Create an account and get 3 free clips per day.
Chapters
Bilateral Varicose Veins and Pelvic Congestion Syndrome|29|Female
Bilateral Varicose Veins and Pelvic Congestion Syndrome|29|Female
2016accessorybilateralceapclinicalcolorcosmeticdilateddoppleredemagonadalmalformationoutpatientpatientpatientspelvicperonealphysicalpoplitealpracticerefluxrisksaphenousSIRskinstudysuperficialsymptomstherapythightypicallyultrasoundvaricesvaricoseveinveinsvenographyvenousvulvar
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
accessaneurysmalbypassclinicalDialysisdiameterduplexdynamicflowflowsgraftluminalmeasurepatientsrenalsensitivityultrasoundveinvelocityversusvolume
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
accessappropriatelyAV AccessAV Vascular AccessbilateralcatheterchronicCKD-Stage 4creatinineDialysisdisadvantagesegfrFistulapatientpatientspermanentpredictingproteinproteinuriareferralrenalrisksurgeontrajectoryvalidatedvascularveinswrist
Finish Treatment Of Acute DVT In The Lab
Finish Treatment Of Acute DVT In The Lab
6-10 F AspiraxacuteAnti-coagulants & compressing stockingaspirateCDTclinicalDescending DVT - May Turner SYndromedevicedevicesDVTfemoralfollowfrenchiliofemoralmechanicalMechanical thrombectomymulticenterpatencypatientpatientsPharmacological ThrombectomypoplitealprofundaproximalseverestentsstudysubacuteswellingsymptomssyndromethrombectomythrombolysisthrombolyticthrombusTrans-Popliteal Accesstraumatictreatedtreatmentunderlyingvein
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
The Fate Of The Below Knee Deep Veins After Ultrasound Guided Foam Sclerotherapy For Incompetent Venous Tributaries
The Fate Of The Below Knee Deep Veins After Ultrasound Guided Foam Sclerotherapy For Incompetent Venous Tributaries
ceapcompressiondeepembolismfoamidentifiedkneelesionslysisobliterationpatientsperforatingperforatorperforatorsresolvedsclerotherapystockingssulfatetessariTessari Techniquetetradecylthrombustibialtreatedtruncalultrasoundvaricesveinveinsvenous
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Blueleaf Endovenous Valve: Potential Benefits Of An All-Autogenous Solution
Blueleaf Endovenous Valve: Potential Benefits Of An All-Autogenous Solution
bladesBlue leafcreatedeependovenousEndovenous Valve Formation SystemenrollingformationgainedinterveneintravascularivusmultilevelneedlenitinoloutflowpercutaneousPercutaneous Endovascular approachpotentialreconstructiverefluxscoringsuperficialultrasoundvalveveinvenous
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
authorscarotidCASCEAclinicalcompletioncrestdatadecreasediagnosticduplexendarterectomyindicationsintraoperativemanuscriptmonitoringmultivariateneurologicpatientsrandomizedrateselectiveshuntstrokestudyunivariatevascular
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
advantagesautologousbypasscardiaccomorbidcomplicationsdecreasedecreaseddisadvantagesendoscopicendovascularextremityharvestincisionincreasedinexperiencedlaborligatedlowerpatencypatientspercutaneousperformedprimaryrisksaphenoussurgicalsuturevascularveinVeithwoundwounds
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
Update On Indications For Invasive Treatment Of Carotid Disease (Symptomatic And Asymptomatic) By CEA Or CAS Before Major Surgery Or Coronary Bypass
Update On Indications For Invasive Treatment Of Carotid Disease (Symptomatic And Asymptomatic) By CEA Or CAS Before Major Surgery Or Coronary Bypass
asymptomaticbilateralcabgcarotidCASCEAconsidereddeathendarterectomyimaginginterventionisolatedliteratureobservationalpatientsperioperativepriorrandomizedrateratesrecommendedrevascularizationriskstagedstenosesstenosisstentingstrokestrokesstudysurgerysynchronousundergoundergoingunderlyingunilateral
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
Step-By-Step Treatment For Corona Phlebectatica
Step-By-Step Treatment For Corona Phlebectatica
capillaryceapclinicalcompressiveconsistscoronacutaneousfoamincisionocclusionperforatingpolidocanolrefluxsaphenoussclerotherapystasissteptelangiectasestessaritreatmentveinveinsvenous
Pelvic Reflux: Is Coil Embolization The Answer
Pelvic Reflux: Is Coil Embolization The Answer
allergicanalogcoilsdatadiameterembolizationhighlightincompetencemeissnermisdiagnosedovarianpatientspelvicrefluxsymptomatologysymptomstreatingvaricoseveinveinsvenous
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
anesthesiaanteriorcomplaintsdyspareuniahemorrhageiliacincisionincludelabialLabial Varices + Leg VVligationLocal SclerotherapymalformationpatientpelvicperforatorsperformedphlebectomypolidocanolposteriorpostpartumrefluxrefluxingsaphenofemoralsclerosclerotherapysulfatesuperficialsymptomaticsymptomstetradecylultrasoundvaricositiesveinsVeithvenogramvenousversusvulvar
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
Frustrating Results Of Sclerotherapy And How To Avoid Them
Frustrating Results Of Sclerotherapy And How To Avoid Them
arterialavoidceapclassificationdestroydextroseedemaendovenousfeederinjectmattingpatientphlebectomyphlebographypigmentationrefluxsaphenoussclerosingsclerotherapyscleroticskintelangiectasiatelangiectasiasthrombustransdermaltreatmentulcervaricositiesveinveinsvenous
Surgical Creation Of A Moncusp Valve
Surgical Creation Of A Moncusp Valve
applycompetingcontralateraldeependovascularfibroticflapflowhemodynamicmalfunctioningmobilemodelingMono-cuspid neovalveMono-cuspid Stent PrototypeparietalreconstructionrefluxstentthrombosisvalveValvuloplastyveinvenouswall
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
advancedamputationbypasscentercontemporarydataendoendovascularevarextremityfailedlimblimbsocclusionsOpen Bypassoutcomespatencypatientpatientspercentrevascularizationrisksecondarystagesurgerytolerate
How To Treat The Foot Varicose Veins
How To Treat The Foot Varicose Veins
ambulatoryassociateceapfoamlaserliquidpatientphlebectomyphysicalpolidocanolrefluxsatisfactionsclerotherapyspidertransdermaltreattreatmentultrasoundvaricesvaricosevaricose veinsveins
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
acuteangiojetBoston ScientificclotdevicediscretionDVTiliacmechanicalmechanical thrombectomy deviceoperativeoutflowpatencyPatentpatientspoplitealratestentstentingstentstherapeutictherapiestherapythrombolysisthrombustreatmentvein
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
ablationanticoagulatedanticoagulationantiplateletatrialClosureFastcontralateralcontrolCovidein Cf 7-7-60 2nd generationdatademonstratedduplexdurabilitydurableDVTdvtseffectivenessendothermalendovenousevlafiberlargestlaserMedtronicmodalitiesocclusionpatientspersistentpoplitealproceduresRadiofrequency deviceRe-canalizationrecanalizationrefluxstatisticallystudysystemictherapythermaltreatedtreatmenttumescentundergoingveinvenousvesselswarfarin
Transcript

It's a couple years old but this was a 29 year old female who presented to our vein practice or our outpatient office practice with 'varicose

veins' like many patients do. Similar, quite common symptoms of bilateral leg throbbing or aching especially at the end of the day. She's tried some over the counter compression stockings, or teds, or sheer energy, whatever you call it, with no significant improvement.

Had history of vein stripping via vascular surgeon, several years back, and has four children. Back in her home country, she did have left ovary removal for unknown ovarian mass, medication just Ibuprofen for her pain as needed, and upon further questioning she did

admit to having pelvic heaviness, pain after intercourse and painful vulvar varices, they like come and go. Now interestingly when we talked to her about this, she said she's been having this for quite some time,

and several of our physicians she had seen before she came to us, basically told her you've had four kids, that's the way it's supposed to be, that's normal. So it's kinda of interesting what's out there in our community.

So on physical examination, she did have bilateral varicose veins particularly in, physical exam, in the upper thigh anteriorly. She did have some raised vulvar varices or peroneal varices. We did exclude that she had no edema, no stasis dermatitis or ulceration.

And as you know, when we do these examinations ultrasound is a big part of this evaluation. So with the ultrasound we try to trace the usual suspects, and in this particular patient the right great saphenous vein was dilated and had greater than 500 milliseconds of reflux, the remainder of the straight veins were normal,

she did have those varicose veins that we saw in physical examination that on ultrasound we tried to track up as far as we could into the pelvis and you could see it kinda coursing or emanating from the pelvis. And DVT and DVI were excluded. And that's just an exam what a typical reflux would look like.

Actually my question isn't coming up here, so let me just use this case to talk about varicose veins first before we can get started we can talk a little bit about epidemiology. Lke why did I pick this topic, it's something that's very common in

the United States and worldwide. You can see the 23% of the adult population is affected and it has quite healthcare cost issues. In our outpatient practice we see five to ten new patients referred each day. So it's a big, big thing.

And as a side, as you know, ENM can be quite costly to an IR practice but we kinda leverage doing varicose vein procedures in our office setting to help with our consultation. It's a little bit out of the realm of this talk but it's an interesting concept I can talk about offline.

So before we move on, I wanna kinda go over the anatomy. We all know the deep venous system because we've all done ultrasound to rule out DVT, venography in certain situations but mainly we are talking about the great saphenous vein which runs on the inner seam of the leg going down and then posteriorly you have the small saphenous vein which joins the popliteal vein.

In most cases there is an intersaphenous vein or the giacomini that connects the two. There's some well known tributaries which are now named anterior accessory saphenous vein and the posterior accessory saphenous vein [INAUDIBLE] And then there are some communications between the deep end superficial

system. The terminologies can be quite confusing because there has been several iterations over the past several years but the current nomenclature is great saphenous vein and then for the one in the back to, which was called short or lesser is now the small saphenous vein.

The AA GSV and PA GSV is the correct art term and intersaphenous vein is for communication too. Now we all know about the risk factors, we don't need to go into too much of this, but it can be wide, they don't all present with

all of these, they can just present with burning or aching. It's usually typically worse at the end of the day. Risk factors, given such a high prevalence is really hard to say which factors but typically it's more common in women than in men, multiple pregnancies are risk factor and there is a genetic component.

