who knows what that is?

I know someone who knows what that is. From Nagoya, what is that? What do you call that? Audience? [BLANK_AUDIO] Go ahead.

Takotsubo. She's got takotsubo. Did you dial that? You guys knew that? You said that? Takotsubo,

that's what she's got. They'd given her so much opium carticels trying to revive her in the helicopter. She's the perfect age, the perfect sex, 65 woman, her heart just was stress cardiomyopathy acutely and

we got the the echo in there and that's what it looks like. And that heart, that appearance of profound apical hypokinesia is like the Japanese octopus trap, takotsubo. You learned something at least today at least,

right? Taktosubo. Cuz there were coronaries, there were pipes. So miraculously, so I go out and tell a family we've got a horrible problem.

Your mother is just not going well, I just wanna prepare you that she may not come out of these. I go back in, there is no one in the room, no one except the nurse, I go up to him and I say well, I know what we really learned from

this and goes, well, I don't know, she's doing a little better. And I look up and I look at the monitor and everything is going like this and she's alive and it's incredible. So she recovered from, with all this sort of supportive care so here's the post-op CT now and you can see going down and she

you can see a plug here in the celiac, we went right down under the SMA like that, everything's thrombosed, did well, left the hospital and off she went to have grilled octopus. >> [LAUGH] >> That's the bottom of that.

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

case I can make up the ages anyway so it doesn't matter so 43 year old patient on a motorcycle that collided with a deer all right presents with left upper quadrant abdominal pain and now we're looking at a cat scan all right who

wants to look at a cat scan you look like you're up for it what do you think what do you see no no you're not sure so we're looking so the key is the left upper quadrant pain right the patient presented with left-sided pain you

should know that whenever we're looking at a study like this we're looking as if we're talking to the person so the right side is on the left the image the left is on the right side and so if you look on the these are two

images if you look at the right side of the image you can actually see the spleen that's like that beam shape thing towards the back of the patient and what we should see is a homogeneous appearance of the organ but what we're

seeing are some kind of dark grayish lines going through it that's essentially a laceration of the screen that's what we're looking at that's the pathology that will prompt us doing a procedure like this and when we ever we

see a patient with splenic trauma we try and grade the trauma so one thing you're going to hear about is it's a patient with a grey 2 laceration or a great 4 laceration or something like that and that basically just describes the extent

of the laceration through the spleen the further through the spleen it goes the higher the number is the worse it is for the patient okay we tend to get involved with patients who who essentially have grade 3 or higher lacerations and are

hemodynamically stable so in this particular patient this was thought to be a grade 3 splenic laceration but there was not a whole lot of blood around the spleen so we thought this patient had some time to come to

angiography and embolization so here's the angiogram lo and behold what we see is again a blobby thing which is the theme of this lecture remember this is bleeding so we're looking for blobby things and all the way on the right side

of that image you can see that cloud of contrasts that black contrast that's extravasated of contrast that's not normal all the way to the right you guys see it are you good so going all the way to the right that's

what we're trying to do now when we do splenic embolization there's two ways we think about this do we want to go all the way to where the bleeding is all the way out into the screen and embolize one little branch that's injured or do we

want to do something called the proximal splenic embolization we would just put like some coils or plugs right at the origin of the splenic artery with the goal of being to slow down the flow and allow the spleen to heal a lot of it is

just what's possible maybe what time it is how tired we are things like that all factors that weigh into it but here's a little bit of a better view you can see the area of extravasation now here's another picture now we put

our microcatheter out there now you're getting a bit more of a sense of what's going on there you can see the extravagance II the vessel that it's coming from and then we put our catheter all the way out there and now we're

right at the source of the bleeding so our philosophy is if we see bleeding we want to go as far as we can towards the source of the bleeding keeping in mind that whenever we don't get as close to the bleeding as possible we're

sacrificing normal parts of the organ that we're treating and that's the philosophical leap that we make during these procedures so we were able to get out there and then we embolize leaving a lot of flow through the rest of the

spleen and the patient was able to survive like we never did anything alright that's our goal now here's a

patient who experienced the heart attack who had right little quadrant pain after a cardiac catheterization all you like oh so here's the cat scan and what you should appreciate there is in the front of that first image which is the axial

image all right you can see the hematoma that's brewing kind of in the front you notice how all these pictures kind of look the same that's the good part about giving a lecture on bleeding and trauma because they all kind of look the same

