Create an account and get 3 free clips per day.
Chapters
Aortofemoral, Femorofemoral, Femoropopliteal Bypass Occlusion | Thrombolysis, Thrombectomy, Balloon Angioplasty | 66 | Male
Aortofemoral, Femorofemoral, Femoropopliteal Bypass Occlusion | Thrombolysis, Thrombectomy, Balloon Angioplasty | 66 | Male
2016AngiodynamicsanticoagulationBoston ScientificchronicallydistalgraftslimbsmultipleoccludedPatentprettyprofundaproximalSIRsurgicalthrombectomythrombolysisvascularvein
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
acuteangiojetBoston ScientificclotdevicediscretionDVTiliacmechanicalmechanical thrombectomy deviceoperativeoutflowpatencyPatentpatientspoplitealratestentstentingstentstherapeutictherapiestherapythrombolysisthrombustreatmentvein
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
amputationangioplastyarteryballoonballoonsBoston ScientificcalcificationclinicalcoatedcompleteconcentrationdegreedistaldiureticdownstreamdrugendpointshealinglesionslimbnecrosispaclitaxelPaclitaxel-Coated PTA Balloon CatheterpatientpatientsPTAs with DCBRangerrutherfordsalvagestenosisstudytherapeuticwound
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
anteriorarterialarterybasilicbrachialcoexistingcollateralscompartmentdelayeddopplerduplexexplorationfracturefracturesfunctionhumerusinjuryinovaischemiaischemicmediannerveneurovascularnormalobservationpalpablepatientperfusedperfusionpositiveproximalpulsepulselessradialrecommendsurgicalsyndromethrombectomyvascularVeith
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
answeranticoagulationattractendpointevidenceexcisionhemostasislimbocclusionpatientsthoracicthrombolysistpaulceruppervcssvenousvillalta
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
additionalangioplastybailoutballoonballoonsbasedcentercodescostDCBdecreasedDESdollarsgeometricInterventionslimbmedicalmedicareoutpatientpasspatencyPatentpayerpercentprimaryreimbursementreinterventionreinterventionsrevascularizationstents
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
abstractacuteAnti-coagulantsanticoagulationattractclotclotsdistalDVTendovascularendovascular Clot RemovalextremityfemoralinterventionpatientspharmaphlegmasiaproximalrandomizedsymptomssyndromeulcerationsveinVeithvenous
Importance Of Toe Pressure In Predicting Healing Of Toe And Foot Wounds And In Indicating The Need For Revascularization
Importance Of Toe Pressure In Predicting Healing Of Toe And Foot Wounds And In Indicating The Need For Revascularization
amputationbasedbloodbrachialcutaneousdatadeterminedigitaldopplerhealhealedhealingmetaoximetrypatientpatientspredictpredictivepressurepressuresrevascularizationstatisticallytampatherapeutictibiaToe Pressurevascularvasculaturevelocitieswaveformwaveforms
Why Is Vertebral Artery Perfusion Important During TEVAR: With Normal And Abnormal Anatomy
Why Is Vertebral Artery Perfusion Important During TEVAR: With Normal And Abnormal Anatomy
aberrantanastomosisaneurysmaorticarcharterycerebellarcommoncontralateraldiseasedominantductevaluatehypoplasiaindicationsipsilateralischemialaryngealleftliteraturemycoticoccludedocclusiveoriginpatencyPatentperfusionperioperativepicaposteriorpreserverecurrentrevascularizationroutinesubclaviansupraclavicularterminationTEVARthoracicvertebralvertebral artery
Single Session Continuous Aspiration Thrombectomy (SSCAT) For All DVT Utilizing Indigo Thrombectomy System
Single Session Continuous Aspiration Thrombectomy (SSCAT) For All DVT Utilizing Indigo Thrombectomy System
Angiojet Power Plus CatheterantegradeaspirationcatheterdaviesdeviceFinal Indigo + Lytics + Wall Stent +Indigo Aspiration System Devices (Pneumbra)Lt Ilio-Femoral DVTlyticsmaximaloccludedPower Pulse Spray Techniquethrombectomyunderlyingutilizedvenous
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Extracranial Carotid Aneurysms: Natural History, Diagnosis And Optimal Treatment: From A Registry Of 350 Cases
Extracranial Carotid Aneurysms: Natural History, Diagnosis And Optimal Treatment: From A Registry Of 350 Cases
aneurysmatheroscleroticcarotidcharacteristicsclinicaldataendovascularextracranialfollowinternationalnaturalobservationalpatientsperformprimaryproximalregistryrevascularizationtortuosity
Finish Treatment Of Acute DVT In The Lab
Finish Treatment Of Acute DVT In The Lab
6-10 F AspiraxacuteAnti-coagulants & compressing stockingaspirateCDTclinicalDescending DVT - May Turner SYndromedevicedevicesDVTfemoralfollowfrenchiliofemoralmechanicalMechanical thrombectomymulticenterpatencypatientpatientsPharmacological ThrombectomypoplitealprofundaproximalseverestentsstudysubacuteswellingsymptomssyndromethrombectomythrombolysisthrombolyticthrombusTrans-Popliteal Accesstraumatictreatedtreatmentunderlyingvein
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
advantagesautologousbypasscardiaccomorbidcomplicationsdecreasedecreaseddisadvantagesendoscopicendovascularextremityharvestincisionincreasedinexperiencedlaborligatedlowerpatencypatientspercutaneousperformedprimaryrisksaphenoussurgicalsuturevascularveinVeithwoundwounds
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
anatomyangioplastyarterialBaylis MedicalcontrastCVOdefinediagnosticfusedfusiongraftguidewireiliacLeft CIA PTA using Vessel ASSISTocclusionoutlinepatientphasePowerWire RFprettyPTAradialsnarestenosisstentstentstotallyveinsVessel ASSIST (GE Healthcare) - Fusion Imagingvesselswire
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Long-Term Results Of AV Fistulas And Grafts
Long-Term Results Of AV Fistulas And Grafts
AF GraftarterAVFDialysisduplexendovascularFistulafistulasfistulogramgraftgraftshemodialysisinfectionmaturationoccludedocclusionpatencypatientspreoperativeprimaryprominentproximalpseudoaneurysmpseudoaneurysmsreinterventionscanningtrendunderwentveinVeithvenousversus
Endovenectomy And Iliac Vein Stent Placement: How I Do It (Video Technique Demonstration)
Endovenectomy And Iliac Vein Stent Placement: How I Do It (Video Technique Demonstration)
anticoagulationbulkyclearancecollagencommoncommon femoraldistalendarterectomyextensionfemoralflowsiliaciliac veinIliac Vein StentinginflowinguinalmaterialorificeprofundaRecurrent Venous UlcersheathstenosisstentstentingtherapeuticulcerationV.A.C. Therapyveinvenogramvenographyvenous
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
anticoagulantsantiphospholipidantiplateletDVTendovascularfactorsfamilyhistoryincidenceinfrainguinalinpatientintraoperativepatientsperioperativepreoperativeriskscreeningsurgicalthoracicthrombosisvascularvenous
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
Transcript

Okay, next case. 60 year old male, history of multiple vascular surgical procedures, he had aortobifem, a couple of fem-fems,

a couple of fem-pops on both sides and had multiple thrombectomies performed. But never thrombolysis. This is an amazing case. This guy had actually extensive vascular history but never had an angiogram. I don't know why went for all this.

But I think it was actually Hopkins. I know, amazing. So he presents with very little information first of all, and cold legs with right more so than left but obviously it's thrombosed, something centrally.

We They did come with an outside CT luckily but unfortunately not much else. So we really didn't have much idea about his surgical history. And this can be challenging obviously. This looks similar to the other case but it's a different case but it's a different case. But that proximal end looks pretty similar.

This case of course both limbs are thrombosed. And I think in In this case you can make a pretty strong argument for surgical thrombectomy probably, right? This guy has an aortobifem, both of them are down,

there's a fem-fem below that. So one of this probably chronically down cause you've got a fem-fem So there he's got a couple of fem-fems there. All right, brilliant And then as you go down he's got like three

grafts on the right and a couple on the left. This is totally absurd right? Yeah. [LAUGH] So what do you access?

>> [LAUGH] >> Any ideas? >> [INAUDIBLE] >> Send him away, exactly. >> Stick the fem-fem. >> How do you know which one is the bad fem-fem? Palpation?

>> Yeah, well with ultrasound you can often see what's more acute. >> Right. >> Right? So the echogenic one is probably more chronic right?

