Create an account and get 3 free clips per day.
Chapters
Ascites, Varices, Budd Chiari | Trans-splenic Portacaval Shunt, Balloon Angioplasty, Stenting | 32 | Male
Ascites, Varices, Budd Chiari | Trans-splenic Portacaval Shunt, Balloon Angioplasty, Stenting | 32 | Male
2016arteriographyarteryascitesAtriumbuddcapsularcapsulecatheterchiariclotclottedcoilcoilscoumadingastricgelfoamhelpshepatichypercoagulableidiopathicivusliverneedleportalpuncturescanscatterSIRsnaresortsplenicstentthresholdthrombustipsultrasoundveinvenogramvenouswallwire
C. Cope and Access | Lymphatic Imaging & Interventions
C. Cope and Access | Lymphatic Imaging & Interventions
accessangiogramantegradecathetercatheterizecentralchapterductembolizationembolizelymphlymphaticlymphaticsmachanneedleretrograderetroperitoneumthoracictransvenousvenouswire
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
anticoagulantanticoagulationcatheterchapterclotcoumadindefensesdirectedheparininpatientintermediatelovenoxNonepatientpatientsplasminogenprocessriskrotationalstreptokinasesystemicsystemicallythrombectomythrombolysisthrombustpa
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
balloonboluscapsulecatheterchaptercirculationconnectioncontrastcorrelationdiedifferencedistalfattyhepatichepatic veinimageimaginginjectleaklearningocclusionportalrefluxsegmentsteptrappingveinveinsvenogramvisualizewedgewedged
The Disease Process | TIPS & DIPS: State of the Art
The Disease Process | TIPS & DIPS: State of the Art
ascitesbasicallybloodchaptercirculationcirrhosisconnectionsdipsesophagealextrahepaticgastricHypertensionlivermesenteryorganperineumpleuralportalportosystemicpressurerenalshuntshuntsslidesspleenstepsurgicaltampathoraxtipstransplanttransplantationvalvesvaricesvein
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
advantagesarteryaspirateballoonbarebasicallybilecentimeterchaptercontrastcovereddilatedisadvantagedisadvantagesdistalexpandingflowgaugegorehepaticinjectinjectingkitsleaksmultipleneedlepasspassesphysiciansportalportionposteriorproximalpullpushradiologistssalinesheathstentssystemveinvenous
Stent Graft Deployment | TIPS & DIPS: State of the Art
Stent Graft Deployment | TIPS & DIPS: State of the Art
balloonballooningbarebasicallybifurcationcapturedchaptercirculationcorddeepdeployentryidealplasticportalportionpullsheathstentstentstipsveinveinsvenous
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
acuityalertanticoagulantanticoagulationbiopsybleedingcardiacchapterchartdysfunctionhematologicalhistoryhypertensivelivermedicationsNonepatientpatientsplavixprocedureprovidersradiologistsriskstablestentthrombocytopenia
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
afibarteryaspirinbiopsybridgingchaptercoronarycoumadindirectDVTembolismguidelinesholdholdinginhibitorsknowingliteraturemedicationsmedsNonensaidsosteoarthritispatientpatientspercutaneousphysicianplateletplavixpracticeprocedureprophylaxisreviewedriskthrombinvalvesvectorwarfarin
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Difficult Biliary Access | Biliary Intervention
Difficult Biliary Access | Biliary Intervention
axischallengingchaptercholangiocarcinomacholangitiscontrastcutedilatedductductsfrequentlygastriclateralleakingleftlobeneedleoperatorspatientprocedureproceduressclerosingsheathskinsnarestentingsurgeonssurgerysurgicalsystemtubewire
Complications & Pitfalls | TIPS & DIPS: State of the Art
Complications & Pitfalls | TIPS & DIPS: State of the Art
accessarteryballoonbranchchapterclinicallydeepdefectgramhepaticimagesliverneedleocclusiveperfusionportaportalsegmentalsegmentsstentthrombosestipstracttypicalveinvenous
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
amputationangiogramanklearterialarterybiphasicbloodchapterclassificationclaudicationcolorcriticaldiabetesdiagnosisdiscomfortdiseasedopplerfootischemiaMRIpainpatientpatientsperipheralpredictpulsepulsesrutherfordsavetreatmentulcerultrasoundwaveformwoundwounds
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
PV Access | TIPS & DIPS: State of the Art
PV Access | TIPS & DIPS: State of the Art
accessaccessedangulationanterioranteriorlyballoonchaptercirrhosisglidehepatichepatic veinliverneedlepasspintoportalposteriorprolapsesagittalsheathshrinkagestenttractveinvenouswire
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Venous Insufficiency- Imaging | Pelvic Congestion Syndrome
Venous Insufficiency- Imaging | Pelvic Congestion Syndrome
chaptercompressibleevidenceflowgonadalgrayiliacincompetentinsufficiencypelvicpelvissecondarysequelaeultrasoundvalsalvavalvevalvesvaricosevaricose veinsvaricositiesveinveinsvenous
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Transcript

So basically this is a 32-year-old male with Budd-Chiari syndrome,

in the setting of idiopathic hypercoagulable state. He's had a four variceal bleeds with EGD and banding each time. He also is on has refractory ascites and is on numerous diuretics. So here is a CT scan again showing the ascites here is thrombus within the main portal vein,

here is a little bit of contrast coming through coming up and then the left portal venous patent, the right is thrombosed. And there's actually a spontaneous portal vein to hepatic vein fistula here, a connection and the hepatic vein on the left comes back

and it connects up with this system here. Which drains down in to the IVC. So here are some chronic reconstruction showing this big this is how the hepatic veins sort of this is a venogram injected here showing the flow. So basically we were thinking what's the best way to decompress

this system again here is the thrombosed portal vein. We thought there is a pretty nice after examining all the different potential ways to go, percutenous approach here if we could just come from just the right up mid line here, we come down through

the portal vein into the IVC, that can give us a pretty nice outlet. One thing to be a little weary of and careful is, this is the hepatic artery here, so obviously that's something we want to avoid. We did the trans-splenic approach as we had discussed,

and this is our splenic venography showing the main portal vein here. This is a little deceptive because the thrombus is sort of an AP projection, so this is a very thin venogram here. And then going into the left portal vein the right portal vein as you can see is occluded.

And here it's just a lot of variceals this a later phase of the same run. Showing all these gastric variceals. Getting the catheter up a little further during the run you can see hepatic vein here, and that co relates very well to the emission

here. Prior to all these cases, again I think it's essential to have a really exquisite imaging and that really helps me determine where I'm gonna go, what I'm gonna do and I'm constantly referring back to the CT or the MR, I actually prefer CT,

it helps me see the venous flow a lot better and helps me plan these approaches. So I personally really dig good cross sectional imaging. We're able to use a little sharp needle recanalization, getting from here through this clot.

It wasn't as difficult as we thought it would be, we used the back end of a Benson/g and a 4 French Berenstein catheter, just sort of poked it then, just sort of went, and you can see we're in this right portal

venous clot here, some portal branches and then what we end up doing is placing a loop snare in this area. We have an arteriole catheter here for a couple of reasons. One is we did a celiac axis run and so much to that CT scan this is the hepatic artery that we see right over line like portal vein. So we put a microcatheter out and that is gonna be our no go zone,

so we see under fluoroscopy where to go and then we angle it to about 15-20 degrees and then we align everything up, here is our right portal vein snare. Here is our snare in the IVC, and here is our know go zone with

the artery. And here is our needle percutenously. We just sort of drop down into IVC. And so here is the lateral view. You can see the needle coming down, here is the snare around the

needle we snared it adequately. We got into the IVC again avoiding the hepatic artery. And then passing and 018 wire which we snared, and we we're able to do a series of exchanges, such that we got an 035 wire and catheter

up. And then out through the neck. We reversed the wire cuz we wanted the floppy part of the 035 wire to be in the portal venous system. We took the catheter out. So we just had the wire snared.

