Create an account and get 3 free clips per day.
Chapters
Arteriovenous Malformation/Fistula (Femoral Artery & Vein) | Coil Embolization, Ethanol | 21 | Male
Arteriovenous Malformation/Fistula (Femoral Artery & Vein) | Coil Embolization, Ethanol | 21 | Male
angiographycoilsdeepdilateddrainingfemoralFistulaoccludedocclusionsuperficialswellingvein
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Pedal Lymphangiography | Lymphatic Imaging & Interventions
Pedal Lymphangiography | Lymphatic Imaging & Interventions
abnormalangiographyappearancebrighamcatheterizechaptercouplefoothemostathoursimagesincisioninjectinglymphlymphaticlymphaticsneedlepediatricpediatricsretroperitoneumsuturesveinvesselvessels
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
abnormalangiogramarteryaxisbleedingbleedsbloodcatheterceliacchaptercoilscontrastembolizationembolizeendoscopyesophagusFistulagastroduodenalhemoptysishepaticmalformationsmesentericNoneportalsuperiortipsupperUpper GI Bleedvaricesvenousvesselvesselsvomiting
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
angiographybluecancerscenterschapterdiseasesdisordersembolizeflowfluidhepaticimagingInterventionsintestineleakingliverlymphlymphaticlymphaticsoncologyPathophysiologypatientsproteinthoraxtreatable
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
MR Angiography | Determining the Endpoints of CLI Interventions
MR Angiography | Determining the Endpoints of CLI Interventions
angiogramanteriorartifactcalcifiedchapterclaudicationdeterminehemoglobiniliacimageinterventionmraMRIocclusionpatientsrecanalizationreperfusiontibialtissuevessels
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
angiogramarterybrachiocephaliccatheterchapterclickcoilcoilsembolizationmicromicrocatheterNonepseudoaneurysmPseudoaneurysm brachiocephalic arterystenttrachea
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Nodal Lymphangiography | Lymphatic Imaging & Interventions
Nodal Lymphangiography | Lymphatic Imaging & Interventions
angiographycenterscentimeterchapterductembolizationinjectinginjectionluerlymphlymphaticsneedlenodenodespropofolsyringesthoracictubing
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Algorithm for Treatment | Pelvic Congestion Syndrome
Algorithm for Treatment | Pelvic Congestion Syndrome
balloonbloodcatheterizechaptercoilscontrastgonadalnesterocclusionpelvicrecurrencerefluxsclerosissymptomstreatttlevaricosevaricositiesveinveinsvenavenogramvenous
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
Treatment Case 2 | Pelvic Congestion Syndrome
Treatment Case 2 | Pelvic Congestion Syndrome
chapterembolizationgonadaliliacinternalocclusionvaricositiesveinveinsvenavenous
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Does Embolic Material Matter | Pelvic Congestion Syndrome
Does Embolic Material Matter | Pelvic Congestion Syndrome
amplatzchaptercoilconfluenceembolicgelfoampaucityperipherallysclerosantvein
Case 3b: Splenic Laceration | Emoblization: Bleeding and Trauma
Case 3b: Splenic Laceration | Emoblization: Bleeding and Trauma
angiogramarteriesarterychaptercoilsdelayedembolizationgastrichealhemodynamicallyinjurylacerationNonepictureproximalreconstitutionrupturespleensplenicSplenic Lacerationvessels
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Q&A - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
Q&A - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
anesthesiaarterybewarebiasblockblocksbrachialcatheterchaptercoilcreationdevicesembolizeFistulamoderateneedlenervenesterpercutaneousprocedurepseudoaneurysmsedationveinvessel
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Endovascular AVF creation | Twitter Case Files SIR 2019
Endovascular AVF creation | Twitter Case Files SIR 2019
6fr venous WavelinQ magnetic catheteradvanceadvancesalignarterialbrachialcatheterscenterschaptercreateselectrodeembolizeendovascularengageFistulainsertmaturationpatientpatientsstepultrasoundveinvenavendors
Treatment Options | Pelvic Congestion Syndrome
Treatment Options | Pelvic Congestion Syndrome
amplatzblockblockingbloodchaptercoilcoilsembolizationembolizegluegonadalmaterialsoptionspelvicperipherallysclerosantsurgicalsuturetreatingtreatmentvalvesvaricosevaricositiesveinveins
Transcript

