Create an account and get 3 free clips per day.
Chapters
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastycathetercatheterschaptercharlestonDialysiselevationsFistulamonthspatientspercutaneousphysiciansproceduresurgeonsvascularveinweeks
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Introduction to Imaging Lymphatics | Lymphatic Imaging & Interventions
Introduction to Imaging Lymphatics | Lymphatic Imaging & Interventions
angiographychaptercirculationemoryimagingInterventionsintestinalliverlymphlymphaticlymphaticsoverviewpermeabilitypredominantproteinswollentechnologiestechnologistthoracicvenous
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
acuityalertanticoagulantanticoagulationbiopsybleedingcardiacchapterchartdysfunctionhematologicalhistoryhypertensivelivermedicationsNonepatientpatientsplavixprocedureprovidersradiologistsriskstablestentthrombocytopenia
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
ablationburnschaptercirrhosislivermodalitiespadsradiofrequencyunpredictablezone
Benign Biliary Strictures | Biliary Intervention
Benign Biliary Strictures | Biliary Intervention
balloonbenignbiliarychaptercholangitisclinicalcontrastessentiallylivermonthsneedleobstructedobstructionspatencypatientpatientsratessharpstricturestricturesstructuresurgerytesttracktransplanttube
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
How We Established our Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
How We Established our Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
anticoagulationcallschapterclinicaldatabaseguidelineslivermayomedicationNonenursespanelpatientpatientsphysiciansprocedureradiologistradiologistsspecialtytriagevalues
What supplements do you take? Cancer and liver failure | A Patient's Perspective: From the Other Side of the Glass
What supplements do you take? Cancer and liver failure | A Patient's Perspective: From the Other Side of the Glass
chaptercombocysteineliverliver failureliver toxicityneuropathyneuropothyorleanssupplementstoxicity
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
20 Fr Dryseal7 Fr Aptus TourGuide sheath8 Fr IVUSaccessangioplastyaortaarrowarteryballoonbasicallybrachialceliacchapterdeploydissectionfenestratedflapgraftgroinimagelaserleftlooplumenoriginpatientreentrysagittalsheathSignificant Growth of Descending Thoracic AortasnarestentsubclaviantearTEVARwire
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Surgical AV Fistula  | Pecutaneous Creation of Hemodialysis Fistulas
Surgical AV Fistula | Pecutaneous Creation of Hemodialysis Fistulas
angioplastycannulatedcathetercatheterschapterdeviceDialysisembolizationFistulafistulashemodialysismaturationpatientspercutaneousrefused
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
activeangiogramarterybleedingbloodchaptercoilsembolizationembolizeextravasationhematomainjuryleakingliverLiver TraumamelenamicrocatheterNonenoticeportalposteriorpseudoaneurysmtraumavenousvessels
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
anastomosisarteryAvenu MedicalballoonbrachialcephalicchaptercreationdeviceEllipsysFistulaflowflowinglinesneedleperforatingperforatorpiccproximalpuncturepuncturedradialsurgicalultrasoundvein
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastyarterycephalicchaptercolordisclosuresdopplerFistulafistulashemodialysispercutaneousperforatingperitonealpreoperativeradialtechnologisttotallyulnar
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
biliarycardiologistscenterschapterinterventionalInterventionsneuroparacentesisproceduressurgeonsvascular
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
angiogramangioplastybasalbiphasicblushcalibercapillarychapterchronicallycollateralsdopplerflowhemostatincreasedischemiaizationnormaloccludedopacificationoutflowpatientsperfusionphasicpredictorsrevascularizationrevascularizesignsignaltriphasiculcerulcerationsvessel
Cryoablation Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
Cryoablation Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
ablationanesthesiableedingbloodchaptercryocryoablationdisadvantagefreezeliverlungmicrowavenodulespainfulprobeprobesproteinsrenalresponsesedationtissuetumorvessel
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
accessangiogrambiliarychaptercolonoscopyendoscopicercphopkinsinterventionlandscapeliverpercutaneouspracticequestionspecialtiesspecialty
Cryoblation risks and complications | Ablations: Cryo, Microwave, & RFA
Cryoblation risks and complications | Ablations: Cryo, Microwave, & RFA
ablationschaptercryocryoablationfracturehypotensiveliverorganprobespull
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Transcript

Here's a 69 year old male after a liver transplant with stones. And stones were discussed briefly but a lot of times these are pigment stones bilirubin stones. Sometimes they are cholestrol stones, a liver transplant patients have a high cholestrol content in their bile but a lot of times these are very easy to manage just with repeat dilitation

by hand, inflation of the balloon and then just little by little pushing that debris out into the small bowel. You can get almost all of these open no matter how extensive the stones are, it's worth doing, this is 13 months still open [UNKNOWN]

fish through creation one is screening with ultrasound you really have to be able to look at these patients and I'm you know when I talk to our physicians they say we have a great

ultrasonographer named Megan and so I say the first thing you need to get yourself a meg everybody needs a meg and May because meg knows what to look for what to look for what's a measure where to get flows and she submits that to us

now other than the anatomic part you know at our place you know we're very particular about and selected we try to be thoughtful about you know who gets what access and that's what the new dokey guidelines are gonna say you know

the best access for the right person at the right time so for example you know if you come in with a catheter and we can you know we'd won from a 275 mile radius people come to us you know for access because you know they they've

they've been given up the cases have been given up by local people and you've got a catheter my first thing I say is how long is the catheter been in and they said well catheters been in for eight months you're not getting a

percutaneous fistula if your catheters been in for eight months I'm gonna call one of the surgeons think I am with part of my group you know we have no competition there's no turf wars we're all friends we like each other we like

working together it's a great place I say Karl Karl Willy who was recently from Tampa - Karl illustration - sick catheter for six months is okay I'm going to create they put a flick seen graphed in the