And then we pulled the wire and now we have access from the right IJ through the spline. [UNKNOWN] tract and then we place, in this case we decide to place self expanding stents,

not covered. We really didn't know what was gonna happen once we got into the IVC here so we didn't have anything overly occlusive. So we used a number of I think they were 10 by 60 stents, we ended up using three in series.

This is our run showing just a little bit of filling of these gastric varices. This is quite frankly the other trash from the other 018 wires we just sort of left that and excluded that. We got up into the varices and we placed an enhanced plaster here. The main reason we did this is because this was sort of new to us

we didn't know how long this was gonna stay open, and while we were there we felt we would at least take care of the varices. This is our final SMA run, showing brisk flow through this stent. Here's a follow up CT two days later,

here's the proximal part of the stent within the portal coming around and coming into the IVC. As you can see at this point, compared to where it was previously sort of going centrally sort of fell back and was more parallel.

We decided at this time not to really do anything and this is one of the things we thought it would be essential to have an open cell stent here. So this did not occlude fortunately, and didn't really retract any more than this.

In retrospect, maybe putting another stent in there to anchor it a little more going centrally pair would have been essential. So at three weeks and three months, we have follow up ultrasound on this dually/g patent. Here is a follow up MR at 28 months,

so this is the preprocedural CT scan shown in the abundant ascites going on here, no ascites, here is the stent. Here is the ultrasound at that time, widely patent stent, and clinically

the patients been without bleeding so much that they have been resumed on anti-coagulation with Coumadin through their primary care physician for their idiopathic hypercoagulable state and the patient has been off diuretics without recurrent ascites. So he is sort of living a normal life now, as much as he can live

with being on Coumadin any questions? >> That's kind of the amalgamation of three sophisticated techniques you got the the transsplenic technique, you got the dips going through the [UNKNOWN] and then you got the gun sight. So its a very cool case.

>> You add this sort of things on as you go along and then you can just throw them at one bucket, but I think that's why you said it's essential, being here at this talks and going to the different abstract presentations. It really helps build, I was telling Mr. White/g how you can do and how you can put these things together.

>> I think a nice thing also I think we're seeing in all this is the adoption of the splenic technique is you can do all sort of IMV SMV work now from now on. Instead of going transhepatically or whatever malformations or anything else rather than looking for many lapse and stuff it's just another way to get to that system it's pretty easy to get there.

Question? >> [INAUDIBLE] >> Louder. >> [INAUDIBLE] You think that might be easier? >> I have a mixed and probably biased feelings about that. I don't

I don't that. Look, there are some people that are excellent interventionalists that say this is a game changer to use IVIS to do with the TIPS. It's an extra procedure, it's more costs, this, that. I think those that, I think a lot of people,

yeah, I'm not sure. I'm not a big fan. I'll just leave it at that. >> This particular case, the cathet/g was very bulky. I think in a smaller cathet/g that's a great tool to have,

and like you point out can give more of an angled approach to the TIPS. But in this case, this was a huge cathet/g. It was like a left lobe. >> Yeah, absolutely. >> But people are using it

to extend your question, more people are now using it for routine TIPS. So I don't know what your thoughts are. You guys using it for every TIPS now? The big right portal vein?

Are you using IVUS, or? >> No. Not routinely.>> I guess we're all similarly. >> But I mean it's very center specific, the [UNKNOWN] Institute,

from what I understand that IVUS gets open for every case. [BLANK_AUDIO] >> [INAUDIBLE] >> I mean we're sort of restricted by sort of the angle with which we can come in, based on the ribs,

the bile, where the hepatic artery was. Where we're gonna be so we were sort of didn't have that much wiggle room in regards to how we were going to approach this overall to be honest with you. >> [INAUDIBLE] >> I'll just repeat, this,

we haven't been doing that the question is there any concern about ascites with respect to bleeding or other complications doing that on site?. >> So two things one in regards to what we do with the ascites pre-procedure I know he does not tap them, we usually tap them

mainly because it helps our anesthesia patients alot and so they just love the fact we're able to get some of this fluid off. Secondly we have a very low threshold for doing arteriography after some of these cases when we have multiple passes during the routine tips, we wanna go in transsplenic and it's really, it saved us a couple of times and it's a very,

I would, again have a very low threshold for doin arteriography because you will see some subtle bleeds. And often times you really don't even have to treat. I saw a very small pseudo once that I just sort of let go but I knew it was there. And I followed

it very closely and it went away, but there could be an argument to treat some of these as well. But we've had no issues regarding bleeding into the ascites afterwards, so no. >> Yeah, I'm a strong proponent of training the ascites at the time

of the tips and it's for several reasons. When you're making the portal passes the liver is less mobile it can be like bobbing for apples sometimes with a small really trophic cirrhotic liver. The second thing is, that acidic fluid causes a huge amount of radiation

scatter. So you and everybody in the room is getting a lot more scatter and because of that scatter factomy and the additional attenuation by the acidic fluid, it degrades your visualization. So you're needing to use more magnification and there by more radiation

and so on and its like a cycle. So I think you know some people are concerned that you can get post ascites circulatory issues and I think if you're replacing with albumen, for the higher volume taps, we leave in our ascites drain during the TIPS,

that has a big advantage as well, and a big disadvantage. The big advantage is that it's very reliable indicator of capsule perforation. The big disadvantage is that it's a very reliable indicator of capsule

perforation. >> Exactly. >> For me, for my rationale for not draining the ascites is that, it's purely anecdotal by my experience. I'm not sure it's a very well studied parameter in TIPS, pre or

post TIPS placement, but for me it's from experience. And I had a case in the past where we had drain, cuz we used to drain them right after fellowship. And then we drained five litres or so or whatever it was right

out of the belly just to make it easier, less scatter, better visualization. And there was an extra capsular puncture and the patient almost died because we had no intra-abdominal pressure to tampen down the capsular puncture. So we had to pump fluid,

five or six litres later he started to stabilize but he almost died. I know it's an end of one, but I've been doing this for 20 years now, and I like a nice tense belly. And I never thought I'd ever say that but I guess I like-

>> [LAUGH] We knew that about you. [LAUGH] Question. >> So your IVUS [INAUDIBLE] very C-Section [INAUDIBLE] and so it's always hard to get [INAUDIBLE] we don't have that in our institutions [INAUDIBLE] so what if I'm gonna use this from other guideline procedures, on that site. What about [INAUDIBLE]

>> Well, I mean you could go really old school, and I'm aging myself as well but for some of our early cases, we do transhepatically you'd use what clotted blood. One of my fellows on day one didn't realize why I had withdrawn that 20cc of blood to let if clot off,

by the time I was done with my transplant, cuz my case would take six to eight hours to that portal vein reconstruction. It takes six hours so if you just have some blood it will be clotted by the time you're done. I was looking for my blood and discarded it.

But you can do something like that but I don't if there is enough time in this case cuz using this is much faster. So much faster but Gelfoam, I get nervous with Gelfoam I've caused abcesses, again I've seen a couple of abcesses with Gelfoam, so I don't know. >> I use thrombin, really tight coil nest,

helps. We found that really densely, densely packed track of coils and that seems to be helpful as well. >> Tim is right, it's easy to get lazy with coils and you put something too big, and its not tightly packed enough and- >> You're tired,

it's the last stage of the case, the tips is open it's like high fives all around, and then you go, I'll just throw a couple of coils in there. >> That's the time is right,

that's the time when you're like, exhausted you wanna get out. But that's the time when you say okay I don't wanna make a basic mistake you know, I've worked out this hard, you don't wanna put a lazy coil in, spend the extra five minutes it's well worth it.