We see for in terms of patients who present, school teachers, nurses, hairdressers are probably the three most common groups of profession. It's important to rule out or think about previous venous history including superficial thrombophlebitis, DVT, previous therapies, and what we try to do is try to see how the venous disease is affecting

the patient's activities of daily living. So this is a little cheat sheet that we sent to all of our patients or have them fill out in the waiting area. And you can see we try to document all the patients' symptoms according to the patient. We also see how it affects their work at home,

work at work, if they take any medications. Now again, this is important because as venous therapy for super [INAUDIBLE] venous refluxes will come in wide spread you are getting some resistance from your third party authorization, insurance companies and if you don't have these things documented

they will not approve your treatment plan. Physical examination, disease, the clinical care portion is fairly obvious you're looking for any overt signs of varicose veins. Sometimes you will see edema, rarely you will see ulceration, and

in a small percentage of these patients, they will have coexisting PAD and we generally rule that out during either a post exam or an ABI in certain situations. Here's an example of a patient with obviously a large varicosis superficially medial to the knee.

That's a very busy thing. This a CEAP Classification, it kind of goes through Clinical manifestation, Etiology, Anatomic distribution and Pathophysiology, but most people would use the C part of the CEAP, and it's interchangeably this

is called what the CEAP is, it's not technically correct but so it goes from anywhere between, no sign of venous disease, all the way down to an active ulcer. Most commonly we see C2 sometimes you'll see C3. C2 is varicose veins. And by definition it should be greater than three millimeters.

Just incase you couldn't see that on there. So let's just go through some of these. So this is C1, so this is what many people would say, spider veins. These are [UNKNOWN] veins that tend to be one to two millimeters in diameter. Sometimes they can be raised.

It is thought to be cosmetic but I can tell you if you see enough of these these patients. Some of these are painful, because after you treat them the pain does go away but unfortunately, at this point it's considered cosmetic

by many of third party authorization. Moving on to C2, you can see that same patient again, where is the mouse here? Here's the [UNKNOWN] here. Pretibially here, this is really bright but I wanted to show a popliteal collection.

C3 is edema, you can see that the patient has lost her ankle here. And basically they are starting to get some skin changes there. Typically they are associated together. C4, skin changes you can see that this patient has venous hypertension hypoxia.

This is a high risk of having ulceration formed. This is a patient with dramatic skin changes of hyperpigmentation. These are more severe changes of C4. Moving on to five and six, this are fairly obvious. So this ain't healed, also these two patients.

So you can see that it recurs in the setting of hemosiderin deposition and dermatolipasclerosis. And here's the patient with base small, also that's formed in the center of skin changes here. It is very difficult to heal these ulcers once they happen.

So whenever we see a patient like we saw here, we try to expedite their therapy as much as possible, as well as involve other multi specialties. All right.

So pathophysiology is fairly obvious to increase in the hydrostatic pressure views to inflammation and such. Which takes us to question number one. The current patient we have right now, what is the correct CEAP clinical classification?

And the choices are zero, one , two, four and can not be determined. Can we start the clock. [BLANK_AUDIO] Excellent. So the correct answer is is C2.

My questions are very easy, so [LAUGH] you don't have to ask whether, let me just can now roll through. Can I get the next slide, please?

So C2 because the varicose veins without any edema or skin changes. So then you get, once you develop a reputation committee as venous doctors, you're gonna see some things where you are really like, what's going on here? So these are all real patients we've seen at the office. You can see the middle picture here.

This patient actually, that's actually the best that leg has been in quite some time. Okay. So most of these patients are gonna have to be suffering from lymph edema and you can notice the squaring of the foot as it extends

from the ankle. That's fairly well described. But when I first saw this, I do a multi-million dollar work up. You know you have to look for a malignant occlusion at the middle pelvis. Lymphoscintigraphy to see if there's absence or abstraction of the

lymphatic system, to a full work up with the [UNKNOWN] system. But in my experience, all these patients end up having everything normal. And physical therapy is the way go.

So what we try to do is have a multi-discipline approach to this and we involved a wound care clinic for the patients with ulcers. We involved the Lymphedema clinic, fortunately one of the smaller hospitals that we're fully related with, has a very good Lymphedema clinic.

And that's gonna be physical therapy and massage, some pressure boots at night. And also if he's gonna see malformation patients as well. So we have a multi-discipline Malformation clinic where we refer to. I said earlier, ultrasound is the big horse for evaluation,

it's pretty obvious to most of us. The positioning is quite important. So you'll gonna have the leg of examination externally rotated with the weight on the opposite limb. And then you're gonna go and take a look at all the veins that we

mentioned earlier. I'm just gonna skip the video. So, what the work sheet, we don't know what our reflux looks like. So on the work sheet here, the technologist along with either our PA or physician will then course out the size

of all the veins and map it out. So that again we have something that we can refer back to for reference. The way I do mt reflux study is to have it this way and see [INAUDIBLE] And I do augmentation. Some people do valsava,

some people do this at a different with color doppler but I find that this is the best way to do it. All right, moving on to the next slide. So getting back to our case here, just a little bit, when do you look for other ideologies besides the usual suspect? So, when you see a perineal, vulvar or groin varices,

you're gonna start looking for higher sources or reflux such as the illiac vein, gonadal vein, or other weird things likes nutcracker syndrome or renal cell carcinoma that leads to venous obstruction. Upper thigh varices are classically associated with inferior gluteal veins.

So these are some examples from the literature that point out some of these varicosities. [BLANK_AUDIO] So here's an example of a patient represented with painful labial varices. You can see on these pictures here,

the're quite dilated superficial veins. To put color doppler on, many of these are thrombosed. Here we go a little bit lower down, you can then again see the areas of

thrombosis and dilated veins and she actually had a CAT scan when I was looking through her file you can see these large peroneal varices here. And if you look on the coronary format you can trace them back to a superficial venous system it's hard to show that these three images, but all of these veins communicated with this,

you can see the connection right here. And again, the patient also has symptoms of pelvic congested syndrome. It's obviously a little bit out of the range to go over all this here today but similar risk factors, multiparous women with graded and

six months of non-cyclical abdominal pelvic pain. Symptoms exasperated similar to varicose veins of the legs. And he came present with leg or back pain. There's a good review article in JVIR from 2014 that goes over this. For reference.

And so then you say how often do they occur together because in our practice, we know every once in a while when we talk to patients they'll say, ah that's exactly what I have. It's worse than my leg symptoms but I didn't know you could do something about. The largest study here,

looking at 5,784 patients refereed for leg varicosities. They found about 3.5%, 10% of the 202 patients had vulvar or vaginal varices. In a different study they found one out of six women presenting for

varicose veins had signs of pelvic congestion [UNKNOWN] pelvic venous insufficiency. What else? So well what happens is if you don't treat from top down approach which we'll go over in a second. Well, it can lead to re currency if you look at this

one study we've looked at, patients recurring at the surgical therapy now within a year, they found about 25% of his time the pelvic venous insufficiency was the ideology. So if you're suspecting this you can go diagnostic imaging.

We're radiologists, we can do our transvaginal ultrasound, and it's pretty obvious, right? Fluoride, color doppler flow in dilated veins, the problem we've all seen that. This is the call at CT. You can clearly see the varicosities. All right.

And if you look north, you almost always gonna see enlarged gonadal vein. Here's one here. It looks like the size of the aorta, almost.

Well in our practice, if we have a high kind of suspicion we go directly to venography and here's a patient with the left gonadal vein catheterized from the neck approach, and you can see the transpelvic collaterals. And you can see the collaterals are gonna go down into the

peroneal region similar to our index case. And then the this is the therapy, don't really have time to go through

- So this was born out of the idea that there were some patients who come to us with a positive physical exam or problems on dialysis, bleeding after dialysis, high pressures, low flows, that still have normal fistulograms. And as our nephrology colleagues teach us, each time you give a patient some contrast,

you lose some renal function that they maintain, even those patients who are on dialysis have some renal function. And constantly giving them contrasts is generally not a good thing. So we all know that intimal hyperplasia

is the Achilles Heel of dialysis access. We try to do surveillance. Debbie talked about the one minute check and how effective dialysis is. Has good sensitivity on good specificity, but poor sensitivity in determining

dialysis access problems. There are other measured parameters that we can use which have good specificity and a little better sensitivity. But what about ultrasound? What about using ultrasound as a surveillance tool and how do you use it?

Well the DOQI guidelines, the first ones, not the ones that are coming out, I guess, talked about different ways to assess dialysis access. And one of the ways, obviously, was using duplex ultrasound. Access flows that are less than 600

or if they're high flows with greater than 20% decrease, those are things that should stimulate a further look for clinical stenosis. Even the IACAVAL recommendations do, indeed, talk about volume flow and looking at volume flow. So is it volume flow?

Or is it velocity that we want to look at? And in our hands, it's been a very, very challenging subject and those of you who are involved with Vasculef probably have the same thing. Medicare has determined that dialysis shouldn't, dialysis access should not be surveilled with ultrasound.

It's not medically necessary unless you have a specific reason for looking at the dialysis access, you can't simply surveil as much as you do a bypass graft despite the work that's been done with bypass graft showing how intervening on a failing graft

is better than a failed graft. There was a good meta-analysis done a few years ago looking at all these different studies that have come out, looking at velocity versus volume. And in that study, their conclusion, unfortunately, is that it's really difficult to tell you

what you should use as volume versus velocity. The problem with it is this. And it becomes, and I'll show you towards the end, is a simple math problem that calculating volume flows is simply a product of area and velocity. In terms of area, you have to measure the luminal diameter,

and then you take the luminal diameter, and you calculate the area. Well area, we all remember, is pi r squared. So you now divide the diameter in half and then you square it. So I don't know about you,

but whenever I measure something on the ultrasound machine, you know, I could be off by half a millimeter, or even a millimeter. Well when you're talking about a four, five millimeter vessel, that's 10, 20% difference.

Now you square that and you've got a big difference. So it's important to use the longitudinal view when you're measuring diameter. Always measure it if you can. It peaks distally, and obviously try to measure it in an non-aneurysmal area.

Well, you know, I'm sure your patients are the same as mine. This is what some of our patients look like. Not many, but this is kind of an exaggerated point to make the point. There's tortuosity, there's aneurysms,

and the vein diameter varies along the length of the access that presents challenges. Well what about velocity? Well, I think most of us realize that a velocity between 100 to 300 is probably normal. A velocity that's over 500, in this case is about 600,

is probably abnormal, and probably represents a stenosis, right? Well, wait a minute, not necessarily. You have to look at the fluid dynamic model of this, and look at what we're actually looking at. This flow is very different.