upper arm probably with a suture listen a stenosis and pull the catheter tomorrow that patient's going to be dilating with a graph where the dialyzer will be graphed you know because after six months you don't want a cath over

there when you start going down that road of infection endocarditis vascular damage all that kind of stuff if you come in and you started with a catheter because somebody wasn't looking ahead far enough and you got a catheter and

they come here for accents placement catheters been in for you know two weeks three weeks one month there's a good chance you're gonna be seriously mapped for a percutaneous special because now we have time we've got we arbitrarily

have considered the six months window that we can probably work with the catheter there's nothing to prove that there's nothing in the literature in fact I had a discussion last night with someone from one of the companies who

wants to do some type of a trial to look and see when can these catheters really do go bad and so you're gonna get worked up for a percutaneous fish and clearly if you come with stage four you know know you're not on dialysis they don't

know when you're gonna go into Alice's but they you know you're going in that direction you're gonna get seriously worked up for a percutaneous fistula one patients are still psychologically trying to wrap their head around the

fact that they're going to be on dialysis it's much easier to tell them you come in you're gonna get a puncture two punctures you're gonna go home with a band-aid and we'll take care of this we'll get this up and running over the

next six weeks eight weeks ten weeks and when you need it it's gonna be ready to go and you won't need a catheter then we tell them you don't not gonna need this catheter sticking out of your neck they're very happy and they usually

agree to do the percutaneous miss doula also since you don't get those big ropey fish - as I talked about when these patients are in dialysis you know how many people ever been to a dialysis unit that's how I tell physicians you want to

you know you want to look build a practice like this go to the dialysis unit talk to the charge charge nurse do rounds once a month or once every couple of weeks with a nephrologist and that's how you build the practice but these

patients they're in the chairs they're talking to each other right and they say hey how come you don't look like a cling-on you know with this big veins you know you where's your fistula and then they want that you know they it's

really cosmetically very pleasing these patients are so deserving and they have such horrible I was being tied to that machine three days a week so any little bit of hope we can give them I think is is worth it alright in summary it's not

a one-step procedure and then we try to make patients understand this you may need a secondary angioplasty or embolization in the future hopefully not usually about 30% of the time has great value in the stage Forge so we

talked about more acceptable to patients coming to grips with their future may make a significant difference with the catheter people starting with a catheter and I think whoever is going to do this really has to have a commitment to

access this is not you're not doing a procedure you're actually developing a treatment plan or a treatment system and so then these patients are yours once you do this you're following them you're keeping them working you know how do you

sell this to the surgeon you sell to the surgeons this way because if you start this program you know people are gonna start coming to you they're gonna come out of the woodwork it's like if we start doing AVM stuff that they start to

come from nowhere and you're gonna draw so many patients the in that surgeons are going to have more work and there's no question because everybody's not going to be a candidate and so I mean when bobwhite if hopkins years ago

started doing angioplasty the business of surgery increased by 15% so you're gonna see you're gonna make the pie bigger that's how you sell it you're making the pie bigger and everybody can feast on the pie leverages our expertise

as interventional radiologists and image guided procedure list to make these procedures work I think we're in a great position a really great position if you listen to Alan Matsumoto the other day at the toddler lecture we're in a great

position for the new age of medicine and it may be the ideal procedure for multidisciplinary collaboration I can't do basilic vein transpositions or elevations or brachial vein elevations so it's good to have a surgeon that

you're friendly with that will make these things happen they're all part of the group that's necessary and I think that could be it yes ah I'm from New York and I'm a shameless marketer and so I would encourage you if you're

interested or some of your attendings or interests come to the vasa practicum it's gonna be done in Houston with dr. Eric Pete and chief of vascular surgery is running the meeting you get to put your hands on all these devices and put

and stuff you can all do it I mean it doesn't have to be doctors you have big models and they'll have live cases and it's a great opportunity in 2020 since I'm the president-elect of Vassar we're gonna run the meeting in

Charleston that's gonna be held out a hell of a lot of fun so we encourage you to come to Charleston in 2020 thank you very much not questions yeah

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

it's a pleasure to be here this is the second day vir had the pleasure of speaking at and it's always a treat to get to interact with all the technologies from around the country I did recently make the move to Emory University it's been delighted to have a

few of my technologies in the room as well so quick shout out to Abby and Marcel so we're gonna be talking about lymphatic imaging and interventions is probably my biggest area of research as as well as a passion mostly because this

is yet another area where I think IR can make a tremendous difference in the outcome for patients I certainly remember a patient in my own training who was bed bound for weeks on end in the hospital until we were able to

successfully treat him so we'll talk about the challenges of imaging lymphatics it's not something that isn't necessarily easy though it is getting easier I know probably a lot of the more senior technologist in the room are

probably groaning as soon as they hear lymphatics and they they think of the old lymph angiography pumps the cut downs the methylene blue the 30 gauge needles injecting in the foot and closing down a room all day so we're

gonna talk about how to to get away from all of that and make your life a little bit easier it's not uncommon in a typical day that I can knock out three to four of these cases we'll review the current imaging techniques involved with

lymphatics talk about lymphatic access points I'll show you my setup and how I do it review the current evidence on thoracic lymphatic interventions abdominal lymphatic interventions and overview some of the future

possibilities so just a general overview you know we think of a lymphatics a lot of us really think of just the peripheral lymphatics right somebody has breast cancer they have a mastectomy they have a lymph node dissection etc

they have a swollen arm a swollen leg from some of the lymphedema but that's actually just the smallest component of your entire lymphatic system the predominant the predominant sir lymphatic circulation actually comes

from your liver where a lot of the protein is manufactured and goes through the lymphatics as it returns back to the circulation and the intestines where a lot of the fats are absorbed and go to the lymphatics back to the venous system

the rest of it only 20% of the lymphatic fluid comes from the capillary permeability in the extremities of the legs as well as the arms so when you look at liver lymphatics it's very protein rich you

look at intestinal emphatic so it's very fatty rich and then the stuff on the periphery is really lymphocyte predominant when we look at these