We had quite a similar patient, this 21 year old man had leg swelling and pain. This deep femoral angiography shows quite similar findings. There are so many feeding artery, draining to the superficial femoral vein, the dilated superficial vein and a semi angiography shows quite

similar findings. We puncture that draining vein and inserted coils and injected ethanol. We occluded totally the superficial femoral vein. This is the completion angiography,

so when there is a [INAUDIBLE] fistula between artery and vein, by insertion of coils in the deep venal system, we can control the AVM like this. This kind of variation of the type two, as you can see there are

multiple fistula between SFA and DFA, superficial femoral vein, and the finery we treat it by total occlusion of the renal vein, with coils and ethanol. And also there is no leg swelling after treatment because we occluded non functioning deep venal system. Thank you for your attention.

>> [APPLAUSE]

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

one pain geography as we know it was first described in 1955 by Kenneth in

the UK and I always find it interesting that you know we sit here we talk about how not fun it used to be but he said well lymphatic vessels at least the normal ones are much smaller than our deserve Eanes they're hard to see they

contain colorless lengths etc so this is something that has not been a state secret for for a long time but in this case he actually I used the microscope you see a needle he's doing hand injection and he did a surgical incision

across the foot and when he did that he was able to generate these images so one of them is a normal empathic you see a very fine vessel with a hemostat at the bottom of the image and the other one that has his tortuous winding vein or

vein appearance or varicose vein appearance is actually an abnormal lymphatic so this technique was described in fifty five seven years later was described in Pediatrics very similar about

much more difficult as well and they were able to get some very nice images you see these examples of abnormal lymphatics and these pediatric patients so in my fellowship at Brigham we were still doing PETA limp angiography during

my training and usually whenever we started and sat around talk with our text and nurses in the morning you could hear the groans and you could see the frowns but basically we knew that we closed down a room for one day and it

would start by us injecting a freezing solution in the inners web spaces of the toes and then injecting this methylene blue dye we would then milk the foot up until the dorsum of the foot had a blue streak and that's where we knew the

lymphatic vessel was we'd make this vertical incision and skeletonize the vessel we tie it off with some silk we tape it down and then we would get to work trying to catheterize this little skinny vessel with a 30 gauge needle now

this process alone would usually take a couple hours and a lot of patience and then we'd fix our catheter up and attach it to a pump and it would go at a rate of five to eight CC's an hour it'd take a couple hours to get the pictures

through the leg a couple more hours to go from the leg to the rest of the retroperitoneum etc so now you've talked now you're talking six plus hours and you haven't even really done the case yet elegant images you see how fine and

wispy these vessels are we have many more lymphatics than you do any other vessel in your body we don't really have a good grasp with the distribution of of all the different variants that you have from person to person but there's a lot

of variation obviously a technically challenging procedure to have high-quality peda lymph angiography it's time-consuming invasive to patients you have this incision that would take several mattress sutures and a couple

weeks to heal but the images have good resolution it was diagnostic it was therapeutic in some cases of lymphatic injury leaks as well no to lymph

right now here's a different case is a 49 year old male who presented to the emergency department after vomiting a lot of blood vomiting was the key word there it's going the other direction so that's an upper GI bleed all right and

when we talk about upper GI bleeds there's a lot of different causes for upper GI bleeds the most common are ulcers but there's mallory-weiss tears of the esophagus there's just esophagitis or gastritis

there's different cancer vascular malformations fistula is varices which I'm not going to talk about but varices on the venous side in a patient with portal hypertension these are all causes of upper GI bleeding now

once again we might treat them medically we might look at them with endoscopy and potentially cauterize something embolization usually is used when and when endoscopy is not successful all right or certainly surgery but an upper

