Create an account and get 3 free clips per day.
Chapters
Biliary Strictures | Balloon Cholangioplasty | 45 | Female
Biliary Strictures | Balloon Cholangioplasty | 45 | Female
2016biliarycalibercholecystectomyclinicalductlaparoscopicluminalpatientspercutaneouslyphysiologicSIRstricturesurgicaltrial
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Status Of Left Atrial Appendage Exclusion (Endo And Open) For Stroke Prevention With Atrial Fibrillation: Techniques And Results
Status Of Left Atrial Appendage Exclusion (Endo And Open) For Stroke Prevention With Atrial Fibrillation: Techniques And Results
afibAMPLATZER (Abbott) / AtriClip (AtriCure) / Lariat (SentreHEART) / WaveCrest (Coherex) / Occlutech (Occlutech) / LAmbre (Lifetech Scientific)approvedatrialAtriumBoston ScientificdevicedevicesendocardialexclusionfibrillationheartischemicLAA Closure DevicesleakleftLeft Atrial Appendage ClosurepatientspercentperfectrandomizedreducessafestsizedstrokesurgicaltherapeutictrialtypicallyWATCHMAN
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
bicarbonateboluscardiovascularcombinationcomparingcoronarydoseevarhydrationHypertensionintralowmechanismspatientsperipheralpreviousrandomizedreducingrenalsalinesodiumstandardTherapeutic / Diagnostictrialtrialswillingness
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
abdominalanatomicaneurysmaorticdecisiondegenerativeendovascularenrollenrollmentinfluencedmedicaloptionspatientsphysiologicpittsburghrepairstudysurgicaltreatmentvascularVeithversus
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
amputationamputationsarterialatherosclerosisbaselinecalcificationcategoryclinicalcomparedcompensatoryelutingfreeInfrapoplitealintermediatekaplanlowmajormedialmeiermulticenterpatientspredictionrandomizedregressionremodelingriskrutherfordstemstentstrial
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
The Biolux Paseo-18 Lux DCB: Advantages And Good Patency Results In Difficult Fempop Lesions
The Biolux Paseo-18 Lux DCB: Advantages And Good Patency Results In Difficult Fempop Lesions
adverseBailoux Passeo18Bailoux Passeo18 ProcedureballoonBiotronikcalcifiedcentimeterclinicalcohortdrivenfreedomglobalhydrophobiclesionlesionspaclitaxelpatencypatientspercentagephaseprimaryrandomizedregardregistriesstentstentedstentingstudysubgroupstasctherapeuticversus
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
abdominalacuteaneurysmsaorticbasicallycenterscomorbiditycreatininedissectionsevarevarsfactorsinpatientinstitutionlowermortalitypatientsphysiologicpreoperativerapidrenalrupturedstudysyndromestransfertransferredtransferstransportunivariatevascularVeith
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
anticoagulantsantiphospholipidantiplateletDVTendovascularfactorsfamilyhistoryincidenceinfrainguinalinpatientintraoperativepatientsperioperativepreoperativeriskscreeningsurgicalthoracicthrombosisvascularvenous
Non-Fasting Lipid Profiles Are A Simplification With No Negative Consequences For Diagnosis, Risk Evaluation And Treatment
Non-Fasting Lipid Profiles Are A Simplification With No Negative Consequences For Diagnosis, Risk Evaluation And Treatment
biliarycalculatedcardiovascularcholesterolfastedfastinghyperlipidemiaischemiclipidmeasuredoverlappatientsprofilerisktriglycerides
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
ambulationantegradearteryassessingcalcifiedCardival Medicalcathcath labCelt ACD (Vasorum) - Vascular Closure DeviceclosurecollagencomplicationcomplicationscompressionconsconsecutivedeploymentdevicedevicesdiscembolizationfemoralhemostasismanualminorminutespatientsprosrandomizedrequiringretrogradestainlesssurgicaltherapeutictimetrialVascade VCDvascularVascular Closure Deviceversusvisualize
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
accessaneurysmalbypassclinicalDialysisdiameterduplexdynamicflowflowsgraftluminalmeasurepatientsrenalsensitivityultrasoundveinvelocityversusvolume
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
What Clinical And Procedural Variables Increase The Risk Of Peri-Operative Stroke With CEA In Symptomatic Patients
What Clinical And Procedural Variables Increase The Risk Of Peri-Operative Stroke With CEA In Symptomatic Patients
anesthesiacarotidCEAclinicalcontralateraldatadeathdisablingECSTlowermodifiednascetpatientsperioperativerandomizedrankinreductionriskstatisticallystenosisstrokesurgicaltendency
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
Is Coronary Stenting (PCI) Overused As The ORBITA RCT (Comparing Stenting To Medical Treatment Suggests)
Is Coronary Stenting (PCI) Overused As The ORBITA RCT (Comparing Stenting To Medical Treatment Suggests)
anginacabgcoronarydiseaseexerciseinterventionalistsischemiaischemicmedicalobservationaloptimaloptimizedpatientsPCIplaceborevascularizationsymptomstherapeutictherapytrialunderpoweredversus
Modern Compression Stocking Studies (SOX, IDEAL, DVT And OCTAVIA) And Pharmaco-Mechanical Catheter Directed Clot Lysis (ATTRACT) Failed To Prevent Post-Thrombotic Syndrome (PTS): Is There Now No Role For Compression And Interventional Treatment For Patients With Acute DVT
Modern Compression Stocking Studies (SOX, IDEAL, DVT And OCTAVIA) And Pharmaco-Mechanical Catheter Directed Clot Lysis (ATTRACT) Failed To Prevent Post-Thrombotic Syndrome (PTS): Is There Now No Role For Compression And Interventional Treatment For Patients With Acute DVT
acuteblindedcompressionDVTiliofemoralinterventionalpatientspcdtprescribepreventprotectiveproximalquestionrandomizedriskrolestockingsstoppingstudiesstudysymptomssyndrometreatmenttrialversus
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
acuteadvanceanteriorcarotidcerebralcollateralsdeliveryintracranialmechanicalneuroprotection agentsneuroprotectiveofferedpatientpatientsPenumbrapotentpreservestrokethrombectomyThromectomytpatreat
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
algorithmamputationarterialautogenouscomponentcompressiondataDVTendovascularEVLTextremityhealhealingincisionsisolatedmichiganmixedmoderatepatientspercutaneousperforatorsrefluxrevascularizationrevascularizesummasuperficialtreatmentulcersvenouswoundwounds
Transcript

bile duct injury surgical repair.

We think of that as a definitive repair but in about 10% of patients a stricture will occur at the anastomosis. There've been a lot of discussion of different managements alogarithms. I don't know that we've got it figured it out but I thought I'd show you what we do. We perceive with balloon cholangeoplasty.

We leave this patients intubated 12, 14Fr. And I guess may be we are aggressive, in trying to get tubes out, we actually bring these patients back in four or six weeks for what we call sheath cholangeogram. If things look okay and at most it's hard to tell the luminal caliber of this nosemosis but

things seem to be draining creating pretty well into the lumen. We'll externalize the patient put a drain above and cap it. So it's physiologic test or a clinical trial as referred to earlier. I believe that clinical trial going for two weeks we bring him back at that point, and we don't necessarily repeat this dilation unless we are worried that really this stricture has not resolved.

So we base all the future management on the basis of what we see on that day, and we pull this out sometimes after just one cholangioplasty and the clinical trial or a physiologic test. The problem is that the recurrent stricture at it's surgical site occurs in about 10% of patients. Surgical revisions is very difficult in these patients they have been

operated on once for the laparoscopic cholecystectomy and other time for the creation of the reulem. So our surgeons would like us to manage this percutaneously if all possible. Retrospective series that my colleagues publish. We seem to get away with this in about two-thirds of patients with

durable resolution of the stricture but certainly their patients will either be left with options of a difficult surgical revision or long term biliary drainage.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- My topic is status of left atrial appendage exclusion and we're going to go to the heart in this topic. This is my disclosures: atricure being the main one. The other disclosure is we actually have an annual meeting of left atrial appendage that takes over three days, so this is a very

extensive topic and I'm going to ask you to put your seat belts on because it's going to be a lot of topics to cover over five minutes. So, as you know, the left atrial appendage is the source of thrombus that comes from the heart in ninety percent of patients so patients

who have a stroke coming from the heart, ninety percent chances are the clot was in the left atrial appendage. If you look at just in the US, if we can take care of left atrial appendage in these patients, we can deal with 130,000 strokes.

