Create an account and get 3 free clips per day.
Chapters
Brachiocephalic Aneurysm, Thrombosis | Stenting | 61 | Male
Brachiocephalic Aneurysm, Thrombosis | Stenting | 61 | Male
2016aneurysmangiographyantiplateletsarterybasedbrachiocephaliccalcifiedcarotidcerebraldiagnosticdiaphragmdistalflowfollowfracturefrequentlyguyshistoryinitiallylocationneurointerventionaloptionsoriginPatentpatientpreppedrunoffshuttleSIRsizedstentstentingstentsstrokesubtractedthrombustreatmentuncoveredunremarkablevertvesselswire
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
afibarteryaspirinbiopsybridgingchaptercoronarycoumadindirectDVTembolismguidelinesholdholdinginhibitorsknowingliteraturemedicationsmedsNonensaidsosteoarthritispatientpatientspercutaneousphysicianplateletplavixpracticeprocedureprophylaxisreviewedriskthrombinvalvesvectorwarfarin
Case Example | Management of Patients with Acute & Chronic PE
Case Example | Management of Patients with Acute & Chronic PE
acuityafibangiogramanticoagulationarterycatheterchapterclotCTEPHdistallyDVTimagesincisionleftlobelowerNoneoperationpatientspressurespulmonarypulmonary arterysegmentalstenosisthrombusuppervessels
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Treatment Options- Medical Management | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Medical Management | Carotid Interventions: CAE, CAS, & TCAR
aggressiveantiplateletarteryaspirincarotidcarotid arterychapterembolizeendarterectomyincisionmanagementmedicalplaqueplavixstatinstatinsstentstentingtherapyultimately
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
advantagesarteryaspirateballoonbarebasicallybilecentimeterchaptercontrastcovereddilatedisadvantagedisadvantagesdistalexpandingflowgaugegorehepaticinjectinjectingkitsleaksmultipleneedlepasspassesphysiciansportalportionposteriorproximalpullpushradiologistssalinesheathstentssystemveinvenous
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
acuityalertanticoagulantanticoagulationbiopsybleedingcardiacchapterchartdysfunctionhematologicalhistoryhypertensivelivermedicationsNonepatientpatientsplavixprocedureprovidersradiologistsriskstablestentthrombocytopenia
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
acuteangiogramassistedcatheterchapterchroniccontrastdiagnosticechocardiogramembolismisisNonepressurepulmonarythrombolysistreatmentultrasound
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
angioAngiodynamicsAngiovac CannulaAspirex CathetercatheterschapterclotdevicedevicesfrenchIndigo ThrombectomyNonepatientPenumbraPenumbra Inc.sheathStraub Medicalthrombectomythrombustpa
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Summary of Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
Summary of Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
applycarotidchapterendovascularmedicalpatientsstentingtherapy
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Complications & Pitfalls | TIPS & DIPS: State of the Art
Complications & Pitfalls | TIPS & DIPS: State of the Art
accessarteryballoonbranchchapterclinicallydeepdefectgramhepaticimagesliverneedleocclusiveperfusionportaportalsegmentalsegmentsstentthrombosestipstracttypicalveinvenous
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
Diagnostic Criteria for CTEPH | Management of Patients with Acute & Chronic PE
Diagnostic Criteria for CTEPH | Management of Patients with Acute & Chronic PE
angiogramangiographyarterialarteriesarterycapillarycatheterchapterclassificationcurativediseasedistalflushlobesmanagementmedicationNonepatientpatientspressureproximalpulmonarysegmentalsheathstenosissurgeonsurgicalthrombustreatedtypevesselswebswedge
CTEPH Studies | Management of Patients with Acute & Chronic PE
CTEPH Studies | Management of Patients with Acute & Chronic PE
acutearterieschapterchroniccpapedemainterdisciplinaryjapanmultidisciplinarymultipleNoneoperatorspatientpatientsperformedpulmonaryreperfusionrequiringthrombolysistreatedtreatmentvascular
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
accurateairwaychaptercircuitcolorconsistentcpapdatadevicesdistaldistallyleaklevelliterlitersmaskmonitoringnasalNoneoraloxygenationpatientpatientsportprettysamplingstentsupplementalvaluesventilationventilator
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
antiplateletarterybraincarotidchapterdualembolicmedicareplavixprocedureprotectionproximalstenosisstentstentingtherapy
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
Introduction to Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
Introduction to Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
carotidchapterdeviceendovascularintentocclusivestentingtalk
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Transcript