He's absolutely right you know you're a lady you wanna get out there and then you put a lazy coil in. >> You >>[INAUDIBLE] >> You've done that stick generally with ultrasound and so you have a sense of the transition from the splenic vein,

and the length fluoroscopically, you can see the splenic parenchyma >> You can use Dermabond if we don't have Frank and the neural glue, and I have used Gelfoam either as infectious risk, there's whole host of risks of getting off CT scan and having a colon infection because

they see some error in the spleen or even in the liver if you use it in the liver so you have to really make sure you notify turn to body imagers that hey, this is actually some error from Gelfoam. >> Question in the back? >> [INAUDIBLE] how do you deal with [INAUDIBLE]

>> Are you referring to TIPS created with wall stent or wall stented hepatic vein? >> [INAUDIBLE] TIPS, through that wall stent. >> I've done that in Budd Chiari where the Budd Chiari patient has been managed with hepatic vein wall stent and then that is occluded. I

have not, what you've described I haven't seen but it is possible to go through the interstitial wall stent and use a conventional TIPS kit, angle through that target your portal vein it's gonna be Budd Chiari so it's a long way down you know [UNKNOWN] Get down to your portal vein and then the radial force of the viatole/g actually with your predilation is actually fine.

You can flare that up and out to the ostium of the hepatic vein. Have you seen that before? >> I have not seen that. I think what [UNKNOWN] was showing earlier. I think may be even coming percutaneously into the hepatic vein and coming out.

And then being able to switch back around. You can also use that approach. It can be difficult coming from above or straight through or trying to get adjacent to that. But if you got some forward pressure sort of create a stiff system.

Then you are more apt to be able to- >> That's what we do when we have clotted TIPS and you're trying to recanalize the clotted TIPS or whatever, we puncture the TIPS directly but at an up angle. Then you draw back up then you snare and then you pull your sheet back and then you can sort of drill back down.

>> Great I have to run to another meeting [INAUDIBLE] thank you. [BLANK_AUDIO]>> It's the same thing as the glue so you mix it with ThioDox/g and then you utilize it, it's the same exact thing [INAUDIBLE]

and then getting back to really where the rubber hits the road you know we can do all of these fancy techniques why

does it matter well Constantin cope one of the fathers of IR is certainly the pioneer of lymphatic interventions and over subsequent five publications in the mid 90s really showed the the technical

build as well as the feasibility of imaging lymphatics putting a needle into them and then starting to be able to embolize them and functionally curing patients who had Kyle authorities and a potential morbidity or mortality of over

50% and how did he do it well as he did his lymph angiogram and it got up to the retroperitoneum and the structure started dilating into some of the central structures such as the cisterna chyli he would take that 21 gauge needle

and go after that structure put a needle into him pass a wire that wire would pass into the central lymphatic circulation and then he'd be able to put in a micro catheter Neff set machan visa or whatever inner inner

components and then do central and faint geography as well as potential and fame gia embolization so that would be the general antegrade trains abdominal access this was a traditional access that was done for over a decade more

recently a lot of authors have started focusing on doing retrograde trans venous access which you do basically a PICC line axis on the left arm and you take a sauce catheter to where the thoracic duct dumps into the veins and

you catheterize it backwards and just kind of showing you and get your sheath down or you can put a wire from below and then snare and come across it so that's a retrograde transvenous and finally the direct train cervical access

and some patients who you never see another target you can potentially access this under ultrasound or if you have fluoroscopy and some contrast in there in this case we put our wire retrograde and were able

to complete the case and you see of the lymphatic fluid leaking out in this case as well so those are your three main ways to access the central lymphatics

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

PE the first one of course is

anticoagulation so heparin and bridging the patient to coumadin or now aid a direct oral anticoagulant is really the mainstay of treatment most patients again 55 percent of patients with PE have low risk PE all of those patients

should be on according to the chest guidelines three months of anticoagulation so they're gonna get heparin as an inpatient if they even need it and they're gonna get sent home on lovenox bridge to coumadin or they're

gonna get the one of the new drugs like Xarelto or Eliquis but here's all the other things that we do so these patients that are in the intermediate high risk so I'm gonna try to keep saying those terms to try to kind of put

that in everyone's brain because I think the massive and sub massive PE is what everyone used to talk about but we want to keep up with our colleagues in cardiology who are using the correct terminology we're gonna say high risk

and an intermediate but in those patients - intermediate high risk or Matt or the high risk PE patients we're gonna be treating them with systemic thrombolysis catheter directed thrombolysis ultrasound assisted

thrombolysis and maybe some real lytic and elected me or thrombectomy there's other techniques that we can use for one-time removal of clot like rotational and electa me suction thrombus fragmentation and then of course

surgical mblaq t'me so when anticoagulation is not enough so I like to show this slide because it shows the difference between anticoagulation and thrombolysis they are very different and sometimes I think everybody in this room

understands the difference but I think our referring providers don't and so when we when we get consulted and we recommend anticoagulation they're like yeah TPA well that's not the right thing so anticoagulation stops the clotting

process so when you start a patient on a heparin drip they should theoretically no longer before new thrombus on that thrombus so when you have thrombus in a vessel you get a cannon you get a snowball effect more

and more thrombus is gonna want to form heparin stops that TPA however for thrombolysis actually reverses the clouding process so that tissue plasminogen activator or streptokinase or uro kindness will actually dissolve

clot so there you're stopping new clot forming versus actually dissolving clot anticoagulation allows for natural thrombolysis so your body has its own TPA and so when you put a patient on heparin you're allowing your natural

body defenses to work you're giving it more time TPA accelerates that process so you give TPA either systemically or through a catheter you're really speeding up that process anticoagulation on its own has a

lower bleeding risk you're putting a patient on heparin or Combe it in it's it is less but it is still real thrombolysis however is a very very high bleeding risk patients when I when I consult a patient for thrombolysis I

tell them that we are about to do give them the absolute strongest blood clot thinning agent or an reversal agent which is the TPA and we're gonna just run it through your veins for hours and hours

um and that sort of gives them an idea of what we're doing anticoagulation in and of itself is really not invasive you just give it through an IV or even a pill thrombolysis however is given definitely through an IV through

systemic means and a large volume there thereafter or catheter directed so again

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

technically step by step of how tips are done okay and and the ideal tips with

every step of this procedure I'm gonna show you two ways of doing it okay and the advantages and disadvantages of the two ways in every step okay so first of all the primary thing is to get into the portal vein and how do you visualize the

portal vein okay so one way is to do co2 Vinogradova nog Rafi to hit the portal vein me with experience no I don't need co2 venography to hit the portal vein but I still do it in an in a teaching institution because I have texture that

are learning nurses they're learning and physicians are learning so I actually do the imaging for them so they actually can get the general idea of what we're doing this is our target this is where we're coming off and that's it but in an

experience hands is it necessary absolutely not okay so co2 photography very helpful for in teaching and teaching institutions so everybody and the whole team can actually know exactly what our target is so not essential like

like we discuss and there are two methods of doing this and in a funny way I'm gonna show you that's actually the same method but one is a micro of the other one okay so two ways one way is then wedge a catheter that's the old way

kind of more traditional way than let's not call it always more traditional way of doing a co2 port and the other one is using a balloon of balloon occlusion castra and this is wedging it with a four French five French catheter you

take it all the way to where the catheter is larger than the hepatic vein and now you've wedged it okay and this is kind of a mag up you see that that's a little that's a little wedge okay you wedge you inject contrast the contrast

just sits there it's wedged it's trapped okay and then this is with a balloon to your left is a balloon full of air to the right full of contrast and you basically trapped it again you fill contrast and consciousness it's there

what's the difference between this image and this image no difference the only difference is size that's all it's the same idea you're just trapping a segment of the liver the difference is this is a very

small segment and this is a larger segment okay so essentially it's actually the same technique one is just well technically when it comes to your side all one needs a four or five French calf the other one needs a balloon

occlusion caster okay same image so then you inject co2 the key thing here if you're the type of physician where you put contrasts you have a balloon sitting or a wedge and you have to count contrast there okay

rookie mistake is that they leave the contrast and then they hit the co2 okay what is that you've lost the advantage of the co2 in the beginning of your bolus is actually contrast okay so you need to bleed out the contrast and

replace it completely co2 so your entire bolus okay is co2 and not and not and not the and not the contrast okay that defeats the purpose why is co2 advantageous over contrast contrast is a thick fluid co2 is gas is viscous it's

volatile it actually can squeeze through tight spaces as it's a gas and that's what we want we want to squeeze that co2 which is a contrast through the sinusoids reflux it back into the portal circulation so we're trapping it and