GI bleeds embolization is a lot more attractive of an option all right so here's another picture what do you think you up for it nope you turned me down all right who wants to who wants to tell me what they see how about you how about

you guys you can team up together what do you think so what do you seeing so let's look at that together so this is a seal EF is an anagram of the celiac axis you want to think it through you want to volunteer you see a filter we don't care

about that yeah all right that's fair so you see the catheter going up right in the middle and it's going right into the celiac axis all right what I want to draw your attention to is right in the middle of the screen a little bit over

to the left is again a blobby thing all right that's extravagant of contrast and the vessel that that's coming off of is the gastroduodenal artery so I want you to see that if you look at the catheter you

can see the shadow of the catheter right up going up from the bottom that's going into the celiac axis and the big vessel going over to the left side of the screen is the proper hepatic artery that the common hepatic artery excuse me and

the first vessel heading south from there is the gastroduodenal artery that blood vessel is supplying the end of the stomach and the beginning of the small intestine and what you see is the extravagant coming off now what it's

very important if you're dealing with bleeding patients whether it's in dusky whether it's hemoptysis or GI bleeding anything like that we're looking for that type of blob appearance which just mean the contrast is no longer

constrained by the artery it's free into space okay usually the way we were built is that the blood vessels the biggest they ever are near the heart as they leave the heart they get progressively smaller until they reach

the tips of your fingers and the tips of your toes if there's any place that you see where it gets big small then big again that's not normal okay that's not normal and now we just got to figure out what's

the abnormal part is it the small part or the big part all right in this particular case it's that big blob that's big it doesn't belong there all right but in the upper GI system there's lots of collateral vessels so we can

just go in and we can put coils right in the gastroduodenal artery and we can embolize that and we can do it safely because we know that there is alternative routes for blood to flow now the one thing we have to do here and

this is an important concept for any abnormal bleeding whether it's trauma or other causes is we always look for the backdoor so in this particular patient we did an angiogram of the superior mesenteric artery there's another vessel

going to the intestines and it's nice cuz we have the coils there you can get a sense that it's possible for blood to flow from a branch of the superior mesenteric artery backwards into the GDA and so we just want to make sure that

that's not happening because we can do the best job ever with an embolization procedure but if we don't get the front door and the back door we're gonna fail patients will come back with recurrent bleeding and at least in my experience

that's a big reason why people do come back so we think we do a great job in two or three days later people come back with abnormal bleeding it's weak because we didn't address both sides of the pathology all right so here's another

interrupting something else getting back

to a paddock with angiography something that we're starting to look at the group at University of Pennsylvania has a publication out on this as well I looked at the liver lymphatics certainly the livers where we produce a

lot of protein it goes through the lymphatics to be returned to the circulation in patients who have heart failure they tend to have increased lymphatic flow in the liver and they think that protein lost in enteropathy

protein losing a property happens when the liver lymphatic leaks into the intestines just some images from their article you see them looking at the hepatic lymphatics there and once they had a needle in the hepatic lymphatics

they actually put her scope in and they injected blue dye and as a proof-of-concept they saw the blue dye leaking into the intestine so now that they see that the blue dye leaking the intestine they say well we can embolize

that they embolize it with some glue and that's what it looked like at the end and then the algorithm levels and all these patients return to near normal so a new a new frontier and lymphatic intervention so just to summarize

lymphatic imaging the current status you know we have very effective non-invasive as well as in vases imaging in the peripheral and central lymphatics we certainly need to this allows for improved diagnosis and once we have

these diagnostic capabilities we were able to come up with these novel treatments for these diseases that were previously untreatable we still don't have good ways to consistently visualize the paddocks invasively and then and

non-invasively it would be great to be able to see that hepatic and intestine lymphatics cuz that's 80% of lymphatic flow so if we can find a way to image these under mr it could be a game-changer for a lot of diseases in

terms of lymphatic interventions Calla thorax interventions greater than 90% effective technical knowledge you know when I was a trainee was really centered to just a few major medical centers now it's defusing out to more places we've

certainly shown as a proof of concept the plastic bronchitis lymphatic flow disorders cattle societies and protein losing enteropathy are all treatable and we're getting emerging experience so don't be surprised if you start to see