he had a CT of the chest that was obtained to work up this pain, and it showed it three centimeter brachiocephalic aneurysm. He had a history of motor vehicle crash decades ago, he was a belted occupant doesn't really recall too much of the injury, he wasn't really

hospitalized for long after that injury. But that was the only remote history of trauma we could gain from him. He has a past medical history significant for hypertension, on exam really unremarkable no bruits, normal upper extremity pulses, no the history of neurologic event. So I unfortunately don't have his initial CT but generally when it gets

referred to that leads to angiogram. And this is our subtracted image showing a calcified circular aneurysm just at the bifurcation of the brachiocephalic. This is another look at it, we did a couple obliques and it's clearly right at the junction kind of a difficult location just at first glance. Initially we get one of this tough cases we start of with that just

not diagnostic angiography, if it's not urgent, we'll pause discuss in the multi-discplinary fashion and reconvene. Couple of more pictures, again these are the initial angiograms but I've got more recent follow up on this patient. And here's some more pictures. We didn't do rotational 3D angio

we frequently do that in the periphery, but for this case we didn't feel it would be all that helpful. >> When you start this did you have the patient's arm prepped as well as, did you prep just the groin or did you come in prepped planning to intervention or is this just-

>> This was just a work up just to, kinda really further to find what the CT showed. Because if we knew from the CT it was a difficult location we wanted to find it with angio, and again this wasn't leaking or ruptured aneurysm really other than this vague discomfort he had we didn't feel it was terribly symptomatic.

Whenever we deal with things above the diaphragm again we try to observe the neurointerventional principles, or neuroangiography principles of double flashing again very careful guide wire and catheter selection of these vessels. Generally these work up of these patients includes a cerebral angiography.

It's kind of like intervening in the leg. I always like to see what the runoff is first. This runoff is a little bit more precious so we like to get a baseline. I like to know what the carotids are doing. Frequently we shoot the verts. This is a posture circulation from the left.

This makes me think that his right vert ends in pica and you'll see this, I end up selecting out the verts a lot in these above diaphragm cases just to understand the what the anatomy is and also it helps us to plan on the table. This is left hemisphere.

Basically unremarkable and there's the left carotid. >> Do you heparinize during your diagnostic cerebral angio? >> I don't. There are operators at my facility that do I don't. >> Jim? >> No, we don't usually.

>> So based on our findings we entertained basically the classical tube treatment option, surgical repair. Which would involve a cardiopulmonary arrest or endovascular options and that's where we got involved. One option we were thinking of included stent grafting from the brachiocaphalic origin to the right common carotid.

We were leaning towards the need for a right carotid subclavian bypass based on what his right vert was looking like. Double barrel stenting has been described, stent coiling, another neuro technique that we've adopted in the periphery and then flow redirection. What do you guys think so far?

Have I left out any treatment options on the endo side? >> No, I think you got most of everything you can think of. >> I try to dump these patients on my partners as much as possible, that was the other option. So we do these cases with our neurointerventional colleagues, we work very closely for stroke and right at the aneurysms

whenever we get referred patients with these kinds of aneurysms. So this again October 2008, we bring him back for angiography. This is typically how we initially start off carotid stenting, stents I like to have like a cook shuttle type sheath, generally carotid stenting procedures are 014 wire systems with

distal protection. In this case we opted not use distal protection cuz there was not occlusive disease it was more of an aneurysm case based on CT that we reviewed his vessels were nice and clean and our treatment option that we selected actually was an 0.035 system. So I didn't want to attempt distal protection,

work over an 0.014 wire and run into some issues related to that. This image shows our shuttle sheath in the origin of the brachiocephalic. An 0.035 wire, this is essentially a rosen wire in the common carotid. Again pre-intervention cerebral angiography of that hemisphere just so we have a baseline.

