Create an account and get 3 free clips per day.
Chapters
Bile Duct Injury, Biloma|Biliary Drains (Trans-hepatic), Hepaticojejunostomy|44|Male
Bile Duct Injury, Biloma|Biliary Drains (Trans-hepatic), Hepaticojejunostomy|44|Male
2016bilebiliarybilomabismuthdraindrainingdrainsductductsinjurypercutaneousposteriorsectoralsidedSIRtranshepatictype
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Case 6: Pelvic Fracture | Emoblization: Bleeding and Trauma
Case 6: Pelvic Fracture | Emoblization: Bleeding and Trauma
angiogramaortabottomchaptercoilscontrastcontrolembolizationextravasationfracturegoalimageimagesinjuryNoneparticlespatientpatientspelvicPelvic fracturepicturepicturesscanselectivetraumaunstable
Malignant melanoma, liver metastases | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
Malignant melanoma, liver metastases | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
ablationattenuationballchaptercryoablationfillfluidfrostbitegauzegloveinjuryliver metastasesMalignant melanomameltmetastasesprobessalineskinspraytumorwarm
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Case 7: Retroperitoneal Hematoma | Emoblization: Bleeding and Trauma
Case 7: Retroperitoneal Hematoma | Emoblization: Bleeding and Trauma
angiogramaortaarterybifurcationchaptercoilsdelayedembolizationembolizefillgramhematomaimageinjurylumbarmicrocatheterNonerastretroperitonealRetroperitoneal hematoma due to a transverse process fracturespacespinetransverse
Difficult Biliary Access | Biliary Intervention
Difficult Biliary Access | Biliary Intervention
axischallengingchaptercholangiocarcinomacholangitiscontrastcutedilatedductductsfrequentlygastriclateralleakingleftlobeneedleoperatorspatientprocedureproceduressclerosingsheathskinsnarestentingsurgeonssurgerysurgicalsystemtubewire
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastyarterycephalicchaptercolordisclosuresdopplerFistulafistulashemodialysispercutaneousperforatingperitonealpreoperativeradialtechnologisttotallyulnar
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
accessangiogrambiliarychaptercolonoscopyendoscopicercphopkinsinterventionlandscapeliverpercutaneouspracticequestionspecialtiesspecialty
Surgical AV Fistula  | Pecutaneous Creation of Hemodialysis Fistulas
Surgical AV Fistula | Pecutaneous Creation of Hemodialysis Fistulas
angioplastycannulatedcathetercatheterschapterdeviceDialysisembolizationFistulafistulashemodialysismaturationpatientspercutaneousrefused
Innovation in Interventional Radiology in China | Across the Pond: The state of Interventional Radiology in China
Innovation in Interventional Radiology in China | Across the Pond: The state of Interventional Radiology in China
atresiabiliarybillarycatheterchapterchinadirectedinnovativeinterventionalintrahepaticmedicinenecessityportalradionuclidestentsthrombustreat
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
angiogramarteryaxialbleedcatheterizationchaptercontrastcoronalCoverage StentembolizationembolizehematomailiaciliacsimageinjuryNoneoptionpatientpseudoaneurysmRetroperitoneal hematomastentstents
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastycathetercatheterschaptercharlestonDialysiselevationsFistulamonthspatientspercutaneousphysiciansproceduresurgeonsvascularveinweeks
The Ablation Concept | Interventional Oncology
The Ablation Concept | Interventional Oncology
ablationablativebifurcationbilebiliarycelsiuschaptercolorectalcontrastcryoablationcurrendegreesductexpirationgeneratesgrayhepatectomyinvolvinglesionmicrowavemodalitiesprobesradiofrequencyrapidstricturestumortumorsureterzone
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
biliarycardiologistscenterschapterinterventionalInterventionsneuroparacentesisproceduressurgeonsvascular
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
ablationablationschaptercryocryoablationfreezehemorrhagelesionlungLung Noduleminutesnodulepneumothoraxprobesprotocolproximalthawtriple
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Other Non-invasive Ways to Image the Lymphatics  | Lymphatic Imaging & Interventions
Other Non-invasive Ways to Image the Lymphatics | Lymphatic Imaging & Interventions
basicallychaptercirrhosisdistendedductfluidgadoliniumimageimagesinjectlymphlymphaticsmalformationsnodalnodespediatrictechniquethoracicvenous
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
ablationbiliarybiliary cancercancerchapterchinacirrhosisfactorsgeneticguyshcchepatitisinterventioninterventionalistsInterventionslargestlifestylelunglung cancerneuropiccprevalentproceduresmokingsocietaltrained
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
activeangiogramarterybleedingbloodchaptercoilsembolizationembolizeextravasationhematomainjuryleakingliverLiver TraumamelenamicrocatheterNonenoticeportalposteriorpseudoaneurysmtraumavenousvessels
Pre, Intra, and Post Operative | Biliary Intervention
Pre, Intra, and Post Operative | Biliary Intervention
biliarychapterconduitdrainresectionsurgeonssurgicalwhipple
Transcript

a cholecystectomy.

We're hoping this is just gonna be a post operative abscess, there's a fluid collection in the gallbladder fossa. We put a drain in it and we get continuos bilious effluent from it. So if we proceed to the percutaneous transhepatic cholangiogram,

we pacify the right side of the biliary tree draining into this subhepatic biloma. Great, but we're not seeing any left sided bile ducts so this may be a bismuth type four injury where there is isolation of the biliary tree. And so we're able to stick that and we can see now we've got left

sided hepatic ducts draining into this biloma. And the point of this case is you gotta use all the tools at your disposal. This is actually not a complete cholangiogram. And we sort of had an idea of this from the pre procedural MRCP. The big deal is to not send this patient to the operating room without

knowing that, so it maybe that you don't recognize this at the time, but you've your percutaneous transhepatic drains in, you drain but you continue bilious effluent from the biloma drain. That's a situation where you really gotta consider is there another portion of the tree that we're not draining?