we're trying to push co2 squeezing it through the sinusoids refluxing it back into the portal circulation so you can actually visualize the portal circulation okay and all and the disadvantage of a wedge is what you see

here if you're a wedge and you're immediately sub capsular and you slam you slam that co2 aggressively what you will get is an explosion you get a rip of those of the hepatic capsule scroll the glisten capsule and then you've got

a leak and if the patient is quite low is a quite low path they can actually die from this believe it or not they will die from this and not die from the needle passes okay so that's kind of co2 and that's kind of

a little a little passive air into the perineum nice imaging not a good outcome so one way to avoid this is to still wedge but wedge away from the hepatic capsule so you're out in the periphery in the paddock veins but you're deep

inside the liver you're not you're not right underneath the capsule so that's one way of doing it the other another way is to actually use a balloon okay so this is this is just another wedge here okay and you actually use a balloon I'm

just showing you a correlation with a balloon it's a little safer because you're a little distance away from from the hepatic capsule I'm just showing you a more and more image of the same thing co2 with correlation after you access

since it's a beautiful correlation with with the portal vein venogram okay there are problems with wedges and with balloons is that sometimes you get a gas you know a co2 leak you're wedged but there's hepatic veins at vadik vein

connections and all you see is a fatty veins you can't force reflux the co2 into the portal circulation so that's one problem okay so what do you do with that you change the sights just change a different different branch okay try to

avoid that connection between the badeck veins and it back veins go somewhere else where there is no connection where you can actually make a true hip wedge and force that co2 into the portal circulation okay another way this is

just a draw a drawing out whether it alone or a catheter you get that you get the escape from the Patek vein to fatty vein is to go distal go beyond that connection so if you can go distal go distal if you can't go distal then

change your branch try to find a place where there is no hepatic vein tip a degree engine attraction preferably but not necessarily not the same branches connected to because that usually goes both ways but not always sometimes

you're lucky and if that connection is kind of like a one-way valve one way street and it's not a two-way street but that's just sheer luck okay this is an example hepatic vein to about a vein connection and what we did was basically

switch to another place another vein and we actually get the portal venogram here okay next up sting crafts Viator's thank

so these are a lot of slides most limited you know I'm talking I'm talking to you guys I'm talking showing you a lot of technical stuff you know and a lot of slides and I'm gonna talk mostly technical of you know how tips and dips are done kind of a step by step so even

the title it's kind of a workshop step by step of how basically you do you do tips and dips and what and and what are they so in general when you have when you have this is basically kind of out flow spleen spleen dumps blood into the

portal vein the mesentery dumps blood into the portal vein portal vein goes into liver liver does its thing and then dumps the blood into the eppadi veins to the right atrium okay for that because the liver is connected with the spleen

and the guts in series unlike any other organ basically the liver has to be a low-resistance organ because the portal circulation is low-pressure look the liver has to be a low-resistance organ with liver disease especially liver

cirrhosis you actually get increased resistance and in the liver with that disease and you get basically a backup of the blood flow in the portal circulation and increases the pressure in the portal circulation that's kind of

the genesis of or the pathogenesis of portal hypertension backing up circulation the spleen and in the guts then you get ascites and hydra thorax that's kind of think of it as weeping of fluid into the pleural space and into

the and into the perineum part of it is oncotic part of is osmotic basically think of it nutritional and pressure driven causes at the same time we all have potential portosystemic connections in other words they're there but they're

not connected or they're not opened up in plumbing they hold them bleed valves or pressure valves when the pressure is high and you know they start weeping or leaking you know in your in your basements we have the same thing

we have so many portosystemic connections there are about 55 named ones there are innumerable ones that are actually that are actually not named the common ones that we know are because of because of bleeding is esophageal

varices that's the connection usually between the left gastric vein and the azekah can be hazardous system you can also get gastric varices and that's usually connecting between a spleen and the left renal vein through a gas renal

shunts you can get also all sorts of connections even down in the internal hemorrhoids we get actually portal hypertension hemorrhoids and bleeding and so many numerous other shunts that we just don't have time to cut to cover

it to cover all these so the general to the general thought of treating all these complications of portal hypertension is to decompress the system to reduce the pressure and that's along the lines of years and decades of

surgery shunts that were placed and now tips ism largely replaced all these surgical shunts with the exception of Vancouver and Tampa okay that they still do some surgical actually a lot of surgical shunts most most other places

in North America converge to a tip to a tip shunt the the advantage of the tips of over surgical shunts is the usual what we hear is minimally invasive it you know it's a quick recovery less morbidity and mortality areason for

white tips has beaten the surgical shunts is the transplant era all these surgical shunts are actually extrahepatic so when you go for a transplants and liver hits the buckets they actually have to go and shut down

these shunts wherever they created them steena renal portal cable in the tips it goes out with a liver in the bucket so there's no complication of transplantation that's the real advantage of tips over surgical shunts

and that's why it's become very very prevalent in in in North America with a transplant error when approaching gastric varices just briefly another way is a BRT Oh which is to go basically into the left renal vein go up the shunt

and specifically screw rows the stomach and that's not the that's not this kind of subject of our of our discussion here I'm gonna talk to you

craft is basically the only FDA approved stain crafts and I'll show you a

different way of doing it as well besides the Viator especially in countries where the Viator does not does not exist okay the Viator stand sits in the liver just like just like in my hand here the bare

portion is on the portal venous circulation the covered portion is basically on the hepatic vein part of the circulation okay the bare portion is chain-linked and is very flexible that's why kind of cut can crimp like that okay

they're both self expanding the bare portion is self expanding held by the sheath only the covered portion is held by a court okay so they're both self expanding but they're constraints by two different two different two different

methods one's a sheath constraint and one is a is a cord constraint okay these are the measurements the bare portion theoretically allows portal flow to pass if you're in a branch so it doesn't cost from boses of the portal vein branch in

the covered portion is important to cover the parental tract the youth that you've created in the past you had a lot of billary leaks into the tips if it's a bear stance bile is from by genic so it causes thromboses bile also instigates a

lot of reactionary tissue such as pseudo intimal hyperplasia that actually causes the narrowings of the of these tips if you causing bear stance the coverage stance prevents the bile leaks from actually leaking into into the shunt

itself okay and that's why it has a higher patency rate okay ideally this is how it's it's a portal vein and hepatic vein you'll hear people say proximal and distal you'll he'll hear radiologists especially diagnostic

radiologist referring to proximal and distal proximal and distal some people refer to the portal venous and is proximal some people refer to the paddock venous and is proximal and vice versa okay and it

gets confusing nobody knows well what's proximal okay the people that say portal venous and is proximal there they're talking about its proximal to flow so it's basically the first thing that flow hits people that

call the paddock venous and proximal they're talking relatives of the body more central is proximal more peripheral is distal okay so they're using these the same terminology is very confusing so the best thing to use and I we tell

that to radiologists who tell that to IRS is to talk a portal venous and hepatic venous end you don't talk proximal distal everybody knows where the portal venous end is and where everybody knows where the peregrinus end

is and there's no confusion strictly speaking which is the correct one which is proximal for us as IRS tax nurses proximal is always to flow proximal is always anticipate to flow so the correct thing is actually proximal

is the portal venous ends remember P proximal P portal okay proximal is where the expected flow is coming in that's actually the correct one but just to leave e8 the confusion portal venous and hepatic venous end okay there's a new

stents which is the controlled expansion stents it's in my opinion it feels exactly like the old stance the only difference between it is that it's constrained still has the same twenty to twenty millimeter or two centimeter bare

portion chain-linked it still has that four to eight centimeter covered portion but it's constrained in the middle okay and has the same gold ring to actually market the to the to a bare portion and the cover portion self expanding portion

and is constrained down to eight millimeters you can dilate it to eight and nine and ten initially there was a constant there was a misconception that it was like a string like a purse string that you break and jumps from eight

and no this is actually truly a controlled where if you put a nine-millimeter balloon it will dilate to nine only eight balloon little dialect to eight only the only the only key thing is that the atmospheres has to