And we opted the flow redirection option, so we looked at, again this is 2008, we chose to use a LifeStent, sized up appropriately based on CT and stent it from the common carotid and to the origin of the brachiocephalic.

This is our post stent angiography. You can see that there's still a robust turbulence flow into this brachiocephalic aneurysm but again no evidence of dissection or distal embolization post procedure. Very nice, simple procedure. Again we talked to the patient about all of his options. He was not keen on operative options and we wanted to keep this

nice and simple and see if we could observe some of the neural principles of flow rediversion and apply it to this aneurysm. So we brought the patient back at the end of the month and got a CT. You can see the CT, the stent is widely patent. There is a little bit of compression upon

the stent by the aneurysm, but by all accounts, the stent's widely patent. There is still significant flow inside the aneurysm. This is an isolated picture of stents here and here's this aneurysm. Again this is October 2008.

We bring the patient back in in December 2008 for another CTA and the stent's widely patent and we begin to see some more thrombus beginning to develop in the aneurysm. Here's a side by side comparison. This is October 2008, this is December 2008.

Now we did have the patient on dual antiplatelet therapy because of the location of the stent. We realized that was working against us probably but we felt it would be neuroprotective in this situation. Would you guys do antiplatelets in this kind of patient? >> If I look at this, I think you kinda have to have dual

antiplatelets because I think you run the risk of stroke with an endograft in the carotid artery and then I think if you're not careful, that's gonna be a bigger problem. But I guess if I had that much flow in the aneurysm in October- >> But this is open. This is an uncovered stent. >> This is an uncovered stent so it's flow directed.

>>Right, If I had that flow in that aneurysm flow right away. I don't know if I'd be comfortable just watching. I need to know it's flow directed, like I wanna see it kinda shut down. I'm kinda wondering in October when you did that-

>> Yeah, what were you thinking? >> You obviously chose to wait but kinda go through that thought process. >> Yeah so- >> What could you do, what were you thinking. >> In October when we saw that CT post intervention, we were just happy to see the stent wide open.

No, I'm kidding. We thought we give it a little bit more time. One of the option was to go back in and put another layer of stent in and I was actually favoring that initially but we opted to bring the patient back several months later for a followup.

This patient was also very educated and really had been through a lot of other medical procedures and he was also willing to wait. He understood the risks that we described and he was willing to wait follow up imaging. >> I'm impressed with your patience. I commend you on this out of the box in a very sort of dangerous

vascular territory, but I think it's actually from the standpoint of looking at this intervention. Part of interventional radiology is get in, get out, get away with it, and what you're saying is we're gonna kinda pay this forward and I'm okay with surveillance.

When you talk about patient education, cuz you're talking about thrombus that's encroaching upon a bare-metal stent, if you will, what did you warn the family about from the standpoint of stroke? Wakes up and it's not going well, you need to call 911. >> Again very educated patient and family.

We described, unfortunately used the term catastrophic stroke when consenting him, and again, this isn't something you walk into. I try to make friends with the patient and the family, describe the worst case scenario and that's part of the reason we as a an

institution frequently do diagnostic angiography first, discuss everything with the family and then figure out together what our plans are. Cuz this is again out of the box and though it's well described but a little

bit out of the box. Again the stent was placed in October 2008. This is a CT from March 2009, and you can see that our grey vessels are widely

patent significantly more thrombus but still a lot of flow in this aneurysm. This is a side by side comparison from December 2008 to March 2009. It doesn't look that impressive but trust me there was actually a lot more thrombus in here. I couldn't bring the 3Ds here.