It's a very substantial number. And this translates with the amount of money that the industry has put in this. Over half a billion dollars currently and it's increasing significantly. This is one of the fastest growing area

of devices worldwide in any specialty. Now left atrial appendage also excludes atrial fibrillation so besides dropping and reducing the stroke, it does also an electric isolation so it reduces the atrial fibrillation rate in patients

who have chronic AFIB so those are two main reasons why we close left atrial appendage in specific patients who have the indication for. Now I'm going to go over the talk if you look at patients who have an open heart surgery, they already know, based upon this recently

published journal publication from Mayo Clinic, that left atrial exclusion significantly reduces stroke. In these patients, they actually look at 75,000 patients, five percent of them had surgical exclusion and that that propensity analysis among patients who had AFIB and closure of appendage versus

the same patient population with similar risk who did not and they had significantly less stroke in patients who had exclusion of appendage, as you see here, and less mortality. There is a specific trial called ATLAS that is going to be given a more randomized study

but there is a lot of data already supporting that appendage reduces significant stroke. Now these are the two studies. This is one of the most important slides that I want you to remember. They are the Endocardial Trial Devices

and there are Epicardial Devices and I'm going to go over in the last slide what are the pros and cons of each one. What I'm going to talk about each of them at a time. Now endocardial is obviously transcatheter techniques. Epicardial is a clip that is typically placed

outside but it could be also endocardial, as well. So Watchman is the most common device that is placed endocardial. It's also the only one that is FDA approved currently. And it's probably the best device that we will place in an elderly patients or failed patients.

It's 14 Fringe, has five sizes based upon a CT Scan. Sized pretty much like a anthracic aneurysm in how we measure actually, triple As. It's sized 10 o

and has 10 barbs in it. It's also approved in CE marks, as well. Now the FLX version of it is a new version that has been overworked right now but this study, this device is actually the most studied device. Protect-AF and Prevails are the typical two studies

and they have shown at four-year followup that the ischemic stroke and systemic embolization is significantly lower and comparable to coumadin and significantly lower bleeding rate, as well. But they are not perfect obviously. There is a lot of patients that cannot be treated

due to anatomic issues. There is also percent of patients will have leaks that will require additional anticoagulation. Now Amplatzer is not approved.

It's not a percutaneous endocardial device, that is CE marked, but I'm not going to spend time just because of the timing. Same applies to WaveCrest, Occulotech, and LAmbre. You can imagine these at the early time of EVARS and TVARS that we have initially one device on the market

and now more and more devices coming up. We have a similar one on the left atrial appendage. And these devices will come into market within the next few years. They are already in Europe available. But no randomized trials.

Now with all these endocardial devices there are multiple leak effects typically including leaking around it because as you know appendage orifices is not a perfect circle. It's not like a aorta, many aortas, at least. You could have an area that is very narrowed

and you could have what we call a really perivalval leak which cardiologists will name differently, a agofact in this case. Now one of the epicardial devices, these are devices that come from outside, is called the LARIAT.

This is 510K approved in the United States and also available in CE but has significant complications. Why? Because it's an endocardial device. That means you have to transvenous access and have a transeptal from right atrium going to the left atrium but also you have

to access the pericardium and pretty much put a loop around the left atrial appendage that connects over a magnet. It's actually a pretty neat device but it has significant issues with complications including tamponade and its the only device

that has actually a death rather compared to any other ones. Other ones have almost zero mortality rates. There is a leak option so if you close that appendage with a circular device, if you continues to have some blood going into it

this enlargened sac can actually open up again to orifices that's called the Gunnysack Effect. And one of the issues that, you know, Lariat has a failure rate. Plus, Lariat can be only applied for certain sizes of appendages that are small,

so that's important, as well. Now there are a lot of issues with surgical closures. I'm going to shorten this portion but to say the suture alone is not a perfect idea and for that reason, we actually use a clip for this that's called the AtriClip

that is FDA approved and this is how it looks like from inside the heart. You have an endocardial to endocardial apposition with less thrombogenesty. This is the AtroClip device again and we have option also to put that as a

thoracoscopic approach for patients who do not need open heart surgery. As you see at three month, the entire appendage dies off from ischemic event: it goes away, which is what we want. This is the prospective trial that showed

the safety of this device. And this is the left atrial appendage symposium that I mentioned to you. If you look at the Watchman device, the leak is a certain concern but it's the safest device for elderly patients, however, the epicardial

device are the safest with the lowest rate of leak and best outcome. Overall, this is my last slide, I think 100 percent of closing the left atrial appendage is important so that's the reason epicardial device right now are much more successful.

This is an important concept for patient with permanent AFib: it can cut down on the stroke risk by 90 percent and improves survival in patients and loved ones who has atrial fibrillation. Efficacy has been shown in multiple studies and in the safety, as well (mumbles).

If we have a heart-team approach, very similar like in the vascular approach, I think it takes away the specialty bias among the two various closure devices. Thank you very much.

- Thank you very much, chairman and ladies and gentlemen. The funding of this trial was from The Academy of Medical Sciences and The Royal College of Surgeons of England. AKI due to the influence EVAR is actually more common than we all think. This is being shown by prospective studies and registries.

Why is it important? Well, it's associated with a higher intra or inter hospital mortality, cardiovascular events and also long term cardiovascular events and longterm mortality. As even more common and complex, EVAR, and this can range from 22% up to 32%.

These are some of our cases, some of our first, including FEN astrate EVAR in 2010 Thoraco-Abdominal Branch repair 2016 and Fen astrated TEVAR 2018. These are longer procedures, usually with more contrast and direct ventilation after removing arteries.

What are the mechanisms for acute kidney injuries due to infer-renal EVAR? While this involves use of contrast, systemic inflammatory response syndrome, due to ischemic re-perfusion injury, manipulation of the thrombus, aorta and catheterizations which will ------ alpha

and also from high prophalinemia. There is no high-quality evidence for AKI prevention in EVAR. What about Sodium Bicarbonate? Well it's been well know to reduce what been used commonly to reduce CIN in high risk patients in perrifical and

corona graphy. There are two main mechanisms as to how this works. Firstly, from reducing renal tubular ischemia. Secondly, by reducing oxygen deprived free radical formation in the tubules. What is the evidence?

Well this is a met analysis, comparing Sodium Bicarbonate directly with hydration with normal saline, as shown in the orange box. There is no difference. We can look at the population ll

mostly CKD patients or diabetic patients, certainly Hartmann's patients but they are not EVAR patients. They are coronary patients or peripheral an-graphy patients. In addition, serum bicarbonate and the urine pH was not reported so we do not know how effective the Bicarbonate was in these RCT's.

The authors went on to look other outcomes including needful hemo dialysis, cardiac events, the mortality and they found no difference but they concluded the strength of this evidence was low and insufficient. A further Meta-analysis this time published in BMJ this time comes in favor of bicarbonate

but again this is comparing bicarbonate with saline no use of combination therapy. There are again no use of EVAR patients and these patients all have a low eGFR. The preserved trial, a large trial published earlier this year in the New England Journal again using various

treatments again comparing sodium bicarbonates and saline again no difference. But again this compares bicarbonate direct with saline with no combination therapies. In addition, there were no EVAR patients, and these are low eGFR patients.

The met-analysis also showed that by using bicarbonates as a bolus dose rather than a continuous infusion, which was actually the way they used bicarbonates in most of these patients might be better. And using a higher dose of bicarbonate may also be better as shown in this Japanese paper.

So we come to HYDRA trial. They're using a high dose bicarbonate in combination with hydration to protect renal function. We did a UK wide survey of anesthetists of day to day and they felt the best volume expander they would like to use was Hartmann's solution.