so that's the hematoma on the front part of the pelvis and on the on the right image which is more of a coronal like looking at the patient image you can see it right near the right groin you can see that hematoma all right so our next

step was to do an angiogram and this is what the angiogram looks like who wants to volunteer what do they say all right I saw someone raise his hand over here some walk over here what do you think yeah well yes so it is a retro hematoma

would you say describe the angiogram for everybody right where it's at the external iliac down the common femoral looks like there's contrast going up to the left and down to the right probably close to where they accessed yeah

probably but so yeah probably probably too high but the other thing is that's probably a pseudoaneurysm that probably is the evidence that there was a bleed there we're not seeing Frank extrapolation of contrast in a literally

contrast pouring out but we are seeing the effects of an injury to the artery and the constraining of the the remaining normal tissue to hold on to that bleed so the question is what do we want to do no that was very good because

I fooled you it's not always embolization so sorry I lied so in today's world a lot of times when we see this type of pathology we have again relatively new technology available to us again we

could go into that pseudoaneurysm and embolize it and that would be a legitimate treatment but my friend here is right you know this is a great case for a covered stent so we could go in and put a stent right across that area

of injury and stent it so these days looking at coverage stands as an option for patients with arterial injury is a very legitimate option you just have to be able to deliver it has to be the right artery you have to be able to get

the stent where it needs to go we all work with vascular surgeons who are great and they can put these stents and iliacs and aortas but they can't make those turns into livers and kidneys and spleens it's got to be the right artery

this is this is the right artery okay we saw this patient and we said well we could kind of get a micro catheter into that area of injury and embolize it or we could just put a cover sent across it and all go home to have dinner with our

kids so that was option B is what we chose here so this is a great cover stent case okay here's another patient

more rare condition that some of you may not have heard of but certainly something that wasn't familiar to me a

few years ago but basically people present by coughing up these rubbery casts of their Airways and what these rubbery casts are basically is a collection lymphatic food that's dried out and it just slowly fills in the

airways and they cough up these big things obviously an embarrassing thing to happen have happened to you at dinner can certainly affect your quality of life but I had one patient who saved who

saved a napkin and brought it to me to show me it and the clinic and I was like wow that's impressive please throw that away I believe you but you'll see patients congenital heart disease with COPD asthma tuberculosis cystic fibrosis

etc any of these patients can present with this particular issue what we found out by doing some of these mr so if we embolize these lymphatic vessels or find a way to bypass them the patients will have resolution of their symptoms and

it's an amazing change in quality of life it's only been done in adults as well as pediatrics I'll show you guys an example from the University of Michigan we did lymph and geography this gentleman was actually 500 pounds so I

couldn't do a mr on him and you see this weird tuft of lymphatic vessels right around his airway there on the left side bronchoscopy had already shown that that's where he was having his casts I was able to actually puncture him from

his neck and go retrograde he was a bit too big for me to go through the abdomen but he sees lymphatic duct looks all really fairly standard normal-looking anatomy with exception of that tuft of vessels we actually went down with a

sheath we put a stent graft a vibe on stent graft across that area we excluded those or normal vessels and his condition resolved within a month it's something he'd been living with for several years so fairly dramatic outcome

for this patient uncommonly I say we see maybe one of these patients a year but it's actually known - how to treat it and how to work it up it's very critical

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

here's another patient 62 year old male

patient just a similar case who had head in that cancer again after radiation therapy who experienced some bright red blood while coughing all right here's the CT scan and what I want to draw your attention to a little tough to see I

think I'll let me go up up here point it out with a mouse well I don't have a mouse so I guess not is basically you can see right in the middle of the two lungs kind of right in front of the trachea which is the black

circle alright just go right in front of that up to the top you can see the round white circle which is the brachiocephalic artery and just projecting off the back of that is another little kind of outpouching of

contrast a little nipple coming off of of the brachiocephalic artery that doesn't belong there all right here's the angiogram and it's a little difficult to see but there is a see if I can describe it better to you alright I

think this is actually a video so I'm sorry I don't know the ability to run it unless you can click on it can you guys click on the back up so if you want to look at it again you see the angiogram kind of running and just at the origin

of the brachiocephalic artery which is the first branch of the aortic arch you can see that outpouching of contrasts coming right to the right of that vessel that's a pseudoaneurysm and again we went through the same thought process we

said you know I want to put a covered stent across that but my problem was that we didn't just have the right size that would not block one of the carotid arteries and not extend too far into the aorta so we had no choice but to