So that's what we did. We ultrasounded, got an idea which fem-fem is more acute and stuck it. Oh wait, sorry. I've one thing before the CT scan. So as you it go it down,

you can see that obviously he's got all these grafts that are all occluded apart from this one here that looks it comes up a profunda and it goes down. And this thing is actually patent and then comes then and touches down the AT. So that's the amazing thing about vein grafts. When you get a good vein graft,

those things are really good. And this thing stays open despite this incredibly poor inflow. So yeah. We stuck the fem-fem. This is the angiogram. But we stuck the fem-fem here going in this direction.

And I'm not sure why we went in that direction, probably because his right leg was worse. This was easy so it's not clearly acute. We were able to catheterize the aorta easily, do an angiogram and you see that obviously the aortobifem limbs are both down.

And I'm assuming the left is the down chronically and this fem-fem was placed at some point. And then you see a lot of collaterals reconstituting the profunda, and then here is the proximal anastomosis of his vein graft of a profunda branch. It's pretty amazing. And that looks actually pretty good

And the AT is up below that. What was interesting about this guy is that he didn't seem to have a lot of pain. It was out of proportion with his vascular findings. I don't know if that was just from multiple surgeries maybe.

So in this guy, we lysed. And I had nothing to do with the fact that it was 4:30 in the afternoon. So we stuck a catheter in there, one of those long Uni-Fuse catheters. I tend not to use Ekos in the arterial system,

and yeah we've discussed thrombolysis I guess, right? Came back, looks pretty good, right? So this limb is all opened up. I mean thrombolysis works great.

If it weren't for thrombolysis, we couldn't do any of this stuff, right? So this is open, this is open. It's got some strictures here, but all in all pretty good apart from the outflow on the right.

So obviously now we're gonna redirect our access down the right leg and see what's going on, right? So we get into the profunda branches and get the A Jet out and start buzzing around a little bit, trying to find the connection to that bypass.

We end up ballooning here. And then that kinda opens things up and now we can see this branch which gives off that bypass. And in the interim what's funny is we've started filling some of these old fem pops, which look all degraded.

I mean I considered embolizing that. That doesn't look so good, right? >> [LAUGH] >> And on this side, this all looks pretty good, apart from

one little dislembles/g that we had which is very annoying. So we went after that and I think we might have used A-Jet or aspiration, I'm not sure but it ended up here. So as you can see this is open here and now it's occluded the distal anastomisis. So we went back down with a Spider, and I did my swat spider thrombectomy

trick, which is where I deploy a Spider below the lesion and then pull it back. And sometimes this works and you can actually pull out. And this is one of those cases that I actually pulled this out and got lucky, and he has a patent AT below that.

So we ballooned the distal anastomosis, got a decent result that reconstitutes peroneal, I think that is. And then we did end up actually getting access going in the other direction to work on the left side. So it's fairly a lengthy case.

And we haven't seen him since, so who knows what happened to him. >> Back at Hopkins. >> Back to Hopkins for some more surgery. And here is the seg and non-invasives. This is pre and post, so pretty much what you'd expect right? [BLANK_AUDIO]

Okay, questions? >> [INAUDIBLE] >> I think he was on anti-coagulation. Yeah. But I'm not entirely sure. But that's a good question. Like how do you treat these? I prefer not to give anticoagulation if possible and just go with antiplatelet.

But sometimes, a lot of patients guys who come back every year and get lysed get the same stupid ex-fem or whatever lysis and stuff. They end up basically being on anticoagulation and dual antiplatelet and they still come back so yeah.

- Thank you very much both. It was a great pleasure to see you. I continue to be grateful for the guidance you have given me over the years. Thank you to the organizers for advising me to speak. These are my disclosures. So really there are two questions posed by this topic.

One is, is the patent popliteal vein necessary? I would assume from this is it necessary for patency and symptom relief to be achieved in treating patients with both acute DVT and potentially chronic. And has the evolution formic mechanical therapy

led to over stenting. Which means we have to ask the question what is an appropriate rate for stenting. I am not sure we know the answer to that. So being able to answer over stenting requires us to know how many patients

actually need the stent in the first place in acute DVT treatments. The problem is essentially this. Is that when we form lithic therapies and this is a classic case of treatment formed with formic and mechanical device

but without a follow up using lithic in the patient for whom lithic was not feasible. You end up opening up a vessel but you can see from the image on the left hand side that there is a degree still of luminol contrast deficit suggesting some cult left behind

in the external iliac vein. Well there is obviously a May-Thurner legion at the top. The question of over stenting is one of do we just stent the May-Thruner and extend it down into the external iliac vein to trap that thrombus

or would a period of time of lithic have resulted in this clot resolving and not needed a stent at the end of it. To get to the question of how many people should be stented. The only way we can really do this

is try and exstipulate from the literature to some extent. This is the short and long term outcome from the Kevin study. Where there is ultrasound follow up of patients underwent standard treatment only.

And a additional group in the patients had catheter-directed thrombolysis. We can see there that the patients did six months in catheter-directed thrombolysis group is around 60%. And the patency seen with the non treated group

is around 40%. If we kind of use these numbers as a guide we probably expect therefore that the stent rate would be somewhere between 40 and 60 percent. To account for treating the outflow structure that presumably patients see at six months.

But this is clearly not a very rebost method of being absolutely clear on who needs stents. Additional method is we don't really have and answer for who should be stented at the end of a procedure. So if you look at the massive variability

in the other studies. We see that attract stent rate is approximately 28% for the study. Which is obviously a operative discretion and has been criticized for that reason. But there is no comment on the Popliteal vein

or Popliteal vein patency. Cavent did an stent rate of 15% again with no real comment on whether the Popliteal vein was open and it wasn't a prerequisite for treatment in the study. This contrast with the Ansberg Aspirex Registry.

Which is a registry of a purely mechanical device to aspirex clot and the stent rate is 100%. Baekgaard Copenhagen used a catered-directed thrombolysis with a mandated open popliteal vein for purpose to be in the study. He has a stent rate of 60%.

My own personal experience of 160 odd patients is that were stenting around 80% of patients with outflow legion at the end of treatment. And were not really bothered by whether the popliteal vein is clear or not. But that doesn't necessarily answer the question

whether it makes a difference in the long run. So its very difficult even looking at the data we have because there is no standard definition of what a outflow stenosis is. There is no objective measure for an outflow stenosis. So stenting becomes and operative discretion decision.

But you would have to say that if your taking purely mechanical devices and the stent rates are going up to 100% that the inclination would be that there is potential for formic mechanical therapy to lead to overstenting and increase use

for stents for sure. In our experience then we had 81 patients who had CDT alone verse 70 patients who had AngioJet Thrombectomy. The basic characteristics of the group are pretty much identical.

With similar ages and no difference between whether the thrombus with left side or right side of body or so on. And these are the patency curves for the different groups with equivalent primary, primary assisted and secondary patency over two yeas.

We had no difference in stent rates with the median stenting of 80% in both groups with two stents used in average for each of those patients. However in our practice AngioJet is rarely used alone. So we had 70 patients for whom AngioJet was used. 24 of those where AngioJet was used up front

as the first line of treatment followed by some CDT. We have tended find that if we wanted full clock clearance. We have always had omit to some extent. And single stage therapy is quite difficult to achieve unless you spent a lot of time in it.

Patency in the popliteal vein is clearly affected by some extent. These are our follow up results if we don't have a patent popliteal vein at the end. It does drop off in stent patency. So the conclusions then I think.

Is that patent popliteal vein is necessary for long term results. But you can still treat patients that have acute popliteal vein for larsons that is not a contraindication. Pure mechanical therapies may well lead to higher stent rate.

But is this a bad thing or a good thing? We don't really know this at this stage as to what the long term outcomes will be. Thank you very much.

- Thank you very much Mr. Chairman. Thank you Frank, for this kind invitation again to this symposium. This is my disclosure. With the drug coated balloons it is important to minimize the drug loss during the balloon transit during the inflation of the balloon.

Because Paclitaxel has a high degree of cytotoxicity that may induce necrosis and increase inflammation in the distal tissue, and we know that even with the best technique, we can loose 70 - 80% of the drop to the distal circulation,

the inference by different factors between them and the calcification of degree of these blood cells. There are adverse events secondary to drug coated balloons that have been reported recently. In animal molders it has shown that Downstream Vascular Changes are more frequent with

Drug Coated Balloons than with Drug-Eluting Stents. In animal molders it has been also shown that there is no evidence of significant downstream emboli or systemic toxicity with DCB's than with patients with controls. This was a study presented yesterday by (mumbles)

with a very nice and elegant study with a good methodology that shows in animals that there are different concentrations of the drug in distal tissue depending on the balloon that you are using. In this case, the range in balloon (mumbles)

those ones have the lowest concentration in the distal tissue. In clinical experience in this meta-analysis amputations and wound healing rate are lower with this series with controls. But there is controversy because

Complete Index Ulcer Healing is higher in this series than with control patients. But there are lower wound healing index in patients compared with drug-eluting stents. In the debate, (mumbles) and also in the dialux which are clinical trials in diuretic patients with CLI,

there we no issues of safety and no impair of the wounds healing. But, remember the negative result of the IN PACT DEEP trial in which there were more amputation at six months that could be influenced, but in all their factors, the lack of standardized

wound care protocols. (mumbles) has also reported recently good survival to 100% in patient treated with DCB's compared with plain balloons and with lutonic balloons. So in our institution, we did a study with the objective to examine

patient outcomes following the use of the drug-coated balloons in patients with CLI and diuretic patients with Complex Real World lesions undergoing endovascular intervention below-the-knee with the Ranger balloon coated with Paclitaxel.