>> [INAUDIBLE] >> No. >> Yeah, if this was an incidental [INAUDIBLE] it's probably not gonna rupture. >> Right that was the other thing. >> [INAUDIBLE] >>Given the history, yeah. >> [INAUDIBLE] >> We also felt that point calcified probably been

there since that MVC many decades ago, yeah that's very reasonable. >> What size of the LifeStent? >> 8 by 60. >> Eight? >> Eight millimeter diameter.

January 2010, so he did very well relatively asymptomatic, a little gun shy about coming in for angiography monthly, but we brought him back in again one of the things we learned about some self expending stents in the MFA, I've run into is the fracture rate. This was an area I wasn't sure how much flexion would be going on in the artery in this area, but we did a spot image looking for fracture, center

fracture again this is an unusual location. I can't say that there is a significant fracture and separation as you know fracture of [UNKNOWN] stent is implicated with stent occlusion. >> There's a vert back behind there. >> This is the subtracted angio, you can see that there's a lot less flow. Decent sized vert actually on the right but based on imaging- >>

Is that the vert or is that deep cervical? >> That's vert. >> Okay. >> Yeah. >> I'm just noticing the branches, are those two branches coming off of it?

>> I think they're overlapping. I think the origin of those branches are probably more over here but the vert's behind and you can see that there is certainly less filling of that aneurysm at least on angiography. March 2011 now, he's doing very well and this what our subtracted angios look like now, again widely patent stents much less if any

maybe you can see a little bit of filling here, outside the stent patent, but looks relatively stenotic subheading origin but he was not complaining of arm claudication or any of those upper extremisty type symptoms. And this our comparison from where we started in September 2008, when we give him the treatment options and then this is our follow up angiogram using this principle.

Now the patient I talked to him this week, he's asymptomatic, I think the other key to this is long term longitudinal follow up of these patients, no obvious neurological symptoms. One of the question I drill them on, is episodes consuming for vertebral basillar insufficiency. He had one episode of dizziness but we really couldn't pin it down

on VBI, there's no arm claudication, he's now following doppler, again I'm not sure how valuable doppler is but he is really hesitant to come in for repeat angiography, and the risk of repeated CT's. The ultrasound shows that the stent is widely patent with normal

velocities, no obvious leak. But again I don't have a valuable ultrsound in this location with me. I literally begged him to come in for a CT so I can show it to you guys but, again, he's a little gun shy with CT's.

now that you all have an overview and a refresher of nursing school and how these medications work in our body I want to now go over our practice

guidelines and the considerations that we take into place so as you know I'm not going to go over into detail the patient populations that are prescribed these meds but kind of knowing that these are the

patients that we see in our practice that for example are on your direct direct vector 10a inhibitors patients with afib or artificial valves or patients with a clock er sorry a factor v clotting disorder these oral direct

thrombin inhibitors patients with coronary artery thrombosis or patients who are at risk for hit in even patients with percutaneous coronary intervention or even for prophylaxis purposes your p2 y12 inhibitors or your platelet

inhibitors are your cabbage patients or your patients with coronary artery disease or if your patients have had a TI AR and mi continued your Cox inhibitors rheumatoid arthritis patients osteoarthritis vitamin K antagonists a

fib heart failure patients who have had heart failure mechanical valves placed pulmonary embolism or DVT patients and then your angiogenesis inhibitors kind of like Kerry said these are newer to our practice these are things that we

had just recently really kind of get caught up with these cancer agents because there really aren't any monitoring factors for these and there is not a lot of established literature out there knowing that granted caring I

did our literature review almost two years ago now so 18 months ago there is a lot more literature and obviously we learned things this morning so our guidelines are reviewed on a by yearly basis so we will be reviewing these too

so there is more literature out there for these thank goodness so now we want to kind of go into two hold or not to hold these medications so knowing that we have these guidelines and we'll be sharing you with you the tables that

tell us hold for five days for example hold for seven days some of these medications depending on why the patient is taking them are not safe to hold so some of the articles that we reviewed showed that for sure there's absolutely

an identified risk with holding aspirin for example a case study found that a patient was taking aspirin for coronary artery disease and had an MI that was associated with holding aspirin for a