So even if you miss this upfront it's really important to really follow this patients and make sure that that biloma drain has dried up and if its not. You gotta be looking for the other duct and in this case, here there is a posterior sectoral duct that was transected and also

draining into this biloma. In the final picture, we end up with, our instution is three separate transhepatic drains all with their [UNKNOWN] in the biloma so the surgeon can find those. These reconstructions is very hard for them to actually find the duct sort

of a like a side type procedure to the rule. So this is a major bile duct injury of bismuth type four injury and the key point here is the satisfaction of surgeon. Again there are a number of different ways to determine that you haven't got all the bile ducts but the point is just don't get the patient to the operating room before you're sure that you got it all.

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

patient 40s year-old patient again car accident lower abdominal pain and bruising so it sounds like you guys can appreciate that's an injury alright so we'll move past that so here's a CT scan these are four separate images from the

same patient CT scan and it is a bit more subtle I'm not suggesting it's easy to see you know we can appreciate the injury but one thing that you should be able to notice again is that concept of symmetry so when our residence or even

myself or anybody reads a cat scan we always want to kind of appreciate all the differences in the symmetry that we're seeing and so what you can see here is especially on that upper left hand side you can see the penis coming

out of the patient almost coming out of the patient and if you just draw a line straight back from there you should notice that there's a bit more tissue on the left side of the patient than the right side of the patient but that's

what we're looking at and if you go to the image over to the right the top right image right at that same area there's a little bit of a white blush which just shows that there is some bleeding going on there and if you look

at the third image which is the one on the bottom left right below one of the bones or there's another area of a white contrast collection or bleeding all right you can maybe see that again on the fourth image so that's what we're

looking for on the CT that asymmetry or the thickening of the tissue and we're looking for an escape of some contrast from where we should expect it to be all right so many of these patients will be

unstable those are the patients that probably need to go right to the or but for the patients who are really you know doing okay we have a chance to intervene on them and the reason why that's important is the more unstable they are

the higher the chance of mortality especially with the pelvic fracture so pelvic fractures are a big deal if you have a hemodynamically unstable patient with a pelvic fracture that's something to take very seriously

all right many of these patients will get CTS or C if we see extravasation they often come to us for angiography so here's the angiogram again a great example if you only look at one picture or two pictures

you're not going to see the problem all right so if you look at the first two pictures you really don't see anything I would I would argue it looks normal but as you get to that third picture you see that kind of collection of contrast

on the bottom right-hand side of the picture all right that's why you need to look at all the pictures of the and reom not just one picture you watch them it's like watching a

little movie now you just stand there and watch it over and over again I get a sense of what it looks like at the beginning middle and end of the angiographic run or set of images the other thing is it's very hard to see

extravasation of contrast when you're in the aorta so many times we do an aorta gram we take some pictures and we may or may not see anything but if we know there's a pelvic fraction we know it's more on the left side we'll go into the

left internal iliac artery and do a more selective angiogram and here's a picture of that selective angiogram and now you can see the extrapolation even more clearly hopefully you can all see it the bottom kind of leftish part of the image

all right here's a more selective now we say okay we definitely see something now we're going to get a little bit further into the system here's a picture now it's very clear you can go if you don't see it all right so you should see it on

the bottom all right and now our goal is to just get as close as we can and so we got all the way down then we put some coils there and again our goal is to make sure that we get just into the vessel that we treat and embolize it now

people will say what agent should we use do we use gel foam do we use particles do we use coils do we use glue or onyx the truth is you can you can really use anything but the thing with the most control so for trauma we tend to use

coils for trauma alright because our goal is to deposit an embolic agent right at the site of the injury that's our goal if we use particles we don't have as much control or a liquid we don't have

as much control they could go somewhere we don't want it to go all right here you're dealing with the blood supply of the penis the rectum the bladder other things which you know most of us would prefer not be injured during an

angiogram all right so we don't want to do something that we don't have complete control over and coils give us that type of control

is example as I mentioned about doing very large ablation so this is a lady who hadn't malignant melanoma and she

had metastases to liver we basically placed six probes into this mass as you can see there on that CT the image on the right is the appearance of those six probes it's all excited about how many probes I placed in this patient

like it's a game and then I just watched an ablation talk with a guy put 16 in so that didn't really make me feel much better so so we have six probes here and you can see what we what you do when you have lesions that are in the soft

tissues and you're worried about freezing to the skin you can have injury to the skin right essentially frostburn and so frostbite sorry and so what you can do is you can take either a warm glove fill it up with saline and put it

with the fingers amongst the probes so it keeps the skin warm because you don't want to freeze the skin or what people are doing sometimes as well as they've just put some gauze around all the probes and they spray that goes with

warm saline I just take one of those leader bags of saline put it in the microwave for a couple minutes and then just fill fill the bowl up with it and just spray the gauze on that or you can do the glove technique the main idea

here once again is you don't want to get skin injury when you do these and as you can see a pretty sizable ablation around that entire tumor you can even see the lightening sign which is the low attenuation sort of lightening looking

structures within the ice ball which is cracking of the ice ball as you form but you will see what this is immediately after the procedure the patient will have a very hard ice ball under their chest and it takes about an hour

for that to melt so if you notice bleeding off towards or what is perceived as bleeding before you panic you should realize that that ice pole is going to melt and it's going to come out the holes seep out of the holes that you

created so oftentimes if it's sort of a blood tinge fluid that's really just the ice ball melting in the fluid coming out of the the sites that you've punctured