This is a Two-Center Experience that is headed by the National University of Mexico in 30 patients with strict followup. With symptomatic Rutherford four to six. With the Stenosis and occlusion of infrapopliteal vessels and many degrees of calcification.

It was mandatory for all patients to have Pre-dilation before the use of DCB. We studied some endpoints like efficacy. (mumbles) Limb salvage, sustained clinical improvement, wound healing rate

and technical success and some other endpoints of safety. This is an example of multi level disease in a patient that has to be approached by (mumbles) access with a balloon preparation of the artery before the use of the DCB, and after this, we treated the anterior artery

and even to the arch of the foot. This is the way we follow our patient with ultra sound duplex with an index fibular of no more that 2.4. All patients were diabetic with Rutherford 5-6. 77% have a (mumbles) at the initial of the study.

And as you can see there were longer lesions and with higher degree of calcification and stenosis only in two of them we produced (mumbles). There were bailout stent placements in five patients and we did retrograde access in 43 patients.

Subintimal angioplasty was done in 32 patients, and Complete Index Wound Healing was in 93 of our patients. This is our Limb Salvage 94%. The Patency rate was 96% with this Kaplan Meir analysis. And in some patients we did a determination of Paclitaxel concentration in distal tissue

with the High Pressure Liquid Chromatography method. We only did this in five patients because of the lack of financial support, and technical problems. As you can see in three of them we had Complete Wound Healing.

Only one we had major amputation. This was the patient with the higher concentration of Paclitaxel in the distal tissue, and in one patient, we could not determine the concentration of Paclitaxel. This is the way we do this.

They take the sample of the patient at the moment we do the minor amputation. During day 10 after the angioplasty, we also do a (mumbles) analysis of the patient we have a limb salvage we can see arterial and capillar vessel proliferation and hyperplasia of the

arteriole media layer. But, in those patients that have major amputation even when they have a good sterio-graphic result like in this case, we see more fibrinoid necrosis which is a bad determination. So in conclusion,

angioplasty with the (mumbles) balloon maintain clinical efficacy over time is possible. We didn't see No Downstream clinical important or significant effects and high rates of Limb Salvage in complex CLI patients is possible.

Local toxic effects of paclitaxel and significant drug loss on the way to the lesion are theoretical considerations up to now because there is no biological study that can confirm this. Thank you very much.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you Dr. Veith for this opportunity again, and, like to show you that I have no disclosures relevant to this talk. The objective is to report the management and outcome of five cases of brachial artery injury in children with supracondylar humerus fractures at our institution over the last few years,

and then emphasize the importance of close observation and low threshold for surgical exploration in these cases. The classification of supracondylar fractures is on the Gartland system, and typically the vascular injuries are associated with Type 3, although there are some reported cases with Type 2.

Supracondylar humerus fractures make up about 70% of elbow fractures in children. Displacement and deformity can injure the median nerve, as well as the brachial artery. And up to 20% of children will present with an abnormal vascular exam, on initial evaluation.

There is no doubt what you do for the ischemic hand, is the exploration of the brachial artery. However, for the perfused, pulseless hand, there is considerable controversy as to what one should do. If this is not recognized, and not appropriately treated, there can be significant complications,

which can affect the child for the rest of his life. Physical examination, including neurovascular examination is crucial. These are high-litigation cases, and just writing on your record that neurovascular status is intact, is totally inadequate.

With reference to this particular fracture, evaluation for median nerve intactness, and function of the anterior interosseous nerve in particular, is very important, as I'll show you in just a slide, where they can be associated with arterial injuries. Ladies and gentlemen, this is why

you have the pink pulseless hand, despite obstruction or interruption of the brachial artery, going to these rich collaterals around the elbow. The hand can still be pink, and pulseless. This is a demonstration of the coexisting injury when you have median nerve and brachial artery

damaged by the anteromedial location. This location of the proximal fracture fragment. And many have suggested routine vascular exploration for this sort of injury. The most common finding that we find when we explore the brachial artery

with supracondylar fractures of the humerus, is the artery is tethered between the fracture fragments. This is yet another example, this is the brachialis sign, where the proximal fragment can buttonhole through the brachialis muscle. Most open fractures will need brachial artery exploration

at the time of reduction of the fracture. So, now I would like to share with you these five cases that I mentioned, at Inova Fairfax Hospital. The average age was 5.4 years, and four of them were male, one was a female, and I described to you my personal experience

in taking care of these patients at the hospital, and then following them closely afterwards. Case one was a perfused hand, a pink perfused hand, without a pulse. And this gentleman, this patient presented the next day with compartment syndrome.

On exploration we found a tethered artery, we released it, patient has normal function at two years. Case two, had a positive pulse, positive Doppler signal, nothing was done, other than reducing the fracture, patient sent home, he represented with severe pain, and was found to have compartment syndrome on day three.

On exploration, the artery was tethered. It was released, no thrombectomy was necessary. Patient has been left with slight deficit in two fingers. Third case, perfused pulse, with no pulse was observed, and the last pulse the next day duplex showed that the brachial artery was obstructed.

It was transected, had a vein interposition, I used the basilic vein, and did thrombectomy, and normal function at four months. Fourth case, there was no pulse, no Doppler signal, immediate exploration, tethered artery, no thrombectomy, normal function restored.

Case five had a normal exam, but lost signal the next day, was found to have a massive hematoma. We evacuated the hematoma, normal function. Based on this, the treatment algorithm is when the patient has a positive pulse, has a palpable pulse,

we obviously would do nothing. When it's pulseless and ischemic, immediate surgical exploration. When it's perfused and there's no radial signal, diminished flow, on duplex ultrasound, we explore surgically,

and when there's a positive radial pulse, we observe for 24 to 48 hours before discharge. I have found pulse oximetry, in addition with duplex ultrasound, to be very helpful in this regard. And ladies and gentlemen, in conclusion,

immediate surgical exploration is mandated for the ischemic hand. We recommend close observation after reduction, despite return of palpable pulse or Doppler signal, due to risk of delayed ischemia or compartment syndrome, especially in young children.

Based on our experience, perfused pulseless hand is a consequence of arterial injury or spasm. And, if you use duplex ultrasound, as if we had done, we may have been able to avoid delayed care in three out of the five cases. We recommend immediate exploration, obviously for,

for absent pulse and ischemic hand. And we do recommend that early recognition of ischemia and compartment syndrome is paramount, and patient should be closely observed, even if they have a normal perfusion on reduction of the fracture site. Thank you so much.

- Thank you very much for the very kind invitation, and I promise I'll do my best to stick to time. The answer is probably to this audience I don't really need to say very much about the ATTRACT trial, but I think it is quite important to note that the ATTRACT trials have now been out for some time, and it is constantly being

talked about in its various dimensions. So I'm going to just spend a few seconds really talking about the ATTRACT trial. A large number of patients screened. One in 41 patients were actually recruited into it and it was a trial that ran for a long time.

Wasn't really with respect to the primary endpoint any particularly good evidence, but for those people who had moderate or severe post-thrombotic syndrome, it probably was of benefit. And if you looked at the Villalta score

and the VCSS scores there was some evidence to support it. So overall, probably some positive take-home messages, but not as affirmative as people would have thought. Now the reason that I've dwelled a little bit on that is that actually, what do we mean when we talk about the post-thrombotic syndrome?

Because I would say in the upper limb, because I have never personally seen an ulcer in the upper limb. Has anybody seen an ulcer in the upper limb due to venous disease? No.

So in a way we are talking about a slightly different entity. We are talking about a limb that has undoubtedly much more finer movements. And there was depression by some people with the results of the ATTRACT trial.

But when you look at the five year results from the CaVenT trial, there was some evidence to suggest that actually, as you get further out, there may be some benefit. If you look at this summation analysis, and I completely accept this is related to the leg,

again, there may be some benefit from the CDT. Now, this is a case of mine. Now I wonder if any of you can tell me how many stages may have been involved from going from the right, to having a ballonplasty in the vein. Pick a number, anywhere between five and ten.