radiology procedure they found that this happened in 2% of patients so 11 of 475 patients that sounds small number but in our practice we do about 400 procedures in a week so that would be 11 patients in one week that would have had possibly

an adverse reaction to holding their aspirin and then your Cox inhibitors or your NSAIDs as Carrie already mentioned it's just really important to know that some of those the Cox inhibitors have no platelet effects and then your NSAIDs

can be helped because their platelet function is normalized within 24 to 48 hours Worf Roman coumadin so depending on the procedure type and we'll go into that to here where we have low risk versus moderate to high risk

we do recommend occasionally holding warfarin however we need to verify why the patient is absolutely on their warfarin and if bridging is an option because as you learn bridging is not always on the most appropriate thing for

your patient so when patients on warfarin and they do not have any lab values available that's when you really need to step outside of guidelines and talk with your radiologists your procedure list and potentially have a

physician to physician discussion to determine what's best for a particular patient this just kind of goes into your adp inhibitors and plavix a few of the studies that we showed 50 are sorry 63 patients who took Plex within five days

of their putt biopsy they found that there was of those one bleeding complication during a lung biopsy so minimal so that's kind of why we have created our guidelines the way we did and here's just more information

regarding your direct thrombin inhibitors as cari alluded to products is something that we see very commonly in our practice and then your direct vector 10a inhibitors this is what we found in the literature

so I'm gonna show an example this is a 57 year old male who presented with a dis neo

he had World Health Organization functional class 3 meaning it's significantly affected his life he can't walk up the flight of stairs really tired walking from the parking lot of his favorite restaurant back to this car

can't really walk around the grocery store he had a history of DVT and PE also had afib he actually went to the ER and was diagnosed with upper respiratory tract infection which many of these patients are they've put him on

antibiotics then for pneumonia he had a VQ after one of his doctors just felt like he just wasn't getting better and it found multiple mismatch defect I'm sorry I don't have those pictures he was actually started on home oxygen after

all of that work up it was found that he had CTF and this required I think three different hospital visits and every time got kicked up to sort of a higher acuity place and then he ended up at our place so these are his pulmonary angiogram

images here I don't know if I can play these but the still images kind of show you that the images on the right show that there's basically no vessels going out distally so I mentioned pruning of vessels there's no branches in the right

upper lobe if you look at the right lower lobe at the tip of the catheter there's areas of stenosis right where the segmental arteries start and on the left you can see that the left pulmonary artery is denuded essentially the entire

left upper low branch is excluded by a rim of thrombus and in the left lower lobe the image on the bottom my bottom right there's actually no branches going to the left lower lobe into the lingula so this is a patient that has had very

bad CTF their main the pulmonary artery pressures are listed there of 77 where the normal high is 25 so three times the normal pulmonary artery pressure so this patient went on to an operation so the image on the right the photograph is

actually the clot that they removed from the operation and that patients pressures improved from 77 to 22 immediately after the operation so they go to the ICU they have a swan-ganz catheter left in place and you can

measure their pressure right afterwards and you can see that that clot they grabbed it it looks like a bunch of fingers well what they do is they crack the chest open like with a mini sternotomy they make an incision in the

pulmonary artery after they put them on bypass and then they basically grab they use they're a little deBakey's the DeBakey forceps and they grab this little elevator and they just start scooping

out the clot and they try to grab it as one big piece take it out and then you get that nice photograph on the side if they break off pieces it's actually worse because that's an area that a pulmonary artery dissection can occur so

it's a very complex operation but you get very nice results and afterwards these patients are sent home usually on lifelong anticoagulation thereafter so