more requests for this more patients at your centers these are uncommon disorders that's not to say that you still won't see them every once in a while the role of lymphatics in pathophysiology is still being studied

particularly in terms of heart failure transplant as well as in different cancers in the spread one of the cool stuff that we're looking at right now is actually sampling different lymphatic fluid in different areas of the body

trying to see how the different cancers may spread and/or possibilities in immunology immuno oncology thank you guys and just something I noticed a couple weeks ago in jeopardy clear body lymph continuing white blood cells body

fluid and you guys know what is limp that's your answer so thank you saying thank you to the avir committee and it's been a pleasure [Applause]

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

very helpful these patients the calcium this and the vessels can be

seen through with the MRA it doesn't it doesn't cause as much artifact so it could be easier to see what's going on in calcified vessels additionally you saw an image in Marc's talk as well of this is an example of a time-resolved

image of an MRA or you can basically recreate exactly what you're seeing in an angiogram and this could be very helpful to kind of determine what kind of TVL disease you're getting yourself into

newer MRI techniques that we're using in the evaluation patients with PID functional MRI which compares the ratio of how much oxygen versus deoxygenated hemoglobin we have in a tissue so we can apply this to a pre and post exercise

scenario in patients to have claudication as well although it's not it's only approved in research protocols this is an example of what you see for that so pre intervention here's the CTA image reconstruct

in 3d with a long segment an iliac occlusion and then post intervention you can see there's a standard reconstructed vessel and the you can both chart this out and do it and superimpose it on the MRA image and you're gonna get an actual

quantitative amount of tissue reperfusion but studies are still ongoing to determine just how much increasing the amount of red that's in that image is important we don't know the answer to that yet here's just

another example a patient underwent an anterior tibial artery recanalization and you can see the improvement in the t2 star which is just one of the one of the measurements that you can use on these images so what's on the horizon

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

here's another patient 62 year old male

patient just a similar case who had head in that cancer again after radiation therapy who experienced some bright red blood while coughing all right here's the CT scan and what I want to draw your attention to a little tough to see I

think I'll let me go up up here point it out with a mouse well I don't have a mouse so I guess not is basically you can see right in the middle of the two lungs kind of right in front of the trachea which is the black

circle alright just go right in front of that up to the top you can see the round white circle which is the brachiocephalic artery and just projecting off the back of that is another little kind of outpouching of

contrast a little nipple coming off of of the brachiocephalic artery that doesn't belong there all right here's the angiogram and it's a little difficult to see but there is a see if I can describe it better to you alright I

think this is actually a video so I'm sorry I don't know the ability to run it unless you can click on it can you guys click on the back up so if you want to look at it again you see the angiogram kind of running and just at the origin

of the brachiocephalic artery which is the first branch of the aortic arch you can see that outpouching of contrasts coming right to the right of that vessel that's a pseudoaneurysm and again we went through the same thought process we

said you know I want to put a covered stent across that but my problem was that we didn't just have the right size that would not block one of the carotid arteries and not extend too far into the aorta so we had no choice but to

consider embolization in this particular case so here's what we did here we actually put a micro catheter if you can just click I think that's a video to the left no I guess not you know what it's okay

what we did for this particular case was we went in from the arm and we put a micro catheter directly into that pseudoaneurysm because we couldn't feel we didn't feel we could put a stent across it so we put the micro catheter

in there we started to put some coils and it actually went further than we thought outside of the artery and here's the post image so you can see our final image you can see the coils that are sitting just adjacent to the

brachiocephalic artery and we preserved good flow there to end this basically

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

angiography came along towards the tail end of my fellowship so around 2011-2012

actually a children's Boston initially and then subsequently done in Penn in adults and this really became as simple as doing a lymph node biopsy basically sticking it on a lymph node while it seems novel it's really

interesting because if you go back to 1931 that's actually when they started doing some of this work when they were actually injecting the lymph nodes with these different tracers and they could see so it's a combination of a little