The answer is you have numerous checks of the thrombolysis, you may have a venoplasty, you might have a first rib excision. You may then have occlusion and then realize this before you go on and do the first rib. So all I'm suggesting to you that this is not

a cheap treatment to offer patients treatment to the upper limb. Then we looked forward to some help from the guidelines. Well we look at the American guidelines and give or take, I think the answer is we probably shouldn't be doing it and that we should be only offering anticoagulation.

So do the Brits help? Well actually if you look at the Brits, it sort of says well, you can think a bit about doing decompression, but really if I was standing up in a court of law, I really wouldn't want much support from this guideline

that I had done the right thing. And then the International Society of Thrombolysis and Hemostasis really says well, you can do a little bit of this that thoracic outlet syndrome may be a risk factor. But give or take, surgeries still are a little bit dubious.

So, really there's one good review out there, and this is the review of Vasquez that basically looked at 146 articles, and they found some data on just under 1300 patients. And they postulated and chose some evidence to suggest that there was some evidence

that first rib excision and thrombolysis reduce PTS, and that anticoagulation alone was not enough for the majority of the patients. Very difficult to work out how you selected which patients you should or should not intervene on. Now, I'm sure everybody is rather sick and tired

of me talking about money, and I accept it doesn't really apply here. But money is actually quite important. Five interventions to prevent something that may not happen and at worst may be just a few collateral veins across the chest.

So ladies and gentlemen, I would want you to think very hard, is it actually cost-effective to be offering all patients presenting with an early auxiliary vein thrombosis thrombolysis, and then subsequently first rib excision? These are some of the truths, I think the answer is

it does seem to work. You do need to recognize and make the diagnosis. Usually delayed thrombolysis doesn't work, but there are lots of questions that are unanswered. And how would you defend what you have done in a court of law?

Somebody has a stroke, you then do the first rib, they get a large hemothorax, and they then die because there had been too much TPA on board. Yes, give it some thought. So ladies and gentlemen, I'm afraid I haven't actually answered the question,

but I think you need to give it careful consideration, what are the indications and merits? Thank you very much.

- I want to thank Dr. Veith for the invitation to present this. There are no disclosures. So looking at cost effectiveness, especially the comparison of two interventions based on cost and the health gains, which is usually reported

through disability adjusted life years or even qualities. It's not to be really confused with cost benefit analysis where both paramaters are used, looked at based on cost. However, this does have different implications from different stakeholders.

And we look, at this point, between the medical center or the medical institution and as well as the payers. Most medical centers tend to look at how much this is costing them

and what is being reimbursed. What's the subsequent care interventions and are there any additional payments for some of these new, novel technologies. What does the payers really want to know, what are they getting for the money,

their expenditures and from here, we'll be looking mainly at Medicare. So, background, we've all seen this, but basically, you know, balloon angioplasty and stents have been out for a while and the outcomes aren't bad but they're not great.

They do have continued high reintervention rates and patency problems. Therefore, drug technology has sort of emerged as a possible alternative with better patency rates. And when we look at this, just some, some backgrounds, when you look at any sort of angioplasty,

from the physician's side, we bill under a certain CPT code and it falls under a family of codes for reimbursement in the medical center called an APC. Within those, you can further break it down to the cost of the product.

In this situation, total products cost around 1400 dollars and the balloons are estimated to be 406 dollars in cost. However, in drug-coated balloons, there was an additional payment, which average, because they're such more expensive devices than the allotments and this had an additional payment.

However, this expired in January of this year. When you look at Medicare reimbursement guidelines, you'll see that on an outpatient hospital setting, there's a reimbursement for the medical center as well as for the physican which is, oops sorry, down eight percent from last year.

And they also publish a geometric mean cost, which is quite higher than we expected. And then the office based practice is also the reimbursement pattern and this is slated to go down also by a few percentage points.

When you look at, I'm sorry, when you look at stents, however, it's a different family of CPT codes and APC family also. Here you'll see the supply cost is much higher in the, I'm sorry, the stent in this category is actually 3600 dollars.

The average cost for drug-eluting stents, around 1500 dollars and the only pass through that existed was on the inpatient side of it. Again, looking at Medicare guidelines, the reimbursement will be going down 8 percent

for the outpatient setting and the geometric mean cost is 11,700. So, what we want to look at really is what is the financial impact looking at primary patency, target lesion revascularization based on meta analysis. And the reinterventions are where the real cost

is going to come into effect. We also want to look at, when it doesn't work and we do bailout stenting, what is the cost going to happen there, which is not often looked at in most of these studies. So looking at a hypothetical situation,

you've got 100 patients, any office based practice, the payee will pay about 5145. There's a pass through payment which averages 1700 dollars per stent. Now, if you look at bailout stenting, 18.5 percent at one year,

this is the additional cost that would be associated with that from a payer standpoint. Targeted risk for revascularization was 12 percent of additional costs. So the total one year cost, we estimated, was almost a million dollars

and the cost per primary patency limb at one year was 13 four. In a similar fashion, for drug-eluting stents, you'll see that there's no pass through payment, but although there is a much higher payer expenditure. The reintervention rate was about 8.4 percent

at one year for the additional cost. And you'll see here, at the one year mark, the cost per patent limb is about 12,600 dollars. So how 'about the medical center, looking at Medicare claims data, you'll see the average cost for them is 745,000,

the medical center. Additional costs listed at another 1500. Bailout renting, as previously, with relate to a total cost at one year of 1.2 million or at 16,900 dollars per limb. Looking at the drug-eluting stents,

we didn't add any additional costs because the drug-eluting stents are cheaper than the current system that is in there but the reinterventions still exist for a cost per patent limb at one year of 14 six. So in essence, a few other studies have looked

at some model, both a European model and in the U.S. where the number of reinterventions at two to five years will actually offset the additional cost of drug-eluting stents and make it a financially advantageous process.

And in conclusion, drug-eluting stents do have a better primary patency and a decreased TLR than drug-coated balloons or even other, but they are more expensive than conventional treatment such as balloon angioplasty and bare-metal stents.

There is a decreased reintervention rate and the bailout stenting, which is not normally accounted for in a financial standpoint does have a dramatic impact and the loss of the pass through makes me make some of the drug-coated balloons

a little more prohibitive in process. Thank you.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Thank you to the moderators, thank you to Dr. Veith for having me. Let's go! So my topic is to kind of introduce the ATTRACT trial, and to talk a little bit about how it affected, at least my practice, when it comes to patients with acute DVT.

I'm on the scientific advisory board for a company that makes IVC filters, and I also advise to BTG, so you guys can ask me about it later if you want. So let's talk about a case. A 50-year-old man presents

from an outside hospital to our center with left lower extremity swelling. And this is what somebody looks like upon presentation. And pulses, motor function, and sensation are actually normal at this point.

And he says to us, "Well, symptoms started "three days ago. "They're about the same since they started," despite being on anticoagulation. And he said, "Listen guys, in the other hospital, "they wouldn't do anything.

"And I want a procedure because I want the clot "out of me." so he's found to have this common femoral vein DVT. And the question is should endovascular clot removal be performed for this patient?

Well the ATTRACT trial set off to try and prevent a complication you obviously all know about, called the post-thrombotic syndrome, which is a spectrum from sort of mild discomfort and a little bit of dyspigmentation and up

to venous ulcerations and quite a lot of morbidity. And in ATTRACT, patients with proximal DVT were randomized to anticoagulation alone or in combination with pharma mechanical catheter-directed thrombolysis.

And the reason I put proximal in quotes is because it wasn't only common sort of femoral vein clots, but also femoral vein clots including the distal femoral vein were included eventually. And so patients with clots were recruited,

and as I said, they were randomized to those two treatments. And what this here shows you is the division into the two groups. Now I know this is a little small, but I'll try and kind of highlight a few things

that are relevant to this talk. So if you just read the abstract of the ATTRACT trial published last year in the New England Journal of Medicine, it'll seem to you that the study was a negative study.

The conclusion and the abstract is basically that post-thrombotic syndrome was not prevented by performing these procedures. Definitely post-thrombotic syndrome is still frequent despite treatment. But there was a signal for less severe

post-thrombotic syndrome and for more bleeding. And I was hoping to bring you all, there's an upcoming publication in circulation, hopefully it'll be online, I guess, over the weekend or early next week, talking specifically about patients

with proximal DVT. But you know, I'm speaking now without those slides. So what I can basically show you here, that at 24 months, unfortunately, there was no, well not unfortunately,

but the fact is, it did cross the significance and it was not significant from that standpoint. And what you can see here, is sort of a continuous metric of post-thrombotic syndrome. And here there was a little bit of an advantage

towards reduction of severe post-thrombotic syndrome with the procedure. What it also shows you here in this rectangle, is that were more bleeds, obviously, in the patients who received the more aggressive therapy.