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

here are the treatment options and I did want to include a fourth one it says nothing about the intervention per se but it's medical management which was actually had the significant growth over the last decade and really more

aggressive medical management every treatment below this should have medical management included as part of it so I included that first that's critical if you're gonna have a carotid endarterectomy if that's what ultimately

your your physician decides then you should still have medical management before and after carotid artery stenting and then ultimately trans carotid artery stenting so carotid endarterectomy I'll show you a case example but this is a

diagram illustrating what's ultimately done that longitudinal incision and then removal of that plaque this is what the plaque looks like when it comes out as opposed to carotid artery stenting which is less invasive obviously and we place

a stent but we don't actually remove the plaque overall you know you know we can talk about why that's okay in fact the plaque itself doesn't need to come up what we need to improve the flow and stabilize that plaque from being able to

embolize small clot overall medical therapy is really just these basic things aspirin or sometimes dual antiplatelet therapy so that's aspirin and plavix in addition aggressive statin therapy so

Doc's will Vascular Docs anyone interested in this space will have you a non-aggressive statins or cholesterol-lowering medications stop smoking tight glucose control so those diabetics have to be really well

regulated and in the blood pressure control if you don't do those things no matter what you do with the carotid endarterectomy or the stenting is gonna fail so what's carotid endarterectomy

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

craft is basically the only FDA approved stain crafts and I'll show you a

different way of doing it as well besides the Viator especially in countries where the Viator does not does not exist okay the Viator stand sits in the liver just like just like in my hand here the bare

portion is on the portal venous circulation the covered portion is basically on the hepatic vein part of the circulation okay the bare portion is chain-linked and is very flexible that's why kind of cut can crimp like that okay

they're both self expanding the bare portion is self expanding held by the sheath only the covered portion is held by a court okay so they're both self expanding but they're constraints by two different two different two different

methods one's a sheath constraint and one is a is a cord constraint okay these are the measurements the bare portion theoretically allows portal flow to pass if you're in a branch so it doesn't cost from boses of the portal vein branch in

the covered portion is important to cover the parental tract the youth that you've created in the past you had a lot of billary leaks into the tips if it's a bear stance bile is from by genic so it causes thromboses bile also instigates a

lot of reactionary tissue such as pseudo intimal hyperplasia that actually causes the narrowings of the of these tips if you causing bear stance the coverage stance prevents the bile leaks from actually leaking into into the shunt

itself okay and that's why it has a higher patency rate okay ideally this is how it's it's a portal vein and hepatic vein you'll hear people say proximal and distal you'll he'll hear radiologists especially diagnostic

radiologist referring to proximal and distal proximal and distal some people refer to the portal venous and is proximal some people refer to the paddock venous and is proximal and vice versa okay and it

gets confusing nobody knows well what's proximal okay the people that say portal venous and is proximal there they're talking about its proximal to flow so it's basically the first thing that flow hits people that

call the paddock venous and proximal they're talking relatives of the body more central is proximal more peripheral is distal okay so they're using these the same terminology is very confusing so the best thing to use and I we tell

that to radiologists who tell that to IRS is to talk a portal venous and hepatic venous end you don't talk proximal distal everybody knows where the portal venous end is and where everybody knows where the peregrinus end

is and there's no confusion strictly speaking which is the correct one which is proximal for us as IRS tax nurses proximal is always to flow proximal is always anticipate to flow so the correct thing is actually proximal

is the portal venous ends remember P proximal P portal okay proximal is where the expected flow is coming in that's actually the correct one but just to leave e8 the confusion portal venous and hepatic venous end okay there's a new

stents which is the controlled expansion stents it's in my opinion it feels exactly like the old stance the only difference between it is that it's constrained still has the same twenty to twenty millimeter or two centimeter bare

portion chain-linked it still has that four to eight centimeter covered portion but it's constrained in the middle okay and has the same gold ring to actually market the to the to a bare portion and the cover portion self expanding portion

and is constrained down to eight millimeters you can dilate it to eight and nine and ten initially there was a constant there was a misconception that it was like a string like a purse string that you break and jumps from eight

and no this is actually truly a controlled where if you put a nine-millimeter balloon it will dilate to nine only eight balloon little dialect to eight only the only the only key thing is that the atmospheres has to