consider embolization in this particular case so here's what we did here we actually put a micro catheter if you can just click I think that's a video to the left no I guess not you know what it's okay

what we did for this particular case was we went in from the arm and we put a micro catheter directly into that pseudoaneurysm because we couldn't feel we didn't feel we could put a stent across it so we put the micro catheter

in there we started to put some coils and it actually went further than we thought outside of the artery and here's the post image so you can see our final image you can see the coils that are sitting just adjacent to the

brachiocephalic artery and we preserved good flow there to end this basically

so my Xtreme ir case is a TVR with on a patient with a type you tie section and then we use laser to find a straight the dissection flap and I just want to before I start I just want to give a big shout-out to my attending dr. Kasia and Rudy pump Adi on our IR resident Rudy

put these really cool illustrations together as you will see on these upcoming slides and dr. Kaja he did this case and basically it helps me with everything so since your old male patient presenting with history of

chronic type UTI section um he was medically managed with and I'll G Saxena antihypertensives and then he came into the ER a couple months later and it was complaining of severe back and chest pain so a CTA was

performed and and they found that there was a significant growth in the descending thoracic aorta and so we have a couple images here we have a 3d reconstruction of the aorta as well as the sagittal image of that CTA and does

anyone notice anything about this 3d on aorta no so this patient has a variant he has a bull vine arch actually so the left common carotid is coming off the right you nominate um but vessel the arteries so it's nice for us when we're

placing that and negraph we have more more of a landing zone so we're not covering any of important structures other than the less left subclavian artery and so we're the two arrow heads are on the sagittal image you will see

that there's reentry tears so if you look at the 3d image so the dissection is that line right in the middle and so it's starting at the origin of near the LSA and ending at the level of the celiac artery okay so we obtained right

and left common femoral access and you obtain left brachial access as well and the reason for left particular access is once we get our enter graph gen we're going to go ahead and I'm pass the wire through and a laser through and find us

to find a straight through that under graft so you can have flow but I will talk about that later so we put a twenty French dry seal sheath and the right groin and in the left groin we had a 8 by 45

she's and that was basically to accommodate IVA so they can kind of get a feel for what we're doing it just like another resource we have so we have two IVs images here the one on the left with the yellow arrow basically is just

showing us that thickened dissection flap and the Ibis on the right is the love of the celiac artery so the celiac artery is where that green arrow is pointing to and the white arrow head is basically just showing us that reentry

tear at that level and so through the right through the right the sheet on the right hand side the 20 French try seal sheets we placed the 7 by a 55 Aptus on steerable tour tour guide sheath so that basically can angle up to 180 degrees so

we place that up to sheath in the true lumen of the aorta and pointing towards the false lumen and then I just put some pictures up of what a dissection looks like I don't know if a lot of people a lot of you guys on do dissection their

frustrations I mean your practice but I just thought it would be nice to show and so once we have the Aptus sheep up in the true lumen and have it pointed towards on the false women we confirmed with the eye this just to make sure

we're on the right spot and we're not we're not going to harm any other structures when we laser so once we have that up we use laser to kind of poke a hole and fenestrated create that's here and once we did that we dragged while

the laser was on we dragged the baptists sheath down 4 centimeters and created a large terror so the whole goal is to open up that dissection so we could eventually place that under graph so once and that there's a florist got the

image of ibis and apt the Aptus sheath and all that and so we created a large tiara and then what we did was we passed the 18 wire into the false live and we angioplasty with the 14 by 4 centimeter balloon and as you can see that there is

some waste on that balloon and then eventually it dilated up to you know now I'm gonna burst rate which was 18 and so that Ibis is basically showing us that's here that we just made in our dissection flap

okay am I not there we go okay so once we angioplasty be repeated the same thing so we put the laser back up get a small tear right underneath large penetrations here that we just said and then we angioplasty it so once we

angioplasty we connected that top tier and bottom tear together we opened it all up and we angioplasty it again after that so once that I mean go back so once the angioplasty so right underneath that big tear that we just made so between

the tear that we just made and the re-entry is here at the level of a celiac you still have that little piece of a dissection flap that we still need to open to place our under graft so once we did that once we angioplasty through

the right groin we passed up a glide catheter and the true lumen and pointed it towards the false women and through on the tear that we just made we passed the v18 wire and through the left groin we went up with a 20 millimeter loop

snare and so we grabbed the the 18 wire and so that loop snare went and that reentry tear and like into the false lumen so our whole point is to get through and through access with that wire so we can use as a wire cutter to