bit of ingenuity and looking back at our history and we the way that made it a lot easier for everybody this is basically my little setup here and I used some Italian syringes a plastic opaque three way so

that the lapa doll doesn't dissolve through it the medallion syringes hold up a lot better than the typical day we used luer lock stuff I use long propofol type thin bore tubing I attached it to a nine

centimeter long 25 to 27 gauge spinal needle I take the inner styler out of that cheeba so that because it's such a skinny needle that it bends a lot and this way I can put it right into the lymph node without having to connect it

to the tubing and then I can start my injection right away the 2115 cheeba there and that scalpel are really the only other things that I need to get started to do a successful thoracic duct embolization other thing that's really

critical is I always ask my texts and nurses to slap SC D's on the patients and if once we have the SC DS it really speeds up the procedure by an hour to two because you have this constant compression of the Venus and the

lymphatics and the legs forcing more fluid to make your thing to make your case I move along more quickly so something that was more recently adopted at many medical centers and these are the type of images that you get so I

stick my needle into the lymph node and I start this injection you give this beautiful arborization of the lap I doll contrast as it continues to spread and move from one lymph node to another you see there's a central area there that

isn't filling that's actually the lymph node that's already transmitted the lap idol and this was the image that I showed you initially so same image injection injecting of different lymph nodes you can see the transit from one

area to the rest of the chain in the pelvis hepatic lymph angiography is not

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

typical symptoms if you want to hit the play on this I think this is one we've probably already seen but it's it's the the algorithm that I go through for treatment so we do my renal vena Graham

there we go it's classic definitely has reflux and so next I will selectively catheterize the gonadal vein and here you see very large pelvic varicosities and so my standard is to actually treat the varicose veins with a sclerostin

much like I would sclerosis a varicose vein in the leg and there's a few reasons that I do that and so here's how I do it I'll put an occlusion blown up you see the picture on the left of the screen has an occlusion balloon it's the

same occlusion balloon we use for a tips procedure and I'll temporarily block the gonadal vein and fill up the system or the varicosities with contrast so that I get a sense for the volume of sclerosis and I would use then the picture on the

right is a venogram after I've injected the sclerostin so I've evaluated the volume and then I've replaced all that contrast by forcing it through the system to drain out the pelvic veins and filling the varicosities with

soldier column I do that because I believe and there's no data to prove it that it helps prevent superficial phlebitis in those varicosities so if we're just gonna block off the gonna dull vein then we have stagnant blood in

all the pelvic varicosities and stating that blood wants to clot and when blood clots on its own it'll stretch and expand the vein and cause pain and so in my own personal experience that has created a little bit worse post

procedural symptoms for patients compared to the patients that I use so TRADOC all to actually treat the varicosities so that's what I start out with and then since I'm kind of an old-fashioned guy I still go with the

coils and so I coiled the whole going a ttle vein and you can use sort of whatever you want you know that's the simplest thing for me are using nester coiours coils and and fill it up some people use the long detachable shaping

coils kind of an expensive way to do it if it saves you radiation then then that's that's one of the reasons to do it but the point is in in the venous system you have to be able to and I show this slide because you can see a

collateral vein or at least a branch there a confluence point that we've coiled off too if you do not treat the entire length there's a there's a lot higher chance for recurrence and veins have a way to find their way around if

they can communicate back up then patient gets recurrent symptoms and that can happen in about ten percent of cases so in order to prevent that you treat the whole gun out of vein and that's sort of why I think some people like to

use liquid sclerosis because then they will be able to sort of profuse all those branch points that would have a chance for recurrence case number two

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

you see again renal Dena Graham you can see a hint of the gonad of Ain selective

vena Graham again showing us the large gonadal vein and that's my post so charcoal with the occlusion balloon and then treat I showed the cartoon slide before that we look at all four of those territories so I always start with the

left but then I'm gonna look at the right gonadal vein as well as the internal iliac veins on both sides in this case the right go Natalie was normal as were the internal iliac veins so not seeing any varicosities

normal venous outflow so this patient it was only treated with a left gonadal vein embolization