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

all right another patient 52 year old patient ATV accident we get a lot of

lunatics on ATVs in our area and they presented with severe back pain here's the cat scan you see that white thing kind of in the back on the right side it almost looks exactly like that liver one I showed you two patients ago the

difference is that that's not conscious that's a part of the patient's bone that's the spine that fractured off and is now sitting in the middle of a big hematoma so that's why my kids don't have ATVs all right so basically that's

a big retroperitoneal hematoma due to a transverse process fracture all right in light of an ATV injury here's the angiogram now look at the picture on the left first that's an aorta gram you see the renal

artery at the top you see the bifurcation of the aorta kind of in the middle going down to each side and maybe just on that first image you see a hint of maybe some cloudy extravasated on the left side of the spine excuse me the

right side of the spine the left side of the image now remember I just I know I keep hammering this point home but you need the delayed image to make the diagnosis that's normally going to tell you if there's a real problem and on

that image on the right which is a bit more delayed you can see the extravagant Rast next to where the spine was that's an injury that's a lumbar artery injury and as we get closer all right we put a micro catheter in that lumbar artery now

you see the extraction and the question always comes up how much of that space do we need to fill that's an abnormal space that's just receiving all the blood that's leaking out of the artery and basically we don't have to fill all

of it we try we try to but it takes a lot to fill that up so we'll go in there you can see we put a lot of coils in this space and then we started packing coils back into the artery that was injured and I know it looks really big

on that image but if you go back into a finally orna gram you can appreciate that we were in a very small artery there but the technology that we have now allows us to get very far into very small arteries and that I think is

what's changed over the 20 years that I've been doing this at the very beginning of my career we wouldn't think about doing any of these things since we didn't have the tools to get that far out we had to

embolize these vessels very close to their origin and that led to a failure rate and an adverse injury rate that we don't see now that we can get this far out keypoint another case we have an older

and what makes things complex is when the Louie system is inhospitable to the easy procedures when the ducts are dilated I think most operators find this

really relatively easy to get a tube in but once it's under lay that it really makes it tricky you either have a disease of the Blooey systems such as sclerosing cholangitis in flammond ich ins of the power duct architecture and

the wall itself all surgeons have gone in in misadventure transected cut the wrong duct and so cholecystectomy is are frequently the most common ones we misidentified and right posterior duct inserting below

and they cut that or even cancers is there not sometimes Calandra carcinomas such as cat skins - matrix of the ones right at the middle of the tree those ones make it challenging to sometimes get through sometimes they're so severe

in the severity of a structuring that it's it's very difficult to get through and sometimes we have to use sharp organizations and then like I said post surgery and with the advent of your gastric sleeves and gastric bypass

surgery this has become a much more common place and so frequently I think bluie interventions are on the rise again whereas I think they went out of favor for a few years in the 2000 mainly the GI became so aggressive with a

slanting Denova stenting and middle stenting then and bluie disease came down somewhat in high AR but this is all on the upswing again now with much more patients with with a bariatric surgery so in terms of intervention and your

your procedures in the room for difficult access and again a unviolated Ballou systems is actually not that insignificant even very experienced operators is going to be the most challenging procedure of the day and

it's vital to actually know your options and for we will actually a pacify the blue system with anything that has yellow stuff so frequently surgical drains that are adjacent to the leaking site sometimes we will check them and

sometimes you just got to be careful not inject too much sometimes their pacifiers and obliterates a field so much so you can't see anything your procedures pretty much done I also use known in distance gee I frequently would

be the first group to go in and try address below a leaking and they'll plate in the stands even though it doesn't cross the leaking site or it's inadequate for a decompression so we frequently would just stick the

indistinct directly and start our procedure that way so we know we're going through deliver through some bad structures but you we use a very very small caliber needle and stick the in distinctly and then once we use that

sometimes we'll place a wire knowing the fact that this is not our final track to a destination we'll put a wire in and then put that into any peripheral duct and then stick our skinny wire and so that's another way another way is

actually once you original PTC's been obtained with its optimal not will use mix lidocaine jelly with contrast media and mix it and make it a real thick slurry and that sometimes is a really good way to keep

the contrast from making out really really quickly he sounds quite logical but it's actually a very cute trick so that's another thing to consider every now and then you can actually use gas because it doesn't dissipate so if you

take co2 and there's at large dilated ducts you can actually put co2 and visualize that very nicely particularly specifically in the left lobe of the liver tends to dive into Phi the ventral left duct very nicely with gas but

sometimes it's not always easy if it is gas filled intestinal tract and then use control actress and I'll show you what that looks like on a picture and then high-grade lesions every now and then we have to use sharp aura colonization and

really the packing of the wire and your who should be your Russia sheet a needle from a tip set every now and then we will use a cardiology transept or needle the skinny a needle and really that sometimes with a high-grade multi

sclerosing agent of sclerosing cholangitis sometimes that is the only way through and sometimes we will use even rfy and drove our way through with high-power so this is a little bit what what it would look like if you had a

lack called a transaction we couldn't specify the billary system from about 30 passes of a routine and ptc axis that we should be stuck a central duct we pointed the wrong way contrast we float much faster than we could to get a

second axis so we just put a wire and it immediately then we actually stuck our wire and used our wire to get down and this is a cute way of getting using just a structural element even though you don't actually managed to keep contrast

in there to allow you to identify here's an example of a patient who had a Whipple procedure and a surgical master moses leak and it was under laid it difficult to pacify patient also has rapid respiration so some of these

patients are from the ICU they breathe very very high frequency and it's actually very difficult unless you get general anesthesia sometimes the risk outweighs the benefits of putting people under

for some of these that we will just as soon as if get pacified the blue system put a wire and again another example where we stuck a wire then we actually use that to gain a second axis and pacify the other system left atrophy