cut the remaining flaps so that's what we did so we we grabbed that snare we grab that v18 with the snare we pulled it out of the left groin and we obtained through and through access okay so you're just ripping it down yeah

basically it's like it she goes somewhere yeah yeah you got it yeah that's exact don't ask a question to what you don't want the answer so basically that's what we did so once we got through into access we advanced both

sheets and we kind of like pull down to to cut the remaining flap so once we did that we basically had everything open so we were ready to place our under graft so we did angiography and then we ended up

deploying the descent and then so once we would deploy the stent we basically covered that LSA the left subclavian artery so that's exactly why we got brachial access so we pass the wire through and got to the origin of the LSA

and then we ended up putting the laser down and then we turn the laser on poked a hole and so now we have this hole and this endograft so once we did that we angioplasty it and then we deploy the stents okay and so now we have a diagram

of the pates and LSA following stenting so we sent in the aorta and where the dissection was and then resented the LSA so we have nice nice flow the REC lab donal angiogram basically is just demonstrating feeling of the celiac in

superior mesenteric artery as you can see in that middle image distally so one of our missions that Rudy made which is pretty awesome so illustration of fenestrated t-bar with LSA sensing and adequate just so Co following the

dissection flap that we usually there's open so BAM there you go so that's Rudy and I in the middle my one of my co-workers Kevin and when my mentor is dr. Kaja dr. Marley and myself so thank you hi dr. Kasia thanks for joining

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

her I couldn't help but throw this in

just talking about back device here's a patient that had a iliac occlusion the right it was very difficult to get past the very proximal plaque cap so in this case I did a sub into a we can remember I talked about that out back device it

has like a little L and upside down L that you can use to point into the vessel lumen so what I did was on the healthy side I put in a sauce on me this allows me to know exactly where the arches and where the right coming he

like origin is certainly I don't want to be out backing into the aorta deeply right so this allows me to identify where that location is once I've out backed into the vessel here then I just pre dilated and then stent it up into

the vessels so just sort of interesting case one thing since I am Austin there's a couple of places just you may or may not be aware of this is a Barton Creek it's actually not just a cross town lake not far from here it's about a seven

mile a little Greenbelt inside the city where basically you don't feel like getting your traffic your gaze definitely away from everything this is called the land bridge oops so there's a couple of guys right here

that's about probably about a 20-foot jump there's this guy right here who just took off from that ledge it's about a 40 50 foot drop I did try to get up to that part one time it's about it one foot with ledge so I didn't get the ax

courage to do it now I'm sort of happy because during the summer months it does get just dry up so what I noticed with this is this is about a 10 12 foot depth here this guy's jumped in something's about

12 to 15 deep so it's sort of interesting the the balls enos of these guys some guys are doing backflips out there there is water there so you know if you guys have a chance check it out

if you do happen to find it I'm not encouraging it excited I wanna get sued but if you want to take a jump off have fun all right thank you [Applause]

these are the difficulties that I find

in provision of care and when I talk to some Mike in China they definitely commiserate in this what they were telling me that they feel are some of the issues they have you know simonin limits access to

international based medical products it's it's coming up with protectionism they want their products utilized well unfortunately there is a perception that some of these products that were made originally in China and probably not so

much nowadays been in the past we're not exactly up to the same type of you know Quality Assurance levels as US based or European products and that made it very difficult you know guys would go and they would learn in in the Western

world they'd be doing all these different studies and research reading what we're doing over here and then they wouldn't have access to the products or the procedures to take care of their patients the second thing

it's kind of difficult is CFDA which is Chinese version of the FDA they very much limit access and is very hard to get a product from overseas from Europe or to us into China they require in China in-country clinical studies they

require multiple products to actually evaluate so if you want to send us a where we're merit since I have some of my colleagues from Mary here and you wanted to send a product to get evaluated in China they can hold on to

and take up to three years for evaluation they'll last for about 4 000 units to evaluate and then they reverse-engineer them send them back to you and deny your Chinese your CFDA application their masters reverse

engineering so medical device companies are very hesitant sometimes to send their IP products over because international patents are not really covered in Chinese law so they can't knock these products off and and I think

the hardest thing is that patients are required to pay for products that are not made in country so when you're doing intervention I came across this when I was doing intervention and I was very blessed to be able to get credentials

and do intervention over there I would be doing a mather in her case and we had been ovo stents up which I've just got the you know approval here in the US by the FDA two weeks ago they've been using him there for almost two years but the