This is not like any, not like a bypass graft. You've got flow taking a 180 degree turn at the anastomosis. Isn't that going to give you increased turbulence? Isn't that going to change your velocity? Some of the flow dynamic principles that are important

to understand when looking at this is that the difference between plug and laminar flow. Plug flow is where every bit is moving at the same velocity, the same point from top to bottom. But we know that's not true. We know that within vessels, for the most part,

we have laminar flow. So flow along the walls tends to be a little bit less than flow in the middle. That presents a problem for us. And then when you get into the aneurysmal section, and you've got turbulent flow,

then all bets are off there. So it's important, when you take your sample volume, you take it across the whole vessel. And then you get into something called the Time-Averaged mean velocity which is a term that's used in the ultrasound literature.

But it basically talks about making sure that your sample volume is as wide as it can be. You have to make sure that your angle is as normal in 60 degrees because once you get above 60 degrees, you start to throw it off.

So again, you've now got angulation of the anastomosis and then the compliance of a vein and a graft differs from the artery. So we use the two, we multiply it, and we come up with the volume flow. Well, people have said you should use a straight segment

of the graft to measure that. Five centimeters away from the anastomosis, or any major branches. Some people have actually suggested just using a brachial artery to assess that. Well the problems in dialysis access

is there are branches and bifurcations, pseudoaneurysms, occlusions, et cetera. I don't know about you, but if I have a AV graft, I can measure the volume flow at different points in the graft to get different numbers. How is that possible?

Absolutely not possible. You've got a tube with no branches that should be the same at the beginning and the end of the graft. But again, it becomes a simple math problem. The area that you're calculating is half the diameter squared.

So there's definitely measurement area with the electronic calipers. The velocity, you've got sampling error, you've got the anatomy, which distorts velocity, and then you've got the angle with which it is taken. So when you start multiplying all this,

you've got a big reason for variations in flow. We looked at 82 patients in our study. We double blinded it. We used a fistulagram as the gold standard. The duplex flow was calculated at three different spots. Duplex velocity at five different spots.

And then the diameters and aneurysmal areas were noted. This is the data. And basically, what it showed, was something totally non-significant. We really couldn't say anything about it. It was a trend toward lower flows,

how the gradients (mumbles) anastomosis, but nothing we could say. So as you all know, you can't really prove the null hypothesis. I'm not here to tell you to use one or use the other, I don't think that volume flow is something that

we can use as a predictor of success or failure, really. So in conclusion, what we found, is that Debbie Brow is right. Clinical examinations probably still the best technique. Look for abnormalities on dialysis. What's the use of duplex ultrasound in dialysis or patients?

And I think we're going to hear that in the next speaker. But probably good for vein mapping. Definitely good for vein mapping, arterial inflow, and maybe predicting maturation. Thank you very much.

- Thank you, Larry, thank you, Tony. Nice to be known as a fixture. I have no relevant disclosures, except that I have a trophy. And that's important, but also that Prabir Roy-Chaudhury, who's in this picture, was the genesis of some of the thoughts that I'm going to deliver here about predicting renal failure,

so I do want to credit him with bringing that to the vascular access space. You know, following on Soren's talk about access guidelines, we're dealing with pretty old guidelines, but if you look at the 2006 version, you know, just the height--

The things that a surgeon might read in his office. CKD four, patients there, you want a timely referral, you want them evaluated for placement of permanent access. The term "if necessary" is included in those guidelines, that's sometimes forgotten about.

And, of course, veins should be protected. We already heard a little bit about that, and so out our hospital, with our new dialysis patients, we usually try to butcher both antecubital veins at the same time. And then, before we send them to surgery

after they've been vein-marked, we use that vein to put in their preoperative IV, so that's our vascular access management program at Christiana Care. - [Male Speaker] That's why we mark it for you, Teddy. (laughing)

- So, you know, the other guideline is patients should have a functional permanent access at the initiation of dialysis therapy, and that means we need a crystal ball. How do we know this? A fistula should be placed at least six months

before anticipated start of dialysis, or a graft three to six weeks. Anybody who tells you they actually know that is lying, you can't tell, there's no validated means of predicting this. You hear clinical judgment, you can look at

all sorts of things. You cannot really make that projection. Now there is one interesting study by Tangri, and this is what Premier brought to our attention last year at CIDA, where this Canadian researcher and his team developed a model for predicting

progression of chronic kidney disease, not specifically for access purposes, but for others. They looked at a large number of patients in Canada, followed them through chronic kidney disease to ESRD, and they came up with a model. If you look at a simple model that uses age, sex,

estimated GFR from MDRD equation and albuminuria to predict when that patient might develop end stage renal disease, and there's now nice calculators. This is a wonderful thing, I keep it on my phone, this Qx Calculate, I would recommend you do the same,

and you can put those answers to the questions, in this app, and it'll give you the answer you're looking for. So for instance, here's a case, a 75-year-old woman, CKD stage four, her creatinine's 2.7, not very impressive,

eGFR's 18. Her urine protein is 1200 milligrams per gram, that's important, this is kind of one of the major variables that impacts on this. So she's referred appropriately at that stage to a surgeon for arteriovenous access,

and he finds that she really has no veins that he feels are suitable for a fistula, so an appropriate referral was made. Now at that time, if you'd put her into this equation with those variables, 1200, female, 75-year-old, 18 GFR, at two years, her risk of ESRD is about 30%,

and at five years about 66%, 67%. So, you know, how do you use those numbers in deciding if she needs an access? Well, you might say... A rational person might say perhaps that patient should get a fistula,

or at least be put in line for it. Well, this well-intentioned surgeon providing customer service put in a graft, which then ended up with some steal requiring a DRIL, which then still had steal, required banding, and then a few months, a year later

was thrombosed and abandoned because she didn't need it. And I saw her for the first time in October 2018, at which time her creatinine is up to 3.6, her eGFR's down to 12, her protein is a little higher, 2600, so now she has a two-year risk of 62%, and a five-year risk of 95%,

considerably more than when this ill-advised craft was created. So what do you do with this patient now? I don't have the answer to that, but you can use this information at least to help flavor your thought process,

and what if you could bend the curve? What if you treated this patient appropriately with ACE inhibitors and other methods to get the protein down? Well, you can almost half her two-year risk of renal failure with medical management.

So these considerations I think are important to the team, surgeon, nurses, nephrologists, etc., who are planning that vascular access with the patient. When to do and what to do. And then, you know, it's kind of old-fashioned to look at the trajectory.

We used to look at one over creatinine, we can look at eGFR now, and she's on a trajectory that looks suspicious for progression, so you can factor that into your thought process as well. And then I think this is the other very important concept, I think I've spoken about this here before,

is that there's no absolute need for dialysis unless you do bilateral nephrectomies. Patients can be managed medically for quite a while, and the manifestations of uremia dealt with quite safely and effectively, and you can see that over the years, the number of patients

in this top brown pattern that have been started on dialysis with a GFR of greater than 15 has fallen, or at least, stopped rising because we've recognized that there's no advantage, and there may be disadvantages to starting patients too early.

So if your nephrologist is telling I've got to start this patient now because he or she needs dialysis, unless they had bilateral nephrectomies that may or may not be true. Another case,

64-year-old male, CKD stage four, creatinine about four, eGFR 15, 800 milligrams of proteinuria, referred to a vascular access surgeon for AV access. Interesting note, previous central lines, or AICD, healthy guy otherwise.

So in April 2017 he had a left wrist fistula done, I think that was a very appropriate referral and a very appropriate operation by this surgeon. At that time his two-year risk was 49, 50%, his five-year risk 88%. It's a pretty good idea, I think, to get a wrist fistula

in that patient. Once again, this is not validated for that purpose. I can't point you to a study that says by using this you can make well-informed predictions about when to do vascular access, but I do think it helps to flavor the judgment on this.

Also, I saw him for the first time last month, and his left arm is like this. Amazing, that has never had a catheter or anything, so I did his central venogram, and this is his anatomy. I could find absolutely no evidence of a connection between the left subclavian and the superior vena cava,

I couldn't cross it. Incidentally, this was done with less than 20 CCs of dye of trying to open this occlusion or find a way through, which was unsuccessful. You can see all the edema in his arm. So what do you do with this guy now?

Well, up, go back. Here's his trajectory of CKD four from the time his fistula is done to the time I'm seeing him now, he's been pretty flat. And his proteinuria's actually dropped

with medical management. He's only got 103 milligrams per gram of proteinuria now, and his two-year risk is now 23%, his five-year risk is 56%, so I said back to the surgeon we ligate this damn thing, because we can't really do much to fix it,

and we're going to wait and see when it's closer to time to needing dialysis. I'm not going to subject this guy to a right-arm fistula with that trajectory of renal disease over the past two years. So combining that trajectory with these predictive numbers,

and improved medical care for proteinuria I think is a good strategy. So what do you do, you're weighing factors for timing too early, you've got a burden of fistula failure, interventions you need to use to maintain costs, morbidity, complications,

steal, neuropathy that you could avoid versus too late and disadvantages of initiating hemodialysis without a permanent access. And lastly, I'm going to just finish with some blasphemy. I think the risk of starting dialysis with a catheter is vastly overstated.

If you look at old data and patient selection issues, and catheter maintenance issues, I think... It's not such an unreasonable thing to start a patient with a catheter. We do it all the time and they usually live.

And even CMS gives us a 90-day grace period on our QIP penalties, so... If you establish a surgeon and access plan, I think you're good to go. So who monitors access maturation? I don't know, somebody who knows what they're doing.

If you look at all the people involved, I know some of these individuals who are absolute crackerjack experts, and some are clueless. It has nothing to do with their age, their gender, their training, their field. It's just a matter of whether they understand

what makes a good fistula. You don't have to be a genius, you just can't be clueless. This is not a mature usable fistula, I know that when I see it. Thank you.

- You already heard about different devices which can finish the treatment of acute DVT in the lab and I would like to add one of the devices which is quite widespread in Europe. And share the first study on this device. This is called the Aspirex device. So what is the objective?

Post traumatic syndrome after proximal DVT, I think that's clear. 25% of the patient are at risk for developing post traumatic syndrome. I think that is clear and some of these patient even expect severe post traumatic syndrome.

We already saw this ATTRACT trial outcome and we learned that especially patient with Iliofemoral DVT might benefit from treatment, invasive treatment of Iliofemoral DVT but of course, we need to know that is catheter-directed thrombolysis causes issues

and therefore our way should be to go away from thrombolytic therapy to a pure mechanical thrombectomy approach. This is a typical case example of a patient, 20 year old female patient who came to the emergency room with that leg on the left side in the morning,

back pain in the evening and this is clear that it is a descending Iliofemoral DVT in that patient caused by May-Thurner syndrome. So, with modern devices like this Aspirex, mechanical thrombectomy device, the 10 French device is able to aspirate up to 130 millimeter,

ml per minute of clots. You see that this can be effectively treated and then stinted within the May-Thurner syndrome within one session approach. So, but, what is clear of course that we need to get data

for these modern Mechanical Thrombectomy devices and therefore, we conducted clinical follow-up study to evaluate safety and efficiency of that Aspirex Mechanical Thrombectomy device. This device is based on the Archimedic principle which you can see here it comes with six up

to 10 French systems and with that you are able, as I already showed to sac 130ml of thrombus per minute. So these are the study details I want to show you. We treated 50 psychs, 56 patients with acute, subacute and acute on chronic which means up to 3 months of symptoms patients with Iliofermal DVT.