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

guys do so when we do our screening phone calls and our pre screens before

the actual procedure there's a few factors that we look at for the patients with blood pressure the patient needs to be vitally stable before we do a procedure there may be a slightly increased risk of bleeding for kidney

biopsy if patients are hypertensive although it hasn't been noted to be statistically significant in the literature so we are always aware of patients being hypertensive we do want them to be taking their medications the

day of the procedure we also do a full medication reconciliation with the patient making sure that we're checking on any anti platelets anticoagulant medications and we have a list of our hold times that we use for a reference

we already discussed for those of you who are at this session this morning the issue of liver disease is it stable liver disease they may have adequate he stasis even though their INR is not within the normal range and so we

recommend a stable INR of less than 2.5 for those patients and in our practice a lot of the providers are going away from correcting the INR s for our patients we also screen for hematological disorders do they have some known condition that

makes them more likely to bleed or conversely more likely to clot and that may factor into whether or not anticoagulation can be held do they have a current diagnosis of cancer are they going to be getting one of those

angiogenesis inhibitors might they have thrombocytopenia and we just do a brief review of the patient's chart before we call them to kind of look for those diagnoses do they have a history of bleeding especially if they have no one

platelet dysfunction you know a known history of bleeding can be a reliable predictor of bleeding risk for some patients and do they have a cardiac or a neurological history as we learned this morning patients that have recently had

a cardiac stent placed we can't just say yeah stop your plavix hold off 5 days it'll be fine that could be a very serious risk to the patient did they recently have a stroke have they had a PE why are they on their anticoagulation

if they're on it so we really need to be aware of the whole patient and having that pre-screening phone call with them can allow our nurses to figure out a lot of these problems and then alert the radiologists and try and troubleshoot

before the patient walks in the door and says yeah I took my warfarin this morning I'm all ready for my liver biopsy the radiologists don't like that much in it you know it's really a bad thing for our high volume area to have

that happen and this is just another chart of our oh did I get mixed up here you guys are gonna fire me from running this clicker there we go so the whole times are again based on the half-life and the mechanism of action and this is

pretty similar to what you saw in the the presentation earlier today and specifically that imbruvica that's something that we alert the radiologists who they have a discussion with the patient decide is this something that we

want to continue with and I will say that in our practice with the volume and the the level of acuity of our patients I think that a lot of our providers are fairly comfortable with a certain level of risk because that's just who our

patient population is you know we have a very large hospital two large hospitals and very sick patients so that's something that we you know some of them are more comfortable than others but it's a risk-benefit thing that they have

to decide on themselves with the patient obviously all right so here are our

advantages of radiofrequency ablation or that there's the most research on this

right so if you look up ablation research there's a whole lot of data and research on this as it's been the longest studied so that's always beneficial when you're trying to convince people that they should get an

ablation it's cheap right although some of the problem with that is a lot of manufacturers aren't making some of the devices anymore so to get replacement probes and that sort thing is difficult but it is certainly much cheaper than

the other modalities its gentler than microwave right so it's a slower increase in temperature and you can control it the disadvantages as we mention right so the ablation zone this is probably the worst part about

radiofrequency ablation is that the ablation zone is unpredictable right now we're trying to go towards this idea where we can predict the exact size of the ablation and really with RFA it was more experience related right so if

someone I've been doing them for 20 they can have a good idea how it's gonna it's gonna blade but that ablation zone is very unpredictable it's very tissue dependent right so if you have cirrhosis and the liver is

really scarred down you're gonna get a different ablation as to someone who has a normal appearing liver you have the heatsink effect which as I mentioned can be used as an advantage but usually as a disadvantage and then large large burns

are difficult right so anything greater than 4 centimeters even that is difficult to achieve with RFA it is possible to get skin burns at the grounding pad so if you're gonna do RFA make sure that the patient doesn't have

a hip prosthesis for instance and make sure you know it sometimes patients get sweat underneath the the pads and that can increase skin burns and those pads so that's one of another downside of a radiofrequency ablation so we'll move on

this is just happens to be a biliary

other classification system with bismuth how where the injury occurs and this is really germane after surgery so you'll see most of these actually after misadventure with bluish surgery and and like I said the most common ones

actually after laparoscopic surgery but we have barrier so we have oncological have two extremely complex three sections of the liver now and and we the advent and certainly rise are more balloon complications this is an example

of what we might do in the complex setting this patient had explorers in cholangitis primary cylinder current charges received a transplant and the transplant liver had a recurrence and with recurrent explorers and cholangitis

there was just no way we could cross it but even with a long-standing billy we drain frequently if you drain most obstructed systems a day or two passage across an inflamed structure it makes it much more easy and you will see their

people get brought back for their secondary tube with laryngitis sometimes this is not possible so we actually have made attempts to cross this there's no other way so we happen to use a sharp organization so we happen to use a

transept own needle and use a sharp needle go breakthrough sometimes analysis of the CT scan is a very important you really want to know what's between your one side and what's on the other side and the more even more fun

thing to do now is using our rfy off-label and we'll burn our way through and create the track that actually has a much better patency rates and even sharp organization your allow essentially coring of sort of in chronically

inflamed fibrotic tissue and allows you a chance of keeping this open it's just example of how you benchley burrow through with a shop another case with a sharp needle creating a track really that's not

natural because this is obviously a transplant patient and it's the only way through even done what we've done is stick the intestine first and then put us in a punch our way through polio stay out and

then thereby restoring the the track and they are sort of you have to be just really created with biliary disease when it comes to chronic obstructions or high-grade obstructions so like I said with benign the disease frequently it's