problem that we had with that is that the patient would have had to pay for them so I'm doing intervention and Manor you have to stent mather no you cannot just balloon it it's not effective and you'll have residual restenosis I had to

stop the procedure get the patients family and explain what was going on and offer them the stent and if they couldn't pay it we got him off the table and we were done and they ended up there I'm bussing their leg off again and

unfortunately that happened you know on one of my patients in his very fresh string is a Western provider clinician who's used to having the ability to do those things you just can't so it's it was definitely a frustrating thing for

me and certainly frustrating for the Chinese physicians and interventional study are there that know what they need to do but don't have access to the products readily or can't make their patients pay for these things because

they can't afford them and also it's kind of coming from a u.s. perspective we're used to single use of products over there there's no such thing as a you know one use disposable they will restore lies things that were not made

to be rese terrorized and as a Western clinician coming over there that's totally against everything we've ever thought about but you just kind of accept that practice and realize it's what's gonna happen so it's it's kind of

interesting I've saw you know IVC filters that were sterilized and we use after being in patients they do what they got to do and so these interesting those are some of the things you need to remember think about considerations

that's different than your ideologies that you were trained in in Western

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

problem so first of all as you know all vascular disease is related in other words coronary artery disease is related

to cerebral vascular disease is related to lower extremity or peripheral artery disease they're all intertwined okay that's why a lot of our patients that we see for peripheral t disease have a sternotomy score or a coronary stent or

have had strokes I will remind you that cardiovascular disease is the number one cause of death in the u.s. for both men and women to this day we still hear vascular disease is an old man's disease that is BS it is the number one cause of

death in women in the United States

there a better option this is where a carotid artery stenting was developed over a couple decades ago and this is a

less invasive viable option for treating carotid artery stenosis it was generally started off as a trends ephemeral approach but I'll show you what the new approach is that many of us are involved in it involves the use of

in volunteer tection so it's one of the unique vascular territories where embolic protection is required if you're gonna get Medicare reimbursement for this you have to involvement and bollocky protection if you do without

you can do the procedure but you won't get it you won't get reimbursed and ultimately it's it was proven to show much better outcomes if you use involved protection because even doing the procedure and trying to place the stent

there is some small embolic degree that that that shuttles off and if it happens in the foot you may or may not lose a toe but if it happens in the brain you're gonna lose brain cells and it's gonna be potentially catastrophic so

significant adjunct to the stenting procedure is doing embolic protection and there's two types of embolic protection there's distal and there's proximal I'll walk through each of those with some diagrams here and then anyone

that gets a carotid stent has to be on dual antiplatelet therapy so if they have an allergy they're unable to be on aspirin and plavix they don't get a stent because there's early stent thrombosis that can't occur in these

patients if they don't have that dual antiplatelet therapy so let's go through

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

possible even though the you know strictures actually most likely are related to the malignant frequently in large centers like the Asura actually we see more benign strictures and malignant

strictures mainly because of the post-operative and perioperative complications so strictly speaking the incidence of reduced riches is actually flipped sometimes though we do actually have to help and some more patients now

particularly in the GI Sims I think in the ten last ten years GI now places metal stents almost routinely there's almost there are people still placing skinny in those things are two plastic calibers things

but the advent of retrievable removable metal stents has really changed and so now we will place dancing much frequently in that the wall stent is actually the pre derivative of the wall flex which is the Justin that can be

removed it's got a little barb that removes it and it's what they will do is retrograde put these up and then six weeks later or even up to nine months go in and retrieve it and pull them out completely so they certainly and the

number of build with stains placement in G and IR is reduced somewhat because how aggressive gr has become but certainly will place these and particularly patients who are in the palliative stages of care and although these

applications we've used in many other ways so your goal is to get the same team this just happens to be a patient with unresectable head of pancreas cancer you can see the obstruction in the distal CBD just below the cystic

duct there's non pacified area you can see on the calendar gram as well as the celiac artery gram you can see how the portal vein sensor strictures of his patients unresectable will go in there in place

that metal stent you first place your guide why follow that up with a stent that cross bridges from open to open and open this up and we use stands between eight and ten millimeters in diameter and nowadays even covering the

cystic duct is not such a big deal and nowadays cupboards things are probably more in favor now even though the data the data actually doesn't support covering over uncovered and the data for both is actually extremely marked be

similar and it's not compelling and because of the price difference I think visit again a probably a swing back to I'm not standing every CPD stains with covered stands but no question at least from operators point of view in my point