this is a patient with a very very small left lobe and we use the right axis it's a very acute angle from the left hand side we actually spin just stuck put in a snare and we stuck a snare we pull the wire out from the left through the white

and out the skin and then pushed it down using a stuff and that's why I'm taking your snare from Lord lift out the let right and then put in from the right hand side up the skin then you push that all the way through into the right hand

side and how you have power lateral axis so just there are some cute tricks that you can do to and make your procedures more successful and this is the other way you may do it sometimes you can only get to the lift system from the right

the hilar cholangiocarcinoma here high central high low lesion we could get our CAFTA from the right to the left that there's no way we could get from left to right so all we did was stay our Y from right to left and it comes out the skin

and then using a peel away she you put the wire down from the right hand side then you said she go from left access all the way up the skin on the right you exchange being glide wire put it in the pillow sheath and the right stolle

feeder that aren't all the way and you pull your pillow as sheath and now you have left access and right axis and sometimes it's the only way to get our lateral axis this is commonly found when surgeons require bilateral tube for a

cholangiocarcinoma classic in Palmyra section where they use the Blooey tube to feel their way up and look at the end of the tumor and so sometimes we do

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

good morning thank you all for braving 8:00 a.m. and I'm sure you were in bed last night early about 8:30 and really enjoyed getting up for this lecture but here it is so this seems to be one of the you know there's a couple of buzzes around the meeting this year pardon my

voice I wish I was up to like what I wasn't and one of the buzzes percutaneous fistulas and then there's this extreme IR then there's this 3d virtual reality stuff is going around so in Orangeburg ER we're fortunate enough

to be very much involved with both of the newly approved fda devices what she also didn't mention was I was a technologist for eight years before I went to medical school so I kind of know where you're coming from that's why I

really enjoy not speaking to you if it's not for you guys and what you make us look good and I believe me so here's my disclosures someone said you should do well on these I said one I'm looking for more if anyone else is out there knows

any studies or anything they want me to do I'm happy to do them so I'm always looking for more disclosures after they office Access Institute in Orangeburg a little sleepy town about three-quarters of the way up from

Charleston towards Columbia John Ross built this amazing facility we are separate from the hospital you can see the hospital a little bit in the back a little bit in the back there but we're totally separate unit if you're

not familiar with us you've got six operating rooms totally dedicated to dialysis access know nothing else goes on there pardon me there's the clinical area waiting the preoperative and

post-operative a holding area there in the room for about 20 patients we do anywhere from 20 20 to 40 45 patients a day all things peritoneal hemodialysis access creation d clots angioplasty and percutaneous I think that was off the

first case for hemodialysis porcinis access and you see Jeff hole there the one of the developers of the ellipsis device I'm sort of just under the light and the caption is usually how many physicians does it take to put in a

percutaneous access a lot of them on the right this is a totally ultrasound mediated placement and then you can see that's what you get when you connect the artery in the vein you get that very beautiful color flow Doppler of a

perforating thing into a radial artery we'll talk about that now being down south I have had to get I've learned to get used to a chicken and biscuits for breakfast which I've never had to deal with before but it's all been quite

nicely folks been very nice to us so a little trip down memory lane and if you recognize this this is one of the first external officials for hemodialysis you know shrimper shunt and that was followed by of course many fistula sites

there you can see on the Left fistula sites up the radial radial ulnar element and radial cephalic rather of course called the breccia semitic fistula and should go up higher I want you to call your attention to right by the elbow

that area is where the site of percutaneous fistulas today are mostly created and these are deep fish to this and we'll get into what that means in just a moment and of course grafts there on the right

but it's a little bit out of the topic

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

good afternoon thank you so much for invitation to speak to you I have a privilege of working at Johns Hopkins and we have a fairly large practice we at the main hospital itself we have 11 rooms and during a day about two of them are have a biliary case actually going

on at the same time so it's actually a fairly large volume of our practice and so the gamut of bluie intervention goes from really simple stuff to really complex and it is something that our trainees specifically will come to

Hopkins for and many of times they will end up being the blurry and experts as soon as they arrive at a new practice so certainly it's something that we deal with every day I just wanted to give you a landscape overview and share some good

cases that we've done and hopefully you may something have some comments or learn something about the way we do it but I'm pretty sure throughout the country a lot of great Billu work has been done currently there's no question

though the Blooey access and access to the Blooey system has really been played out in most hospitals perth by GI and ir and obviously surgery but almost a lesser so today and the rat in at least four IR is the PTC PPD or transparent

Col angiogram but it's actually a recurring role and I actually speak and have a sort of special interest in transit paddock colonoscopy as well so we play scopes through the skin through the liver and do a lot of balloon

intervention I'll show you a few cases like that but in true these access points are germane to what specialty you come from and obviously endoscopic beeper oral and if you eye are usually usually through the skin and there's no

question GI now in some hospitals I'm sure you have advanced endoscopy that will go through the stomach straight into the leftover liver so there's no question of a blurry landscape is changing quickly but no question that

this is quite common but yet most patients and internal medicine specialties will be looking at blurry disease by access point through scopes through ercp so going back from the Duden up or directly through in there's

advantages disadvantages something it's fairly obvious to everybody that you know no question is selling it to a patient if it had both choices that ERCP through the mouth and nothing invasive nothing sticking out their body

is attractive yet the outcomes are very similar but nonetheless there's pros and cons and through the trance of had a crap or two percutaneous route you do definitely have tubes at least sticking out

initially and this is often solved by GI as the main differentiator at least a discomfort but yet we are able to address almost every problem at times and often where'd they pay a lot there's