be ten millimeters at least okay so it has to be a high pressure balloon has to be at least 10 min 10 10 atmospheres okay so when you're passing that that balloon over make sure that it's that that it that at least it's burst is 10

millimeters or or EXA or more on a 10 mil on on 10 atmospheres okay next thing is when you're making a needle pass you got your target now with a co2 you got the portal vein you've got your stank craft and you know how it works okay how

do you make your needle pass okay and how do you know if your needle has hit the portal vein or not there are two schools to do this okay one school is to make a needle pass and aspirate as you pull back and when you get blood back

you basically inject contrast okay before you do all that when you make your needle pass you push saline and especially if you do if you're using a large system so there are several kits out there there is the cook kits that's

a color pinto needle that's a large gauge 14 gauge needle there is the new gore kits which is also 14 gauge needle it's a big system these large systems you need to push out that poor plug that's kind of like a biopsy you have to

push it out with saline first and then as you pull back aspirate okay the other system is a ratio cheetah or a Rocha cheetah it's actually pronounced rasa schita and that's a very small system that there won't be a core that you have

to push out okay so anyway if you're using a large system like a coop into a needle which is the cook system or the gore system you push that plug out and then there are two schools school two aspirates you get blood back you inject

contrast if you're in the hepatic in in the portal vein you basically access it with a wire the other school is to do a ptc style you actually puff contrasts as you pull back you do not ask for H saline you actually puff

contrasts as you pull back okay the latter puffing contrasts as you pull back is the minority I would say less than two percent of operators are gonna puff okay ninety-eight percent of operators at

least are gonna actually aspirate and not puff okay I'm actually in the minority I'm in the 2% and there are advantages and disadvantages like I promised you two different ways and advantages and disadvantage to each to

each one the advantages of puffing contrasts even if you missed the portal vein after a while you actually get contrast around the portal vein and you actually have a visual of the portal vein that's the advantage so when you're

actually injecting contrast and you're missing it you get contrast around the portal vein it actually goes around the portal and you actually see the portal vein and it takes training sometimes this one's easy

okay I'll show you some more difficult ones but this is a beautiful pussy typical portal vein okay in addition to that oh go back in do you see that you see that hole in the middle there see that signal signal you watch that

because you're gonna see it again and again that's usually a posterior portal vein posterior right portal vein heading heading away from you okay that's usually a good target and I'll show you that again here's a little

little bit less obvious to the untrained eye but this is actually where the portal vein sits right there okay so sometimes it needs training right just actually see where the portal vein is and once you've stained the portal vein

then you have a real-time image of where the portal vein is you can actually go go after it and it reduces your needle passes disadvantages of using contrast and puffing away is that it creates a mess okay if you make multiple passes

you and you miss on the multiple passes then you start creating a mess and even with your DSA you can't even see the portal you can't see the portal vein because you've got this great mess another disadvantage of using contrast

is that you have to stomach what you're gonna see okay you make a needle pass and you don't inject contrast you have no proof of where you've been but if you're making a needle pass and you're

injecting contrast you and everybody else is gonna see where you've been that's usually not a good thing sometimes you will see bowel you see gold bladder you'll see arteries you'll see veins you'll see all sorts of stuff

that nobody wants to see and you don't want to document okay so that's another disadvantage so I recommend especially young physicians especially young physicians in places that are not used to this especially young physicians that

are new to hospitals and they're gonna they're gonna make multiple passes not to do this was they're gonna be very they'll be criticized a lot by their texts and by the institution by their colleagues as to what have you done you

know big mass artery you've hit artery but the guys and gals that are just aspirating and not injecting they're actually not documenting what they're going through but they're going through the same stuff okay

okay next up this I think this video yep

okay stent graft deployments once you've ballooned you basically pass the sheath over the balloon all the way down to the portal circulation the reason for that

is the Viator stance has a bare portion that's captured by the sheath so your sheath has to be deep into the portal circulation so when you unsheath it it opens up and then you pull back so it snags on your portal venous entry so

it's a feel thing and a visual at the same time for the operator okay so your sheath has to be deep in the portal circulation so that dilates put your sheath all the way down this is a run just to make it look pretty for you guys

and then you basically deploy the Viator stent via tourists and like I said has a bear portion that's captured by the plastic here and that plastic sheath basically transfers the capture of the bare

portion from plastic to your entry or access sheath okay as a ring to it and put it in has a feel to it that ring has to be right there it's very common for people starting off to deploy it inside the sheath up so it's a kind of a feel

thing to actually make sure that it's actually in there snug with it with the sheath okay then you push the stents all the way into the sheath now the bare portion is captured by the sheath you remove the plastic it's over over and

done with and then you pass pass your your stent all the way down to the portal vein and then unsheath it like a wall stents let it open pull everything back till it snags on the portal venous entry sites and then unsheathed the rest

of it which is the covered portion and that stays constrained by the cord and then you pull then you pull the cord keep key portion here is this is the ideal tips and ideal ace tips is a tips from the portal vein bifurcation to the

a patek vein IVC junction okay that's an ace tips it's usually a straight tips it's the straightest tips you'll see it runs parallel to the caiva okay rookies will be doing tips down out in the

periphery and Deliver okay they'll be fishing for small portal veins out of his small hepatic veins and at the end their tips is gonna be like a big seat like a big C loop okay it'll be a longer tips with more stance and it won't be an

aggressive decompressive tips okay but an ace tips is a more aggressive central tips straights it comes from the portal vein bifurcation to the paddock vein IVC Junction that's kind of like an ace tips

okay unsheath it and then and you and then you pull the cord to basically deploy it and this is kind of a reenactments the Styrofoam cup is the portal vein the sheath is in there now over the wire there's no wire in the in

the reenactments and then you unsheath the bear portion so it opens up okay and then you pull everything back till it catches on the portal vein okay you move the sheath all the way back and

then you pull the cord you see the cord right there you pull the cord and it basically opens up the covered portion okay and it opens up from the portal venous end so it actually capped catches it right away catches that portal venous

entry sites there's no slippage and so basically rips open tip to hub okay and that's kind of your final product and then you go in and and then you go in and balloon okay so here it is ballooning put the sheath

over the balloon sheath is deep into the portal circulation you put the tips in your unsheath to cut the the the bare portion let it flower open you pull everything back to like snags you unsheath the rest of the stunt and then

you pull the cord okay and then you dilate with 8 or 10 or whatever so this is visit with the debilitation and that's kind of your final product ideal

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

guys do so when we do our screening phone calls and our pre screens before

the actual procedure there's a few factors that we look at for the patients with blood pressure the patient needs to be vitally stable before we do a procedure there may be a slightly increased risk of bleeding for kidney

biopsy if patients are hypertensive although it hasn't been noted to be statistically significant in the literature so we are always aware of patients being hypertensive we do want them to be taking their medications the

day of the procedure we also do a full medication reconciliation with the patient making sure that we're checking on any anti platelets anticoagulant medications and we have a list of our hold times that we use for a reference

we already discussed for those of you who are at this session this morning the issue of liver disease is it stable liver disease they may have adequate he stasis even though their INR is not within the normal range and so we

recommend a stable INR of less than 2.5 for those patients and in our practice a lot of the providers are going away from correcting the INR s for our patients we also screen for hematological disorders do they have some known condition that

makes them more likely to bleed or conversely more likely to clot and that may factor into whether or not anticoagulation can be held do they have a current diagnosis of cancer are they going to be getting one of those

angiogenesis inhibitors might they have thrombocytopenia and we just do a brief review of the patient's chart before we call them to kind of look for those diagnoses do they have a history of bleeding especially if they have no one

platelet dysfunction you know a known history of bleeding can be a reliable predictor of bleeding risk for some patients and do they have a cardiac or a neurological history as we learned this morning patients that have recently had

a cardiac stent placed we can't just say yeah stop your plavix hold off 5 days it'll be fine that could be a very serious risk to the patient did they recently have a stroke have they had a PE why are they on their anticoagulation