post-operative and so they will present in multiple different ways and most of the times they're just leaking in the intraperitoneal ich you you're you essentially peritoneal cavity will reabsorb it so patients get jaundice is

essentially it hi arrays but Rubens and you'd really can diagnose in many ways and really just dealing with this can be problematic and then so we've been dealing with bluish structures and and oh sorry benign Ballou strictures

post-operative benign Ballou strictures in a more labor-intensive way we actually leave tubes in for six months which is probably a little more than most people must be not a benign the Lewis structures are managed with three

months of stinting with a minimum of twelve French tube so that's a reason why some of these patients will get kalanchoe pasties multiple bluie a drained Rhys tenting it and tube exchanges and changed up this way and

then this is just happens to be the British is worth a typical we will get access cross the stricture kalanchoe plastic stretch out this benign structure and then place a tube in for as long as you can to keep it open and

fro asses of between three and six months there's a classic example someone who obstructed that they said this looks very smooth it doesn't look ugly and looks okay doesn't look like a cancer we sometimes what I so biopsy if it has any

suspicious appearance and then get across you can see even with a balloon how tight the structure can be with a high pressure balloon and there after placing achievement for again three to six months we actually err on the side

of caution almost our patients have six months of intubation which is quite long difficult and this is our experience what we do then is when do you remove it to actually have a sort of a step-by-step process we have a it's not

really medical clinical trials actually just if a flow clinical trial what we'll do is get the tubing bring a patient back and we actually cut the tube so there's only the access through the parenchyma of the liver is preserved but

nothing through the structure we will cap the tube is since you can maintaining access and see if the patient doesn't make sure that doesn't get fever the stricture is maintained and then we'll bring the patient back

after a week to do a balloon whiticus test that's really just a modification of a urinary radhika test we're going to take pressure measurements after slow contrast injections to make sure it remains the

patency and for us the data suggests we can essentially and predict over 90% who will be staying free if they pass the Whittaker test in keeping the monetary reading less than 20 centimeters of

water and really it allows us to manage these because of how many patients have what procedures at our institution we have a large volume of patients that we actually follow and it's a you know our fellows think it's the most common

procedure Billu intervention had this is actually not that coming everywhere else and this is what I believe tests we have a pro forma that we fill in and the contrast has been ejected in

certain rates per minute and so this test takes about 30 minutes we make sure that there's the predictive value of in less than less pressure building up over higher high contrast injection rates will give us a great prediction of no

longer needing the tube and then stone

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

establish our guidelines this was something this was a question that we got when we did publish our journal article because you'll see when you do

see our guidelines we are not 100% in alignment with SAR that is because we used SAR in a detailed literature review and examined both of those sources but then we also have our own homegrown radiology database our nurses are

instrumental in collecting this data every biopsy patient we collect their medication list as well as their current lab values we've been doing this since 2002 and we currently have over 50 000 patients within that database so we pull

from that database to identify what is best what trends are we seeing what medications are we seeing that are causing issue in our practice so we're taking from our own clinical expertise and then we also have a great panel

within Mayo Clinic it's called ask me Oh expert this panel is made up of multiple physicians we have physicians from Department of Laboratory Medicine physicians from our anticoagulation practices we have our liver physicians

can need lots of different doctors we have two radiologists that also sit on that committee so it's a combined specialty panel so we take we took into consideration all of these factors to establish our guidelines our nurses use

these guidelines when they are performing pre-procedure phone calls so I love to the presentation yesterday from Johns Hopkins I believe where they're doing pre procedure phone calls but often times a whole week before we

don't have that yet but I would love to get to that point but right now our nurses are doing pre procedure phone calls within a few days prior to a patient's procedure and we are going through these guidelines to identify

what medication or risk factors these patients have and we're alerting our radiologists to see if there's any type of considerations that we may need to take if for example a patient has not stopped warfarin and

then they also look for if within our guidelines the patient needs lab values we determine if there's lot values ordered or if they have any within the medical record we want them within 30 days except for if the patient has known

or suspected liver disease we do want them more recently within 14 days or if a patient's on chemotherapy or one of those anti antagonists this is something I really need to stress to our nurses and I think I've gotten the point across

to you that these are guidelines only clinical decisions are made by the supervising radiologist so we've we've put this right in all of our guidelines in that yes these are guidelines that we can use those nurses to help triage our

patients and move and streamline our assessment process but sometimes it does further critical thinking and then discussion you want to go into what you

thistle NS until cysteine and turmeric I take a ton of tumeric

I'm not I'm not advocating that so if anybody goes in home and has an allergic reaction to American dies it's not my fault but ya know it was it was frustrating as hell I'm you know I my labs were worse than the patient's I had

25 000 platelets and I was just getting frustrated and you know especially living in New Orleans because really in New Orleans you know everything no matter what you start drinking at seven o'clock in the morning you know and and

I am so I sat down and I've read a bunch of articles and I started doing it and it worked for me and it worked right away I mean within two months and everybody was saying oh it's just coincidence I said well then give me

more coincidence but then my son has JRA and he was on methotrexate his liver enzyme started going up we started him on the same regimen bump then went right down so I mean if it works for you it works for you you know an asset feels

cysteine it's it's you have to what's that an acid cysteine it's what they use for liver toxicity when somebody comes in with Tylenol toxicity so I actually worked with a with a met a medical doctor and we came up with the combo and

and it's worked for me but you know turmeric works for for for some people it doesn't work for other people you know a but but well the bottom line is if somebody thinks it's working don't you know I have I have people say

doctors go well that's just crap well I'm very lucky because the medicine Amman causes neuropathy which is horrible you know I don't know if anybody's had neuropathy but it's so it's like your hands are your hands are

in pain your toes are in pain so I like I'm beefed up on B vitamins you know and I and I hear all the other people complaining about neuropathy and I'm fortunate that I don't have it and if it's the b-vitamins great if it's