today okay go forward so sorry now when it says is there any commercial bias really there's only two companies that have this device so if I speak about each one clearly there's going to be a

little bit of commercial discussion but as I people always ask me which one do you prefer and I always have to tell them quickly you know I'm not a salesman for either company as a matter of fact I'm more

like a test pilot and we're still in the very early stages of this and which device may be better however you wanted to find that or easier to use or what the data is going to show we don't really know yet so but we're fortunate

that we have access to both devices for our patients a couple of things we know and dialysis patients start 80% start with catheters bad okay and catheters bad if you get anything out of this lecture catheters bad about 28 to 53

percent failure to mature means they have a fistula it's physiologically working but it never matures to be able to use for hemodialysis time to maturation three to four months

interventions per year required angioplasty you know embolization you guys know all about this stuff trying to read Evert flow back into the main channel of the fishhook and patients about 30 up to 30

percent just refused once they have our fish to them for whatever reason they refused to have it cannulated you know they don't like the pain it's in an awkward position whatever but the idea of percutaneous

which was may actually put a big dent in that Kathy first-line initiating dialysis with catheters because many times these patients come then they need to houses right away they get a catheter but if we know you know these things

usually except you know for toxic injury like ingesting antifreeze and stuff like that most you know frolla just know these patients are headed towards dialysis well in advance of the time they need it and so these calls stage

four and stage renal disease these patients can get percutaneous fistulas and when it's time then they'll have a running blood access ready and totally avoid the need to have a catheter placed

medicine so very innovative though I will tell you necessity is the mother of all inventions right so if I can't get a hold of these products that I'm reading

about they they come up with some of their own products and some of their own procedures that were very innovative specially in the the world of IO SCI lastik intrahepatic biliary stands are very common over there they were

actually innovated over in China of radionuclide impregnated pillory stents imagine taking y9t shoving them in billary stents and putting them in to treat biliary cancer in atresia they do that quite readily over there we don't

do that here in the US but we're experimenting with it intravascular catheter directed gene therapy actually started in China pre portal vein thrombus to me for transplant liver functionality they do

that very commonly we just consider a very complex procedure over here catheter directed stem cell treatment for focal after mattis lesions they do that instead of doing stents over there and they're all innovated in China so as

I said necessity is the mother all of invention and when you go overseas and you get to work with some of your interventional colleagues who do not have access to what we currently have here in the Western medicine world

you'll be amazed at some of the stuff they've come up with it try to treat their patients so from American

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

patient who experienced the heart attack who had right little quadrant pain after a cardiac catheterization all you like oh so here's the cat scan and what you should appreciate there is in the front of that first image which is the axial

image all right you can see the hematoma that's brewing kind of in the front you notice how all these pictures kind of look the same that's the good part about giving a lecture on bleeding and trauma because they all kind of look the same

so that's the hematoma on the front part of the pelvis and on the on the right image which is more of a coronal like looking at the patient image you can see it right near the right groin you can see that hematoma all right so our next

step was to do an angiogram and this is what the angiogram looks like who wants to volunteer what do they say all right I saw someone raise his hand over here some walk over here what do you think yeah well yes so it is a retro hematoma

would you say describe the angiogram for everybody right where it's at the external iliac down the common femoral looks like there's contrast going up to the left and down to the right probably close to where they accessed yeah

probably but so yeah probably probably too high but the other thing is that's probably a pseudoaneurysm that probably is the evidence that there was a bleed there we're not seeing Frank extrapolation of contrast in a literally

contrast pouring out but we are seeing the effects of an injury to the artery and the constraining of the the remaining normal tissue to hold on to that bleed so the question is what do we want to do no that was very good because

I fooled you it's not always embolization so sorry I lied so in today's world a lot of times when we see this type of pathology we have again relatively new technology available to us again we

could go into that pseudoaneurysm and embolize it and that would be a legitimate treatment but my friend here is right you know this is a great case for a covered stent so we could go in and put a stent right across that area

of injury and stent it so these days looking at coverage stands as an option for patients with arterial injury is a very legitimate option you just have to be able to deliver it has to be the right artery you have to be able to get

the stent where it needs to go we all work with vascular surgeons who are great and they can put these stents and iliacs and aortas but they can't make those turns into livers and kidneys and spleens it's got to be the right artery

this is this is the right artery okay we saw this patient and we said well we could kind of get a micro catheter into that area of injury and embolize it or we could just put a cover sent across it and all go home to have dinner with our

kids so that was option B is what we chose here so this is a great cover stent case okay here's another patient

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

fish through creation one is screening with ultrasound you really have to be able to look at these patients and I'm you know when I talk to our physicians they say we have a great

ultrasonographer named Megan and so I say the first thing you need to get yourself a meg everybody needs a meg and May because meg knows what to look for what to look for what's a measure where to get flows and she submits that to us

now other than the anatomic part you know at our place you know we're very particular about and selected we try to be thoughtful about you know who gets what access and that's what the new dokey guidelines are gonna say you know

the best access for the right person at the right time so for example you know if you come in with a catheter and we can you know we'd won from a 275 mile radius people come to us you know for access because you know they they've

they've been given up the cases have been given up by local people and you've got a catheter my first thing I say is how long is the catheter been in and they said well catheters been in for eight months you're not getting a

percutaneous fistula if your catheters been in for eight months I'm gonna call one of the surgeons think I am with part of my group you know we have no competition there's no turf wars we're all friends we like each other we like

working together it's a great place I say Karl Karl Willy who was recently from Tampa - Karl illustration - sick catheter for six months is okay I'm going to create they put a flick seen graphed in the

upper arm probably with a suture listen a stenosis and pull the catheter tomorrow that patient's going to be dilating with a graph where the dialyzer will be graphed you know because after six months you don't want a cath over