We performed IVIS on all these patients. We found May-Thurner syndrome in at least half of these patients as a reason for the Iliofermal DVT. You see the patient demographics. Some of the patients had even malignancy condition. A lot of patients were on oral contraceptives.

Here are the clinical symptoms within our cohort. Most of the patients came with swelling and rest pain. The rVCSS at the beginning was 4.5 within this cohort. Most of the traumatic lesions were on the left side involving even the profunda and the common femoral vein in this cohort.

You see here the excess which we used for treating these Iliofermal DVT, we used in the main part of the cohort, the left popliteal vein access or left femoral vein access. 84% were treated with 10 French system, the Aspirex device. As I mentioned we used IVIS

to analyze underlying pathologies. We found in most of the patients underlying pathologies and this explains why we implanted stents in 100% of the patients. You see the treatment duration which was in mean 94 minutes within this treatment cohort.

These are the patency analysis within one year. You see patency at 12 months, 87% percent in these patients, which we could follow up after 12 months. Here you see the Post-thrombotic syndrome analysis after 12 months so only low PTS

and some kind of moderate PTS were seen in these patients. There were no severe Post-thrombotic syndrome. Most of the patients just had a little bit of swelling after that procedure. Of course, it's important to mention safety and those end points.

There were just some small punctures associated, site being complicationS. Of course re-hospitalization is a severe adverse event which you can see here. But there were of course no bleeding events in this cohort. And to follow up

on this much more multicentric perspective trial, we just started a multicenter trial on this and we'll follow up patients up to five years within this just initiated multicenter registry. And I think we can show some preliminary data next year. Thank you very much.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Ladies and gentlemen, I'd like to thank the organizers once again for the opportunity to present at this meeting. And I have no disclosures. As we know the modern option for treating Truncal Varices includes Thermal Ablation. Major Venous Tributaries are treated

with phlebectomies, ligation, and foam sclerotherapy using sodium tetradecyl sulfate and polidocanol. The mechanism of action of these agents includes lysis of endothelium, and it takes a very short time to work. And most people use the Tessari technique,

which induces these agents and uses fibrosis of the veins and obliteration of the lumen. And this is how it's done. One of the risks of sclerotherapy may include deep vein thrombosis.

And as we've just heard, the perforator veins are variable anatomy and function, works in very amazing ways. So, what happens to the below knee veins after sclerotherapy? Well the NICE guidelines does not address this issue, and nowhere really is it addressed.

The NICE guidelines reported one of almost 1000 patients with a pulmonary embolism after Ultrasound Guided Sclerotherapy. So, we'd like to propose the term Deep Vein Sclerosis, or Deep Vein Sclerosae, rather than Deep Vein Thrombosis after Sclerotherapy

because it's caused by Sclerotherapy. The veins that they affected are usually patent, but non-compressible on ultrasound. Thrombus is usually absent, but it may be present, and it resolves quite quickly. We treated 386 legs in 267 patients

with CEAP III-VI disease. They had pre-intervention duplex, marking, and identification of perforators, they were treated with compression stockings and low-molecular weight Heparin, and they had serial ultrasound scanning.

Despite meticulous scanning, we identified deep vein sclerosis in 90 of our patients. So 23, almost a quarter. Perforating veins were identified with ultrasound in only 27 of this group, and forgive the mathematics there.

And perforating vein was seen in the post-intervention scans in almost a half after treatment. This is detailed list of the findings. The perforators alone were affected in 41 of these patients. And in 49% of patients, tibial veins and other

below knee deep veins were affected. Interestingly enough, in 24 of these 44 perforators were unidentified prior to treatment. And of these, a total of 49 patients of DVS involved the tibial veins and/or perforators. And, DVS involved the perforator only in 41 patients,

and this is thought to be adequate treatment of the superficial tributaries. 55% of the patients of previously unidentified perforator veins had DVS involved in the tibial veins. Treatment after we've identified this included compression stockings for at least six weeks,

aspirin for 12 weeks, and surveillance scanning. We found that no lesions actually progressed. They were unchanged in about 27%, completely resolved in 51%, and much smaller in about 22%. So, we'd like to propose that these changes

post-sclerotherapy in the below knee veins are different to deep vein thrombosis. The changes are provoked, there's a limited duration of the insult, most patients are low-risk and ambulant, and the patients are generally asymptomatic.

The veins that are non-compressible on ultrasound usually have no thrombus. In conclusion with the chairman ladies and gentlemen, Deep Vein Sclerosae occurs in almost 25% of patients having ultrasound-guided Foam Sclerotherapy, the lesions are of short length,

the course of these lesions appear fairly benign, and are adequately treated with stockings and aspirin, and the majority of these cases resolved or decreased in length within six to twelve weeks, and no lesions progressed. Thank you very much.

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Thank you again for the opportunity to discuss the BlueLeaf Endovenous Valve with potential benefits of on an all-autogenous solution. The last slide was a nice segue to this presentation, so the financial relationship. So we've discussed extensively at this meeting treatments for superficial venous

reflux outflow obstruction, and, really, the last sort of frontier is the deep vein reflux where invasive surgery is still the gold standard, but I basically say that the majority of us, or at least myself and many of us in our practice,

resort to what I refer to as palliative care or conservative managements in patients who have maximally been treated for their outflow obstruction and superficial venous reflux. This is sort of an outstanding review

of the current state of deep venous reconstructive surgery by Dr. Maleti, Lugli, and Tripathi who said the trap door technique as well as the neovalve and the corresponding outcomes, and I encourage all of you to look at it, are pretty reassuring even with the limitations.

The ulcer recurrence rates are in the 20-30% range and the vales remain competent in 70% of cases, and the results of the neovalve reconstruction are also reasonably promising. So how do we take these reasonably and pretty promising results and try to expand them?

Potentially, what would it look like as a percutaneous approach? And it might look something like this. And this is the BlueLeaf Endovenous Valve Formation System which uses a catheter system, a nitinol dissector, and a needle assembly,

and it's done under intravascular ultrasound guidance. This is what the procedure looks like in the basic three steps. After you've gained access with a 16 French sheath in the common femoral vein you identify the valve site,

the appropriate valve site with the IVUS, you perform, you gain sub-intimal access, and then perform the hydrodissection, and then you create your valve. And this is how it goes. So after you've gained wire access

you advance your intravascular ultrasound in order to identify the valve formation site. Right now it's quantitated at seven to 11 millimeters in diameter and at least three centimeters in length. You then inflate the balloon to appose the vein wall,

to create some tension in the vein wall, and thereafter your needle assembly can create that sub-intimal plane with the hydrodissection, and you see how the bevel tip retracts to make it less traumatic. You're checking with intravascular ultrasound.

You advance the dissector. And then under IVUS guidance you create the valve with the nitinol scoring blades on the dissector as well as the tensioner which kind of bows out towards the IVUS, and you can see it on the corresponding IVUS images.

And the very last step is to leave the blades open to open up the mouth of that percutaneous valve fully. And the advantages. You can create a monocuspid, a bicuspid valve, potentially multilevel valves as well. In this tissue demonstration

you're essentially looking from within the vein walls, so the tensioner is pointing out towards you as if you're within the lumen of the vessel, and it's just showing you how the nitinol scoring blades create the valve and then when left open for the final passage

to incise the valve mouth. And this is what the result looks like on intravascular ultrasound. It projects well the last couple seconds of the slide. So the potential advantages is that there's an increased potential for customization.

Again, monocuspid, bicuspid valve orientation, multilevel valves. (mumbles) may lead to a larger eligible patient population and expanded utilization amongst various venous practitioners. The extended feasibility study.

The trial details are currently enrolling outside of the United States. 11 patient in Australia and New Zealand. The US trial is pending IDE approval, and the inclusion criteria will be those patients with the most severe disease with C5 and C6 disease

and significant deep vein reflux. Exclusion criteria relate to inflow, outflow, and having an adequate conduit with an appropriate valve formation site. Thank you.

- So again, I'd like to thank Dr. Veith for the opportunity to participate in this interesting debate. So, I have been tasked with the position Intra-operative Completion Study is not mandatory, and in fact I will show you why a selective approach will actually provide better results for our patients. These are my disclosures related to ongoing

clinical research and clinical trials. So again, Professor Eckstein and his colleagues should be very significantly commended for getting the entire German vascular surgery community to look at their data in a very rigorous fashion. However, both he and his co-authors will acknowledge

within the manuscript that there are significant problems with this database. A very large number of 142,000 elective carotid endarterectomy procedures with very ballotable stroke and death rates of 1.4 and 2.5%. However, a typical criticism from outside the

vascular surgery community, these are all self-reported. These are not 30 day outcomes, they're actually in-hospital outcomes. And while in Germany that still may be four days, it's not the 30 days that we see. I'll show you a little bit later on within the Crest data.

And interestingly, within their own manuscript only 50% of the patients actually had neurologic assessment both pre- and post-procedural. So, how can we make a relevant decision in terms of thinking about how we're going to treat these patients if we only have neuro data on half of them.

Lets for the moment assume we can call out those patients. How does this relate to clinical practice? Well the authors also admit that this is an observational study, and that even though there is some association, there clearly is no causal relationship

as my previous debater just admitted. And in fact, they argue that this is perhaps the best method to look at generating hypotheses for future randomized trials, much like Dr. Aborama has done with the use of carotid endarterectomy with patching. So, let's look a little bit more about the data

and see how relevant it is to your current practice. So in the Germany registry, a quarter of the patients are treated under local anesthetic. 40% have no type of neurologic monitoring, and over 40% are performed with aversion endarterectomy. Very, very different than the practice that we see

in our institution, and in the New England region. And I would argue that there's a lot of concern in terms of what the indications are for monitoring, what the indications are for shunt use. Again, that's 43%. But there's absolutely no data in this registry about

indications for shunting, when it was used, or when patients were re-explored and what they found at the time. And a little bit concerning is in 17% of the patients, there was no anti-platelet agent used in patients undergoing carotid endarterectomy.