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

does the embolic material matter I'm showing the picture of an amp lats are

here this was a patient that was treated with a few different things you see coils peripherally there there was sclerosant and then in Amplatz are up near the confluence with the renal vein doesn't matter

a little is the short answer looking at as many studies that are published which are few it looks like you get a little bit better result with coil and or mixed methods meaning sclerosis and with coil and gelfoam compared to glue oil or foam

sclerostin alone however you know with the paucity of data take that with a grain of salt i think if you get good at something and you can treat the entire length of the vein I think you're successful and you have the best

chance to improve symptoms I think that's where I'll end if anybody has questions I'm happy to answer great thank you

different patient this is an unrestrained passenger in a motor vehicle accident now that you are all

experts in looking at this CT you can see on the right side of both of those images is the spleen you can see that darker grey areas within the spleen that's bad it should look more like the the the lighter parts

and actually all the grey are on the outside is all blood or fluid in the abdomen so this is a bad laceration probably at least a grade four splenic laceration but again this was a hemodynamically stable patient all right

and here's what we saw this is the angiogram you can see the splenic artery and you can see they're kind of diffuse abnormality of the spleen it just doesn't look right under normal circumstances it just look like branches

on a tree and what we're seeing here is just kind of splotchy looking splenic ranked them up so that's not normal we just want to give it a chance to heal this is the scenario we might do a proximal splenic embolization where

we'll go in and we'll basically put a plug or some coils right at the origin of the splenic artery and I love this picture because what it shows is why we do this philosophically what I want you to notice is on the image to the left

you can see the coil right there right if you see the abrupt stopping of the splenic artery and then what you see are all those vessels going up towards the top of the picture those are arteries that are supplying

the stomach it's the left gastric artery some other vessels that then go through vessels we call the short gastric arteries and what you get is is the reconstitution of the splenic artery so on the image to the right all the way on

the right side of the picture those branches that you see are within the spleen so even though we plugged up the splenic artery right at its start the spleen is able to get blood flow through those collateral vessels all right so

that's our goal that's what a proximal splenic embolization is trying to do we just want the spleen to heal a little bit and reality what we want to do is these patients are usually fine we just don't want them to go home and have a

delayed rupture of their spleen because that's something many of us probably don't appreciate if someone has a splenic artery injury or splenic injury and they're doing fine and then we send them home there is an incidence of

delayed rupture of the spleen and what we know through lots of good papers is doing these proximal embolization procedures helps to reduce that risk of delayed splenic rupture so that's what we're trying to do there all right so

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

go ahead your first Carolyn we bring paces back at one week and then three

weeks after the initial procedure apartment four weeks after the initial procedure we use percutaneous I'll just regular color assisted toppler and do a velocity measurement that way okay and at four weeks if they're not

pumping out in brachial artery brachial artery at six hundred CCS a minute I'm probably gonna do an intervention of some sort I'm gonna go in there with a balloon or I just see what's the problem and so then this is what catch no Jeff

holes doing in Richmond you know he calls to the the map rapid maturation program yes asked about the sedation so all of our patients currently are getting supraclavicular blocks nerve lux now we

have a luxury in our place anesthesia is there for every case whether it's a declawed or a catheter placement with a anesthesia is there so one it you know basically you block the arm they can't feel anything they get

moderate sedation for anxiety during the procedure the block also creates significant vasodilation particularly the venous side so it really gives you a bigger vein to manipulate and particularly on the ellipses side when

you're going in with that needle and working its way down towards the radial artery so the answer is yes block plus plus moderate sedation you know Bartow match does his own we would get into trouble if we started

doing our own blocks because we're we're a hospital based outpatient facility you got I don't want to get credential to do nerve blocks but a lot of people in out patient for their private centers do their own nerve blocks you got to send

them home in a sling because it's not just sensory it's motor as well so they want people to use their arm anywhere from three to eight hours until it wears off yes be beware beware of a tech with a list okay do you believe that

percutaneous fistula creation will become primary to surgical creation I think it's going to be again if you think back to what I talked about who comes for what I think it's going to be probably at least 50 to 60 percent okay