One thing that people don't always talk about is that we treat our patients for two reasons, right? We want to prevent post-thrombotic syndrome but obviously, we want to help them acutely. And so what the study also showed,

was that acute symptoms resolved more quickly in patients who received the more aggressive therapy as opposed to those who did not. Again, at the price of more bleeding. So what happened to this patient? Well you know,

he presented on a Friday, obviously. So we kind of said, "Yeah, we probably are able "to try and do something for you, "but let's wait until Monday." And by Monday, his leg looked like this, with sort of a little bit of bedrest

and continued anticoagulation. So at the end of the day, no procedure was done for this particular patient. What are my take home messages, for whatever that's worth? Well I think intervention for DVT

has several acute indications. Restore arterial flow when phlegmasia is the problem, and reduce acute symptoms. I think intervention for common femoral and more proximal DVT likely does have long-term benefit, and again, just be

on the lookout for that circ paper that's coming out. Intervention for femoral DVT, so more distal DVT, in my opinion, is rarely indicated. And in the absence of phlegmasia, for me, thigh swelling is a good marker for a need

for a procedure, and I owe Dr. Bob Schainfeld that little tidbit. So thank you very much for listening.

- Have nothing to disclose. This is a question we see everyday, we start off with the toe on the left we hope to end up with this, not this and this. And the question is, can we have some

or do we have something in our toolbox that can tell us this will end up here, not here and not here. So, when you look in the literature and most armor materials of vascular oxygen,

we have physical exam the most basic as the ankle break you index which is historically and currently can be inaccurate based on the calcium changes in the diabetic digital pressures are supposed to be

less affected by the cost of five changes in the diabetic, we also duplex which some people use as well as the velocities or the waveform patterns to help to determine blood flow to the foot contrast based imaging although use essentially on all patients with limb savage

really has not provided accurate measurements of whether or not the patient will heal. Over 20 years ago, there was some data to look at two pressures to determine whether or not you heel the toe or in the foot.

At this point, it was felt to be somewhere in the 50 to 60 millimeters of mercury. You saw patients healed statistically better. However, you still see people heal on this side who are under the 50% 50 millimeters of mercury range.

Perspective data has been seen in the literature. This is a paper that it looked at whether or not monitor healing monitoring amputations would heal the toe pressure, the odds ratio was calculated and as you can see

every millimeter of increase in the toe pressure the risk of monitor for an amputation progressing to hire amputation was decreased, and the toe brachial pressure index was also very important in the term of whether or not the patient would heal. This is a meta analysis of the literature

looking at all the different studies that have been used to determine whether or not two blood pressure and to break your index could show predictive value of healing. Unfortunately,

there are a lot of variations in the way these studies are performed. However, it is felt there are some predictive values. One of the things the reason we looked at our data is some people use Doppler waveform. Some of our colleagues,

instead of looking at the actual pressure reading at the level to toe will look at velocities and waveforms and try to use that as a predictive value. In this particular study,

it has been shown in patients on dialysis, looking at their waveform and without wombs, whether or not they'll go on eventually have a major amputation. And in this setting, it may have some impact

but these are patients with wounds but these are patients that you are following who are on dialysis, and waveforms can predict future amputation. Trans cutaneous oximetry and some institutions are readily available.

however, sorry, however, most institutions that I've worked at it's only available in wound healing center and is not readily available in the vascular lab

although this is based on oxygen tension, the numbers are pretty similar to what we expect to find with healing potential with a digital blood pressures. Our experience we looked at this several years ago we presented a vest and also is published in the annuals of vasculature surgery,

we tried to look at whether or not the velocities within the tibia Walgreens the waveforms within the the tibia Walgreens, and or was there a number that was the best number to predict whether or not the patient would heal.

Similar to what is taught in most educational institutions, around 50 millimeters of mercury was statistically significant and that over 90 or close to 90% of patients healed at that level of perfusion. Unfortunately, under 47,

you still had 70 some percent of the people healed. We looked at this when I was in Tampa and fellowship, we had over 90% predictive value whether or not you could heal in the foot or mid foot based on toe pressures.

However, it really doesn't help us that much because there's still a significant portion of patients who will heal in the 30 to 50 millimeter range. Overall, what does all this mean? I'm unsure.

One of the most difficult things we see with patients that we're going to plan amputation and we can improve the revascularization strategies is in the patient who have two pressures in the zero to 20

since we do not going to heal and proceed with major amputation versus those who are in the 30 to 50 it's essentially a coin toss whether or not they will heal and then over 50 is still not a for sure thing.

Like to thank the opportunity to share information. Thank you.

- Thank you, Dr. Veith, for this kind invitation. Aberrant origin of the vertebral artery is the second most common aortic arch anomaly. It is more common in patients with thoracic aortic disease when compared to the general population. It's usually of no clinical significance,

except when encountered while treating cerebro-vascular disease or aortic arch pathology. And that's when critical decision-making to preserve its perfusion becomes necessary. This picture illustrates the most common

types of aortic arch anomalies. Led by bovine arch, isolated vertebral artery, and aberrant right side. In this study, it shows a significant correlation with thoracic aortic disease. We first should evaluate the origin

of the vertebral artery. On the right side of the screen you can see the most common type and it's when it's between the left subclavian and the left common carotid artery origin. This is an example of the left vertebral artery

aberrant associated with a mycotic aneurysm of the aortic arch. And this one is a right aberrant vertebral artery associated with a descending thoracic aneurysm and center retroesophageal location. We then look at the variation of

the vertebral artery and posterior circulation. Most commonly dominant left or hypoplasia of the right vertebral artery as shown in the picture. For termination in the posterior inferior cerebellar artery, or PICA.

Or occlusive lesion on the right side, which necessitates perfusion of the left side. This study shows that vertebral artery variations that could need perfusion is up to 30% of patients

with thoracic aortic disease. There are, unfortunately, minimal literature in the vascular, mostly case reports or series. And most of this says procedure data comes from the neurosurgical literature for occlusive disease that shows in this study,

for example, low morbidity, mortality. Complications include thoracic duct injury, recurrent laryngeal nerve, Horner's and CVAs. And they showed high patency rates. The SVS guidelines for left subclavian revasculatization, although low quality,

shows they indicated routine revascularization and they mention some of the indications for left vertebral artery revasculatization. And extrapolating from that, from those guidelines, we summarize the indications for vertebral artery

revascularization dominant ipsilateral left or hypoplastic right. Incomplete circle of Willis, or termination of the left in the PICA artery. Diseased or occluded contralateral vertebral artery.

Extensive aortic coverage or inability to evaluate the circle of Willis prior to intervention. Some technical tips, we use a routine supraclavicular incision. We identify the vertebral artery posterior-medial

location to the common carotid. We carefully preserve the recurrent laryngeal nerve or non-recurrent laryngeal nerve, which is common in aortic arch anomalies. Thoracic duct on the left side. Transpose it to the posterior surface

of the common carotid. And then clamp distal to the anastomosis and to avoid prolonged ischemia to the posterior circulation. This is a completion aortagram that shows patent left vertebral artery transposed

to the common carotid. And then one month follow-up shows that the left vertebral artery is patent with a complete repair of the aorta. So in our experience, we did six vertebral transpositions over

the last couple years, four on the left, two on the right. No perioperative complications. One lost follow-up. And up to 27 months of the patent vessels. In summary, aberrant vertebral artery is uncommon

finding, but associated with thoracic aortic disease. The origin and the course of the vertebral artery should be thoroughly evaluated prior to treatment. Revascularization should be considered in certain situations to avoid

posterior circulation ischemia. But more data is needed to establish guidelines. Thank you.

- And thanks to Dr. Veith for the opportunity to get involved. Here's my disclosures. Like so many in the audience, for years and years we've had awesome results with the AngioJet from Boston Sci. We know that this rheolytic system works quite well.

However it has a black box warning for PE due to the hemolysis and the adenosine that can be extruded out. It's oftentimes not stand alone. It's not used for stroke and there can be some renal issues. But we've had excellent results with it over the years,

but at the end of the day often times you still need lytics. And I think Professor Davies just eluded to the potential problems not only medical, but legal as well of lytics. Therefore for the past four plus years we've utilized this as well as other thrombectomy devices.

This is the Indigo device from Penumbra. I'm certain by now most of your are familiar with it, but if not what it is it's a braided catheter that's very atraumatic and soft at the tip. It can come straight in or torqued so you can have some directionality to it.