if they're on it so we really need to be aware of the whole patient and having that pre-screening phone call with them can allow our nurses to figure out a lot of these problems and then alert the radiologists and try and troubleshoot

before the patient walks in the door and says yeah I took my warfarin this morning I'm all ready for my liver biopsy the radiologists don't like that much in it you know it's really a bad thing for our high volume area to have

that happen and this is just another chart of our oh did I get mixed up here you guys are gonna fire me from running this clicker there we go so the whole times are again based on the half-life and the mechanism of action and this is

pretty similar to what you saw in the the presentation earlier today and specifically that imbruvica that's something that we alert the radiologists who they have a discussion with the patient decide is this something that we

want to continue with and I will say that in our practice with the volume and the the level of acuity of our patients I think that a lot of our providers are fairly comfortable with a certain level of risk because that's just who our

patient population is you know we have a very large hospital two large hospitals and very sick patients so that's something that we you know some of them are more comfortable than others but it's a risk-benefit thing that they have

to decide on themselves with the patient obviously all right so here are our

now that you all have an overview and a refresher of nursing school and how these medications work in our body I want to now go over our practice

guidelines and the considerations that we take into place so as you know I'm not going to go over into detail the patient populations that are prescribed these meds but kind of knowing that these are the

patients that we see in our practice that for example are on your direct direct vector 10a inhibitors patients with afib or artificial valves or patients with a clock er sorry a factor v clotting disorder these oral direct

thrombin inhibitors patients with coronary artery thrombosis or patients who are at risk for hit in even patients with percutaneous coronary intervention or even for prophylaxis purposes your p2 y12 inhibitors or your platelet

inhibitors are your cabbage patients or your patients with coronary artery disease or if your patients have had a TI AR and mi continued your Cox inhibitors rheumatoid arthritis patients osteoarthritis vitamin K antagonists a

fib heart failure patients who have had heart failure mechanical valves placed pulmonary embolism or DVT patients and then your angiogenesis inhibitors kind of like Kerry said these are newer to our practice these are things that we

had just recently really kind of get caught up with these cancer agents because there really aren't any monitoring factors for these and there is not a lot of established literature out there knowing that granted caring I

did our literature review almost two years ago now so 18 months ago there is a lot more literature and obviously we learned things this morning so our guidelines are reviewed on a by yearly basis so we will be reviewing these too

so there is more literature out there for these thank goodness so now we want to kind of go into two hold or not to hold these medications so knowing that we have these guidelines and we'll be sharing you with you the tables that

tell us hold for five days for example hold for seven days some of these medications depending on why the patient is taking them are not safe to hold so some of the articles that we reviewed showed that for sure there's absolutely

an identified risk with holding aspirin for example a case study found that a patient was taking aspirin for coronary artery disease and had an MI that was associated with holding aspirin for a

radiology procedure they found that this happened in 2% of patients so 11 of 475 patients that sounds small number but in our practice we do about 400 procedures in a week so that would be 11 patients in one week that would have had possibly

an adverse reaction to holding their aspirin and then your Cox inhibitors or your NSAIDs as Carrie already mentioned it's just really important to know that some of those the Cox inhibitors have no platelet effects and then your NSAIDs

can be helped because their platelet function is normalized within 24 to 48 hours Worf Roman coumadin so depending on the procedure type and we'll go into that to here where we have low risk versus moderate to high risk

we do recommend occasionally holding warfarin however we need to verify why the patient is absolutely on their warfarin and if bridging is an option because as you learn bridging is not always on the most appropriate thing for

your patient so when patients on warfarin and they do not have any lab values available that's when you really need to step outside of guidelines and talk with your radiologists your procedure list and potentially have a

physician to physician discussion to determine what's best for a particular patient this just kind of goes into your adp inhibitors and plavix a few of the studies that we showed 50 are sorry 63 patients who took Plex within five days

of their putt biopsy they found that there was of those one bleeding complication during a lung biopsy so minimal so that's kind of why we have created our guidelines the way we did and here's just more information

regarding your direct thrombin inhibitors as cari alluded to products is something that we see very commonly in our practice and then your direct vector 10a inhibitors this is what we found in the literature

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

and what makes things complex is when the Louie system is inhospitable to the easy procedures when the ducts are dilated I think most operators find this

really relatively easy to get a tube in but once it's under lay that it really makes it tricky you either have a disease of the Blooey systems such as sclerosing cholangitis in flammond ich ins of the power duct architecture and

the wall itself all surgeons have gone in in misadventure transected cut the wrong duct and so cholecystectomy is are frequently the most common ones we misidentified and right posterior duct inserting below

and they cut that or even cancers is there not sometimes Calandra carcinomas such as cat skins - matrix of the ones right at the middle of the tree those ones make it challenging to sometimes get through sometimes they're so severe

in the severity of a structuring that it's it's very difficult to get through and sometimes we have to use sharp organizations and then like I said post surgery and with the advent of your gastric sleeves and gastric bypass

surgery this has become a much more common place and so frequently I think bluie interventions are on the rise again whereas I think they went out of favor for a few years in the 2000 mainly the GI became so aggressive with a

slanting Denova stenting and middle stenting then and bluie disease came down somewhat in high AR but this is all on the upswing again now with much more patients with with a bariatric surgery so in terms of intervention and your

your procedures in the room for difficult access and again a unviolated Ballou systems is actually not that insignificant even very experienced operators is going to be the most challenging procedure of the day and

it's vital to actually know your options and for we will actually a pacify the blue system with anything that has yellow stuff so frequently surgical drains that are adjacent to the leaking site sometimes we will check them and

sometimes you just got to be careful not inject too much sometimes their pacifiers and obliterates a field so much so you can't see anything your procedures pretty much done I also use known in distance gee I frequently would

be the first group to go in and try address below a leaking and they'll plate in the stands even though it doesn't cross the leaking site or it's inadequate for a decompression so we frequently would just stick the

indistinct directly and start our procedure that way so we know we're going through deliver through some bad structures but you we use a very very small caliber needle and stick the in distinctly and then once we use that

sometimes we'll place a wire knowing the fact that this is not our final track to a destination we'll put a wire in and then put that into any peripheral duct and then stick our skinny wire and so that's another way another way is

actually once you original PTC's been obtained with its optimal not will use mix lidocaine jelly with contrast media and mix it and make it a real thick slurry and that sometimes is a really good way to keep

the contrast from making out really really quickly he sounds quite logical but it's actually a very cute trick so that's another thing to consider every now and then you can actually use gas because it doesn't dissipate so if you

take co2 and there's at large dilated ducts you can actually put co2 and visualize that very nicely particularly specifically in the left lobe of the liver tends to dive into Phi the ventral left duct very nicely with gas but

sometimes it's not always easy if it is gas filled intestinal tract and then use control actress and I'll show you what that looks like on a picture and then high-grade lesions every now and then we have to use sharp aura colonization and

really the packing of the wire and your who should be your Russia sheet a needle from a tip set every now and then we will use a cardiology transept or needle the skinny a needle and really that sometimes with a high-grade multi

sclerosing agent of sclerosing cholangitis sometimes that is the only way through and sometimes we will use even rfy and drove our way through with high-power so this is a little bit what what it would look like if you had a

lack called a transaction we couldn't specify the billary system from about 30 passes of a routine and ptc axis that we should be stuck a central duct we pointed the wrong way contrast we float much faster than we could to get a

second axis so we just put a wire and it immediately then we actually stuck our wire and used our wire to get down and this is a cute way of getting using just a structural element even though you don't actually managed to keep contrast

in there to allow you to identify here's an example of a patient who had a Whipple procedure and a surgical master moses leak and it was under laid it difficult to pacify patient also has rapid respiration so some of these

patients are from the ICU they breathe very very high frequency and it's actually very difficult unless you get general anesthesia sometimes the risk outweighs the benefits of putting people under

for some of these that we will just as soon as if get pacified the blue system put a wire and again another example where we stuck a wire then we actually use that to gain a second axis and pacify the other system left atrophy