once we really get good on this and it just seems like the right thing to do the better results do you are percutaneous fistula creations are they still susceptible to pseudoaneurysm well the answer is we don't know it's a

little bit early if you look at the data from the trials there was one pseudoaneurysm created during the creation of one of the wavelength fishless and that was probably because that

footplate wasn't really aligned well between the two devices will that be pseudoaneurysm with the puncture sites interesting thought I don't think we've been out there long enough yet - no but the vein is the vein and I think if

you're puncturing it in the same place then there's a good chance that they may occur yes exactly exactly and you've got you know very often you can have a choice you're gonna have one needle maybe in each vein and so you'll have an

opportunity to rotate things and then just for clarification I missed what vessel do you imbel eyes on the way out with the bard system we embolized you enter the brachial vein and you embolize the brachial vein on the way

out all right the same vessel that you entered so you want to make sure you have enough purchased so when you pull things back you know your sheath is still in the brachial vein and then you usually down with the Berenstain

catheter and you drop you know is their commercial bias okay here's my bias I happen to like the Boston Scientific soils the detachable coils because I can put them pretty much wherever I want and they coil and they're very thrombogenic

doesn't mean any other coil in the world wouldn't work I think barn asked you to stock up on some nester coil some cook nesters I mean we use nesters in you know and pulmonary AVMs back at Yale I just like something down there that I

can retrieve if I if it's going in the wrong place you want to make sure you're above the perforator so you don't obviously embolize the vessel that you're trying to promote so I just happen to like that if it's there still

flow I might drop a nester on top of a boss interlock coil but that's my way of doing it so forgive me for the endorsement do you have a preference between the two systems well I haven't open the answer is no and and for a

number of reasons one I say I'm a test pilot I'm not a salesman for either company I'm just testing these things to have to see how it's going to the world go because we're so well known down there in Orangeburg if I said you know

we prefer this that would have tremendous economic repercussions across the country you know because oh well Ross upriver improvers you know ellipses and so we're gonna get ellipses so we don't get into

those discussions I think there's gonna be room as the pie grows as I said part for both of these devices to do very well and so I have no preference maybe if I had to differentiate if I saw something with heavily calcified

arteries I might go ahead and do an ellipses which has no problem with calcifications and stay away from the the bar device thank you okay thank you

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

so this is our MGH page we started it about a year ago check it out if you guys like it some pretty good cases we mostly post cases some policy stuff industry and changing things it's not purely cases but certainly take a look if you like it give us a follow so what

I have today is I have two cases that I picked and you know for all the thousands of cases that all these huge academic medical centers do I tried to pick a couple that might be a little interesting and that aren't being done

in all the different centers across the institution so I'll start off with the first which is an endovascular AVF creation so what's nice about this is that you know what we see so far from this is that the length of stay impact

has been certainly reduced in certainly the maturation times and the Rhian turn re intervention rates have been reduced so I'll go through this and normally wouldn't go step by step for a few things but I think you know not all

institutions are doing this yet I think that you will I do think this is going to be a shift for a lot of the dialysis patients and everybody who works anion knows what a huge impact it is the ESRD patients is just astronomical the

numbers of them it's just continuing to rise so procedural steps the first step is you're going to access the brachial vein advance the guide Y down to the ulna insert a six French sheath and perform a vena Graham and the rationale

for that of course is to make sure you don't have any issues centrally some centers do that in advance some centers don't I will mention also that the ultrasound mapping is absolutely critical to make sure that

you get the right patient you start off by seeing them in the outpatient clinic and then you're going to go and have them have vascular ultrasound to make sure you have a good candidate so the next is you're gonna access the brachial

artery same thing advance your guide wire down to the ulna from there you're gonna insert the venous side now this is one of two approved vendors that will allow you to do an endovascular creation this was a wave link it's a to stick

system and it requires two catheters which is why you see the next step is pretty much repeated but just flipping it to the arterial side so from there there's a magnetic zone it actually has like a little canoe so it's got a

backing of a ceramic sort of a space there if you can think of sort of the older or atherectomy cut home catheters that had that little carro canoe you would actually take the debris out it's very