And, I would argue that that number is just a little bit high. How about when we go to the univariate analysis? Once again, we see that there's a benefit of 0.4% decrease in stroke and death for a local anesthetic, although we are well aware that there are numerous other

perspectives that have looked at this and not shown that same relationship. Again, there's a benefit for aversion endarterectomy, but I would argue at least in the New England region and perhaps in the United States except for select centers, aversion endarterectomy is used the minority of the time

and that in fact is an indication in my mind to have a lower threshold for either angiogram or completion duplex. Most concerning, there was 0.3% difference in the stroke and death rate with the lack of an intraoperative completion study, but there was no data about indications, findings,

whether that resulted in an intervention, or what the result of that intervention was. And initially in the univariate analysis, neuro-psyche, physiologic monitoring was protective, but later on in the multivariate, it was not. Here is that same multivariate analysis that shows again

that in fact shunting and neuro-physiologic monitoring are increased risk factors for stroke. Certainly there's going to be some bias. My concern is I'm not convinced the authors are able to call out the co founding variables, even in their multivariate regression analysis.

And in fact, in their concluding paragraphs they state there's no information supplied on whether intraoperative completion studies caused an operative revision or not, and no information about cause of death. In fact, they don't even have information about

intraoperative heparin or protamine application. So I would argue I'd be very skeptical about making my final decisions based on this. Thinking about the technical aspects of angiography, there's no doubt that this is very helpful at times, but think about the details of where do you put the needle.

What type of imaging? Is it a C-arm, is it a flat plate? Who interprets it, and what are your thresholds for intervention? So, it certainly may be harmful, may be unnecessary, and may even give you false positives.

Similarly with Completion Duplex studies, there certainly is a false positive rate and then there's risk for re-clamping. I reached out to my friend and colleague Braglol to see if there was any data from Crest that would help us, and unfortunately other than the fact that stroke happens

up to 30 days after our initial endarterectomy, there was no data supporting that. So, perhaps the best study that we have is our current practice in New England where we had 6,000 patients, a third of whom received completion studies. We broke this down into rare, selective, and routine

duplex or angio studies. And in fact, in the selective group we had a very low rate of re-exploration versus the other group, and a much lower incidence of overall stroke and death. In fact, the only benefit that was statistically significant was a decrease one year rate of re-stenosis.

So in conclusion, I would argue that this is probably unnecessary, and in fact maybe harmful. Meticulous technique, intra-procedural monitoring with selective shunt use, and continuous wave doppler use may, in fact, be the way to go. But this does give us an opportunity for prospective,

randomized trial as part of another study to look for completion study indications. Thank you very much.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Good morning. I'd like to thank Dr. Veith and Symposium for my opportunity to speak. I have no disclosures. So the in Endovascular Surgery, there is decrease open surgical bypass. But, bypass is still required for many patients with PAD.

Autologous vein is preferred for increase patency lower infection rate. And, Traditional Open Vein Harvest does require lengthy incisions. In 1996 cardiac surgery reported Endoscopic Vein Harvest. So the early prospective randomized trial

in the cardiac literature, did report wound complications from Open Vein Harvest to be as high as 19-20%, and decreased down to 4% with Endoscopic Vein Harvest. Lopes et al, initially, reported increase risk of 12-18 month graft failure and increased three year mortality.

But, there were many small studies that show no effect on patency and decreased wound complications. So, in 2005, Endoscopic Vein Harvest was recommended as standard of care in cardiac surgical patients. So what about our field? The advantages of Open Vein Harvest,

we all know how to do it. There's no learning curve. It's performed under direct visualization. Side branches are ligated with suture and divided sharply. Long term patency of the bypass is established. Disadvantages of the Open Vein Harvest,

large wound or many skip wounds has an increased morbidity. PAD patients have an increased risk for wound complications compared to the cardiac patients as high as 22-44%. The poor healing can be due to ischemia, diabetes, renal failure, and other comorbid conditions.

These can include hematoma, dehiscense, infection, and increased length of stay. So the advantages of Endoscopic Vein Harvest, is that there's no long incisions, they can be performed via one or two small incisions. Limiting the size of an incision

decreases wound complications. It's the standard of care in cardiac surgery, and there's an overall lower morbidity. The disadvantages of is that there's a learning curve. Electro-cautery is used to divide the branches, you need longer vein compared to cardiac surgery.

There's concern about inferior primary patency, and there are variable wound complications reported. So recent PAD data, there, in 2014, a review of the Society of Vascular Surgery registry, of 5000 patients, showed that continuous Open Vein Harvest

was performed 49% of the time and a Endo Vein Harvest about 13% of the time. The primary patency was 70%, for Continuous versus just under 59% for Endoscopic, and that was significant. Endoscopic Vein Harvest was found to be an independent risk factor for a lower one year

primary patency, in the study. And, the length of stay due to wounds was not significantly different. So, systematic review of Endoscopic Vein Harvest data in the lower extremity bypass from '96 to 2013 did show that this technique may reduce

primary patency with no change in wound complications. Reasons for decreased primary patency, inexperienced operator, increased electrocautery injury to the vein. Increase in vein manipulation, you can't do the no touch technique,

like you could do with an Open Harvest. You need a longer conduit. So, I do believe there's a roll for this, in the vascular surgeon's armamentarium. I would recommend, how I use it in my practices is, I'm fairly inexperienced with Endoscopic Vein Harvest,

so I do work with the cardiac PA's. With increased percutaneous procedures, my practice has seen decreased Saphenous Vein Bypasses, so, I've less volume to master the technique. If the PA is not available, or the conduit is small, I recommend an Open Vein Harvest.

The PA can decrease the labor required during these cases. So, it's sometimes nice to have help with these long cases. Close surveillance follow up with Non-Invasive Arterial Imaging is mandatory every three months for the first year at least. Thank you.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- Thank you very much Frank and thanks for the invitation. My first thing is to deal with the patient who's awaiting CABG who's had a previous stroke or TIA. This is the only study of it's kind showing that if you proceed with isolated CABG, the risk of stroke is extremely high and if you look at the meta-analysis that we've done of whether you do endarterectomy or

stenting in symptomatic patients, this is all the literature there is. And what you can clearly see is that the death and stroke rates in patients undergoing CAS followed by CABG are much higher than after carotid and endarterectomy. And that lead us to recommend that a stage of

synchronous carotid intervention should be considered in CABG patients with a history of stroke or TIA and who have a 50 to 99% stenosis. But advise that for now, if you're going to do that such an intervention, surgery should probably be considered instead of stenting.

But 96% of all interventions of the CABG and carotid variety are in asymptomatic patients, so what about them? Well, this is all the literature there is on stroke risk in patients undergoing isolated CABG with a unilateral asymptomatic stenosis of 70 to 99 or 80 to 99 and you can see there is an awful lot of zeroes

in that table and if you go at patients with bilateral significant disease, the death and stroke rate is much higher but again there is not too many strokes here. And if you look critically at the literature and ask yourself okay we've had so many strokes, how many of them can be attributable to underlying

carotid disease by looking at the CT scans or the distribution of lesions, you'll see that between 85 and 95% of all strokes cannot be attributed to an underlying significant carotid stenosis. And if you look at all the death and stroke rates and this is a multiple meta-analysis that our

group have done over the last 15 years, these are the death and stroke rates depending on how you treat the patients, and 80% of these are asymptomatic and 80% have got unilateral stenosis and the death and stroke rates are far in excess of the risk of stroke if you just perform an

isolated CABG in patients with unilateral asymptomatic disease. There have been two randomized trials. This is one, the Iluminati trial that Jean-Baptiste was involved in, 30-day death and stroke rates not significantly different.

There is quite an astonishing trial from Germany, which was again unilaterally asymptomatic stenosis with a near 20% death and stroke rate with synchronous carotid CABG and a 10% definite stroke rate with medical therapy, ah isolated CABG, sorry. So the ESVS have advised that a staged synchronous

carotid intervention is not recommended in CABG patients with an asymptomatic unilateral, 70 to 99% stenosis for preventing stroke after CABG. A staged synchronous intervention may be considered in patients with bilateral disease, the evidence is not brilliant but it's such a rare thing that it's

probably not worth arguing about. Now what about patients who are undergoing non-cardiac surgery? This is quite an interesting group, because if say, a gastrectomy, a hip replacement or whatever, if they've had a previous history of stroke or TIA

they should undergo carotid imaging and if they've got a significant stenosis they should undergo prior carotid revascularization prior to undergoing their gastrectomy et cetera. But what about the asymptomatic patient? This is quite interesting.

First of all, let's just look at a very large study by Jorgensen, 4 nearly 500,000 elective non-cardiac operations and 7,000 had suffered a prior stroke or TIA, and the most important thing was, the stroke risk was directly related to the time from the onset of the TIA to doing the operation.

So if you did it within three months of the stroke or TIA there was a 12% peri-operative stroke rate, but if you managed to get out to six months, the stroke rate was only 0.1% so the lesson learned there is that if it's possible to delay surgery in patients who've had a prior stroke or TIA

or a recent one, you should delay it for six months. Only two studies have looked at whether asymptomatic carotid stenosis increased the stroke risk in patients undergoing non-cardiac operations. Ballotta did a randomized trial, and Sonny, which is a very large observational study,

looked at the impact of asymptomatic carotid stenosis on outcome and found that there was no evidence that a pre-existing carotid stenosis increased the risk of stroke in patients undergoing major non-cardiac surgery. Similarly, in a huge study on TAVI patients,

no evidence that carotid disease was a risk factor for perioperative stroke. So in our recommendations we advised routine carotid imaging in asymptomatic patients undergoing major non-cardiac surgery is not recommended and prophylactics and arterial stenting is not

recommended in patients with asymptomatic carotid stenoses undergoing non-cardiac/vascular procedures. And if you'd like to look at all the literature and data that we came to in using to our conclusions, the guidelines are free to access on the internet.

Thank you very much.

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- Alright, so these are my team, the group of Rio De Janeiro. No disclosures. Corona phlebectasia is a clinical sign associated with chronic venous insufficiency. It is associated with abnormal visible cutaneous vessels at the ankle with specific components that I will show you.

May have ectasias type Ceap one, two, or three. So corona phlebectasia is basically consisted of venous cups, blue telangiectases and capillary stasis spots, red telangiectases and capillary stasis spots, and sometimes larger veins. So this is a typical example.