if I'm just lucky I don't care but I'm taking the B vitamins for eight bucks a month you know what I mean you know it's it's different supplements work for different people you know but just don't deprive them

don't there's some guys who just use supplements oh that's just crap you know that's not fair to the patient you you mentioned it

so my Xtreme ir case is a TVR with on a patient with a type you tie section and then we use laser to find a straight the dissection flap and I just want to before I start I just want to give a big shout-out to my attending dr. Kasia and Rudy pump Adi on our IR resident Rudy

put these really cool illustrations together as you will see on these upcoming slides and dr. Kaja he did this case and basically it helps me with everything so since your old male patient presenting with history of

chronic type UTI section um he was medically managed with and I'll G Saxena antihypertensives and then he came into the ER a couple months later and it was complaining of severe back and chest pain so a CTA was

performed and and they found that there was a significant growth in the descending thoracic aorta and so we have a couple images here we have a 3d reconstruction of the aorta as well as the sagittal image of that CTA and does

anyone notice anything about this 3d on aorta no so this patient has a variant he has a bull vine arch actually so the left common carotid is coming off the right you nominate um but vessel the arteries so it's nice for us when we're

placing that and negraph we have more more of a landing zone so we're not covering any of important structures other than the less left subclavian artery and so we're the two arrow heads are on the sagittal image you will see

that there's reentry tears so if you look at the 3d image so the dissection is that line right in the middle and so it's starting at the origin of near the LSA and ending at the level of the celiac artery okay so we obtained right

and left common femoral access and you obtain left brachial access as well and the reason for left particular access is once we get our enter graph gen we're going to go ahead and I'm pass the wire through and a laser through and find us

to find a straight through that under graft so you can have flow but I will talk about that later so we put a twenty French dry seal sheath and the right groin and in the left groin we had a 8 by 45

she's and that was basically to accommodate IVA so they can kind of get a feel for what we're doing it just like another resource we have so we have two IVs images here the one on the left with the yellow arrow basically is just

showing us that thickened dissection flap and the Ibis on the right is the love of the celiac artery so the celiac artery is where that green arrow is pointing to and the white arrow head is basically just showing us that reentry

tear at that level and so through the right through the right the sheet on the right hand side the 20 French try seal sheets we placed the 7 by a 55 Aptus on steerable tour tour guide sheath so that basically can angle up to 180 degrees so

we place that up to sheath in the true lumen of the aorta and pointing towards the false lumen and then I just put some pictures up of what a dissection looks like I don't know if a lot of people a lot of you guys on do dissection their

frustrations I mean your practice but I just thought it would be nice to show and so once we have the Aptus sheep up in the true lumen and have it pointed towards on the false women we confirmed with the eye this just to make sure

we're on the right spot and we're not we're not going to harm any other structures when we laser so once we have that up we use laser to kind of poke a hole and fenestrated create that's here and once we did that we dragged while

the laser was on we dragged the baptists sheath down 4 centimeters and created a large terror so the whole goal is to open up that dissection so we could eventually place that under graph so once and that there's a florist got the

image of ibis and apt the Aptus sheath and all that and so we created a large tiara and then what we did was we passed the 18 wire into the false live and we angioplasty with the 14 by 4 centimeter balloon and as you can see that there is

some waste on that balloon and then eventually it dilated up to you know now I'm gonna burst rate which was 18 and so that Ibis is basically showing us that's here that we just made in our dissection flap

okay am I not there we go okay so once we angioplasty be repeated the same thing so we put the laser back up get a small tear right underneath large penetrations here that we just said and then we angioplasty it so once we

angioplasty we connected that top tier and bottom tear together we opened it all up and we angioplasty it again after that so once that I mean go back so once the angioplasty so right underneath that big tear that we just made so between

the tear that we just made and the re-entry is here at the level of a celiac you still have that little piece of a dissection flap that we still need to open to place our under graft so once we did that once we angioplasty through

the right groin we passed up a glide catheter and the true lumen and pointed it towards the false women and through on the tear that we just made we passed the v18 wire and through the left groin we went up with a 20 millimeter loop

snare and so we grabbed the the 18 wire and so that loop snare went and that reentry tear and like into the false lumen so our whole point is to get through and through access with that wire so we can use as a wire cutter to

cut the remaining flaps so that's what we did so we we grabbed that snare we grab that v18 with the snare we pulled it out of the left groin and we obtained through and through access okay so you're just ripping it down yeah

basically it's like it she goes somewhere yeah yeah you got it yeah that's exact don't ask a question to what you don't want the answer so basically that's what we did so once we got through into access we advanced both

sheets and we kind of like pull down to to cut the remaining flap so once we did that we basically had everything open so we were ready to place our under graft so we did angiography and then we ended up

deploying the descent and then so once we would deploy the stent we basically covered that LSA the left subclavian artery so that's exactly why we got brachial access so we pass the wire through and got to the origin of the LSA

and then we ended up putting the laser down and then we turn the laser on poked a hole and so now we have this hole and this endograft so once we did that we angioplasty it and then we deploy the stents okay and so now we have a diagram

of the pates and LSA following stenting so we sent in the aorta and where the dissection was and then resented the LSA so we have nice nice flow the REC lab donal angiogram basically is just demonstrating feeling of the celiac in

superior mesenteric artery as you can see in that middle image distally so one of our missions that Rudy made which is pretty awesome so illustration of fenestrated t-bar with LSA sensing and adequate just so Co following the

dissection flap that we usually there's open so BAM there you go so that's Rudy and I in the middle my one of my co-workers Kevin and when my mentor is dr. Kaja dr. Marley and myself so thank you hi dr. Kasia thanks for joining