So we randomized patients between standard hydration with Hartmann's solution verses standard hydration Hartmann's plus high dose bicarbonate per operatively and low slow intravenous infusion bicarbonate during the surgery. Importantly, with these patients,

we kept the map within 80% of baseline, 90% of the time in contrary to all the RCT's coronary and angeo-porphyry. We're going to skip that slide. This is the inclusion criteria, any patient undergoing infra EVAR, with any renal disfunction,

the primary area you must look at is recruitment and the second area you must look at is AKI. We screened 109 patients of which, 58% were randomized and there were only 2 crossovers. There was a willingness for patients to participate and there was also a willingness for PET 4 Clinitions to

recruit as well. This is the demographics, which is typical of aortic patients they are all on by a few MRSA patients, have normal renal function. Most of the patients wear statins and anti pace agent, only 13% were diabetic.

The patients were matched in terms of hypertension and also fluid hydration pre-operatively measures of via impedance. Here are the results of the trial. The AKI instance in the standard hydration group was like 3% and 7.1% with standard hydration plus bicarbonate. And it was similar in terms of organotrophic support into

and postop and also contrast volume used. It's a safe regime with none of the patients suffering as a result of using bicarbonate. So to conclude, to answer professor Veith's question, about how was this trial different to all the other trials? Well, certainly the previous trials have compared

bicarbonate with saline, there's lack of combination studies that involve mostly coronary an peripheral procedures, not EVAR. And the the most only included patient with low eGFR. HYDRA is different, this is not a regime using high dose bolus of sodium bicarb combined with standard hydration.

It shows promise of reducing AKO. This is an EVAR specific pilot RCT. Again, Unlike previous trials using bicarbonate, 90% of the patients had normal or mild impaired renal function. And unlike previous trials, there's more aggressive management of hypertension intra and postoperatively.

Thank you for listening.

- Thank you Dr. Veith for an invitation to be here. These are our disclosures. We're fortunate to have funding from VA HSR&D for this work. Decision aids help patients make decisions about medical treatment, such as steroids versus biologics for things like arthritis.

Or medical versus surgical treatments for things like degenerative joint disease. Decision aids are uncommonly used for decisions about surgical treatment. Such as the options that face patients facing abdominal aortic aneurysm repair,

which as well all know are options like open surgery, which is invasive, but has a long recovery, but is likely durable over time. Or endovascular repair, which is, of course, less invasive with a shorter recovery, but may have problems with durability.

We design the preferences for open versus endovascular repair or prove AAA trial and this study has two objectives. First was to implement a decision aid, which is designed to help Veterans choose between an open and endovascular repair for their abdominal aortic aneurysm.

Of course, taking place in Veterans Hospitals across the US. And then second, to test if the decision aid makes it more likely for Veterans to receive the type of aneurysm repair that is aligned with their treatment preferences.

We are going to achieve these objectives, we hope, via a randomized clinical trial. I'll tell you briefly about that. We're going to study Veterans who have an existing abdominal aortic aneurysm that measures at least 5.0 cm in diameter that are anatomic and physiologic candidates

for open and endovascular repair. At ten control sites, the Veterans will take a simple survey and have their vascular surgery consultation. And simple surveys for their surgeons will follow thereafter. At 10 intervention sites, the process is identical

with the exception of an introduction of a decision aid. This decision aid was designed in England by Roger Greenhall, Jana Paul and others as part of the Picker Institute and provides a balanced view of the advantages and disadvantages of

both open and endovascular repair. We then followed the Veterans for two years to see what happens when the repair ultimately occurs and our main outcome measure was whether or not they preferred aneurysm repair type turned out to be their actual repair type.

We had performed this study, and I'm very grateful to my colleagues across the country at the 20 sites who are going to perform this trial. We began enrollment a little over a year ago. We're going to enroll 240 patients, I hope. We've enrolled 181 patients thus far,

so we're about 3/4 of the way there. And many of our sites, especially those in Gainesville, Ann Arbor, Buffalo, Salt Lake City, Tampa, Tucson, Pittsburgh and others have either completed their enrollments or are close to doing them. And while our objectives are to answer

these two study questions, I can't do that quite just yet. But we can examine the information sources that Veterans have used thus far when facing this decision. We asked Veterans questions like who have you talked to about if the surgical treatment options available to you if you needed an operation?

52% of our study participants thus far said they didn't talk to anybody. They didn't talk to their PCP at all about their AAA repair options. We asked them who their main source of information was about open surgical repair and again 41% of patients

reported having no information at all about open surgical repair of AAA and while only one in five cited a primary care physician as their main source of information. We asked the Veterans the same question about endovascular repair.

Again, 40% of patients received no information about EVAR, 17% got information from their primary care physician, about 10% of patients, a number lower than we expected, used the internet. Finally, we asked patients, has your view of the different surgical treatment options available been influenced

by anybody in your, among your medical advisors. 50% of patients reported that their view had not been influenced by anyone. We felt this led us be safe to conclude that while our future work will report the actual preferences for repair types

and the effects of this decision support, we found that half the patients with abdominal aortic aneurysm meeting criteria for repair had not yet discussed their treatment methods with anyone prior to meeting with a vascular surgeon. I believe this shows that the burden of explanation

for patients facing abdominal aortic aneurysm repair rests squarely on the shoulders of those of us in the vascular community. Thank you.

- Thank you chairman, ladies, and gentlemen. These are my disclosures. The objective was to asses the prognostic value of a high or immeasurable Ankle-Brachial Index at baseline for major amputation and Amputation Free Survival in patients with CLTI. And, we did this within two randomized control trials,

the PADI trial and the JUVENTAS trial, which I will spend a bit on later. We did a regression analysis of both trials, and had data pooled at a patient level, looking at risk factors such as Diabetes, Cardiovascular Comorbidities,

and Ankle-Brachial-Index. Patients were divided in either low, intermediate, or a high, or immeasurable, ABI. So, in short, the PADI trial was a Multicenter 2-arm randomized clinical trial with controls looking at Rutherford Category over three on

Infrapopliteal Lesions comparing Drug Eluting Stents verses PTA and without bail out stenting, endpoints, patency, major amputation, and mortality. This study was published in 2017. The JUVENTAS Trial, was a stem cells trial with double-blinded placebo controlled giving a

infusion of bone marrow stem cells versus placebo. And again, the endpoints were major amputation and mortality, published in 2015. Overall from these two trials, we were able to collect 260 patients, and this is the baseline table.

You can see that the majority of patients fitted in the Low ABI group, 146 patients. And, 33 patients fitted in the High ABI group. Overall, the prevalence of Diabetes, History of Stroke Coronary Disease, and Impaired Renal Function, was significantly higher in the High ABI group.

Follow-up of these patients with median of 229 weeks, and in this period we observed 59 amputations, and 103 deaths. The majority of this major amputations was performed, actually, in the first year after inclusion within these trials,

which you can see here in this Kaplan Meier Curve, showing that the amputation rate was about double in the High ABI group, as compared to the Low or Intermediate group. Looking at ABI for its Amputation Free Survival, again showed significantly higher rate of amputations

in the High ABI group, as compared to Low or Intermediate. And, at five years, you can see that almost all patients in the High ABI group either had amputation or had died. This was about 50% in the Low or Intermediate group. Looking at the Multivariate Regression Analysis, we observe the Rutherford Category and ABI

in the High or Immeasurable group, related to major amputation, and is same for amputation or death, now adding also age. So, the interrelation between ABI and major events, is J shaped, and actually, there's a higher risk for patients with a high or immeasurable ABI for major events,

as compared to patients with a low ABI. So why is this so? Well, it's not fully elucidated, but it's believed to be related to Medial Arterial Calcifications, being an independent age associated pathway different from Atherosclerosis.

And, the stiffness due to this calcification, may prevent compensatory positive remodeling related to Atherosclerosis when both diseases coincide. And, actually it's coexistence of Medial Calcification Atherosclerosis is not that uncommon, even up to 80%. So, what is the clinical relevance of all this?

Well, we did look at the PREVENT-III prediction model for Amputation Free Survival. You can see on the slide, the included factors in the original PREVENT-III model. We added the I, or Immeasurable ABI to this model, and has lead to an increase in C-statistics from 46% to 72%

Net Reclassification Improvement of 0.38. So, ladies and gentlemen, in conclusion, a high or immeasurable ABI in patients with CLTI and Infrapopliteal Arterial Obstructive Disease is an independent risk factor of major amputation and of poor Amputation Free Survival.