there when you start going down that road of infection endocarditis vascular damage all that kind of stuff if you come in and you started with a catheter because somebody wasn't looking ahead far enough and you got a catheter and

they come here for accents placement catheters been in for you know two weeks three weeks one month there's a good chance you're gonna be seriously mapped for a percutaneous special because now we have time we've got we arbitrarily

have considered the six months window that we can probably work with the catheter there's nothing to prove that there's nothing in the literature in fact I had a discussion last night with someone from one of the companies who

wants to do some type of a trial to look and see when can these catheters really do go bad and so you're gonna get worked up for a percutaneous fish and clearly if you come with stage four you know know you're not on dialysis they don't

know when you're gonna go into Alice's but they you know you're going in that direction you're gonna get seriously worked up for a percutaneous fistula one patients are still psychologically trying to wrap their head around the

fact that they're going to be on dialysis it's much easier to tell them you come in you're gonna get a puncture two punctures you're gonna go home with a band-aid and we'll take care of this we'll get this up and running over the

next six weeks eight weeks ten weeks and when you need it it's gonna be ready to go and you won't need a catheter then we tell them you don't not gonna need this catheter sticking out of your neck they're very happy and they usually

agree to do the percutaneous miss doula also since you don't get those big ropey fish - as I talked about when these patients are in dialysis you know how many people ever been to a dialysis unit that's how I tell physicians you want to

you know you want to look build a practice like this go to the dialysis unit talk to the charge charge nurse do rounds once a month or once every couple of weeks with a nephrologist and that's how you build the practice but these

patients they're in the chairs they're talking to each other right and they say hey how come you don't look like a cling-on you know with this big veins you know you where's your fistula and then they want that you know they it's

really cosmetically very pleasing these patients are so deserving and they have such horrible I was being tied to that machine three days a week so any little bit of hope we can give them I think is is worth it alright in summary it's not

a one-step procedure and then we try to make patients understand this you may need a secondary angioplasty or embolization in the future hopefully not usually about 30% of the time has great value in the stage Forge so we

talked about more acceptable to patients coming to grips with their future may make a significant difference with the catheter people starting with a catheter and I think whoever is going to do this really has to have a commitment to

access this is not you're not doing a procedure you're actually developing a treatment plan or a treatment system and so then these patients are yours once you do this you're following them you're keeping them working you know how do you

sell this to the surgeon you sell to the surgeons this way because if you start this program you know people are gonna start coming to you they're gonna come out of the woodwork it's like if we start doing AVM stuff that they start to

come from nowhere and you're gonna draw so many patients the in that surgeons are going to have more work and there's no question because everybody's not going to be a candidate and so I mean when bobwhite if hopkins years ago

started doing angioplasty the business of surgery increased by 15% so you're gonna see you're gonna make the pie bigger that's how you sell it you're making the pie bigger and everybody can feast on the pie leverages our expertise

as interventional radiologists and image guided procedure list to make these procedures work I think we're in a great position a really great position if you listen to Alan Matsumoto the other day at the toddler lecture we're in a great

position for the new age of medicine and it may be the ideal procedure for multidisciplinary collaboration I can't do basilic vein transpositions or elevations or brachial vein elevations so it's good to have a surgeon that

you're friendly with that will make these things happen they're all part of the group that's necessary and I think that could be it yes ah I'm from New York and I'm a shameless marketer and so I would encourage you if you're

interested or some of your attendings or interests come to the vasa practicum it's gonna be done in Houston with dr. Eric Pete and chief of vascular surgery is running the meeting you get to put your hands on all these devices and put

and stuff you can all do it I mean it doesn't have to be doctors you have big models and they'll have live cases and it's a great opportunity in 2020 since I'm the president-elect of Vassar we're gonna run the meeting in

Charleston that's gonna be held out a hell of a lot of fun so we encourage you to come to Charleston in 2020 thank you very much not questions yeah

the ablation concept in general is to provide an environment that is

completely hostile to tumor minus 40 degrees Celsius 150 degrees Celsius 500 gray which is a radiation dose we say it's very hard for it's about anything to survive but so why is it that it doesn't always work well that's a

function of all those parameters that you see there we got to make sure we pick the right patients we got to make sure that we treat tumor where we think it is and avoid trading things that don't need treatment avoid causing

damage to collateral structures and getting a reasonable margin where we actually get some of the tumor that's microscopic there are a lot of ablation modalities radiofrequency alternates electrical current very rapidly so that

generates friction within the lesion and causes heat it looks like this a lot of times you see these little times that stick out so that you can increase the size of your blasian zone and here's a one of those deployed in a patient who

had a colorectal Curren after hepatectomy cryoablation freezes things and it pushes a gas that once it goes through a pin hole tends to expand and cause rapid freezing he can also push another gas right through it and cause

rapid heating but this is just bringing tumors to that minus 20 degree minus 40 degree threshold the nice part about cryoablation is that you can visualize your ablation zone so we're right up against the bile duct here and it tends

to be a little more respectful of tissues so that's why cryoablation is chosen every once in a while we're do frequency ablation is an excellent tool we have lots of data for it but likes it sometimes it's difficult determine where

the ablation zone is interprocedural e microwave ablation there was just a randomized study that came out that compared microwave ablation to radiofrequency ablation and the results are very similar

it was a very very experienced institution doing it but the whole point here is that a lot of these tools work pretty well there's no clear superiority on them but one thing that microwave offers it's very fast so generates

temperatures to boiling within the tumor in about five minutes and so it's certainly very fast as compared to radiofrequency and you can see boiling happening within this tumor that's been accessed eventually there that gas is

actually literally fluid that is boiling away from the tumor couple of cool ones this one's reversal expiration what we do here is we place probes throughout the lesion and we pulse it to confuse the membrane on the cell to think that

it's a it has holes in it that it cannot close and so what is happening is the contents inside the cell leave and that's pretty much consistent with not being able to survive the nice part is we can accomplish all that without

thermal ablation what do we mean that we don't go over about 40 degrees Celsius so if something is involving a bile duct or involving a critical structure like the ureter it's not actually going to damage it it just basically tells all

the the cells within there to stop stop undergoing the cellular mechanisms responsible for life it's a little more finicky to place you have to place these little parallel probes here's one we did that was directly write on the

bifurcation of the main bile ducts and you can see here afterwards is an immediate post contrast scan how that whole area is ablative it does not take up contrast and this patient never developed biliary strictures that side