of view it makes whole wholehearted sense to allow the tumor no interest disease to grow through but yet the outcome is still not clear that it's a favorable and cost-effective to do covered stains entirely and we actually

will place up to three drains sometimes you have these complex cancer patients with multiple strictures where almost all the segments are excluding in a extremely sick or they need their bilirubin's to come down for four to be

eligible for cut medical oncology chemotherapy and this is the selling of metastatic colorectal cancer and so that will put three up to three tubes in the right lobe before will give up and say that there's not much more decompression

we can achieve so four tiers is that probably the maximum will place in for multiple site so like I said you know malignant brutally strictures and this data and I'm not going to because it's sort of a moving target

when Gore came with the first covered stand purely because of the fabric that they have gore-tex like what's under jacket and clothing and was interesting it's one of the most improbable fabrics and the reasons why Bill Lewis stands

accrued is not so much that it's overgrowth of tumor but the in growth of bio and in growth of bacteria actually will cause a non-covered stain suit include earlier so the advent of gore and making a stent that made a big

difference and it's covered same it does to change quickly the ease at which patients could be stent in the new system so when they came on the market was really helpful and there's just example of how you can go from occlusion

all the way to having natural passage about now back into the small bar and the utility and the importance of bile salts power fluid in your GI tract is critical for absorption in almost all your metabolic

function so having this drain out externally is really not advisable so getting a natural pathway flow of bio into the GI system is extremely important but I believe strictures and

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

something some case examples of where I use cryoablation right so this is a

patient who has a nodule in the in the back of their lungs in the right lower lobe and basically I'll place two probes into that notch on either side of Brackett the lesion and then three months later fall up you can see a nice

resolution of that nodule so when it comes to lung a couple things I'll mention is if the nodule is greater than eight millimeters I'll immediately go to two probes I want to make sure that I cover the lesion whereas microwave it's

pretty rare depending on what device you're using for you to put more than one probe in so some people's concern with cryo in the lung is more probes means more risk of pneumothorax but you can also see surrounding and proximal to

where we did the place you can see the hemorrhage that you see so if those of you out there that are doing the lung ablations you probably have physicians that are using something called the triple freeze protocol right so the

double freeze protocol is the idea that you go ten minutes freeze five minutes 30 minutes freeze five minutes thought well what we saw was lung early on in the studies was a very large ablation a freeze to start with caused massive

hemorrhage patients were having very large amounts of hemorrhage so what we do now in lung is something called a triple freeze protocol we'll do a very short freeze about three minutes and that'll cause an ice ball to form and

then we'll thaw that in other three minutes three minutes of thawr and as soon as that starts to thaw we'll freeze it again and we've shown us a substantial decrease in the amount of hemorrhage so if you're doing long and

you and you you're told to do a double freeze protocol perhaps suggest the triple freeze is a better idea so that's three months later so another example

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

you know the most common procedures in China this is kind of interesting I was blown away by this when I did the research on this I knew when I would go

into the hospitals and I was all over for I've been to Beijing shanghai nanjing to even the smallest little place is up in northern china and the one thing that blew me away I'm looking at the board and I'm seeing neuro case

after neuro case after neuro case I'm like it got 10 Narrows and and a pic line I'm like it's an interesting interesting Dysport of cases and the reason being is in China they consider diagnostic neuro

so neuro angio to be the primary evaluating factor for any type of neurological issue so you're not getting a CT if you come in with a headache you think you're gonna go get that cat scan now it's generally what not what they do

so you're talking about a case and I'll give you the case matrix of the break-up it's just proportionately high for a neuro very well trained in neuro and most of the guys that are trying to neuro very similar to what dr. well Saad

said a lot of the guys in Africa are trained in France so other neuro interventions have trained in France or lipstick in China and have received European training on that so you know the level of what they're doing some of

the stroke interventions some of the ways they're going after these complex APM's they'll Rob well anything you'll see here in the US so it is quite interesting to see and the second

largest is taste hepatocellular carcinoma is on the rise it's the highest level in the world is found in China and Korea for that matter and there's many reasons why we can go into it some of it is genetic factors and a

lot of societal factors alcohol is a very liberally lie baited in China and there is problems with you know cirrhotic disease and other things that we know could be particular factors for HCC so always found that very

interesting like I said I would go into a hospital and I'll see a PICC line a hemodialysis catheter and then 20 tase's on the board in one day so it is quite interesting how they do it and then biliary intervention stents tips and

then lung ablation you know the highest rates of HCC biliary cancer and lung cancer found in China and once again when we talk about lung cancer what are those contributing factors you're talking about certainly a genetic

component but mostly it's lifestyle factors smoking is prevalent in the US and in you know in Europe and in some areas in Asia we've seen obviously a big reduction in smoking which is fantastic China not so much you don't see that

it's a societal thing for them and unfortunately that has led to the the largest rates of cancer in the world in lung cancer so lung ablation is a big procedure for them over there as well so procedure breakdown this is kind of some

of that breakdown I was telling you about that cerebral procedure is some of the most commonly performed and you're talking about at very large numbers they're doing neuro intervention because they do it for die