Incorporating this factor in a PREVENT-III prediction model improves its performance. Thank you very much, also to the research groups.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- Yeah, thank you very much. We all know that DCBs are kind of a workhorse right now for SFA-PA disease but when it comes, this has been proven randomized controlled studies, but when it comes to real world patients this might not have been included in the randomized conduit study and therefore

these registries are very available. And I present on this BIOLUX P-III study [Unintelligible] the standard versus the non-standard sub-group. This is just a quick overlook about the Passeo-18 Lux DCB it's an O-18 platform, has three micrograms

[Unintelligible] Paclitaxel on the balloon The excipient is a BTHC and this is an hydrophobic excipient and the sizes available are from two to seven millimeter in diameter and four 80 and 100 millimeter in length. This is the overlooks about the Passeo-18 Lux

they are out there, we have from phase one to phase three studies, randomized controlled and global registries. 1,600 patients including in this clinical program. With regard to the full cohort at 12 month we have now 878 patients available, you see with regard to the clinical characteristics

heavy smokers... a high percentage of smokers, high percentage of diabetes, more than 40% of CLI, 76% calcified lesions, the lesion length was around 9 centimeter and one-third of the patients had TASC C or D lesions. This is a higher payload stenting rate

this is not surprising with this complex cohort about 20% and with that the primary patency of the full cohort at 12 months is 84.3% and the freedom from clinical driven TLR is 93.5%. So this is the overlook of the full cohort at 12 months. With regard to the different subgroups you see

you have a consistent freedom from clinical driven TLR primary patency and freedom from major target limb amputation throughout all the subgroups. And I just now want to highlight the bail-out stented versus the DCB only group because this follows the concept of the so-called leave, at least leave less behind

as possible, this so-called spot-stenting concept. Out of this 878 patients we had 715 treated with a DCB only and in the bail-out stent group we had 163 patients. The patients in the bail-out stented group had a longer lesion length... 11 compared to 8 centimeters

in the DCB only group. With regard to all the others correctors there was no difference besides TASC C and D lesions there had been a higher percentage of TASC C and D lesions in the bail-out stented group than in the DCB only group.

We did the same vessel prep for both arms and with that we had the freedom from clinical driven TLR in the bail-out stented group of 92.8 compared to 92.2% in DCB only group. Primary patency was a little bit lower but freedom from a major adverse event

at 12 months was the same. When we bring this into context to other randomized, other real-world data out there freedom from clinical driven TLR in comparison to the In.Pact global stented group is the same as well as in the Lutonix global stented group.

With regard to freedom from major adverse event we can only refer to the In.Pact global stented group which is the same. So just let me conclude the Passeo-18 Biolux P-III study continues to show consistent, clinical performance of the Passeo-18 Lux Drug Coated Balloon

throughout all subgroups. There is no difference in clinical performance between DCB only versus payload stented even for the bail-out stented group had more complex lesions and the results of the Biolux P-III payload stenting subgroups are in line with the results

of current Global registries stented subgroups. Thank you very much.

- Thank you, and thank you Dr. Veith for the opportunity to present. So, acute aortic syndromes are difficult to treat and a challenge for any surgeon. In regionalization of care of acute aortic syndromes is now a topic of significant conversation. The thoughts are that you can move these patients

to an appropriate hospital infrastructure with surgical expertise and a team that's familiar with treating them. Higher volumes, better outcomes. It's a proven concept in trauma care. Logistics of time, distance, transfer mortality,

and cost are issues of concern. This is a study from the Nationwide Inpatient Sample which basically demonstrates the more volume, the lower mortality for ruptured abdominal aortic aneurysms. And this is a study from Clem Darling

and his Albany Group demonstrating that with their large practice, that if they could get patients transferred to their central hospital, that they had a higher incidence of EVAR with lower mortality. Basically, transfer equaled more EVARs and a

lower mortality for ruptured abdominal aortic aneurysms. Matt Mell looked at interfacility transfer mortality in patients with ruptured abdominal aortic aneurysms to try to see if actually, transfer improved mortality. The take home message was, operative transferred patients

did do better once they reached the institution of destination, however they had a significant mortality during transfer that basically negated that benefit. And transport time, interestingly did not affect mortality. So, regional aortic management, I think,

is something that is quite valuable. As mentioned, access to specialized centers decrease overall mortality and morbidity potentially. In transfer mortality a factor, transport time does not appear to be. So, we set up a rapid transport system

at Keck Medical Center. Basically predicated on 24/7 coverage, and we would transfer any patient within two hours to our institution that called our hotline. This is the number of transfers that we've had over the past three years.

About 250 acute aortic transfers at any given... On a year, about 20 to 30 a month. This is a study that we looked at, that transport process. 183 patients, this is early on in our experience. We did have two that expired en route. There's a listing of the various

pathologies that we treated. These patients were transferred from all over Southern California, including up to Central California, and we had one patient that came from Nevada. The overall mortality is listed here. Ruptured aortic aneurysms had the highest mortality.

We had a very, very good mortality with acute aortic dissections as you can see. We did a univariate and multivariate analysis to look at factors that might have affected transfer mortality and what we found was the SVS score greater than eight

had a very, very significant impact on overall mortality for patients that were transferred. What is a society for vascular surgery comorbidity score? It's basically an equation using cardiac pulmonary renal hypertension and age. The asterisks, cardiac, renal, and age

are important as I will show subsequently. So, Ben Starnes did a very elegant study that was just reported in the Journal of Vascular Surgery where he tried to create a preoperative risk score for prediction of mortality after ruptured abdominal aortic aneurysms.

He found four factors and did an ROC curve. Basically, age greater than 76, creatinine greater than two, blood pressure less than 70, or PH less than 7.2. As you can see, as those factors accumulated there was step-wise increased mortality up to 100% with four factors.

So, rapid transport to regional aortic centers does facilitate the care of acute aortic syndromes. Transfer mortality is a factor, however. Transport mode, time, distance are not associated with mortality. Decision making to deny and accept transfer is evolving

but I think renal status, age, physiologic insult are important factors that have been identified to determine whether transfer should be performed or not. Thank you very much.

- Thank you very much. Well this is a series that was actually published five years ago. And it outlined 45,000 patients after carotid endarterectomy, as well as open and closed thoracic abdominal procedures and infrainguinal bypasses.

And you can see here, that the VTE rate, and this is emblematic of a lot of studies. If you take everything together in a ball, you get an average result. And as you can see, the peripheral bypasses had a low incidence.

Carotids, very low incidence. But open procedures had a higher incidence than endovascular procedures. But here is the nub. Here is what's really important and why you need to do risk assessment.

Look at what happened to these percentages if the patients had any morbidity during hospitalization, as high as 7.8%. And here's the list after they went home. Again, it's not the .5 tenths of a percent or 1%, and this is what it's all about.

It's about the extra risk factors that the patient has. So now, anybody that's starting to do work with the Caprini Score, you've got to go to the patient-friendly form. Because we don't just do it,

if the patient comes in for surgery, and somebody does a preoperative evaluation in the holding area, stop it! It's ridiculous! Have you ever been in the holding area? What are you worried about?

You're worried about having the operation. Are they going to find cancer? Will the surgeon have a bad day? How much pain am I going to be in? How long am I going to be out of work? They're not going to talk to you

about their family history or their obstetrical misadventures. So you have them fill a form out ahead of time with their family, and then when they come in, you just double-check it. And we've studied this, it's in five languages,

and it's got perfect correlation with trained observers doing the same thing. And remember, if you fail to carefully interrogate your patients regarding the history or family history of venous thromboembolism, vascular surgery or not, sooner or later you may

be faced with a fatal PE. And the idea that you're giving anticoagulants during your procedure that's going to protect them is not valid. The relative risk of thrombosis increases with the number of risk factors identified.

A combination of genetic and acquired risk factors in a person without a history of a thrombosis personally, but with a family history, has a 60-fold higher chance than those that have a negative family history. And a positive family history increased

the risk of venous thrombosis more than 2-fold, regardless of the other risk factors. Don't forget the history of thrombosis. You won't need to look this article up. It's 183,000 patients over 25 years and it shows that both in first, second,

and third-degree relatives, as well as cohabitants in the household, there's an increased risk of venous thromboembolism. Lowering down, getting lower for each degree of a relative.