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

today okay go forward so sorry now when it says is there any commercial bias really there's only two companies that have this device so if I speak about each one clearly there's going to be a

little bit of commercial discussion but as I people always ask me which one do you prefer and I always have to tell them quickly you know I'm not a salesman for either company as a matter of fact I'm more

like a test pilot and we're still in the very early stages of this and which device may be better however you wanted to find that or easier to use or what the data is going to show we don't really know yet so but we're fortunate

that we have access to both devices for our patients a couple of things we know and dialysis patients start 80% start with catheters bad okay and catheters bad if you get anything out of this lecture catheters bad about 28 to 53

percent failure to mature means they have a fistula it's physiologically working but it never matures to be able to use for hemodialysis time to maturation three to four months

interventions per year required angioplasty you know embolization you guys know all about this stuff trying to read Evert flow back into the main channel of the fishhook and patients about 30 up to 30

percent just refused once they have our fish to them for whatever reason they refused to have it cannulated you know they don't like the pain it's in an awkward position whatever but the idea of percutaneous

which was may actually put a big dent in that Kathy first-line initiating dialysis with catheters because many times these patients come then they need to houses right away they get a catheter but if we know you know these things

usually except you know for toxic injury like ingesting antifreeze and stuff like that most you know frolla just know these patients are headed towards dialysis well in advance of the time they need it and so these calls stage

four and stage renal disease these patients can get percutaneous fistulas and when it's time then they'll have a running blood access ready and totally avoid the need to have a catheter placed

24 year old patient after a car accident has lower abdominal pain and melena so blood coming out of the rectum here's the CT scan anyone want to take a stab but you can just shout it out

so this time we're looking at the liver right so the liver is the big thing on the right side of the screen and what you can see is the dark hematoma posterior to the liver but you should also notice that big white dots sitting

right in the hematoma all right that's important because that's active bleeding that's the report when you guys when you guys get called in for these cases and someone says oh this you know liver trauma with active

bleeding this is the picture that is spurring that announcement okay this is what active bleeding and the liver looks like again there's a bleeding scale there's an injury scale for a liver trauma we don't need to go into that

slides are available if you want them alright here is the angiogram now again my rule works all right if you see vessels get smaller and then big again something's abnormal so in this particular picture I want you to notice

the catheter sitting in the right hepatic artery the blood is going up into the right lobe of the liver and right near the top of the pictures that big circular kind of blobby thing now this is by definition extravasation

sometimes we use the term pseudoaneurysm to describe this I just want you to appreciate what a pseudoaneurysm means it means that there's a hole in the artery that contrasts or blood is leaking out of that hole and the body is

essentially constraining the bleeding it's not going all over the place it's being constrained that's what we call a pseudoaneurysm all right that's just one way to look at it and geographically so this is an injury to the artery blood is

leaking out of the artery but maybe one layer of a three-layered blood vessel or even just the surrounding tissue is constraining that bleeding alright so what do we want to do for this exactly exactly you're getting it all right so

here we can get our microcatheter all the way out there the closer we get to it the better now in end organs like the liver or the kidney we don't actually have to get all the way out there getting close to it's going to be good

enough but the closer we get to it the better for stopping the bleeding and preserving the function of that organ all right so look how close we literally got right into the injury and then we're able to embolize it that's the goal all

right now the liver is a nice place the treat because as you know there's two sets of blood vessels going to the liver there's the portal veins in the apat ik artery so if we just embolize a little a patek artery the

liver is not going to notice that at all because it still has the portal venous flow bringing blood to that liver but our goal is to get in there preserve as much of the liver that we can and address that injury okay here's another

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

here a little bit okay the ellipsis device Avenue medical from California developed by Jeff Howe in Richmond ultrasound imaging only don't need

fluoroscopy everybody in the room like staff they'd off to where lid you advance the needle into the either the very distal cephalic vein or through the actual perforator under ultrasound and once you're there you

follow the tip of the needle keeping it in the center of the lumen of the vein under ultrasound guided down to the point where it's just adjacent to the radial artery and then once you're adjacent to the radial artery this may

take a little bit of torquing of the needle but you know even putting in PICC lines for what 15 years 20 years so it's nothing not more difficult than that which is you know why I tell the fellows do the PICC lines you're not doing the

PICC lines just to do pickle and you're doing them so you can do these kinds of procedures then you puncture the radial artery then you get arterial blood flow you put a wire down and you get a sheath down and you put the device down I'll

show you the device in just a second it's called tissue welding it's an electronic device that creates a anastomosis doesn't really succumb to any problems with vascular wall calcifications usually takes just 30 to

45 minutes I did the last one the other day in 15 minutes and angioplasty the anastomosis immediately following the creation of the fissure with a 5 millimeter 1/8 balloon of your choice here's the device you can see it opens

up there's like a little bit of a window there and so it goes down through the vein it crosses over into the artery you're able to see this under ultrasound you position that window as you see on the right with the artery and wall the

vein artery vein and artery walls between that space and then the debate the device closes down on them then the machine will give you a reading of what the distances you push to the button and you got a fistula and it's very pretty

straightforward then you go ahead and balloon that with a five millimeter balloon to make sure the anastomosis is open and running and that's it then you pull out and you can compress with one finger you know on the vein and here's a

look at the the anatomic and that's office Jilla that it does create you know you don't mobilize there's no surgical trauma patient goes home with a couple of band-aids here's a dissection with ultrasound of the area that you're

working in there on the right you can see the perforator coming down it's sitting over the PRA the right proximal radial artery and that's right where you're going to make your puncture from one vessel into the other and this is

what you're left with on the left of course you see a big surgical scar from a prior creation of probably in the brachiocephalic fistula and on the right you can see the very prominent cephalic vein after fish through the creation

which is getting ready to to be punctured here's the illustration of what you've just done again perforating vein going down towards the radial artery create the fish stool and now you have a brachial artery down radial

artery so you have a radial proximal radial perforating vein fistula I don't know whether it hopefully it goes up the cephalic vein if it goes up the basilic vein you may have to consider doing transpositions or elevation to get that