And then what it also has is this separator technology which is really just like a glorified pipe cleaner to be honest. You're going to go in and out with this device as I'll show you here in a second, to clear the lumen while you're

allowing for continuous aspiration through this system. We learned from our neurosurgery colleagues who utilized typically the CAT five, sometimes six for their stroke patients, but now there's CAT three, five, six, and eight. And within the next probably three to four months

there's going to be CAT 10 or possibly even 12 out there. This is what you have. It's all pretty simple. You cross your lesion with the wire. You then bring your catheter across. You connect it to this suction device,

hit the green button and away you go. You get maximal aspiration. And what's nice about it is in particular for the CAT eight with the XTORQ, as you can see you can get out to vessel 25 millimeters in diameter.

So essentially a cava. This shows you how powerful this is. This is one of my patient's with a standard nitinol stent. A Zilver PTX was occluded and you can see how powerful this device

is with maximal aspiration. Turn it off and obviously the self expanding stent goes right back to normal. So after our results with the ALI patients, and we presented our data at the Midwest meeting in St. Louis earlier this fall,

we start looking at our DVT patients and here you can see an effort thrombosis. Somebody here. We went eight French basilic. Ultrasound guided. Put an eight French Indigo in and with no lytics,

were able to clean this out. We then went on to, I put him on a DOAC. Today I'd probably use Lovenox for two weeks. And then he went home. He's a 32 year old.

Went to Disney World with his family and then came back later on for is infraclavicular rib excision. Here's another one of my patients, Lena. She's a 19 year old who started her OPCs on the way back to Bellarmine College in Louisville.

And as you can see here, she is a likely underlying May Thurner lesion. Extensive of femoral DVT. As you look over here to the screen left to screen right, you can see that we crossed it, put our catheter up in the common iliac vein,

as as you can see we're twisting it around to get to the edges of the vessel, the whole iliofemoral system. Here's what you get afterwards. You get antegrade flow. Certainly there's no device yet that's perfect at this.

For this particular patient we gave her 14 milligrams of lytics then did our IVUS then did our wallstent. And she's done quite well. We use it for arms. We use it for legs.

We use it for filters as well as you can see here with this occluded filter. And often times the picture you're going to get is an underlying acute on chronic thrombosis here. And we later on came back and took that filter out. So I think there's no question there's less lytics with it.

Earlier this year we presented at the American Venous Forum in Tucson. Our initial experiences with vacuum-assisted thrombectomy for DVT. And what showed is that often times you can get antegrade flow as I'll show you here.

Some of them are single sessions. But more importantly just as efficacious as it is it's safe. You can see here that we had minimal blood loss, low transfusions, and here's our breakdown. As we use it for all venous pathologies as you can see.

So at the time when we looked at our first 20, you can see that there were some that were single session therapy. And that's before. We've now added the turbo pulse technique where you're going to lace it with

14 milligrams of TPA through a unifused catheter, wait 20 minutes, go around get some coffee, whatever you need to do, come back and then use the Indigo. So at the end of the day, I think as Professor Davies eluded to, there are major complications with lytics.

This is not what we need for our patients. So in 2018 we can either continue to load with dangerous lytics or minimize lytics, adopt continuous aspiration thrombectomy. It's your all's choice. So thanks so much.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- Thank you chairman, ladies and gentlemen. I have no disclosures on this topic. So first, in short, the clinical challenge that we confront, this is course entity. As we all know, the primary extracranial carotid artery aneurysm with various etiologies, and it's very nice intervention to perform on it,

very nice surgery and the vascular techniques, but the main question actually, that we have to answer, do we need to treat it at all? And as there is a lack of natural history, we started in 2014 a web-based international registry in which all patients with an extracranial

carotid aneurysm can be included, and we look for clinical and imaging follow up data from admission to 30 days and longer on. I want to give you today an update on status of the registry. So far we included 371 patients.

If you take in acceleration that in all data published so far is only 3,000 patients of which about the health is case reports, I think this is already a large achievement. We are moving on ahead. In the graph you can see that we are

have increasing inclusion rates, and we are little behind in data management. But this seems very promising. About half the patients are derived from the Netherlands thus far. And about half the patients are from

international contributors. About the patient characteristics, about two thirds is male, age is respectively younger as considered to atherosclerotic disease in the carotid territory, as may be expected. What is important on the other characteristics

is that the data are largely comparable between the national and international cohort. About the characteristics of the aneurysm itself, are also there a large comparison between the two cohorts, national and international. A bit more often in the proximal and common

carotid in the international cohorts, and that's probably related as more international patients have been operated on, I come to that in the next slides. Most relevantly, for a primary goal to report also on the natural course,

about half the patients included so far were asymptomatic and had a natural course follow up. About treatment strategies performed, again, large part of the patients are followed up in a conservative fashion. We have some data on endovascular or hybrid approach,

but the large part of the revascularization is primary surgery. And next, to our analysis of natural course follow up, of course we also report on our long term outcomes of surgical intervention. This is the overview of completion of follow up,

there's some work to do as you can see. We expect to report a preliminary results in early next year when the data on the first year follow up is complete for the current cohort. In the meantime, we have large data sets on imaging, therefore we performed already

some analysis on the exceptional tortuosity as we can often see in these cases. We compared four available software packages using two observers and two rounds to define a tortuosity index. And we actually found that for these four

commercially available packages, have all of them have an excellent intraobserver agreement and also agreement between the observer. So, all four of these can be used to perform further imaging. As also we are looking for semi automated

volume measurements to define a standardized follow up in these patients. So for now, I can confirm that the Carotid Aneurysm Registry is an ongoing and observational registry. I think it's the largest registry on ECAA

so far and still growing. I would advise you all today, also to contribute to this registry and you can see the e-mail address for further information update. Thank you for your attention.

- You already heard about different devices which can finish the treatment of acute DVT in the lab and I would like to add one of the devices which is quite widespread in Europe. And share the first study on this device. This is called the Aspirex device. So what is the objective?

Post traumatic syndrome after proximal DVT, I think that's clear. 25% of the patient are at risk for developing post traumatic syndrome. I think that is clear and some of these patient even expect severe post traumatic syndrome.

We already saw this ATTRACT trial outcome and we learned that especially patient with Iliofemoral DVT might benefit from treatment, invasive treatment of Iliofemoral DVT but of course, we need to know that is catheter-directed thrombolysis causes issues

and therefore our way should be to go away from thrombolytic therapy to a pure mechanical thrombectomy approach. This is a typical case example of a patient, 20 year old female patient who came to the emergency room with that leg on the left side in the morning,

back pain in the evening and this is clear that it is a descending Iliofemoral DVT in that patient caused by May-Thurner syndrome. So, with modern devices like this Aspirex, mechanical thrombectomy device, the 10 French device is able to aspirate up to 130 millimeter,

ml per minute of clots. You see that this can be effectively treated and then stinted within the May-Thurner syndrome within one session approach. So, but, what is clear of course that we need to get data

for these modern Mechanical Thrombectomy devices and therefore, we conducted clinical follow-up study to evaluate safety and efficiency of that Aspirex Mechanical Thrombectomy device. This device is based on the Archimedic principle which you can see here it comes with six up

to 10 French systems and with that you are able, as I already showed to sac 130ml of thrombus per minute. So these are the study details I want to show you. We treated 50 psychs, 56 patients with acute, subacute and acute on chronic which means up to 3 months of symptoms patients with Iliofermal DVT.

We performed IVIS on all these patients. We found May-Thurner syndrome in at least half of these patients as a reason for the Iliofermal DVT. You see the patient demographics. Some of the patients had even malignancy condition. A lot of patients were on oral contraceptives.

Here are the clinical symptoms within our cohort. Most of the patients came with swelling and rest pain. The rVCSS at the beginning was 4.5 within this cohort. Most of the traumatic lesions were on the left side involving even the profunda and the common femoral vein in this cohort.

You see here the excess which we used for treating these Iliofermal DVT, we used in the main part of the cohort, the left popliteal vein access or left femoral vein access. 84% were treated with 10 French system, the Aspirex device. As I mentioned we used IVIS

to analyze underlying pathologies. We found in most of the patients underlying pathologies and this explains why we implanted stents in 100% of the patients. You see the treatment duration which was in mean 94 minutes within this treatment cohort.

These are the patency analysis within one year. You see patency at 12 months, 87% percent in these patients, which we could follow up after 12 months. Here you see the Post-thrombotic syndrome analysis after 12 months so only low PTS

and some kind of moderate PTS were seen in these patients. There were no severe Post-thrombotic syndrome. Most of the patients just had a little bit of swelling after that procedure. Of course, it's important to mention safety and those end points.

There were just some small punctures associated, site being complicationS. Of course re-hospitalization is a severe adverse event which you can see here. But there were of course no bleeding events in this cohort. And to follow up

on this much more multicentric perspective trial, we just started a multicenter trial on this and we'll follow up patients up to five years within this just initiated multicenter registry. And I think we can show some preliminary data next year. Thank you very much.