But a DVT in a cousin, there may also be a thrombopathic condition in that patient. So you better pay attention to that. National Surgical Quality Improvement Program, wonderful program. The database has no information on history

or family history of VTE, use of perioperative VTE prophylaxis, intraoperative anticoagulation, or perioperative use of antiplatelet agents. How are you supposed to make any sense out of DVT-related studies?

Finally, due to the lack of routine screening for VTE, the incidence of VTE may be underestimated in this NSQIP database, which only makes the need for further study more pressing. This is an important consideration because

more recent data indicates that two-thirds of the patients are found to have DVT during screening and after vascular operations, have no signs or symptoms of the problem. And I'd like to remind you, so this is based on the Boston data, which is the best data.

Patients with a low score pneumatic compression during hospitalization. Moderate score, of 7-10 days of anticoagulation. Don't make any difference if they're inpatient or outpatient. And 28 days if their score is over nine.

They lowered their incidence on the surgical services from 2.2% to a tenth of a percent at 30 days. And finally, and I think this is really, really important. Take a look at all these risk assessment scores.

To my knowledge, there's only two scores. It's not the Padua, it's not the IMPROVE that have a history of obstetrical misadventures which can reflect antiphospholipid antibody syndrome, as well as family history

in various degrees of relatives. So with that, thank you very much.

- Thank you very much. So, this audience certainly knows that the higher the triglyceride, the greater the cardiovascular morbidity mortality, similarly if you have a low HDL that same relation holds, and certainly for the non-HDL-C or LDL-C calculated the higher the worse outcome and there's

multiple drugs related to this. Similarly with stroke, triglyceride the same relationship. Ischemic stroke increased with low HDL and again LDL-C correlates. So the historical precedent has been that you should get a fasting lipid level

when you first encounter the patient, but to make this simple that's really probably not true. So there's various things that are measured and that are calculated, but LDL is generally calculated, HDL is measured and then the triglycerides are calculated as remnant cholesterol.

So if you compare just the measured LDL compared to calculated LDL in a non-fasting state, it's a little bit of a wider linear relationship here as compared with the fasting, it's a little bit tighter. But when you look at this in more depth, and this reference here really nicely puts it all together

but the total cholesterol really doesn't vary if you've fasted one hour or 16 hours, similarly between men and women. The only thing that varies a little bit is triglycerides and we'll go on to that in just a little bit of depth.

But again that's variable, triglycerides go up if you eat really not much difference with the other lipid levels. And if you look just in terms of triglycerides, they overlap between non-fasting and fasting, really at almost all levels

so there's not really discrepancy. Similarly with LDL, same amount of overlap here whether or not you have diabetes it doesn't seem to make a difference. So for lipid panels, profile testing, in most patients you can get a non-fasting

initial lipid profile in any patient for cardiovascular risk assessment, I'd say that's where it's most commonly done in most of our practices. Similarly with acute coronary syndrome, if preferred by the patients et cetera.

But really it's where the non-fasting triglycerides are highly elevated that you want to get a fasting lipid panel. So what causes secondary hyperlipidemia related particularly to hypertriglyceridemia? Certainly certain diet factors, certain drugs,

cyclosporins for example, biliary obstruction and hypothyroidism. And so, one algorithm is that in terms of screening with non-fasting, and if it's less than 200 you're good to go, you really don't need to do anything further,

and if it's greater than 200 then probably a fasting lipid profile, lipoprotein panel is indicated. So reasons that non-fasting lipid measurement is fine most of the time is that again most trials have used non-fasting levels for determination of effectiveness of various medications.

This Friedewald formula actually uses total cholesterol, HDL, and triglycerides to calculate LDL-C, and LDL really is not directly measured, it's not standardized by the CDC such as these other cholesterol moieties are. And again most CV risk factor calculators don't use LDL-C.

So again, non-fasting is acceptable for the initial risk estimation in untreated and primary prevention screening. For patients with genetic hyperlipidemia probably fasting is required. Diagnosis of metabolic syndrome, non-fasting is fine.

And again some other more highly specialized scenarios you may want a fasting profile. Thank you.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- I'd like to thank Dr. Veith for this kind invitation and the committee as well. So these are my disclosures, there's none. So for a quick background regarding closure devices. Vascular closure devices have been around

for almost 20 years, various types. Manual compression in most studies have always been shown to be superior to vascular closure devices mainly because there's been no ideal device that's been innovated to be able

to handle all sorts of anatomies, which include calcified vessels, soft plaque, etc. So in this particular talk we wanted to look at to two particular devices. One is the Vascade vascular closure device

made by Cardiva and the other is the CELT arterial closure device made by Vasorum in Ireland. Both these devices are somewhat similar in that they both use a disc. The Vascade has a nitinol disc

as you can see here that's used out here to adhere to the interior common femoral artery wall. And then once tension is applied, a series of steps is involved to deploy the collagen plug

directly on to the artery which then allows it to expand over a period of time. The CELT is similar in that it also uses a stainless steel disc as you can see here. Requires tension up against the interior wall of the common femoral artery.

Nice and tight and then you screw on the top end of the device on to the interior wall of the artery creating a nice little cylinder that compresses both walls of artery. As far as comparability is concerned between the two devices you can see

here that they're both extravascular, one's nitinol, one's stainless steel. One uses a collagen material, the other uses an external clip in a spindle-type fashion. Both require about, anywhere between three to seven minutes of pressure

to essentially stop the tract ooze. But the key differences between the two devices, is the amount of time it takes for patients to ambulate. So the ambulation time is two hours roughly for Vascade, whereas for a CELT device

it's anywhere from being immediate off the table at the cath lab room to about 20 minutes. The data for Vascade was essentially showing the RESPECT trial which I'll summarize here, With 420 patients that was a randomized trial

to other manual compression or the device itself. The mean points of this is that the hemostasis time was about three minutes versus 21 minutes for manual compression. And time to ambulation was about 3.2 hours versus 5.7 hours.

No major complications were encountered. There were 1.1% of minor complications in the Vascade versus 7% in the manual compression arm. This was actually the first trial that showed that a actual closure devices

had better results than manual compression. The main limitations in the trial didn't involved complex femoral anatomy and renal insufficiency patients which were excluded. The CELT ACD trial involved 207 patients that were randomized to CELT or to manual

compression at five centers. Time to hemostasis was anywhere between zero minutes on average versus eight minutes in the manual compression arm. There was one complication assessed at 30 days and that was a distal embolization that occurred

early on after the deployment with a successfully retrieved percutaneously with a snare. So complication rate in this particular trial was 0.7% versus 0% for manual compression. So what are some pros and cons with the Vascade device?

Well you can see the list of pros there. The thing to keep in mind is that it is extravascular, it is absorbable, it's safe, low pain tolerance with this and the restick is definitely possible. As far as the cons are involved.

The conventional bedrest time is anywhere between two to three hours. It is a passive closure device and it can create some scarring when surgical exploration is necessary on surgical dissections.

The key thing also is you can not visualize the plug after deployment. The pros and cons of the CELT ACD device. You can see is the key is the instant definitive closure that's achieved with this particular device, especially in

calcified arteries as well. Very easy to visualize under fluoroscopy and ultrasound. It can be used in both antegrade and retrograde approaches. The key cons are that it's a permanent implant.

So it's like a star closed devised, little piece of stainless steel that sits behind. There's a small learning curve with the device. And of course there's a little bit of discomfort associated with the cinching under the (mumbles) tissue.