Gnostic purposes and I would that kind of blew me away when I found out they do have cast scanners and certainly for trauma and things like that they'll do it but the majority of the stuff if you come in you have headaches you might end

up in the neuro suite so it's quite interesting how they can do that tumor intervention very high like I said you have the highest rates of HCC in the world you're getting cases they do have y9t available and in fact China just

made their largest acquisition ever with the by what you guys know a company they bought surtex there's a Chinese company now it got bought by China now the interesting is they don't currently have a whole lot of

y9t over there but they just opened up some of their own generators so they can actually start producing the white room 90 and I think you'll see probably a increase in those numbers of y9t cases but to date the number one procedure for

them is taste and they do a lot of them you know like I said on average a community hospital setting you might find 15 or 20 cases a day with three interventionalists so compared to what you guys do there's probably not many

people here unless you're working at a major institution that there's nothing but cancer doing 20 cases a day and I promise you're probably not doing it with only two interventionalists so it's amazing how fast and effective they've

gotten at and below therapy and unfortunately it is necessary because of those elevated HCC levels and like I said when we look at some of these things it's I go over there and I'm looking at the board there are very few

cases for you know PICC lines very few the frosted grams very new bread-and-butter abscess training procedures like we do here in the US they are very it's the prevalence is very simple it's neuro it stays and it's

biopsy and those are some kind of the big three for intervention in China and there it's such a large volume you get to learn a lot when you're over there and CLI PA D even though it's more prevalent in China than it is here

because smoking lifestyle factors certainly westernization of the diet in China which occurred since the 1950s and 60s has led to a lot of McDonald's and and fast food and things that weren't currently available prior to 1950s you

see a lot of PA d but it is very undertreated and certainly talking to some of my colleagues like whom are oh you'll get to see a little bit later on with CLI fighters one of the things that's kind of frustrating for them is

that it is so undertreated it's very common to see amputations in China instead of actually doing pipe in percutaneous intervention they normally like to go too far and you see a lot of amputation certainly above

normal so that's something I think as an interventional initiative when we look at these things coming from a Western perspective it's definitely something we need to pursue a little more aggressively but there it's very little

oh well you're talking about two you know two to three percent you know maybe up to six percent or PID cases very very low levels so equipment in equipment in

and these are just my personal observations I'm gonna make this quick because you got a great presenter following me and I don't want to push off dr. rustling too much longer but

compassion and smile are universal I didn't need to speak Mandarin to be able to understand what was going on and certainly when I'm at that scrub table and I'm performing procedures on patients we all could smile and laugh

and figure out what was going on very quickly without too much into discussion and so that's the one thing I would always say when you go smiles contagious wherever you are in this world everyone likes to smile

second thing is everything is your usable what you think it should be or not doesn't matter you can reuse it I found that one out betadine is amazing everything is reusable overseas you'll figure that one out quickly informed

healthcare is at a higher level in China and what I mean by that is when you have to have your patient pay for a $2000 stent yeah informed healthcare is amazing because you're gonna pull the patient's family in and you're gonna

talk to them and they're gonna have to make very important decisions about healthcare which is dependent on what type of finances they have and it's kind of sad unfortunately you know I would hope we

can go into a big long debate about US healthcare and everything else but in the end the sheet you put that Stinton if I need to put that stent in and then we'll worry about the finances later on it's

not that way over in there so that can be very frustrating for a clinician he's trying to do what he feels is best or if she feels is best for their patient and they can't you'll find no better MacGyver's than in china and then in

overseas because they will make it work no it's gonna fit no matter what what size fit you have it doesn't matter we'll make it work so it's it is amazing you will find some macgyvering going over there that's

quite fascinating more tase's and i've ever seen in my life you want to learn interventional oncology and you haven't done a taste procedure go to China for a week you're gonna come back and be an expert whether you want to be or not