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

higher procedures that get done in the country so they are from being basics such as being para sentences and in some

centers being quite complex in Euro work and there are centers where these none of all those that IR procedures being available so it's a very unequal distribution of provision of IR services and like I mentioned earlier on vascular

surgeons and cardiologists have basically taken over the peripheral vascular work and iogic work and other known neuro speciality such as bid early interventions for example saying that these two surgeons who are in some

remote centers who are doing their own provision as biliary basic interventions there is one neuro surgeon who went and had neuro imaging and then your interventional training who is now hundred percent doing a mural

intervention so as far as procedures go my day can be in diagnostic work and you might be dreaming you doing a paracentesis the next thing you might be doing some some I our basic IR and on the same day you might be doing a set

procedure so quite varied but not available in all centers as one would want as fine stuff goes the technology

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

something some case examples of where I use cryoablation right so this is a

patient who has a nodule in the in the back of their lungs in the right lower lobe and basically I'll place two probes into that notch on either side of Brackett the lesion and then three months later fall up you can see a nice

resolution of that nodule so when it comes to lung a couple things I'll mention is if the nodule is greater than eight millimeters I'll immediately go to two probes I want to make sure that I cover the lesion whereas microwave it's

pretty rare depending on what device you're using for you to put more than one probe in so some people's concern with cryo in the lung is more probes means more risk of pneumothorax but you can also see surrounding and proximal to

where we did the place you can see the hemorrhage that you see so if those of you out there that are doing the lung ablations you probably have physicians that are using something called the triple freeze protocol right so the

double freeze protocol is the idea that you go ten minutes freeze five minutes 30 minutes freeze five minutes thought well what we saw was lung early on in the studies was a very large ablation a freeze to start with caused massive

hemorrhage patients were having very large amounts of hemorrhage so what we do now in lung is something called a triple freeze protocol we'll do a very short freeze about three minutes and that'll cause an ice ball to form and

then we'll thaw that in other three minutes three minutes of thawr and as soon as that starts to thaw we'll freeze it again and we've shown us a substantial decrease in the amount of hemorrhage so if you're doing long and

you and you you're told to do a double freeze protocol perhaps suggest the triple freeze is a better idea so that's three months later so another example

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

talk about some more non-invasive ways

to image the lymphatics there's non-contrast at Marlon Payne geography this has been around for a greater than a decade we basically do a tea to fats at sequence and we basically really amplify the signal difference between

fluid and soft tissue and we really want to focus on fluid that's very slow moving so this is very good for people of lymphedema cirrhosis venous malformations etc you're gonna get very nice images it's non-invasive gives you

good spatial resolution but you can't see small structures and you don't have an idea of how things are flowing so just to kind of show you an image from my training and right there where the arrow is showing you the thoracic duct

right next to the aorta obviously fairly distended what I did actually in this patient as we were doing research to generate these images actually giving them didn't mr gave him a milkshake put him back in the mo and you see this

little thing plump up and is actually really cute dynamic a Marlon pan geography is a newer technique that's come along where basically we've combined what we do with nodal and faint geography where we put a needle into the

lymph nodes with what we do with regular mr which is to inject gadolinium we dilute the gadolinium we can inject it right into the lymph nodes and now you can have flow dynamics as well as faster mapping of what's going on with the

lymphatics a very useful technique that I use in complicated leaks in pediatric patients etc

you know the most common procedures in China this is kind of interesting I was blown away by this when I did the research on this I knew when I would go

into the hospitals and I was all over for I've been to Beijing shanghai nanjing to even the smallest little place is up in northern china and the one thing that blew me away I'm looking at the board and I'm seeing neuro case

after neuro case after neuro case I'm like it got 10 Narrows and and a pic line I'm like it's an interesting interesting Dysport of cases and the reason being is in China they consider diagnostic neuro

so neuro angio to be the primary evaluating factor for any type of neurological issue so you're not getting a CT if you come in with a headache you think you're gonna go get that cat scan now it's generally what not what they do

so you're talking about a case and I'll give you the case matrix of the break-up it's just proportionately high for a neuro very well trained in neuro and most of the guys that are trying to neuro very similar to what dr. well Saad

said a lot of the guys in Africa are trained in France so other neuro interventions have trained in France or lipstick in China and have received European training on that so you know the level of what they're doing some of

the stroke interventions some of the ways they're going after these complex APM's they'll Rob well anything you'll see here in the US so it is quite interesting to see and the second

largest is taste hepatocellular carcinoma is on the rise it's the highest level in the world is found in China and Korea for that matter and there's many reasons why we can go into it some of it is genetic factors and a

lot of societal factors alcohol is a very liberally lie baited in China and there is problems with you know cirrhotic disease and other things that we know could be particular factors for HCC so always found that very

interesting like I said I would go into a hospital and I'll see a PICC line a hemodialysis catheter and then 20 tase's on the board in one day so it is quite interesting how they do it and then biliary intervention stents tips and

then lung ablation you know the highest rates of HCC biliary cancer and lung cancer found in China and once again when we talk about lung cancer what are those contributing factors you're talking about certainly a genetic

component but mostly it's lifestyle factors smoking is prevalent in the US and in you know in Europe and in some areas in Asia we've seen obviously a big reduction in smoking which is fantastic China not so much you don't see that

it's a societal thing for them and unfortunately that has led to the the largest rates of cancer in the world in lung cancer so lung ablation is a big procedure for them over there as well so procedure breakdown this is kind of some

of that breakdown I was telling you about that cerebral procedure is some of the most commonly performed and you're talking about at very large numbers they're doing neuro intervention because they do it for die