So we looked at our own experience with both devices at the Christie Clinic. We looked at Vascade with approximately 300 consecutive patients and we assessed their time to hemostasis, their time to ambulation,

and their time to discharge, as well as the device success and minor and major complications. And the key things to go over here is that the time to hemostasis was about 4.7 minutes for Vascade, at 2.1 hours for ambulation, and roughly an average

of 2.4 hours for discharge. The device success was 99.3% with a minor complication rate of .02% which we have four hematomas and two device failures requiring manual compression. The CELT ACD device we also similarly did

a non-randomized perspective single center trial assessing the same factors and assessing the patients at seven days. We had 400 consecutive patients enrolled. And you can see we did 232 retrograde. We did a little bit something different

with this one, we did we 168 antegrade but we also did direct punctures to the SFA both at the proximal and the mid-segments of the SFA. And the time to hemostasis in this particular situation was 3.8 minutes,

ambulation was 18.3 minutes, and discharge was at 38.4 minutes. We did have two minor complications. One of which was a mal-deployment of the device requiring manual compression. And the second one was a major complication

which was an embolization of the device immediately after deployment which was done successfully snared through an eighth front sheath. So in conclusion both devices are safe and effective and used for both

antegrade and retrograde access. They're definitely comparable when it comes, from the standpoint of both devices (mumbles) manual compression and they're definitely really cost effective in that they definitely do increase the

throughput in the cath lab allowing us to be able to move patients through our cath lab in a relatively quick fashion. Thank you for your attention.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- So this was born out of the idea that there were some patients who come to us with a positive physical exam or problems on dialysis, bleeding after dialysis, high pressures, low flows, that still have normal fistulograms. And as our nephrology colleagues teach us, each time you give a patient some contrast,

you lose some renal function that they maintain, even those patients who are on dialysis have some renal function. And constantly giving them contrasts is generally not a good thing. So we all know that intimal hyperplasia

is the Achilles Heel of dialysis access. We try to do surveillance. Debbie talked about the one minute check and how effective dialysis is. Has good sensitivity on good specificity, but poor sensitivity in determining

dialysis access problems. There are other measured parameters that we can use which have good specificity and a little better sensitivity. But what about ultrasound? What about using ultrasound as a surveillance tool and how do you use it?

Well the DOQI guidelines, the first ones, not the ones that are coming out, I guess, talked about different ways to assess dialysis access. And one of the ways, obviously, was using duplex ultrasound. Access flows that are less than 600

or if they're high flows with greater than 20% decrease, those are things that should stimulate a further look for clinical stenosis. Even the IACAVAL recommendations do, indeed, talk about volume flow and looking at volume flow. So is it volume flow?

Or is it velocity that we want to look at? And in our hands, it's been a very, very challenging subject and those of you who are involved with Vasculef probably have the same thing. Medicare has determined that dialysis shouldn't, dialysis access should not be surveilled with ultrasound.

It's not medically necessary unless you have a specific reason for looking at the dialysis access, you can't simply surveil as much as you do a bypass graft despite the work that's been done with bypass graft showing how intervening on a failing graft

is better than a failed graft. There was a good meta-analysis done a few years ago looking at all these different studies that have come out, looking at velocity versus volume. And in that study, their conclusion, unfortunately, is that it's really difficult to tell you

what you should use as volume versus velocity. The problem with it is this. And it becomes, and I'll show you towards the end, is a simple math problem that calculating volume flows is simply a product of area and velocity. In terms of area, you have to measure the luminal diameter,

and then you take the luminal diameter, and you calculate the area. Well area, we all remember, is pi r squared. So you now divide the diameter in half and then you square it. So I don't know about you,

but whenever I measure something on the ultrasound machine, you know, I could be off by half a millimeter, or even a millimeter. Well when you're talking about a four, five millimeter vessel, that's 10, 20% difference.

Now you square that and you've got a big difference. So it's important to use the longitudinal view when you're measuring diameter. Always measure it if you can. It peaks distally, and obviously try to measure it in an non-aneurysmal area.

Well, you know, I'm sure your patients are the same as mine. This is what some of our patients look like. Not many, but this is kind of an exaggerated point to make the point. There's tortuosity, there's aneurysms,

and the vein diameter varies along the length of the access that presents challenges. Well what about velocity? Well, I think most of us realize that a velocity between 100 to 300 is probably normal. A velocity that's over 500, in this case is about 600,

is probably abnormal, and probably represents a stenosis, right? Well, wait a minute, not necessarily. You have to look at the fluid dynamic model of this, and look at what we're actually looking at. This flow is very different.

This is not like any, not like a bypass graft. You've got flow taking a 180 degree turn at the anastomosis. Isn't that going to give you increased turbulence? Isn't that going to change your velocity? Some of the flow dynamic principles that are important

to understand when looking at this is that the difference between plug and laminar flow. Plug flow is where every bit is moving at the same velocity, the same point from top to bottom. But we know that's not true. We know that within vessels, for the most part,

we have laminar flow. So flow along the walls tends to be a little bit less than flow in the middle. That presents a problem for us. And then when you get into the aneurysmal section, and you've got turbulent flow,

then all bets are off there. So it's important, when you take your sample volume, you take it across the whole vessel. And then you get into something called the Time-Averaged mean velocity which is a term that's used in the ultrasound literature.

But it basically talks about making sure that your sample volume is as wide as it can be. You have to make sure that your angle is as normal in 60 degrees because once you get above 60 degrees, you start to throw it off.

So again, you've now got angulation of the anastomosis and then the compliance of a vein and a graft differs from the artery. So we use the two, we multiply it, and we come up with the volume flow. Well, people have said you should use a straight segment

of the graft to measure that. Five centimeters away from the anastomosis, or any major branches. Some people have actually suggested just using a brachial artery to assess that. Well the problems in dialysis access

is there are branches and bifurcations, pseudoaneurysms, occlusions, et cetera. I don't know about you, but if I have a AV graft, I can measure the volume flow at different points in the graft to get different numbers. How is that possible?

Absolutely not possible. You've got a tube with no branches that should be the same at the beginning and the end of the graft. But again, it becomes a simple math problem. The area that you're calculating is half the diameter squared.

So there's definitely measurement area with the electronic calipers. The velocity, you've got sampling error, you've got the anatomy, which distorts velocity, and then you've got the angle with which it is taken. So when you start multiplying all this,

you've got a big reason for variations in flow. We looked at 82 patients in our study. We double blinded it. We used a fistulagram as the gold standard. The duplex flow was calculated at three different spots. Duplex velocity at five different spots.

And then the diameters and aneurysmal areas were noted. This is the data. And basically, what it showed, was something totally non-significant. We really couldn't say anything about it. It was a trend toward lower flows,

how the gradients (mumbles) anastomosis, but nothing we could say. So as you all know, you can't really prove the null hypothesis. I'm not here to tell you to use one or use the other, I don't think that volume flow is something that

we can use as a predictor of success or failure, really. So in conclusion, what we found, is that Debbie Brow is right. Clinical examinations probably still the best technique. Look for abnormalities on dialysis. What's the use of duplex ultrasound in dialysis or patients?

And I think we're going to hear that in the next speaker. But probably good for vein mapping. Definitely good for vein mapping, arterial inflow, and maybe predicting maturation. Thank you very much.

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Thank you, thank you. Dear Colleagues, I have no Financial Disclosures. If we look at the old randomized stroke trials, mainly NASCET and ECST, we had a combined any stroke and death rate within 30 days of 7%, and there were some clinical and morphological arrivals that were associated

with an higher or a lower risk. The Carotid Stenosis Trialists' Collaboration was established to perform pooled individual patient data analysis from the major carotid randomized trials of the last year, ICSS, SPACE, EVA-3S, CREST and now also GALA.

And the aim of this study was to look at the impact of clinical characteristics and perioperative measures on the 30-day risk of stroke and death, and whether the risk of CEA for symptomatic patients has changed since since ECST and NASCET. And I'll jump directly into the results,

the primary outcome, any stroke or death within 30 days occurred in 4.3% of the patients, disabling stroke and death, 2.1, any stroke 4%, all-cause death 0.8%. If we looked at the multi-variable analyses, these are the impact of the clinical characteristics,

no clinical factor was associated with the lower or bigger risk, with the exception of a contralateral stenosis or occlusion. This was statically significant, with an risk increase of almost 60% relative risk increase. We looked at the clinical signs of the patients.

There was a tendency that stroke patients had a bit worse results, but again, statistically not significant, however patients who had an disabling stroke, namely a modified Rankin scale of 3 to 5, had a significantly higher risk of a repetitive stroke or death.

Time interval didn't play a role, at any time interval, nothing there, and also the in-trial center volume. The techniques, a tendency that CR without patch, and interestingly Eversion-CEA had worse results in this big data cohort, but again, statistically not significant.

Shunt use was a bit biased, that was associated with an increased risk, and we looked also at the type of anesthesia, this is I think the most important result of this study, and we were able to show that local anesthesia had better outcomes as compared

to general anesthesia, with a 30% relative risk reduction in these patients. So, summing up and comparing the data with the ECST and NASCET trial, we had a reduction from 7% down to 4.3% and also for the other single end points, disabling stroke, death, any stroke, all-cause death, et cetera.