this is a patient with a very very small left lobe and we use the right axis it's a very acute angle from the left hand side we actually spin just stuck put in a snare and we stuck a snare we pull the wire out from the left through the white

and out the skin and then pushed it down using a stuff and that's why I'm taking your snare from Lord lift out the let right and then put in from the right hand side up the skin then you push that all the way through into the right hand

side and how you have power lateral axis so just there are some cute tricks that you can do to and make your procedures more successful and this is the other way you may do it sometimes you can only get to the lift system from the right

the hilar cholangiocarcinoma here high central high low lesion we could get our CAFTA from the right to the left that there's no way we could get from left to right so all we did was stay our Y from right to left and it comes out the skin

and then using a peel away she you put the wire down from the right hand side then you said she go from left access all the way up the skin on the right you exchange being glide wire put it in the pillow sheath and the right stolle

feeder that aren't all the way and you pull your pillow as sheath and now you have left access and right axis and sometimes it's the only way to get our lateral axis this is commonly found when surgeons require bilateral tube for a

cholangiocarcinoma classic in Palmyra section where they use the Blooey tube to feel their way up and look at the end of the tumor and so sometimes we do

people were thinking about the covered

portion actually actually would be occlusive in that paddock veins a lot of people are concerned about that this could be kind of like a but carry you're gonna actually occlude flow in the paddy vein caused thromboses that didn't pan

out at least clinically okay it didn't pan out and that's another advantage of actually accessing very close to the paddock vein IVC junction that's where the biggest vein is so you don't get a lot of occlusive problems okay but

usually clinically it does not pan out so the bigger the hepatic vein the more likely you have a lot of room around your your graft you won't be occlusive to the paddock vein that's more important for for transplants than other

than others I told you it's rare this is actually a very rare case of such that where you actually have a segmental segmental kind of but carry after a tips okay and you know this is actually from a form of venous outflow from the ematic

vein this is a perfusion defect typical it's a wedge right typical perfusion defect in the liver that's how you death so you know this is vascular this is a perfusion problem but you've got hepatic artery readout artery the red arrows

running into the segments and you have portal vein running into the segments so what's the problem it's actually a paddock vein occlusion okay by the stents subclinical no no clinical complaints you let it be

in the patients usually recover okay treat the patients and not the images okay on the other side if you put their tips too deep sometimes you actually get thromboses of the portal vein branch

again you get a call from hepatology you've got portal vein thrombosis is the patient doing okay yes treat the patient and not the images they usually resolve this it's not not a big problem another technical problem

I'm gonna focus mostly on technical for you guys this is a but key area okay and the but carry especially in the acute stage the liver is not like a cirrhotic liver is big liver is actually engorged okay so it's very large usually

your needle is too short to even reach the portal vein okay that's a big problem okay because your access needle is too short for a very large engorged the portal vein so this is as deep as it

goes do I have a see that that do you see that needle tip that's as deep as the needle tip goes okay the portal vein is a good distance away okay luckily this is a co2 porta gram luckily I'm actually in a small branch right

there I just hit it on you know and on this is not the there's not a needle tract this is just luckily hitting it a little branch and on so I'm actually accessing the portal vein and I can do a co2 porta gram here okay

typical inexperienced person would say you know this looks good I'm lucky I'm in a branch but it's a nice smooth curve I'll just pass a wire down and I'll balloon it and I'll put a stent in it's a nice curve and you know so it's my

lucky day I don't need to extend my needle or get a bigger longer needle to reach the portal vein here's the problem with this and this is exactly what this is exactly what this is they pass a wire and it looks beautiful just put a stent

and go home okay here's the problem this is actually the small branch access sites this is actually where you really need to access world vane but your needle is not long enough okay

what we found out is that if you are in a small in a small portal vein no matter how much you balloon it it will come down again and it will be narrow so believe it or not if you go sideways in a portal vein and rip it open with a

balloon it will stay open but if you go down of small portal vein and balloon it open it will always contract down okay so you cannot do a tips simply by ballooning and putting a stent in in this case okay what we do is we actually

denude the vein itself we actually rip it off okay and make it a raw parenchyma and we do that with a Tortola device we literally rip off the paddock the paddock portal sorry the portal vein endothelium and media and adventitia rip

it off make it completely raw as if it's an access as if it's a liver brain coma which is which it is now and then we then we balloon dilates okay rip it off denude it angioplasty it's okay and then put the stent and see that aggression

despite all that aggression of ripping it off it still has an hour kind of an hourglass shape to the to the tips okay that little constraint there that's the hepatic venous access sites this is the parenchymal tract to see nice and open

with a balloon but the but the actual vein that we've been through despite our aggression in actually ripping it off it's still narrowed down but this is as good as it gets okay

of critical of ischemia well a lot of times it starts in our office with a physical examination so we do a risk

factor assessment and this is what happens before they get on our table with with everyone in this room and us seeing the patient assessment of intermittent claudication and it can be subtle many patients don't come in and

say oh yeah I have pain when I walk for a short time and then it I rest and it goes away a lot of times it's yeah you know my leg gives out or now it doesn't hurt it's kind of this weird feeling when I walk and it these atypical

symptoms and then obviously if they have a wound you have to a wound evaluation on physical examination things we're looking for feeling a pulse you'll be surprised how many primary care providers never feel a pulse and if we

say if you feel a pulse you may save a life because you may be the first one to say hey this patient doesn't have a pulse maybe they have got peripheral artery disease and if they prefer order these maybe have coronary artery disease

and maybe they should we start on aspirin or statin and save them from a heart attack and stroke and so you really can save a life abnormal capillary refill so in other words you've got such bad blood flow

that if you smush on their foot it takes a long time for that blood to come back because they have such poor perfusion there's something a Peugeot stess TWEN that if you lift their leg gravity alone pushes their blood isn't it overcomes

the force of blood and so there are foot becomes power becomes losing some color and then when you put them down it dilates and you get sort of this ruborous red color so that's a burger sign I just had a good example in clinic

about a week or two ago so what do we ask for patients do of any pain or discomfort in the leg thigh or butt with walking your exercise I will sell you tell you I often don't use the word pain because everyone thinks pain is

different so so some people say well it's not paying it's a key lake ease pain to me I'm a guy everything's pain to me right low low threshold but discomfort is a good way of asking it foot or toe pain

that disturbs your sleep do you have any skin ulcers or sores on your ankles feet or toes I think it's very important to know what kind of patient you're talking to in terms of Education level or in terms of just language so some patients

don't know what it all sir is and they use the term sore some people don't know what a sore is they used term wound and so just sort of you ask things different ways I think is really important when we all talk to our patients and again a lot

of classic history will miss a large majority of PAE because patients don't read the textbook the one thing I'll say is I hear this all the time well the patient had pulses and so they don't have P ad that is hashtag false and the

reason is pulse exam is insensitive so in other words even if you feel pulses they can still have peripheral artery disease okay now if you don't feel pulses they certainly have peripheral artery disease or you're just terrible

at it PID classification the way we talk about patients with PA D we use a classification scale called Rutherford it may come up so in other words patient who has PA D but asymptomatic is

Rutherford zero a patient who has got major tissue loss and is basically 1 for amputation is Rutherford 6 and then everything in between is sort of a gradation we cut off 3 to 4 so 3 is claudication pain only 4 is critical in

ischemia rest pain alright so rather for classification when we talk about wounds you may see this you don't need to go in details but there's a Wi-Fi classification that sort of Germans how bad is the ulcer and how likely are you

to to lose your leg it's sort of a prognostic I will remind you that in medicine there's differentials for everything in other words the patient comes to you with pain or you talk to your friend or whatever with pain

there's a lot of things in cause pain it could be back pain arthritis infection DVT so there's things we have to think about when I was in medical school I sort of loved this my OB GaN professor said when he sees a patient the first

thing he does is say what do I think this patient have if this were a man because you get so pigeon-holed in your specialty every patient we see as well must be vas here must be vas care but you've got to take a step back and say

okay well am I missing something maybe it's arthritis may something else so don't get pigeonholed by your own prejudices which is a good life lesson in general there's also a differential for wounds so obviously

when we see a wound we could have arterial arterial tends to be sort of the toes and distal foot it can be severe pain if you see an ulcer around the ankle that tends to be more venous so vein related which again we

can treat and then a common cause is neuropathic so if you see I'm sort of at the pressure points where people walk a lot of times patient diabetes will step on something and where you and I would be like oh man that hurts