- Good morning. I'd like to thank Dr. Veith and Symposium for my opportunity to speak. I have no disclosures. So the in Endovascular Surgery, there is decrease open surgical bypass. But, bypass is still required for many patients with PAD.

Autologous vein is preferred for increase patency lower infection rate. And, Traditional Open Vein Harvest does require lengthy incisions. In 1996 cardiac surgery reported Endoscopic Vein Harvest. So the early prospective randomized trial

in the cardiac literature, did report wound complications from Open Vein Harvest to be as high as 19-20%, and decreased down to 4% with Endoscopic Vein Harvest. Lopes et al, initially, reported increase risk of 12-18 month graft failure and increased three year mortality.

But, there were many small studies that show no effect on patency and decreased wound complications. So, in 2005, Endoscopic Vein Harvest was recommended as standard of care in cardiac surgical patients. So what about our field? The advantages of Open Vein Harvest,

we all know how to do it. There's no learning curve. It's performed under direct visualization. Side branches are ligated with suture and divided sharply. Long term patency of the bypass is established. Disadvantages of the Open Vein Harvest,

large wound or many skip wounds has an increased morbidity. PAD patients have an increased risk for wound complications compared to the cardiac patients as high as 22-44%. The poor healing can be due to ischemia, diabetes, renal failure, and other comorbid conditions.

These can include hematoma, dehiscense, infection, and increased length of stay. So the advantages of Endoscopic Vein Harvest, is that there's no long incisions, they can be performed via one or two small incisions. Limiting the size of an incision

decreases wound complications. It's the standard of care in cardiac surgery, and there's an overall lower morbidity. The disadvantages of is that there's a learning curve. Electro-cautery is used to divide the branches, you need longer vein compared to cardiac surgery.

There's concern about inferior primary patency, and there are variable wound complications reported. So recent PAD data, there, in 2014, a review of the Society of Vascular Surgery registry, of 5000 patients, showed that continuous Open Vein Harvest

was performed 49% of the time and a Endo Vein Harvest about 13% of the time. The primary patency was 70%, for Continuous versus just under 59% for Endoscopic, and that was significant. Endoscopic Vein Harvest was found to be an independent risk factor for a lower one year

primary patency, in the study. And, the length of stay due to wounds was not significantly different. So, systematic review of Endoscopic Vein Harvest data in the lower extremity bypass from '96 to 2013 did show that this technique may reduce

primary patency with no change in wound complications. Reasons for decreased primary patency, inexperienced operator, increased electrocautery injury to the vein. Increase in vein manipulation, you can't do the no touch technique,

like you could do with an Open Harvest. You need a longer conduit. So, I do believe there's a roll for this, in the vascular surgeon's armamentarium. I would recommend, how I use it in my practices is, I'm fairly inexperienced with Endoscopic Vein Harvest,

so I do work with the cardiac PA's. With increased percutaneous procedures, my practice has seen decreased Saphenous Vein Bypasses, so, I've less volume to master the technique. If the PA is not available, or the conduit is small, I recommend an Open Vein Harvest.

The PA can decrease the labor required during these cases. So, it's sometimes nice to have help with these long cases. Close surveillance follow up with Non-Invasive Arterial Imaging is mandatory every three months for the first year at least. Thank you.

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- I'd like to share with you our experience using tools to improve outcomes. These are my disclosures. So first of all we need to define the anatomy well using CTA and MRA and with using multiple reformats and 3D reconstructions. So then we can use 3D fusion with a DSA or with a flouro

or in this case as I showed in my presentation before you can use a DSA fused with a CT phase, they were required before. And also you can use the Integrated Registration like this, when you can use very helpful for the RF wire

because you can see where the RF wire starts and the snare ends. We can also use this for the arterial system. I can see a high grade stenosis in the Common iliac and you can use the 3D to define for your 3D roadmapping you can use on the table,

or you can use two methods to define the artery. Usually you can use the yellow outline to define the anatomy or the green to define the center. And then it's a simple case, 50 minutes, 50 minutes of ccs of contrast,

very simple, straightforward. Another everybody knows about the you know we can use a small amount of contrast to define the whole anatomy of one leg. However one thing that is relatively new is to use a 3D

in order to map, to show you the way out so you can do in this case here multiple segmental synosis, the drug-eluting-balloon angioplasty using the 3D roadmap as a reference. Also about this case using radial fre--

radial access to peripheral. Using a fusion of image you can see the outline of the artery. You can see where the high grade stenosis is with a minimum amount of contrast. You only use contrast when you are about

to do your angiogram or your angioplasty and after. And that but all everything else you use only the guide wires and cathers are advanced only used in image guidance without any contrast at all. We also been doing as I showed before the simultaneous injection.

So here I have two catheters, one coming from above, one coming from below to define this intravenous occlusion. Very helpful during through the and after the 3D it can be helpful. Like in this case when you can see this orange line is where

the RF wire is going to be advanced. As you can see the breathing, during the breathing cycle the pleura is on the way of the RF wire track. Pretty dangerous stuff. So this case what we did we asked the anesthesiologist

to have the patient in respiratory breath holding inspiration. We're able to hyperextend the lungs, cross with the RF wire without any complication. So very useful. And also you can use this outline yellow lines here

to define anatomy can help you to define where you need to put the stents. Make sure you're covering everything and having better outcomes at the end of the case without overexposure of radiation. And also at the end you can use the same volt of metric

reconstruction to check where you are, to placement of the stent and if you'd covered all the lesion that you had. The Cone beam CT can be used for also for the 3D model fusion. As you can see that you can use in it with fluoro as I

mentioned before you can do the three views in order to make sure that the vessels are aligned. And those are they follow when you rotate the table. And then you can have a pretty good outcome at the end of the day at of the case. In that case that potentially could be very catastrophic

close to the Supra aortic vessels. What about this case of a very dramatic, symptomatic varicose veins. We didn't know and didn't even know where to start in this case. We're trying to find our way through here trying to

understand what we needed to do. I thought we need to recanalize this with this. Did a 3D recan-- a spin and we saw ours totally off. This is the RFY totally interior and the snare as a target was posterior in the ASGUS.

Totally different, different plans. Eventually we found where we needed to be. We fused with the CAT scan, CT phase before, found the right spot and then were able to use

Integrated registration for the careful recanalization above the strip-- interiorly from the Supraaortic vessels. As you can see that's the beginning, that's the end. And also these was important to show us where we working.

We working a very small space between the sternal and the Supraaortic vessels using the RF wire. And this the only technology would allowed us to do this type of thing. Basically we created a percutaneous in the vascular stent bypass graft.

You can you see you use a curved RF wire to be able to go back to the snare. And that once we snare out is just conventional angioplasty recanalized with covered stents and pretty good outcome. On a year and a half follow-up remarkable improvement in this patient's symptoms.

Another patient with a large graft in the large swelling thigh, maybe graft on the right thigh with associated occlusion of the iliac veins and inclusion of the IVC and occlusion of the filter. So we did here is that we fused the maps of the arterial

phase and the venous phase and then we reconstruct in a 3D model. And doing that we're able to really understand the beginning of the problem and the end of the problem above the filter and the correlation with the arteries. So as you can see,

the these was very tortuous segments. We need to cross with the RF wire close to the iliac veins and then to the External iliac artery close to the Common iliac artery. But eventually we were able to help find a track. Very successfully,

very safe and then it's just convention technique. We reconstructed with covered stents. This is predisposed, pretty good outcome. As you can see this is the CT before, that's the CT after the swelling's totally gone

and the stents are widely open. So in conclusion these techniques can help a reduction of radiation exposure, volume of contrast media, lower complication, lower procedure time.

In other words can offer higher value in patient care. Thank you.

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- Ladies and gentlemen, I thank Frank Veith and the organizing committee for the invitation. I have no disclosures for this presentation. Dialysis is the life line of patients with end-stage renal failure. Hemodialysis can be done by constructing an A-V fistula, utilizing a graft or through a central venous catheter.

Controversy as to the location of A-V fistula, size of adequate vein and priority of A-V fistula versus A-V graft exists among different societies. Our aims were to present our single center experience with A-V fistulas and grafts. Compare their patency rates,

compare different surgical sites, and come up with preferences to allow better and longer utilization. We collected all patients who underwent A-V fistula or A-V graft between the years 2008 through 2014. We included all patients who had preoperative

duplex scanning or those deemed to have good vessels on clinical examination. Arteries larger than two point five millimeter and veins larger than three millimeter were considered fit. Dialysis was performed three times per week. Follow up included check for a thrill,

distal pulse in the arter non-increased venous pressure or visible effective dialysis and no prolonged bleeding. Any change of one of the above would led to obtaining

fistulogram resulting in either endovascular or open repair of the fistula. We started with 503 patients, 32 of which were excluded due to primary failure within 24 hours. We considered this, of course, the surgeon's blame. So we left with 471 patients with a mean age of 58 years,

51 were older than 60, there was a male predominance of 63%, and over half were diabetics. The type of fistula was 41% brachio-cephalic fistula, 30% radio-cephalic fistula, 16% A-V Graft, and 13% brachio-basilic fistula.