There was a reduction in the overall complication rate with the exception of, in most cases Passager cranial nerve palsy. So in conclusion, we found a higher surgical risk in patients with a contralateral high grade stenosis or occlusion, we also found a higher risk in patients

with a modified Rankin Scale of 3 to 5 at randomization, so disabling strokes. Lower surgical risk if surgery was done under loco-regional anesthesia, and no significant effects for surgical technique, co-morbidities, gender or age. Thank you very much for your attention.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- Thank you, ladies and gentlemen. And our faculty here. Thank you so much for having me, and I'm thrilled to be here as I think some of the few interventionalists who are here. So, the idea was, what is the, is the stance

being overused after the Orbita Trial? And I bring it up because what is the Orbita Trial? This was a trial that really got a lot of, a lot of attention and I think it's important for you to kind of think about it.

It was actually the very first sham-controlled study of 230 patients who were enrolled, 200 who were randomized. Comparing actually PCI to placebo in patients with severe single vessel disease who were medically optimized but were stable.

Very, very interesting. They followed up these patients and the, based, looked at the change in exercise time in these patients and found absolutely no benefit for PCI in changing the exercise time.

So they said, in medically, in patients with medically-treated angina and severe coronary artery stenosis, PCI did not increase exercise time by by, in any difference from placebos. So, this really, really brought up so much attention

and that we were really, really doing unnecessary procedures and the last thing we heard is the last nail in the coffin of PCI. And so, I think it's important to think about what were the issues with that important disease and where we are with the scope of coronary disease.

Which is not insignificant. At the moment, with 326 million patients in the United States, and prevalence of CAD at 16.5, PCI is being performed in 667,000 patients per year. And I think it is important to note

that for the most part, about 50% of this is for acute coronary syndromes, which is not all the Orbita Trial. It's supportive evidence for routine revascularization with guideline-based therapy, directive therapy.

Very, very important that observational data does show a very important relationship between ischemia and death and MI. Revascularization relieves ischemia and that is what it's supposed to do. Large scale studies have shown

a reduction in spontaneous MI, following revascularization versus guideline-directed therapy. And importantly, continued improvement in both PCI and CABG techniques have really shown excellent relief of symptoms

and that we are not here to really, really think about death and MI in the big, big picture. But more immediate reductions as preferred by patients and importantly, we have to note that ischemia directed therapy with revascularization can have important issues.

Regarding whether or not there is an overuse of PCI's, let me just take a, show you the map of the United States. The heat map. The hotter, the more PCI's. And you can see, it really is very much variable and that there is important appropriate use criteria

for coronary revascularization that continues to be updated on a very, very important issue. And there's no question that the media loves the hysteria about overuse of PCI. But I wanted to put that into the context

of what we were doing. In PCI, we are using FFR guidance and physiology guided PCI to show an enhanced outcome. And more and more, we're incorporating that into the armamentarium of both AUC, Appropriate-Use Criteria, as well as evaluating

the valuable patients. And it is important for you to take a look at what have we shown. So far, based on revascularization versus optimal medical therapy in relieving angina and has been a very, very important

improvement in exercise capacity. Albeit, that the one and only trial of the sham procedure didn't show a change in exercise, but there are a lot of issues in this underpowered study that shouldn't really, really turn you away.

For the fact that PCI does relive symptoms. Because there's a tremendous amount of evidence in, in view of reducing angina with a really, really good p value of 12 randomized clinical trials in this area. It is also important that the freedom of angina is shown.

Not just within the Orbita Trial that actually did show a reduction in angina, but very similar to previous studies. And the guidelines are telling us a very, very important Class 1A indication for patients with CID for both

prognosis and treatment. There is an upcoming ischemia trial in ischemic heart disease that will show in 8,000 patients on their NHLBI, with evidence of ischemia hopefully that we could show

that there is benefits. So to conclude, the current guidelines recommend use of revascularization for relief of symptoms with patients with ischemic, a stable ischemic disease. And while placebo remains an important aspect of this medical management up front,

and making sure that there is an important management, we should really, really understand that there's no question that optimal medical therapy has to stay in the background. And the use of PCI is, continues to be of important value.

Thank you for your attention.

- Here are my disclosures, none are relevant to today's talks. So what is the role of compressions stockings to prevent Postthrombotic Syndrome for patients with acute DVT? Well it's become rather complicated because as shown by recent studies,

it depends on what question is being asked. Question one is do compression stockings started at the time of DVT diagnosis prevent PTS, such as the Socks trial and other similar trials? Or question two, if you're already worn compression stockings for a period of time after DVT

and have not developed PTS, does stopping them increase the risk of developing PTS, such as the recent OCTAVIA and IDEAL trials? This is a meta-analysis that was done to address question one, namely the role of compression stockings started at the time of DVT diagnosis,

and this meta-analysis considered unblinded studies. The one blinded study, which was the Socks trial, and then attempted to combine that data, and you can see that if one looks at the unblinded studies there's suggestion of a 30% protective effect, or, excuse me, 40% protective effect.

The blinded study showed no effect of compression stockings. And combining all the studies together seemed to show about a 30% protective effect, however the confidence interval crossed one. There's very low confidence in this total estimate because of the substantial heterogeneity across studies.

And indeed, in their discussion, the authors point out the following: "We have very serious concerns about the unblinded studies because such designs may inflate treatment effects". And also, "differing results across studies suggest that the decision to use compression stockings

may be value and preference dependent for our patients". And we'll come back to that shortly. What about question two, if you've already worn compression stockings for a period of time after DVT, and you haven't developed PTS, does stopping them increase the risk of getting PTS?

There've been two new trials. One is the OCTAVIA study, of 518 proximal DVT patients. All wore compression stockings for one year after their DVT. If they were free of PTS at one year, they were randomized to continue for an additional year, or to stop.

And the results of this trial showed that stopping after one year was inferior to continuing for two years for the PTS outcome. On the other hand, we have the IDEAL study, of 865 proximal DVT patients. In this study, all patients wore compression stockings

for six months after proximal DVT, and if they were free of PTS at six months, they were randomized to continue for an additional 18 months, or to tailor continued use of stockings according to the Villalta score that was assessed every three months

at study follow-up visits. And the results of this trial showed that tailoring use after six months, which was the experimental arm, was actually non-inferior to continuing for 18 more months. So these results are interesting but somewhat conflicting. So how do I use compression stockings in 2018?

I don't routinely prescribe stockings to all of my proximal DVT patients. They can be difficult to apply, uncomfortable, expensive, and they need to be replaced every few months. And we all know that many patients won't wear them

in real life, especially if they have no symptoms whatsoever. And also, it's really not clear to me whether stockings prevent Postthrombotic Syndrome versus merely palliate symptoms of Postthrombotic Syndrome that has already developed.

And it may simply be as effective and more convenient and we may achieve better compliance if we ask our patients to start compression stockings at the time they develop symptoms of Postthrombotic Syndrome. I do however prescribe a trial of stockings

to any DVT patient, whether they have proximal or distal DVT who has residual symptoms after their DVT, and I'd continue them for as long as the patient derives symptomatic benefit or is able to tolerate them, and I certainly take patients' values and preferences into account

in making this decision. Moving on to the role of interventional treatment for patients with acute DVT. We have all heard and seen the results of the ATTRACT trial. Just very briefly, we know that the primary study outcome, any Postthrombotic Syndrome was not different

in the PCDT arm versus the No-PCDT arm. However, it did appear that PCDT reduced the risk of developing moderate or severe Postthrombotic Syndrome, and this was driven primarily by the subgroup with Iliofemoral DVT. In terms of short-term results, PCDT caused more

bleeding, major and any bleeding, and it caused statistically significant but clinically modest improvements in leg pain and leg swelling. Based on these results, what's the role of interventional treatment for patients with acute DVT? I would say that it's not indicated for routine use

in proximal DVT, it doesn't prevent Postthrombotic Syndrome, it does increase bleeding, and older patients above the age of 60 to 65 or more appear to be particularly poor candidates because of more bleeding and less efficacy. And further study in clinical use of these modalities

should be targeted. One would still consider PCDT in patients with severe symptoms, Iliofemoral DVT, and the other factors shown here on the slide. And finally, always remember that it's always an option to anticoagulate first for the initial

five to seven days if the limb is not acutely threatened. Thank you very much.