I better oh my god I have a wound there I better check that out they'll never know because they don't feel their feet and so they could have this monster ulcer and finally someone inspects their feet and says you know you have like a

golf ball sized hole in your foot and that's the first time they ever notice it so how do we test ever for peripheral artery disease well a lot of it is non-invasive now we do a B is a b is is a measure of blood pressure in the foot

or leg we can do some ultrasound to actually look at the artery and obviously we can do CT and MRI when we look at ultrasound you may look at this every once a while this is a normal ultrasound Doppler waveform where we've

got good blood flow up down and back three now the reason that's important is that correlates the sounds so if you listen to a artery i'ma do my best Doppler impression out okay a normal artery goes once you start getting

peripheral artery disease you lose that triphasic waveform it becomes biphasic when you get severe peripheral artery disease you lose that biphasic waveform it becomes monophasic and when you have nothing it becomes

okay so here's want to be alert to that so ankle brachial index is important and it's helpful again some patients who have calcific us a-- fication it's not helpful for I will tell you a B eyes alone actually not only do they predict

PA D they predict death that's how important PA D is link to mortality CT and MRI is very useful you can see here we can see a good anatomic description of the arteries unfortunately patients with calcium

sometimes we can't see as well because the calcium is so bright on CT scan that it obscures the lumen so we have other problems in patients with diabetes and heavy calcification and a lot of those patients just need to go to angiogram

and as you know my techs and nurses know sometimes rarely but sometimes we do an angiogram and it's normal and we say or there's mild disease we say okay perfect we've taken that off the table we need to move on when some of these

non-invasive testings aren't as clear so alright so in summary critical of ischemia is a morbid disease and can be the first presentation of PA d clinical suspicion and accurate diagnosis is essential for early diagnosis and

treatment and a multidisciplinary team that includes vascular venture loss who know critical limb ischemia not just the SFA and iliac artery jockeys and wound care specialists do decrease amputation rates I like this quote it's not mine

but I'm going to steal it with impunity amputation is not a treatment option it is a treatment failure okay so we have to keep that in mind I appreciate everyone's attention because we can save questions to the end or you do it now if

there's pressing I think we may need new batteries or my thumb's weak which is also a possibility any questions

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

so this shows you this shows you how so this typically you've accessed the portal vein now and you're in next up you basically pass the wire down this just gives you a little depiction of

what you're what you're what you're doing here this think of this is a sagittal and Deliver okay hepatic vein and portal vein it's the sagittal and what you're trying to do is

and if you're in the right hepatic vein you need to pass your needle anteriorly to hit the right portal vein okay and the right portal vein is usually anterior and interfere to the Patek vein okay so you pass your wire you're you

NEET your needle and when if you're missing the portal vein usually what's happening is that you're scooping behind it okay your posterior to it and sometimes you'll find the operators will actually increase the curve in the

needle so they can actually reach anterior anterior and actually hit the portal vein because usually usually if you if you know you're in the right place that the right hepatic vein not in the middle of petting vain and

you're missing the portal vein you need to reach anterior more so they put a little extra curve in the kelp into needle to actually catch that right portal vein okay with liver cirrhosis you get shrinking shrinkage of the liver

size the liver decreases the portal vein starts moving more anterior and more superior and closer to that paddock vein okay and it becomes more and more difficult to actually hit it so the smaller the liver the harder the liver

the smaller the space and you've got a thick mat piece of metal okay it's very difficult to hit that okay it becomes more and more challenging with with smaller levels to hit to hit the portal vein especially centrally okay this is

an access kit a new access kit by Gore it's basically the similar to the similar to the Cal Pinto needle it's a little longer with a little bit increase angulation compared to the traditional ring kits or the Cole Pinto needle but

once accessed you pass a wire okay into the portal circulation there are two ways of doing this okay there's a traditional old-school way that's my way is that to use a Benson wire okay the youngsters the Millennials are using

glide wires okay so if you're dealing with a millennial physician they're usually going for the glide okay if you're dealing with them with an older you know guy or gal they're using usually using a Benson wire okay the

advantage of the Benson wire is that has a floppy tip it actually you just push it in and hits the wall it prolapses into the main portal vein right away as you can see just prolapse and portal vein if you're using a glide where

you're catching all sorts of things you'll have small branches you don't know where you're going your V's even sometimes dissecting outside of the portal vein they're second-guessing themselves all the time but actually the

good way with a little bit of more different skillset is that you use use actual good old fashioned Benson wire actually goes in prolapses right away into the ends of the main into the main portal vein rarely would I actually use

light or switch to a glare that's usually if I'm coming in in a small in a small branch or an orchid angle where I have to use a glide right to try to get around the angle because I don't have enough room for a Benson to actually hit

the wall and prolapse is very really really tight space so tights Bates funny angles I'll switch to a glide where if it's a straight forward a Benson as very is very straight forward okay try to get the sheath as much into the portal vein

over the over the needle over the wire as possible and then you balloon your tract okay through the sheath okay some people will balloon with a six millimeter boom some people will balloon with an eight millimeter blue eye

balloon with an eight four okay at night and I make sure it's a four so that I actually use the balloon as the measurements for this four centimeters actually you I actually use the balloon to measure my to measure my Viator's

stance okay with the balloon there there'll be two waists there's a portal venous entry site and the Ematic venous entry site so you actually gauge that and take a picture of it so you actually see how long your tract is where's your

hepatic venous access who has your portal venous axis actually gives you a lot of anatomy here been engaging in actually putting where your Viator stent is okay usually high pressure balloon I use it and ate some people will use a

six or even a seven millimeter balloon

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

so what what venous insufficiency is is really leaky valves so if you want to hit the play on that so that's all venous insufficiency that's what we

talked about it's it's leaky valves and so you can see this the valve leaflets there which are paper-thin is allowing blood to go the wrong way if you want to hit play on that one when we looked for valve

insufficiency for sure in the legs we use ultrasound and there's a bunch of different things that we look at an ultrasound you first look if you can augment blood flow so that was that first part we see if it's compressible

to make sure there's not a clot in it that's this part you can see the vein winking at you and then finally we look at valsalva or some type of way to determine if the valves are competent or incompetent and what this figure is

showing is that when a patient valsalva Zoar tenses up their abdominal muscles you see the gray line for the ultrasound crossing the access and going the opposite way all that means is it's got opposite directional flow which you

should not be able to do if your valves work so if your valves work you would not see that ultrasound picture crossing the line here it would just continue right there or would just stop and then flow would start again once you stop fel

salving so that's how we check in a leg but for pelvic venous insufficiency that's kind of hard to ultrasound the deep pelvic veins I could certainly look for varicosities with a an ultrasound of the pelvis but you can't really find the

source of an usually the source veins are the internal iliac veins or the gun at Elaine's and those are tough to ultrasound so secondary evidence of incompetence or leaky valves in those systems is varicosities

and so in the case of pelvic venous insufficiency those varicosities are in the pelvis and you see on the slide here you got varicose veins deep in the pelvis here and here and see some larger ones in that same

area on that CT scan so that'll tell us varicose veins that doesn't necessarily tell you whether the issue is with a gonadal vein or an internal iliac vein it just tells you that there are sequelae of varicosities much like in

the leg you might have varicose veins in the ankle but the problem is really higher up in the leg at this afterno femoral Junction so that gives us secondary evidence but it hasn't really told us the cause of the varicose veins

this is just a CT image that it also may show a large gonadal vein right here so you normally should not see it that big it's right there also secondary evidence that the valve is incompetent but it doesn't really test the valve itself

it's it just gives you the idea that veins enlarge and the valves gonna be leaky this is a cartoon schematic of the

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.