vein in a position of yeah so that it can't be punctured here's another ultrasound from one of our cases again showing a nice you know red to blue flow of the fistula here's another one you know I have to see these a while you say

wow it's really pretty amazing and what we do is we get velocity measurements at the time of the procedure one week later then at four weeks later and at four weeks if they're not flowing at least 500 to 600 cc's a minute then we'll go

in and do a secondary balloon or something to get things going there's that same patients actually this is our patients arm it's a different patient and you can see the flow map there and when you see that diastolic component

got halfway up the systolic that means you're flowing at about 600 500 to 600 cc's a minute it's a good indication that you've got a you've created a fistula with working potential if you have to re intervene it's a radial

puncture you go right up the the radial artery I'm sure your dad is familiar with doing that for the most part and that goes right across that and ask Tomo system so if you have to dilate the anastomosis to get a larger you're in

good position if you have to go up and redirect flow by embolization of small collaterals nor the brachial veins now you can do that all from the the radius it's nice highway right up into the fistula

and here's the results of the FDA trial

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

good morning thank you all for braving 8:00 a.m. and I'm sure you were in bed last night early about 8:30 and really enjoyed getting up for this lecture but here it is so this seems to be one of the you know there's a couple of buzzes around the meeting this year pardon my

voice I wish I was up to like what I wasn't and one of the buzzes percutaneous fistulas and then there's this extreme IR then there's this 3d virtual reality stuff is going around so in Orangeburg ER we're fortunate enough

to be very much involved with both of the newly approved fda devices what she also didn't mention was I was a technologist for eight years before I went to medical school so I kind of know where you're coming from that's why I

really enjoy not speaking to you if it's not for you guys and what you make us look good and I believe me so here's my disclosures someone said you should do well on these I said one I'm looking for more if anyone else is out there knows

any studies or anything they want me to do I'm happy to do them so I'm always looking for more disclosures after they office Access Institute in Orangeburg a little sleepy town about three-quarters of the way up from

Charleston towards Columbia John Ross built this amazing facility we are separate from the hospital you can see the hospital a little bit in the back a little bit in the back there but we're totally separate unit if you're

not familiar with us you've got six operating rooms totally dedicated to dialysis access know nothing else goes on there pardon me there's the clinical area waiting the preoperative and

post-operative a holding area there in the room for about 20 patients we do anywhere from 20 20 to 40 45 patients a day all things peritoneal hemodialysis access creation d clots angioplasty and percutaneous I think that was off the

first case for hemodialysis porcinis access and you see Jeff hole there the one of the developers of the ellipsis device I'm sort of just under the light and the caption is usually how many physicians does it take to put in a

percutaneous access a lot of them on the right this is a totally ultrasound mediated placement and then you can see that's what you get when you connect the artery in the vein you get that very beautiful color flow Doppler of a

perforating thing into a radial artery we'll talk about that now being down south I have had to get I've learned to get used to a chicken and biscuits for breakfast which I've never had to deal with before but it's all been quite

nicely folks been very nice to us so a little trip down memory lane and if you recognize this this is one of the first external officials for hemodialysis you know shrimper shunt and that was followed by of course many fistula sites

there you can see on the Left fistula sites up the radial radial ulnar element and radial cephalic rather of course called the breccia semitic fistula and should go up higher I want you to call your attention to right by the elbow

that area is where the site of percutaneous fistulas today are mostly created and these are deep fish to this and we'll get into what that means in just a moment and of course grafts there on the right

but it's a little bit out of the topic

higher procedures that get done in the country so they are from being basics such as being para sentences and in some

centers being quite complex in Euro work and there are centers where these none of all those that IR procedures being available so it's a very unequal distribution of provision of IR services and like I mentioned earlier on vascular

surgeons and cardiologists have basically taken over the peripheral vascular work and iogic work and other known neuro speciality such as bid early interventions for example saying that these two surgeons who are in some

remote centers who are doing their own provision as biliary basic interventions there is one neuro surgeon who went and had neuro imaging and then your interventional training who is now hundred percent doing a mural

intervention so as far as procedures go my day can be in diagnostic work and you might be dreaming you doing a paracentesis the next thing you might be doing some some I our basic IR and on the same day you might be doing a set

procedure so quite varied but not available in all centers as one would want as fine stuff goes the technology

predictors of a successful or vascular ization there are several so obviously you know you have a great result Andrew

graphically when you say hey the vessels back that wasn't there before so Payton see if a previously occluded vessel is a good sign but what else improve vessel caliber so after an angioplasty the vessel becomes you know more normal and

caliber the flow velocity increases or the outflow improves you see less collateral so that's a good sign that you've done something good because those collaterals have only gotten large because of increased pressure and the

normal outflow vessel and then increased distal branch opacification Perry procedurally things that you can look at that indicators of success are if the pulses returned or if you have a Doppler signal

that either comes back or goes from a mono phasic I'm not gonna repeat those sounds they were way above my pay grade but go from a mono phasic signal back to a normal triphasic or sometimes even biphasic is pretty close to normal

particularly in diabetics skin discs skin coloration you sit you may see a foot pink up relatively quickly after a good revascularization and actually some patients may develop rube or if they've had prolonged ischemia because their

capillaries are chronically dilated so you now sending flow into chronically dilate a capillary bed and they may get rubriz capillary refill time as you mentioned earlier may decrease to a normal range to less than 5 seconds and

ulcerations I've seen them just begin weeping or bleeding right on the table if you do a really good job upon awaking from sedation patients who have rest paint off and indicate that the pain is gone but you have to remember that

patients with wounds may actually wake up and be in a lot of pain because you're reap refusing an area that's been dead for or dying for a long time so the wound blush is something that I'm always looking for and I'm frustrated if I