You can see here the venous cups, the red capillaries, the blue capillaries and in this case there's no larger veins. With time the disease caused the damage to the skin making it changing. Now this is a case where you have some veins here,

we're going to take it out with surgery, and the veins I described before. So the diagnosis is made by the clinical examination and duplex scan and these are the main publications on this subject, mainly in the Journal of Vascular Surgery. The treatment of corona phlebectasia consists of taking out

the saphenous vein reflux either by surgery, laser, or radiofrequency. The treatment of the perforant veins and the treatment of the superficial varicose veins. In this case here with a small incision and the help of a crochet needle, I am taking this vein

here with surgery. This is an advance case where foam sclerotherapy I'm sure was used in excessive way. This must be done step by step, I will show you, and here we are all specialists in anatomy. You have to treat all the layers that are supposedly damaged

by the disease and don't forget a perforating, especially this one here, the inframalleolar perforating vein, which is the one I showed you I was taking out. The treatment of the small veins, I do it by foam sclerotherapy using the Tessari technique. Polidocanol 0.5%, or 0.75%, and I use also use plain surgery

with small incisions. I believe someone after me will talk about the surgery specifically. So basically the treatment consists of compressive occlusion for 30 days, office sclerotherapy as necessary, and avoid sun radiation for 30 days after the procedure.

The step by step will be to search for the problem, make the right diagnosis, do surgical treatment and foam sclerotherapy for the disease, and keep a follow up, doing office sclerotherapy as necessary. As I showed you before, if you try to do a lot of sclerotherapy at once on this area, you'll probably damage

the skin, so the better idea is to do it slowly from time to time. This is our hospital in Rio De Janeiro, brand new. We have an airport close by to bring us emergency from this area here. This is my office.

This is office right here and the best part of the hospital is the roof where we can see two tennis courts just for doctors. Thank you very much.

- Thank you very much again. Thank you very much for the kind invitation. The answer to the question is, yes or no. Well, basically when we're talking about pelvic reflux, we're talking really, about, possibly thinking about two separate entities. One symptoms relate to the pelvis

and issues with lower limb varicose veins. Really some time ago, we highlighted in a review, various symptoms that may be associated with the pelvic congestion syndrome. This is often, either misdiagnosed or undiagnosed. The patients we see have had multiple investigations

prior to treatment. I'm not really going to dwell on the anatomy but, just really highlight to you it is incompetence in either the renal pelvic and ovarian veins. What about the patterns of reflux we've heard from both Mark and Nicos what the pattern are

but, basically if you look a little more closely you can see that not only the left ovarian vein is probably effected in a round-about 60%. But, there is incompetence in many of the other veins. What does this actually have implication for with respect to treatment.

Implications are that you probably, if you only treat an isolated vein. There is a suggestion, that the long term outcomes are not actually as good. Now this is some work from Mark Whiteley's group because, we've heard about the diagnosis

but, there is some discussion as to whether just looking at ovarian vein diameter is efficient and certainly the Whiteley group suggests that actually diameter is relatively irrelevant in deciding as to whether there is incompetence in the actual vein itself.

That diameter should not be used as a single indicator. You may all well be aware, that there are reporting standards for the treatment of pelvic venous insufficiency and this has been high-lighted in this paper. What of the resuts, of pelvic embolization and coiling? The main standard is used, is a visual analog scale

when you're looking at pelvic symptoms to decide what the outcome may be. This is a very nice example of an article that was... A review that was done in Niel Khilnani's group and you can see if you look at the pre

and post procedural visual analog scales there is some significant improvement. You can see that this is out at one year in the whole. Now, this is a further table from the paper. Showing you their either, there's a mixture

of glue, coils, scleroses and foam. The comments are that, there are significant relief and some papers suggest its after 100% and others up to 80%. If you look at this very nice review that Mark Meissner did with Kathy Gibson,

you will see that actually no improvement in worse. There's quite a range there for those patients 53% of patients in one study, had no improvement or the symptoms were potentially worse. We know that those patients who have coil embolization will have reoccurrence of symptomatology

and incompetence up to about a quarter of the patients. What about varicose veins? The answer is there is undoubtedly evidence to suggest that there is physiological/anatomical incompetence in some of the pelvic veins in patients

who have recurrent varicose veins. Whether this is actually a direct cause or an association, I think it's something we need to have some further consideration of. As you know, there are many people who now would advicate actually treating

the pelvic veins prior to treating the leg veins. You can maybe discuss that in the question time. If we then look at a comparative trial. Comparing coils and plugs, you can see over all there really isn't no particular difference. If we then look again to highlight this,

which comes again from the Whiteley group. You can see that 20% of patients will have some primary incompetence but, it'll go up to around 30% if they are re-current. There is no randomized control data looking at this. What are the problems with coils?

Actually, a bit like (mumbling) you can find them anywhere. You can find them in the chest and also you can find that there are patients now who are allergic to nickel and the very bottom corner is a patient who's coils I took out by open laparotomy because they were allergic to nickel.

So, ladies and gentlemen I would suggest to you certainly, for continuing with pelvic embolization when doubtedly it needs some more RCT data and some much better registry data to look where we're going. Thank you very much.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- Like to thank Dr. Veith and the committee for asking me to speak. I have no conflicts related to this presentation. Labial and vulvar varicosities occur in up to 10% of pregnant women, with the worst symptoms being manifested in the second half of the pregnancy.

Symptoms include genital pressure and fullness, pruritus, and a sensation of prolapse. These generally worsen with standing. Management is usually conservative. Between compression hose, cooling packs, and exercise, most women can make it through to the end of the pregnancy.

When should we do more than just reassure these women? An ultrasound should be performed when there's an early presentation, meaning in the first trimester, as this can be an unmasking of a venous malformation. If there are unilateral varicosities,

an ultrasound should be performed to make sure that these aren't due to iliac vein thrombosis. If there's superficial thrombosis or phlebitis, you may need to rule out deep venous extension with an ultrasound. When should we intervene?

You may need to intervene to release trapped blood in phlebitis, or to give low molecular weight heparin for comfort. When should a local phlebectomy or sclerotherapy be performed? Should sclerotherapy be performed during pregnancy?

We know very little. Occasionally, this is performed in a patient who is unknowingly pregnant, and there have been no clear complications from this in the literature. The effectiveness of sclero may also

be diminished in pregnancy, due to hormones and increased venous volume. Both polidocanol and sodium tetradecyl sulfate say that there is no support for use during pregnancies, and they advise against it. So what should you do?

This following case is a 24 year old G2P1, who was referred to me at 24 weeks for disabling vaginal and pelvic discomfort. She couldn't go to work, she couldn't take care of her toddler, she had some left leg complaints, but it was mostly genital discomfort and fullness,

and her OB said that he was going to do a pre-term C-section because he was worried about the risk of hemorrhage with the delivery. So this is her laying supine pre-op, and this is her left leg with varicosities visible in the anterior and posterior aspects.

Her ultrasound showed open iliac veins and large refluxing varicosities in the left vulvar area. She had no venous malformation or clot, and she had reflux in the saphenofemoral junction and down the GSV. I performed a phlebectomy on her,

and started with an ultrasound mapping of her superficial veins and perforators in the labial region. I made small incision with dissection and tie ligation of all the varicosities and perforators, and this was done under local anesthesia

with minimal sedation in the operating room. This resulted in vastly improved comfort, and her anxiety, and her OB's anxiety were both decreased, and she went on to a successful delivery. So this diagram shows the usual location of the labial perforators.

Here she is pre-op, and then here she is a week post-op. Well, what about postpartum varicosities? These can be associated with pelvic congestion, and the complaints can often be split into local, meaning surface complaints, versus pelvic complaints.

And this leads into a debate between a top down treatment approach, where you go in and do a venogram and internal coiling, versus a bottom up approach, where you start with local therapy, such as phlebectomy or sclero.

Pelvic symptoms include aching and pressure in the pelvis. These are usually worse with menstruation, and dyspareunia is most pronounced after intercourse, approximately an hour to several hours later. Surface complaints include vulvar itching, tenderness, recurrent thrombophlebitis, or bleeding.

Dyspareunia is present during or at initiation of sexual intercourse. I refer to this as the Gibson Algorithm, as Kathy Gibson and I have talked about this problem a lot, and this is how we both feel that these problems should be addressed.

If you have an asymptomatic or minimally symptomatic patient who's referred for varicosities that are seen incidentally, such as during a laparoscopy, those I don't treat. If you have a symptomatic patient who has pelvic symptoms, then these people get a venogram with coils and sclerotherapy as appropriate.

If they are not pregnant, and have no pelvic symptoms, these patients get sclero. If they are pregnant, and have no pelvic symptoms, they get a phlebectomy. In conclusion, vulvar varicosities are a common problem, and usually conservative management is adequate.

With extreme symptoms, phlebectomy has been successful. Pregnancy-related varicosities typically resolve post-delivery, and these can then be treated with local sclerotherapy if they persist. Central imaging and treatment is successful for primarily pelvic complaints or persistent symptoms.

Thank you.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- Hello, thank you again for the invitation. I have the disclosure here is kind of funny because I'm going to talk about CLaCS but I don't profit on that. Those are the most frustrating result on sclerotherapy and obviously death. These are very frustrating result. Sorry.

And this is not like funny but it's unfortunately the worst part is that all those cases are not published and that's less change from frustrating to devastating, the death cases. Let's talk about the less common, sorry,

the most common problems, skin ulcer. Like skin ulcer. Skin ulcer may be also terrible. Those are slides from my father's collection from the 60s probably. And I suggest you to read this paper.

It took me 20 years to get published with the help of Ted King of this hypothesis from the 70s and he studied on rabbit ears and I cannot have time to explain all that but he simulated the skin ulcer and showed that the causes the reflux to the arterial venous system

and how to avoid it, CLaCS is a great solution and by using the extra 75% due to its high viscosity, you avoid 100% of reflux to the arterial system. Matting is another problem.

Those are theories of my father as well. He said divided in two types of angiogenic where you inject on the telangiectasia and you destroy veins that you wanted to close or you didn't want to touch. And then you have reflux a new reflux and

a lot of telangiectasia. There would be occlusive, where you destroy too much, you destroy the drainage of those telangiectasias. And then how to avoid? Is to be less aggressive or to be more focal. That means treat only the feeder vein

and the telangiectasia and avoid injecting a lot of volume and because those sclerotic agents will reach another vein that you don't want to touch. Pigmentation is another problem. And to control pigmentation of course

you have to have less thrombus and once again ClaCS would be very nice idea because the transdermal lazer causes vein wall edema and contraction and then you inject the Dextrose 75%. And then you have less internal diameter

in the vein, that means you have less outflow, the Dextrose will stay there it's a synergy, and you have less clot, less pigmentation. Also Dextrose is a medium power sclerosing agent that doesn't cause too much pigmentation as the other agents.

Well once again my father, and my father is at the hospital right now, and he probably will not survive, but here is a tribute for him. And he developed this surgical treatment of the telangiectasia by removing

the feeder veins. And, sorry. Here a study with phlebography showing a double perforant insufficient vein, and these telangiectasia wouldn't respond. And that's a complex telangiectasia, not a simple telangiectasia.