that's de-facto and certainly the younger I are physicians strong knowledge base of clinically what's going on and excited to plug into their colleagues overseas they want to know what we're doing here in the US

they want to know what they're doing in Europe they want to know about the latest studies and that's exciting to me as a clinician to be able to share that and see that that future there is a strong and bright future for

interventional radiology and when

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

24 year old patient after a car accident has lower abdominal pain and melena so blood coming out of the rectum here's the CT scan anyone want to take a stab but you can just shout it out

so this time we're looking at the liver right so the liver is the big thing on the right side of the screen and what you can see is the dark hematoma posterior to the liver but you should also notice that big white dots sitting

right in the hematoma all right that's important because that's active bleeding that's the report when you guys when you guys get called in for these cases and someone says oh this you know liver trauma with active

bleeding this is the picture that is spurring that announcement okay this is what active bleeding and the liver looks like again there's a bleeding scale there's an injury scale for a liver trauma we don't need to go into that

slides are available if you want them alright here is the angiogram now again my rule works all right if you see vessels get smaller and then big again something's abnormal so in this particular picture I want you to notice

the catheter sitting in the right hepatic artery the blood is going up into the right lobe of the liver and right near the top of the pictures that big circular kind of blobby thing now this is by definition extravasation

sometimes we use the term pseudoaneurysm to describe this I just want you to appreciate what a pseudoaneurysm means it means that there's a hole in the artery that contrasts or blood is leaking out of that hole and the body is

essentially constraining the bleeding it's not going all over the place it's being constrained that's what we call a pseudoaneurysm all right that's just one way to look at it and geographically so this is an injury to the artery blood is

leaking out of the artery but maybe one layer of a three-layered blood vessel or even just the surrounding tissue is constraining that bleeding alright so what do we want to do for this exactly exactly you're getting it all right so

here we can get our microcatheter all the way out there the closer we get to it the better now in end organs like the liver or the kidney we don't actually have to get all the way out there getting close to it's going to be good

enough but the closer we get to it the better for stopping the bleeding and preserving the function of that organ all right so look how close we literally got right into the injury and then we're able to embolize it that's the goal all

right now the liver is a nice place the treat because as you know there's two sets of blood vessels going to the liver there's the portal veins in the apat ik artery so if we just embolize a little a patek artery the

liver is not going to notice that at all because it still has the portal venous flow bringing blood to that liver but our goal is to get in there preserve as much of the liver that we can and address that injury okay here's another

similar but similar story an older patient who presented for a biopsy of a right renal mass now sometimes it's a skiing accident sometimes it's a car accident sometimes it's us that causes

these problems so here's a patient who came in for a biopsy of a renal mass here's the CT scan hopefully you can appreciate that the patient is face down or prone on this scan this by the spine is on the top side you can see our

biopsy needle going into a mass in the left kidney excuse me the right kidney and now this is the she comes back later because of some pain and now in a manner that's similar to what you said earlier on that first CT scan you can now see

the right kidney is pushed forward by a very large retroperitoneal hematoma so this is probably a post biopsy bleed this doesn't happen very often in fact as someone who does kidney biopsies once or twice every day I'm shocked that this

doesn't happen more often we're sticking big needles into vascular organs or vascular masses it's amazing that we don't have more patients come back for this it only happens about 2% of the time and usually people who have these

types of risk factors are at risk for this type of bleeding after a biopsy but we can do is we can go in do an angiogram and again I want you to just appreciate look at the picture I think everyone hopefully can see on the bottom

of the picture there's this active extrav enough contrast from the lower pol renal arteries all right lo pol renal artery and that's bad if it's great in a lecture because it's very easy for everyone to see but the reality

is it really signifies very significant bleeding and that's what everyone here should appreciate if you're managing the trauma patient or the bleeding patient if you see if this Cleary this clearly means everyone's got to move a little

faster to address it because this is a bad bleed but the great news is that we have the technology now to go all the way into the renal arteries or frankly the arteries of any organ get very far distant land just embolize it and so

look how far we got here for this patient we took care of it this patients kidney function didn't pump an inch because the reality is there was very little impact on the normal parts of the kidney so that's the goal if you guys

work with people who say oh we don't have to get that far out just throw some coils you know near the origin it's fine it'll accomplish the same goal but at the same time they will have killed half of the patients kidney so it is always

worth making some effort to get as far as you can into the organ that you're treating but at the same time you don't want to take an hour to do that because the patient's bleeding pretty heavily and you have to address it so that's our

goal during these procedures next case

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.