Gnostic purposes and I would that kind of blew me away when I found out they do have cast scanners and certainly for trauma and things like that they'll do it but the majority of the stuff if you come in you have headaches you might end

up in the neuro suite so it's quite interesting how they can do that tumor intervention very high like I said you have the highest rates of HCC in the world you're getting cases they do have y9t available and in fact China just

made their largest acquisition ever with the by what you guys know a company they bought surtex there's a Chinese company now it got bought by China now the interesting is they don't currently have a whole lot of

y9t over there but they just opened up some of their own generators so they can actually start producing the white room 90 and I think you'll see probably a increase in those numbers of y9t cases but to date the number one procedure for

them is taste and they do a lot of them you know like I said on average a community hospital setting you might find 15 or 20 cases a day with three interventionalists so compared to what you guys do there's probably not many

people here unless you're working at a major institution that there's nothing but cancer doing 20 cases a day and I promise you're probably not doing it with only two interventionalists so it's amazing how fast and effective they've

gotten at and below therapy and unfortunately it is necessary because of those elevated HCC levels and like I said when we look at some of these things it's I go over there and I'm looking at the board there are very few

cases for you know PICC lines very few the frosted grams very new bread-and-butter abscess training procedures like we do here in the US they are very it's the prevalence is very simple it's neuro it stays and it's

biopsy and those are some kind of the big three for intervention in China and there it's such a large volume you get to learn a lot when you're over there and CLI PA D even though it's more prevalent in China than it is here

because smoking lifestyle factors certainly westernization of the diet in China which occurred since the 1950s and 60s has led to a lot of McDonald's and and fast food and things that weren't currently available prior to 1950s you

see a lot of PA d but it is very undertreated and certainly talking to some of my colleagues like whom are oh you'll get to see a little bit later on with CLI fighters one of the things that's kind of frustrating for them is

that it is so undertreated it's very common to see amputations in China instead of actually doing pipe in percutaneous intervention they normally like to go too far and you see a lot of amputation certainly above

normal so that's something I think as an interventional initiative when we look at these things coming from a Western perspective it's definitely something we need to pursue a little more aggressively but there it's very little

oh well you're talking about two you know two to three percent you know maybe up to six percent or PID cases very very low levels so equipment in equipment in

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

24 year old patient after a car accident has lower abdominal pain and melena so blood coming out of the rectum here's the CT scan anyone want to take a stab but you can just shout it out

so this time we're looking at the liver right so the liver is the big thing on the right side of the screen and what you can see is the dark hematoma posterior to the liver but you should also notice that big white dots sitting

right in the hematoma all right that's important because that's active bleeding that's the report when you guys when you guys get called in for these cases and someone says oh this you know liver trauma with active

bleeding this is the picture that is spurring that announcement okay this is what active bleeding and the liver looks like again there's a bleeding scale there's an injury scale for a liver trauma we don't need to go into that

slides are available if you want them alright here is the angiogram now again my rule works all right if you see vessels get smaller and then big again something's abnormal so in this particular picture I want you to notice

the catheter sitting in the right hepatic artery the blood is going up into the right lobe of the liver and right near the top of the pictures that big circular kind of blobby thing now this is by definition extravasation

sometimes we use the term pseudoaneurysm to describe this I just want you to appreciate what a pseudoaneurysm means it means that there's a hole in the artery that contrasts or blood is leaking out of that hole and the body is

essentially constraining the bleeding it's not going all over the place it's being constrained that's what we call a pseudoaneurysm all right that's just one way to look at it and geographically so this is an injury to the artery blood is

leaking out of the artery but maybe one layer of a three-layered blood vessel or even just the surrounding tissue is constraining that bleeding alright so what do we want to do for this exactly exactly you're getting it all right so

here we can get our microcatheter all the way out there the closer we get to it the better now in end organs like the liver or the kidney we don't actually have to get all the way out there getting close to it's going to be good

enough but the closer we get to it the better for stopping the bleeding and preserving the function of that organ all right so look how close we literally got right into the injury and then we're able to embolize it that's the goal all

right now the liver is a nice place the treat because as you know there's two sets of blood vessels going to the liver there's the portal veins in the apat ik artery so if we just embolize a little a patek artery the

liver is not going to notice that at all because it still has the portal venous flow bringing blood to that liver but our goal is to get in there preserve as much of the liver that we can and address that injury okay here's another

actually do something more than just drain and even though the drain is

frequently the most important part of biliary disease and we sometimes do also get to treat and and do more things with and intraoral you actually now also help them identify the conduit of the below a tube is actually very helpful we

actually can do IVIS we can also do intra Patek Carranza how Skippy and I'll show you what some pictures of that so it really is it just a conduit to get you into the blurry system so intraoperatively like a

you know Whipple procedure it's critical to get this tubing for our patients our surgeons actually use this axis a lot to pave the way for the sort of complex surgical resection of part of the budget system gall bladder pancreas and rehook

up the patient so that they have sort of the setting and almost always postoperatively will actually be Batum and the surgeons will leave a team in to maintain access and artificially hold open this new surgical nest the mostess

in an open position for as long time as

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.