Like here another example, the phlebectomy showing the result of the treatment of telangiectasia. Well, diagnosis is very important if you are a skipper of a boat, if you have a special device to diagnose you certainly will have a better result.

And here are very tricky, looks simple to treat but as you compress you see there is a reflux, and this reflux is going have five feeder veins and one is going to the reflux in saphenous vein and patient the patient is CEAP1. Well, I also.

Sorry. Next slide. If you are a painter and you want to paint this wall, it's not easy you need to find a feeder vein and that's why I've developed this classification where you have three, two questions

and you look for varicosities and telangiectasias and here you have, lets go fast, the ultrasound showing reflux and the augmented reality showing if there is feeder vein or not. And here a good example of a patient that was,

the examination would lead to a CEAP 1, but as we exam, we noticed that she's score nine, where she had a long reflux asymptomatic that was treated with endovenous lazer phlebectomy and CLaCS, and that's how we got the result. Then treatment failure is also can be avoided

by a good classification and then CLaCS. If you want to learn more about that, we have a congress, it's going to be the ninth in IMAP in Saul Paulo next year, and I kindly invite you to participate. Thank you.

- Thank you (mumbles). The purpose of deep venous valve repair is to correct the reflux. And we have different type of reflux. We know we have primary, secondary, the much more frequent and the rear valve agenesia. In primary deep venous incompetence,

valves are usually present but they are malfunctioning and the internal valvuloplasty is undoubtedly the best option. If we have a valve we can repair it and the results are undoubtedly the better of all deep vein surgery reconstruction

but when we are in the congenital absence of valve which is probably the worst situation or we are in post-thrombotic syndrome where cusps are fully destroyed, the situation is totally different. In this situation, we need alternative technique

to provide a reflux correction that may be transposition, new valve or valve transplants. The mono cuspid valve is an option between those and we can obtain it by parietal dissection. We use the fibrotic tissue determined by the

sickening of the PTS event obtaining a kind of flap that we call valve but as you can realize is absolutely something different from a native valve. The morphology may change depending on the wall feature and the wall thickness

but we have to manage the failure of the mono cuspid valve which is mainly due to the readhesion of the flap which is caused by the fact that if we have only a mono cuspid valve, we need a deeper pocket to reach the contralateral wall so bicuspid valve we have

smaller cusps in mono cuspid we have a larger one. And how can we prevent readhesion? In our first moment we can apply a technical element which is to stabilize the valve in the semi-open position in order not to have the collapse of the valve with itself and then we had decide to apply an hemodynamic element.

Whenever possible, the valve is created in front of a vein confluence. In this way we can obtain a kind of competing flow, a better washout and a more mobile flap. This is undoubtedly a situation that is not present in nature but helps in providing non-collapse

and non-thrombotic events in the cusp itself. In fact, if we look at the mathematical modeling in the flow on valve you can see how it does work in a bicuspid but when we are in a mono cuspid, you see that in the bottom of the flap

we have no flow and here there is the risk of thrombosis and here there is the risk of collapse. If we go to a competing flow pattern, the flap is washed out alternatively from one side to the other side and this suggest us the idea to go through a mono cuspid

valve which is not just opens forward during but is endovascular and in fact that's what we are working on. Undoubtedly open surgery at the present is the only available solution but we realized that obviously to have the possibility

to have an endovascular approach may be totally different. As you can understand we move out from the concept to mimic nature. We are not able to provide the same anatomy, the same structure of a valve and we have to put

in the field the possibility to have no thrombosis and much more mobile flap. This is the lesson we learn from many years of surgery. The problem is the mobile flap and the thrombosis inside the flap itself. The final result of a valve reconstruction

disregarding the type of method we apply is to obtain an anti-reflux mechanism. It is not a valve, it is just an anti-reflux mechanism but it can be a great opportunity for patient presenting a deep vein reflux that strongly affected their quality of life.

Thank you.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- Thank you and thanks Craig, it's fun to have these debates with good colleagues, thoughtful colleagues. These are my disclosures for the talk. But pry my most important disclosure is I work in academic center with a dedicated Limb Preservation Center, very tertiary practice. And I perform both open and endovascular surgery

and actually my current lower extremity practice is probably about 60 to 65 percent endovascular so, I do both of these procedures. We already saw this slide about how the increase in endovascular intervention has grown. But, I would caution you to look a little more closely

at this outpace of decline in bypass surgery by more than three to one. I don't think this is an epidemic, I think it's a little bit of this, and a little bit of this. Everything looks like a nail when you only have a hammer

or a hammer when you only have a nail. So, what should we really be doing today? We should be trying to select the best thing for the right patient at the right time. And it really comes down to starting not with the lesion, but with the patient.

Start with assessing the patient's risk, what's their perioperative risk, what's their long-term survival, what are their goals for care? And then look at the limb itself, because not all limbs are the same.

There are minor ulcers, there's extensive and severe rest pain and there are large areas of tissue loss. And the WIfI system is good for that. And then let's look at the anatomy last. And when we're looking at it from the standpoint of what all the options are, endovascular we're looking

at what's the likelihood not just of technical success, but of hemodynamic gain and sustained patency for as long as a patient needs it. With bypass, we also have to look at other things. What kind of vein do they have, or what kind of target do they have?

And I think the bottom line here is in today's practice, it's kind of silly to say endo first for all patients, it's certainly not surgery first for all patients because they have complementary roles in contemporary practice. Well what's happening in the world out there,

this is the German CRITISCH registry, I'll just point out 12 hundred patients recently published only a couple of years ago, 24 percent of patients get bypass first. And if you look at who they are, not surprisingly they are the patients

with long occlusions and complex anatomy. They are out there, in fact most of these patients have multi-segment disease, as Craig pointed out. Here's some contemporary data that you haven't seen yet because it's in press, but this is VQI data looking at 2003 to 2017.

I'll point out just in the last 2013 years, still, if you looked at unique patients, not procedures, one-third of the patients are getting a bypass first. And if you define risk groups considering what might be a low risk patient as a three percent mortality and survival greater than 70 percent,

and a high risk patient, you can put these patients into buckets and in fact, of all the patients getting lower extremity revascularization and VQI today, 80 percent of them would be called low risk based on this definition. So, most patients are not high risk patients

who don't have long-term survival. In fact, this is current VQI data. If you're a low risk patient in that cohort, your five year survival actually is over 70 percent. So there's a lot of these patients actually today with better CLO medical therapy that are actually

living longer and are not that high risk. We talked about the BASIL trial already, and he pointed out how the early results were similar, but what we learned also with BASIL, that if you've got a bypass as a secondary procedure, or if you got a bypass with a prosthetic,

you simply did not do as well. That doesn't mean that the initial endovascular revascularization caused the bypass failure, but it means that secondary bypass surgery does not work as well. And when Dr. Bradbury looked at this data

over a longer period of time now going over many more years, there's a consistent inferior outcome to the patients who had their bypass after failed angioplasty in comparison to bypass as the initial strategy. This is not an isolated finding. When we looked in the VSGNE data over a,

more than 3000 patients at the impact of restenosis on subsequent treatment failure, we found that whether patients had a failed previous PVI or bypass, their secondary bypass outcomes were inferior, and the inferiority continued to get worse with time.

These bypasses just don't perform as well. Unfortunately, if we only do bypass after endo has failed, this is what all the results are going to start to look like. So let's be a little bit smarter. Now what about patency?

I think we, even today in the endovascular world, we realize patency is important. After all, that's why we're doing drug elution. Most, but not all patients with advanced limb ischemia will recrudesce their symptoms when their revascularization fails.

I think we all know that. Most CLTI patients have multi-segment disease. I don't want to sit up here and be a high school or elementary school math teacher, but here's the reality. If you look at it above the lesion, you say I'm going to get 70 percent patency there, and you look at

the tibial lesion, you say I'm going to get 50 percent patency there, what do you think your patency is for the whole leg? It's 35 percent folks, it's the product of the two. That is the reality pretty often. Patients with more advanced limb presentations,

such as WIfI stage do not tolerate these failures. They tolerate them poorly. They go on to amputation pretty fast. And patient survival, as I've already shown you has improved. Now, what the all endo-all the time

camp does and doesn't say. He already showed us, many datasets suggest the downstream outcomes are roughly equivalent but, these are not the same patients, we are not operating on the same patients you are doing endo on.

If I told you the results are the same for PCI and CABG without showing you anatomy, you would laugh me off the stage right? So, this is really not an equivalent argument. Endo can be repeated with minimal morbidity, but patients suffer.

Their limb status deteriorates, they come in the hospital often, and they continue to decline in the outcomes of these secondary procedures. CLTI patients are too frail for surgery, I just showed you that's really not true for many patients.

There is really unfortunately, an economic incentive here. Because there is unfortunately, no incentive for durable success. I hate to bring that up, but that's the reality. Now just quickly, some results. This is a large Japanese series

where they were performing endovascular interventions only for advanced limb ischemia. And basically what you can see as you go across the WIfI stages here from stage one to stage four, when you get to these stage four patients, the wound healing rate's only 44 percent,

limb salvage rate drops to 80 percent, repeat EVT rate is encroaching 50 percent. These patients really are not doing well with endovascular intervention. And we found that in our own series too, it's relatively small numbers and not randomized.

But if we look at the stage 4 limbs with bypass versus endo, when these patients failed at revascularization, and they may not have been bypass candidates, but they didn't do well, they went on to amputation very quickly.

So the ESC guidelines that just came out really sort of line up with what I'm telling you. You'll see bypass first. If you have long occlusions in an available vein, is actually currently the favorite approach, with level 1A recommendation.

So in summary, this is how I currently approach it. You look at all these factors, some people should get endo first, but there's still about 20 or 30 percent that I think should get bypass. Some people should go on to amputation earlier, is the bottom line, and I'll go right to the bottom line.

If you don't have access to a skilled open bypass surgeon, you're probably not at a center of excellence, go find one.

- [Presenter] Thanks again, Laurel, for this kind invitation. We're going to discuss about how I do the treatment for varicose veins for the foot. And we're going to show you our experience for that. I have no disclosure. I came from Natal, Brazil.

There's our wonderful beach that we have there, but we don't have time to go there, unfortunately. This is our hospital, and these are the people that worked with us. To do this treatment we have to pay attention of the history and the physical examination.