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- Well, thank you Frank and Enrico for the privilege of the podium and it's the diehards here right now. (laughs) So my only disclosure, this is based on start up biotech company that we have formed and novel technology really it's just a year old

but I'm going to take you very briefly through history very quickly. Hippocrates in 420 B.C. described stroke for the first time as apoplexy, someone be struck down by violence. And if you look at the history of stroke,

and trying to advance here. Let me see if there's a keyboard. - [Woman] Wait, wait, wait, wait. - [Man] No, there's no keyboard. - [Woman] It has to be opposite you. - [Man] Left, left now.

- Yeah, thank you. Are we good? (laughs) So it's not until the 80s that really risk factors for stroke therapy were identified, particularly hypertension, blood pressure control,

and so on and so forth. And as we go, could you advance for me please? Thank you, it's not until the 90s that we know about the randomized carotid trials, and advance next slide please, really '96 the era of tPA that was

revolutionary for acute stroke therapy. In the early 2000s, stroke centers, like the one that we have in the South East Louisiana and New Orleans really help to coordinate specialists treating stroke. Next slide please.

In 2015, the very famous HERMES trial, the compilation of five trials for mechanical thrombectomy of intracranial middle and anterior cerebral described the patients that could benefit and we will go on into details, but the great benefit, the number needed to treat

was really five to get an effect. Next slide. This year, "wake up" strokes, the extension of the timeline was extended to 24 hours, increase in potentially the number of patients that could be treated with this technology.

Next please. And the question is really how can one preserve the penumbra further to treat the many many patients that are still not offered mechanical thrombectomy and even the ones that are, to get a much better outcome because not everyone

returns to a normal function. Next, so the future I think is going to be delivery of a potent neuroprotection strategy to the penumbra through the stroke to be able to preserve function and recover the penumbra from ongoing death.

Next slide. So that's really the history of stroke. Advance to the next please. Here what you can see, this is a patient of mine that came in with an acute carotid occlusion that we did an emergency carotid endarterectomy

with an neuro interventionalist after passage of aspiration catheter, you can see opening of the middle cerebral M1 and M2 branches. The difference now compared to five, eight, 10 years ago is that now we have catheters in the middle cerebral artery,

the anterior cerebral artery. After tPA and thrombectomy for the super-selective, delivery of a potent neuroprotective agent and by being able to deliver it super-selectively, bioavailability issues can be resolved, systemic side effects could be minimized.

Of course, it's important to remember that penumbra is really tissue at risk, that's progression towards infarction. And everybody is really different as to when this occurs. And it's truly all based on collaterals.

So "Time is brain" that we hear over and over again, at this meeting there were a lot of talks about "Time is brain" is really incorrect. It's really "Collaterals are brain" and the penumbra is really completely based on what God gives us when we're born, which is really

how good are the collaterals. So the question is how can the penumbra be preserved after further mechanical thrombectomy? And I think that the solution is going to be with potent neuroprotection delivery to the penumbra. These are two papers that we published in late 2017

in Nature, in science journals Scientific Reports and Science Advances by our group demonstrating a novel class of molecules that are potent neuroprotective molecules, and we will go into details, but we can discuss it if there's interest, but that's just one candidate.

Because after all, when we imaged the penumbra in acute stroke centers, again, it's all about collaterals and I'll give you an example. The top panel is a patient that comes in with a good collaterals, this is a M1 branch occlusion. In these three phases which are taken at

five second intervals, this patient is probably going to be offered therapy. The patients that come in with intermediate or poor collaterals may or may not receive therapy, or this patient may be a no-go. And you could think that if neuroprotection delivery

to the penumbra is able to be done, that these patients may be offered therapy which they currently are not. And even this patient that's offered therapy, might then leave with a moderate disability, may have a much better functional

independence upon discharge. When one queries active clinical trials, there's nothing on intra arterial delivery of a potent neuroprotection following thrombectomy. These are two trials, an IV infusion, peripheral infusion, and one on just verapamil to prevent vasospasm.

So there's a large large need for delivery of a potent neuroprotection following thrombectomy. In conclusion, we're in the door now where we can do mechanical thrombectomy for intracranial thrombus, obviously concomitant to what we do in the carotid bifurcation is rare,

but those patients do present. There's still a large number of patients that are still not actively treated, some estimate 50 to 60% with typical mechanical thrombectomy. And one can speculate how ideally delivery of a potent neuroprotection to this area could

help treat 50, 60% of patients that are being denied currently, and even those that are being treated could have a much better recovery. I'd like to thank you, Frank for the meeting, and to Jackie for the great organization.

- Thank you, thanks for the opportunity to present. I have no disclosures. So, we all know that wounds are becoming more prevalent in our population, about 5% of the patient population has these non-healing wounds at a very significant economic cost, and it's a really high chance of lower extremity amputation

in these patients compared to other populations. The five-year survival following amputation from a foot ulcer is about 50%, which is actually a rate that's worse than most cancer, so this is a really significant problem. Now, even more significant than just a non-healing wound

is a wound that has both a venous and an arterial component to it. These patients are about at five to seven times the risk of getting an amputation, the end patients with either isolated venous disease or isolated PAD. It's important because the venous insufficiency component

brings about a lot more inflammation, and as we know, this is associated with either superficial or deep reflux, a history of DVT or incompetent perforators, but this adds an increasing complexity to these ulcers that refuse to heal.

So, it's estimated now about 15% of these ulcers are more of a mixed etiology, we define these as anyone who has some component of PAD, meaning an ABI of under point nine, and either superficial or deep reflux or a DVT on duplex ultrasound.

So we're going to talk for just a second about how do we treat these. Do we revascularize them first, do we do compression therapy? It has been shown in many, many studies, as with most things, that a multi-disciplinary approach

will improve the outcome of these patients, and the first step in any algorithm for these patients involves removing necrotic and infected tissue, dressings, if compression is feasible, based on the PAD level, you want to go ahead and do this secondary, if it's not, then you need to revascularize first,

and I'm going to show you our algorithm at Michigan that's based on summa the data. But remember that if the wounds fail to heal despite all of this, revascularization is a good option. So, based on the data, the algorithm that we typically use is if an ABI is less than point five

or a toe pressure is under 50, you want to revascularize first, I'll talk for a minute about the data of percutaneous versus open in these patients, but these are the patients you want to avoid compression in as a first line therapy.

If you have more moderate PAD, like in the point five to point eight range, you want to consider compression at the normal 40 millimeters of mercury, but you may need to modify it. It's actually been shown that that 40 millimeter of mercury

compression actually will increase flow to those wounds, so, contrary to what had previously been thought. So, revascularization, the data's pretty much equivocal right now, for these patients with these mixed ulcers, of whether you want to do endovascular or open. In diabetics, I think the data strongly favors

doing an open bypass if they have a good autogenous conduit and a good target, but you have to remember, in these patients, they have so much inflammation in the leg that wound healing from the surgical incisions is going to be significantly more difficult

than in a standard PAD patient, but the data has shown that about 60% of these ulcers heal at one year following revascularization. So, compression therapy, which is the mainstay either after revascularization in the severe PAD group or as a first line in the moderate group,

is really important 'cause it, again, increases blood flow to the wound. They've shown that that 40 millimeters of mercury compression is associated with a significant healing rate if you can do that, you additionally have to be careful, though,

about padding your bony areas, also, as we know, most patients don't actually keep their compression level at that 40, so there are sensors and other wearable technologies that are coming about that help patients with that, keeping in mind too, that the venous disease component

in these patients is really important, it's really important to treat the superficial venous reflux, EVLT is kind of the standard for that, treatment of perforators greater than five, all of that will help.

And I'm not going to go into any details of wound dressings, but there are plenty of new dressings that are available that can be used in conjunction with compression therapy. So, our final algorithm is we have a patient with these mixed arterial venous ulcers, we do woundcare debridement, determine the degree of PAD,

if it's severe, they go down the revascularization pathway, followed by compression, if it's moderate, then they get compression therapy first, possible treatment of venous disease, if it still doesn't heal at about 35 weeks, then you have to consider other things,

like biopsy for cancer, and then also consider revacularization. So, these ulcers are on a rise, they're a common problem, probably we need randomized control trials to figure out the optimal treatment strategies.

Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.