Overall, we had 84% fistulas and 16% grafts. The time to first dialysis and maturation of fistula was approximately six weeks. First use of grafts was after two weeks. 11 patients with A-V fistula needed early intervention prior to or after the first dialysis session.

In sharp contrast, none of the A-V grafts needed early intervention. 68 patients were operated for their first ever fistula without duplex scanning due to clinically good vessels. Their patency was comparable to those who underwent a preoperative scanning.

Looking at complications, A-V grafts needed more reintervention than fistulas. All of them were late. Infection was more prominent in the graft group and pseudoaneurysms were more prominent in the A-V fistula group, some of them occluded

or invaded the skin and resulted in bleeding. Here's a central vein occlusion and you can see this lady is after a brachio-basilic A-V shunt. You can see the swollen arm, the collaterals. Here are multiple venous aneurysms. Here's an ulcer.

When we looked at primary patency of A-V fistulas versus graft, A-V fistulas fared better than grafts for as long as five years. When you looked at 50% patency in grafts, it was approximately 18 months, in Fistula, 13. Here's an assisted primary patency by endovascular technique

and when we looked at the secondary patency for the first 24, two years, months, there was no difference between A-V fistulas and A-V grafts, but there's a large difference afterwards. Comparing radio-cephalic fistula to brachio-cephalic fistula there was really no big difference in maturation.

The time was approximately six weeks. As for primary patency there is a trend towards better patency with brachio-cephalic fistula after six months, one year, and two years, but it didn't reach statistical significance. For patients with diabetes,

differences were statistically significant. Brachio-cephalic fistula showed a trend toward shorter maturation time, needed less reintervention, and had a longer patency rate. In conclusions then, ladies and gentlemen, A-V fistula require a longer maturation time

and have higher pseudoaneurysm formation rate, but better patency rates compared to A-V grafts. A-V grafts have a faster maturation time, but more late interventions are required and infection is more common. Finally, diabetic patients have a better result

with proximal A-V fistulas. Thank you for the opportunity to present our data.

- Thank you Peter and Tony and thanks Frank for the kind invitation. I have no disclosures. So we looked our iliac vein stent experience and looked at the failure modes of the iliac vein stents, we found that majority of these patients over half of these patients had poor inflow

in the common femoral vein. If that is the case then the treatment options involve either stenting across the inguinal ligament or a surgical option or a hybrid option of endovenectomy combined with iliac vein stenting. So, here is a patient who came back with recurrent

venous ulcer after iliac vein stenting and he had improved following the iliac vein stenting. When we did a venogram for this patient we found that there was additional (mumbles) material around the distal part of the iliac vein stent and also material in the common femoral vein lower down.

The idea to down into the the idea is to go down into the Profunda Vein and do a venography to identify all areas. On the left hand side screen, you can see that the stent was extended and profunda venogram was done

and the common femoral vein common stenosis was identified. And this is often done through, from the contra-lateral side and you can either stent them going down into the common femoral and get a good result and if you can't then endovenectomy is an option. Why endovenectomy works is because A,

where do you put a stent in the common femoral? Again, with a curtain effect, you can affect the flows from the profunda vein, especially if you're using a closed cell stent. The advantage of endovenectomy is that you can improve flows from the profunda

and extend the stent into the patch. Here's a video demonstrating that exposure of the common femoral vein and as Tony showed you before, the collagen material inside the vein is quite adherent and bulky

and it is not amenable to endarterectomy all the way and therefore, sharp dissection with Pott's scissors is necessary to find adequate plains. Especially the collagen extension into the branch veins of the common femoral vein. It's important to extend it right

across the profunda orifice and you want to make sure that the profunda flows are excellent because the procedure hinges on that. Once you find a pearly surface of the intima, then you can excise the rest of the bulky material to get a smooth surface.

This is extended right into the external iliac vein level or until you can find a place where you can introduce a sheath into the external iliac vein to complete the extension of the iliac vein stent. The profunda is back-flowed and as you can see, good flows and further extension down below

is also done around the profunda orifice to make sure that all clearance is achieved. You have to be a little careful in this area because you can sometimes go too thin and cause perforation in the wall, which is not an ideal situation and you don't want that.

So, you can, you find an area where the sheath can be introduce and now you can see you can excise the bulky material around the sheath. And then if the lumen is adequate, I close it primarily. And if I find the vein has shrunk, then you know, I put in a patch.

Once the closure is done, I release the profunda so allowing blood to flow while I'm doing the stenting and that way, we can complete the procedure by extension of the stents. And this is the final result. So, we've had good experience with this

and we are happy with the results with freedom of ulceration around 89%. I've already alluded to the key clinical steps in clearing the profunda inflow and also the outflow of the inguinal ligament, stenting distal to the common femoral vein

clearance points and anticoagulation for three months. Thank you for your attention.

- Thank you very much. Well this is a series that was actually published five years ago. And it outlined 45,000 patients after carotid endarterectomy, as well as open and closed thoracic abdominal procedures and infrainguinal bypasses.

And you can see here, that the VTE rate, and this is emblematic of a lot of studies. If you take everything together in a ball, you get an average result. And as you can see, the peripheral bypasses had a low incidence.

Carotids, very low incidence. But open procedures had a higher incidence than endovascular procedures. But here is the nub. Here is what's really important and why you need to do risk assessment.

Look at what happened to these percentages if the patients had any morbidity during hospitalization, as high as 7.8%. And here's the list after they went home. Again, it's not the .5 tenths of a percent or 1%, and this is what it's all about.

It's about the extra risk factors that the patient has. So now, anybody that's starting to do work with the Caprini Score, you've got to go to the patient-friendly form. Because we don't just do it,

if the patient comes in for surgery, and somebody does a preoperative evaluation in the holding area, stop it! It's ridiculous! Have you ever been in the holding area? What are you worried about?

You're worried about having the operation. Are they going to find cancer? Will the surgeon have a bad day? How much pain am I going to be in? How long am I going to be out of work? They're not going to talk to you

about their family history or their obstetrical misadventures. So you have them fill a form out ahead of time with their family, and then when they come in, you just double-check it. And we've studied this, it's in five languages,

and it's got perfect correlation with trained observers doing the same thing. And remember, if you fail to carefully interrogate your patients regarding the history or family history of venous thromboembolism, vascular surgery or not, sooner or later you may

be faced with a fatal PE. And the idea that you're giving anticoagulants during your procedure that's going to protect them is not valid. The relative risk of thrombosis increases with the number of risk factors identified.

A combination of genetic and acquired risk factors in a person without a history of a thrombosis personally, but with a family history, has a 60-fold higher chance than those that have a negative family history. And a positive family history increased

the risk of venous thrombosis more than 2-fold, regardless of the other risk factors. Don't forget the history of thrombosis. You won't need to look this article up. It's 183,000 patients over 25 years and it shows that both in first, second,

and third-degree relatives, as well as cohabitants in the household, there's an increased risk of venous thromboembolism. Lowering down, getting lower for each degree of a relative.

But a DVT in a cousin, there may also be a thrombopathic condition in that patient. So you better pay attention to that. National Surgical Quality Improvement Program, wonderful program. The database has no information on history

or family history of VTE, use of perioperative VTE prophylaxis, intraoperative anticoagulation, or perioperative use of antiplatelet agents. How are you supposed to make any sense out of DVT-related studies?

Finally, due to the lack of routine screening for VTE, the incidence of VTE may be underestimated in this NSQIP database, which only makes the need for further study more pressing. This is an important consideration because

more recent data indicates that two-thirds of the patients are found to have DVT during screening and after vascular operations, have no signs or symptoms of the problem. And I'd like to remind you, so this is based on the Boston data, which is the best data.

Patients with a low score pneumatic compression during hospitalization. Moderate score, of 7-10 days of anticoagulation. Don't make any difference if they're inpatient or outpatient. And 28 days if their score is over nine.

They lowered their incidence on the surgical services from 2.2% to a tenth of a percent at 30 days. And finally, and I think this is really, really important. Take a look at all these risk assessment scores.

To my knowledge, there's only two scores. It's not the Padua, it's not the IMPROVE that have a history of obstetrical misadventures which can reflect antiphospholipid antibody syndrome, as well as family history

in various degrees of relatives. So with that, thank you very much.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.