look into that and I'll show you that in a couple of images once you align that you're gonna sort of engage the little electrode this is an RF ablation RF created type fistula so it creates a little slit between the Adri and the

vein and what happens is is that you know of course don't forget you have to ground the patient just like any RF once you get the magnets and you get the electrode alignment you're going to engage the device for two seconds and

the fistula is created and then from there a lot of centers are actually going in there embolize in one of the brachial veins and this is basically to sum some of that stuff obviously to the superficial system for draining I have

read that there are a few places that actually go back back in through the newly-created fistula like even at the time of the procedure with the 4 millimeter balloon and just sort of open that up I'm not sure that that's 100%

necessary but I'm sure all these fine people on the panel could help us with that so here you see and I skipped all the entry steps but here you can see the Venus in the arterial catheter you know in position here and there's that little

canoe thing pointed out by the arrow that I had talked about and you use fluoro to sort of align these two things when you first start doing these cases take your time the first one was over an hour and a half for us now obviously

it's about a third at that time this is the little electrode this is when it's advanced and pretty much ready to engage can you play the video for me so this is quick so what happens is you suppress the

device the electrode actually advances and as it advances towards the veena side what happens is is that it actually just creates this fistula through the RF sort of energy from there you're gonna do a post vena graph in here you can see

after we did an initial post intagram there was enough sort of flow between the PIAT brachial so we decided to embolize one and this patient was our first patient and is doing very well so far this is done on I'm gonna say just

because you know to dr. brains point I don't want to get on the hook for certain dates and patient identification but this was done in mid-march so we saw them two weeks out and we're gonna see them again another couple weeks so just

there's a couple of trials that you can read into one is the neat one is the flex trial I think the technical success is really promising at 96% the maturation days you can see there's a massive massive comparison where they

could be ready to be dialyzed in 60 days and this could be a game-changer for many patients the six-month patency rate is what I've seen in most of the reports it's around 98% compared to about 50% with the surgical place and then you can

see that this about 3.5 interactions or re interventions that are required in about 0.5 at a year's time out from this so it's really making a big difference for these patients and I think this is what we do in i/o we continue advanced

things innovate and obviously look to do things in a more timely cost-effective minimally invasive way at the beginning when these new procedures come out the devices themselves might be at a higher price point but we'll see how that goes

moving forward as more and more vendors get into the space so the second case

treatment options once you've sort of isolated that there are leaky valves and the patient has typical symptoms that there are some surgical options but really embolization and catheter

directed treatment are really the mainstays of treatment both because it's an outpatient procedure you get to go home the same day and the recoveries fairly easy the factors that we consider when you embolize or block these

varicose veins are listed here you want to you want desired duration you want it to be closed forever you can't replace valves it would be nice to be able to do that but there's not a valve replacement so much like in the leg when you're

treating varicose veins you're either blocking or taking veins out so the surgical options are to take the vein out or to ligate but and the vascular options would be to block it and so I would just thought I would cover just a

little bit of embolization materials I'm sure you're all very familiar with and as I'll mention a little bit later there's there's sort of not necessarily agreement on what type of things people use to embolize gonadal veins or pelvic

varicosities but i'll show you what i do but give you a background of just generalized embolization materials so I'm sure you've all seen gel foam supplied as a sheet you can make a slurry you soak it with contraire

so that you can see it as you're putting it in some people use glue and will glue the entire gonadal vein it solidifies when it's mixed with saline or blood usually mix it with acai it also you can see it as

you're injecting it and then the standard coils which there are multiple sizes shapes detachable non-detachable Amplatz or plugs all the mechanical devices that can be used to block blood vessels and then I put on Souter deck

all because there are some people that will sort of do the sandwich technique you may have heard we'd put a coil peripherally and a coil up by the renal vein and then in between the coils you can film a sclerosant and embolize that

way the other important factor for me is using the suture deck all on the actual varicosities I'm not just necessarily treating or blocking off the the blood supply to them you know and I'll mention that a little bit more during the case

here so go through a case patient with

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.