It's very important to decide what you can do to these patients, because we have to associate some tools to do this kind of treatment. So phleboscopy, transillumination is very important to define the feeder veins,

so it's very important in this case to show us where is the veins that we feed these spider veins to treat that. And of course, the ultrasound associated with all the physical examinations of course and then the black scan. You can see in this case, a patient does not have any

varicose veins on the thigh, of the leg. They have only varicose veins by the foot. If you can see, the reflux of there, comes from the junction to the foot. If you don't have the good ultrasound

or duplex scan it can have a mistake and treat wrong way these patients. So, what are the tools we have to do to treat these patients? A lot of tools, you can see the liquid sclerotherapy with a low concentration of 75%.

Foam polidocanol for these two concentrations. Of course, transdermal laser, hooks that we can apply in the surgery and polidocanol laser. How about this procedure? This paper from the Netherlands, show us patient satisfaction after ambulatory phlebectomy

of varicose veins, what they conclude about that. The most important factors that influence the patient satisfaction is: discoloration, persistent pain, and the perception of varices after surgery. This last one is very important for us,

because the patient comes to us to be cleaning off veins of the foot, if we miss that everything we did, the patient will complain about after their surgery. We have two kinds of treatment, ambulatory treatment being the option

and the hospital we can do the procedures. We have separate patients with CO grade, CEAP classifications and C2 classifications. When we have a C1 grade classification we use transdermal laser and liquid sclerotherapy. You can see one case is a cosmetic

and one is a severe one. A C2 case we have ambulatory treatment, we have transdermal laser and we associate all this with foam sclerotherapy. But the concentrations are 0.5% and 0.25%, you can see its low concentrations.

At the hospital we have can do almost everything nearly in the same day. Transdermal laser, liquid sclerotherapy, foam sclerotherapy. Yes, we can associate liquid sclerotherapy, sometimes the people say that you cannot do that, but we do that.

In case like this, we also say transdermal laser in spider veins, phlebectomy and you can see in this case we have a use for sclerotherapy and is this is the result of 60 days. This other case that we use phlebectomy and we have to be careful because you

can take nerves, the patient will complain about after surgery. And these are the results. Polidocanol with laser tool, yes, but it's not our routine to use that. In conclusion:

Physical exam and a precise diagnosis of the feet varicose veins is essential to do a good surgery. With all these tools, that we have, the treatment of varicose veins of the foot is safe and effective. This is my fugu in Natal, Brazil.

Thank you.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- Thank you very much both. It was a great pleasure to see you. I continue to be grateful for the guidance you have given me over the years. Thank you to the organizers for advising me to speak. These are my disclosures. So really there are two questions posed by this topic.

One is, is the patent popliteal vein necessary? I would assume from this is it necessary for patency and symptom relief to be achieved in treating patients with both acute DVT and potentially chronic. And has the evolution formic mechanical therapy

led to over stenting. Which means we have to ask the question what is an appropriate rate for stenting. I am not sure we know the answer to that. So being able to answer over stenting requires us to know how many patients

actually need the stent in the first place in acute DVT treatments. The problem is essentially this. Is that when we form lithic therapies and this is a classic case of treatment formed with formic and mechanical device

but without a follow up using lithic in the patient for whom lithic was not feasible. You end up opening up a vessel but you can see from the image on the left hand side that there is a degree still of luminol contrast deficit suggesting some cult left behind

in the external iliac vein. Well there is obviously a May-Thurner legion at the top. The question of over stenting is one of do we just stent the May-Thruner and extend it down into the external iliac vein to trap that thrombus

or would a period of time of lithic have resulted in this clot resolving and not needed a stent at the end of it. To get to the question of how many people should be stented. The only way we can really do this

is try and exstipulate from the literature to some extent. This is the short and long term outcome from the Kevin study. Where there is ultrasound follow up of patients underwent standard treatment only.

And a additional group in the patients had catheter-directed thrombolysis. We can see there that the patients did six months in catheter-directed thrombolysis group is around 60%. And the patency seen with the non treated group

is around 40%. If we kind of use these numbers as a guide we probably expect therefore that the stent rate would be somewhere between 40 and 60 percent. To account for treating the outflow structure that presumably patients see at six months.

But this is clearly not a very rebost method of being absolutely clear on who needs stents. Additional method is we don't really have and answer for who should be stented at the end of a procedure. So if you look at the massive variability

in the other studies. We see that attract stent rate is approximately 28% for the study. Which is obviously a operative discretion and has been criticized for that reason. But there is no comment on the Popliteal vein

or Popliteal vein patency. Cavent did an stent rate of 15% again with no real comment on whether the Popliteal vein was open and it wasn't a prerequisite for treatment in the study. This contrast with the Ansberg Aspirex Registry.

Which is a registry of a purely mechanical device to aspirex clot and the stent rate is 100%. Baekgaard Copenhagen used a catered-directed thrombolysis with a mandated open popliteal vein for purpose to be in the study. He has a stent rate of 60%.

My own personal experience of 160 odd patients is that were stenting around 80% of patients with outflow legion at the end of treatment. And were not really bothered by whether the popliteal vein is clear or not. But that doesn't necessarily answer the question

whether it makes a difference in the long run. So its very difficult even looking at the data we have because there is no standard definition of what a outflow stenosis is. There is no objective measure for an outflow stenosis. So stenting becomes and operative discretion decision.

But you would have to say that if your taking purely mechanical devices and the stent rates are going up to 100% that the inclination would be that there is potential for formic mechanical therapy to lead to overstenting and increase use

for stents for sure. In our experience then we had 81 patients who had CDT alone verse 70 patients who had AngioJet Thrombectomy. The basic characteristics of the group are pretty much identical.

With similar ages and no difference between whether the thrombus with left side or right side of body or so on. And these are the patency curves for the different groups with equivalent primary, primary assisted and secondary patency over two yeas.

We had no difference in stent rates with the median stenting of 80% in both groups with two stents used in average for each of those patients. However in our practice AngioJet is rarely used alone. So we had 70 patients for whom AngioJet was used. 24 of those where AngioJet was used up front

as the first line of treatment followed by some CDT. We have tended find that if we wanted full clock clearance. We have always had omit to some extent. And single stage therapy is quite difficult to achieve unless you spent a lot of time in it.

Patency in the popliteal vein is clearly affected by some extent. These are our follow up results if we don't have a patent popliteal vein at the end. It does drop off in stent patency. So the conclusions then I think.

Is that patent popliteal vein is necessary for long term results. But you can still treat patients that have acute popliteal vein for larsons that is not a contraindication. Pure mechanical therapies may well lead to higher stent rate.

But is this a bad thing or a good thing? We don't really know this at this stage as to what the long term outcomes will be. Thank you very much.

Thanks very much, Tom. I'll be talking about thermal ablation on anticoagula is it safe and effective? I have no disclosures. As we know, extensive review of both RF and laser

ablation procedures have demonstrated excellent treatment effectiveness and durability in each modality, but there is less data regarding treatment effectiveness and durability for those procedures in patients who are also on systemic anticoagulation. As we know, there's multiple studies have been done

over the past 10 years, with which we're all most familiar showing a percent of the durable ablation, both modalities from 87% to 95% at two to five years. There's less data on those on the anticoagulation undergoing thermal ablation.

The largest study with any long-term follow up was by Sharifi in 2011, and that was 88 patients and follow-up at one year. Both RF and the EVLA had 100% durable ablation with minimal bleeding complications. The other studies were all smaller groups

or for very much shorter follow-up. In 2017, a very large study came out, looking at the EVLA and RF using 375 subjects undergoing with anticoagulation. But it was only a 30-day follow-up, but it did show a 30% durable ablation

at that short time interval. Our objective was to evaluate efficacy, durability, and safety of RF and EVLA, the GSV and the SSV to treat symptomatic reflux in patients on therapeutic anticoagulation, and this group is with warfarin.

The data was collected from NYU, single-center. Patients who had undergone RF or laser ablation between 2011 and 2013. Ninety-two vessels of patients on warfarin at the time of endothermal ablation were selected for study. That's the largest to date with some long-term follow-up.

And this group was compared to a matched group of 124 control patients. Devices used were the ClosureFast catheter and the NeverTouch kits by Angiodynamics. Technical details, standard IFU for the catheters. Tumescent anesthetic.

And fiber tips were kept about 2.5 centimeters from the SFJ or the SPJ. Vein occlusion was defined as the absence of blood flow by duplex scan along the length of the treated vein. You're all familiar with the devices, so the methods included follow-up, duplex ultrasound

at one week post-procedure, and then six months, and then also at a year. And then annually. Outcomes were analyzed with Kaplan-Meier plots and log rank tests. The results of the anticoagulation patients, 92,

control, 124, the mean follow-up was 470 days. And you can see that the demographics were rather similar between the two groups. There was some more coronary disease and hypertension in the anticoagulated groups, and that's really not much of a surprise

and some more male patients. Vessels treated, primarily GSV. A smaller amount of SSV in both the anticoagulated and the control groups. Indications for anticoagulation.

About half of the patients were in atrial fibrillation. Another 30% had a remote DVT in the contralateral limb. About 8% had mechanical valves, and 11% were for other reasons. And the results. The persistent vein ablation at 12 months,

the anticoagulation patients was 97%, and the controls was 99%. Persistent vein ablation by treated vessel, on anticoagulation. Didn't matter if it was GSV or SSV. Both had persistent ablation,

and by treatment modality, also did not matter whether it was laser or RF. Both equivalent. If there was antiplatelet therapy in addition to the anticoagulation, again if you added aspirin or Clopidogrel,

also no change. And that was at 12 months. We looked then at persistent vein ablation out at 18 months. It was still at 95% for the controls, and 91% for the anticoagulated patients. Still not statistically significantly different.

At 24 months, 89% in both groups. Although the numbers were smaller at 36 months, there was actually still no statistically significant difference. Interestingly, the anticoagulated group actually had a better persistent closure rate

than the control group. That may just be because the patients that come back at 36 months who didn't have anticoagulation may have been skewed. The ones we actually saw were ones that had a problem. It gets harder to have patients

come back at three months who haven't had an uneventful venous ablation procedure. Complication, no significant hematomas. Three patients had DVTs within 30 days. One anticoagulation patient had a popliteal DVT, and one control patient.

And one control patient had a calf vein DVT. Two EHITs. One GSV treated with laser on anticoagulation noted at six days, and one not on anticoagulation at seven days. Endovenous RF and EVLA can be safely performed

in patients undergoing long-term warfarin therapy. Our experience has demonstrated a similar short- and mid-term durability for RF ablation and laser, and platelet therapy does not appear to impact the closer rates,

which is consistent with the prior studies. And the frequency of vein recanalization following venous ablation procedures while on ACs is not worse compared to controls, and to the expected incidence as described in the literature.

This is the largest study to date with follow-up beyond 30 days with thermal ablation procedures on anticoagulation patients. We continue to look at these patients for even longer term durability. Thanks very much for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.