don't see it and basically this is analogous to when the when the ulcer begins bleeding after a good revascularization you may see Andrew graphically that there's now a contrast blush in the area of the ulcer and so I

like to mark on the patient usually with a hemostat or something the area of the ulcer and take my final angiogram just to kind of know where it is and to be looking for that it may it not always be visible as it may take time for the

capillary network to adapt to the new flow pathways and for basal spasm to resolve but this is an example of a patient has an ulcer underneath the base of their big toe after revascularize them and you can see

that there's increased perfusion to that area so this is a sign of a good result

of cryoablation it's gentler than both microwave and RF a you can use it in a lot of locations because of that you can visualize the ice ball with CT multiple probes means potentially huge ablation zones and I'll show you an example of

that it's not painful and for me I know that I don't know about everyone else in the room but our anesthesia assistance is is very spotty or sporadic so it's nice to do stuff with conscious sedation in which case cryoablation you can

absolutely do most places with conscious sedation it's not painful at all whereas if you've done microwave you know the moment you turn the probe on the patient wants to punch you so so it's not particularly painful you can do it with

sedation and it has this immuno genic response that we're starting to learn more about right so when you cook tissue your since you just cha reverie and you just cook all the proteins and all the membrane of the cell with cryoablation

you actually keep some of the proteins in tact so what happens is as the cell dies your immune response comes in and it recognizes those tumor antigens right those tumor proteins and there's been lots of reports of where you oblate for

instance a renal mass and the patient's lung nodules will regress because of that so that's a very nice feature of it is that's got this immuno genic response and I'll use that often times if I'm doing a lung ablation for instance and

there's other nodules you can see a regression of those nodules the disadvantage as well you need you know there's these repeated freezes right so you do these freeze thaw cycles you go ten fighting you know ten freeze five

for ten freeze five for that ends up being a pretty long freeze time right and even if you do the triple freeze protocol which I can talk a little bit in a bit here you can see it ends up adding up a lot of time so the time you

save on not putting the patient to sleep and getting general anesthesia actually lose on the backend when you're standing and staring at the probes freezing whereas my crew of ablation as me as you know 10 minutes and you're

done there is this idea of a cold sink so like RFA if you put the probe right up against the blood vessel it's unlikely that that ice bowl is going to propagate into that blood vessel and you can use

that to your advantage once again I'll show you an example of that but cold sink is technically also a disadvantage and one of the main things people worry about with cryoablation is the bleeding aspect right so unlike our fa or

microwave you're essentially cooking the tissue it's a Bovie right you're very unlikely to have bleeding whereas cryo you freeze the tissue and when you thought all those blood vessels are now very porous and they can bleed and so

one of the concerns with cryo is that you have bleeding and you you'll often see this especially in renal and long and then do some early studies where where physicians were doing large liver oblations and they were getting into

something called cryo shock which we'll talk about in a little bit that's probably overhyped from the earlier studies but for that reason many people do not use cryoablation in the liver they would prefer to use microwave

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

good afternoon thank you so much for invitation to speak to you I have a privilege of working at Johns Hopkins and we have a fairly large practice we at the main hospital itself we have 11 rooms and during a day about two of them are have a biliary case actually going

on at the same time so it's actually a fairly large volume of our practice and so the gamut of bluie intervention goes from really simple stuff to really complex and it is something that our trainees specifically will come to

Hopkins for and many of times they will end up being the blurry and experts as soon as they arrive at a new practice so certainly it's something that we deal with every day I just wanted to give you a landscape overview and share some good

cases that we've done and hopefully you may something have some comments or learn something about the way we do it but I'm pretty sure throughout the country a lot of great Billu work has been done currently there's no question

though the Blooey access and access to the Blooey system has really been played out in most hospitals perth by GI and ir and obviously surgery but almost a lesser so today and the rat in at least four IR is the PTC PPD or transparent

Col angiogram but it's actually a recurring role and I actually speak and have a sort of special interest in transit paddock colonoscopy as well so we play scopes through the skin through the liver and do a lot of balloon

intervention I'll show you a few cases like that but in true these access points are germane to what specialty you come from and obviously endoscopic beeper oral and if you eye are usually usually through the skin and there's no

question GI now in some hospitals I'm sure you have advanced endoscopy that will go through the stomach straight into the leftover liver so there's no question of a blurry landscape is changing quickly but no question that

this is quite common but yet most patients and internal medicine specialties will be looking at blurry disease by access point through scopes through ercp so going back from the Duden up or directly through in there's

advantages disadvantages something it's fairly obvious to everybody that you know no question is selling it to a patient if it had both choices that ERCP through the mouth and nothing invasive nothing sticking out their body

is attractive yet the outcomes are very similar but nonetheless there's pros and cons and through the trance of had a crap or two percutaneous route you do definitely have tubes at least sticking out

initially and this is often solved by GI as the main differentiator at least a discomfort but yet we are able to address almost every problem at times and often where'd they pay a lot there's

about with cryoablation if you put the probes in and you create an ice ball and then you try and pull those probes out you can cause something called organ fracture basically and

essentially the idea is that you've trying to pull an ice ball out of a kidney or the reason you can tear that organ and it can have some pretty substantial complications related to that so once I've placed probes and

started freezing I don't touch them again even if you don't like where they are you don't want to pull them and move them around addition to that at the end of the case I'm always in a rush to get the probes out and you do this act of

thought thing and it's two minutes can I pull the probe I can I pull the probes out in the Reptoids I calm down calm down the idea that if you pull those out too early you can fracture the organ and

then as I mentioned with liver oblation specifically cryo shock was a concern these large liver oblations could cause the patient to become hypotensive going to di C raspberry compromise it was a big deal in the early studies and so a

lot of people stop doing cryo for liver now you're seeing a little bit of a resurgence of that but most still will do microwave for liver ablations

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.