be ten millimeters at least okay so it has to be a high pressure balloon has to be at least 10 min 10 10 atmospheres okay so when you're passing that that balloon over make sure that it's that that it that at least it's burst is 10

millimeters or or EXA or more on a 10 mil on on 10 atmospheres okay next thing is when you're making a needle pass you got your target now with a co2 you got the portal vein you've got your stank craft and you know how it works okay how

do you make your needle pass okay and how do you know if your needle has hit the portal vein or not there are two schools to do this okay one school is to make a needle pass and aspirate as you pull back and when you get blood back

you basically inject contrast okay before you do all that when you make your needle pass you push saline and especially if you do if you're using a large system so there are several kits out there there is the cook kits that's

a color pinto needle that's a large gauge 14 gauge needle there is the new gore kits which is also 14 gauge needle it's a big system these large systems you need to push out that poor plug that's kind of like a biopsy you have to

push it out with saline first and then as you pull back aspirate okay the other system is a ratio cheetah or a Rocha cheetah it's actually pronounced rasa schita and that's a very small system that there won't be a core that you have

to push out okay so anyway if you're using a large system like a coop into a needle which is the cook system or the gore system you push that plug out and then there are two schools school two aspirates you get blood back you inject

contrast if you're in the hepatic in in the portal vein you basically access it with a wire the other school is to do a ptc style you actually puff contrasts as you pull back you do not ask for H saline you actually puff

contrasts as you pull back okay the latter puffing contrasts as you pull back is the minority I would say less than two percent of operators are gonna puff okay ninety-eight percent of operators at

least are gonna actually aspirate and not puff okay I'm actually in the minority I'm in the 2% and there are advantages and disadvantages like I promised you two different ways and advantages and disadvantage to each to

each one the advantages of puffing contrasts even if you missed the portal vein after a while you actually get contrast around the portal vein and you actually have a visual of the portal vein that's the advantage so when you're

actually injecting contrast and you're missing it you get contrast around the portal vein it actually goes around the portal and you actually see the portal vein and it takes training sometimes this one's easy

okay I'll show you some more difficult ones but this is a beautiful pussy typical portal vein okay in addition to that oh go back in do you see that you see that hole in the middle there see that signal signal you watch that

because you're gonna see it again and again that's usually a posterior portal vein posterior right portal vein heading heading away from you okay that's usually a good target and I'll show you that again here's a little

little bit less obvious to the untrained eye but this is actually where the portal vein sits right there okay so sometimes it needs training right just actually see where the portal vein is and once you've stained the portal vein

then you have a real-time image of where the portal vein is you can actually go go after it and it reduces your needle passes disadvantages of using contrast and puffing away is that it creates a mess okay if you make multiple passes

you and you miss on the multiple passes then you start creating a mess and even with your DSA you can't even see the portal you can't see the portal vein because you've got this great mess another disadvantage of using contrast

is that you have to stomach what you're gonna see okay you make a needle pass and you don't inject contrast you have no proof of where you've been but if you're making a needle pass and you're

injecting contrast you and everybody else is gonna see where you've been that's usually not a good thing sometimes you will see bowel you see gold bladder you'll see arteries you'll see veins you'll see all sorts of stuff

that nobody wants to see and you don't want to document okay so that's another disadvantage so I recommend especially young physicians especially young physicians in places that are not used to this especially young physicians that

are new to hospitals and they're gonna they're gonna make multiple passes not to do this was they're gonna be very they'll be criticized a lot by their texts and by the institution by their colleagues as to what have you done you

know big mass artery you've hit artery but the guys and gals that are just aspirating and not injecting they're actually not documenting what they're going through but they're going through the same stuff okay

okay next up this I think this video yep

guys do so when we do our screening phone calls and our pre screens before

the actual procedure there's a few factors that we look at for the patients with blood pressure the patient needs to be vitally stable before we do a procedure there may be a slightly increased risk of bleeding for kidney

biopsy if patients are hypertensive although it hasn't been noted to be statistically significant in the literature so we are always aware of patients being hypertensive we do want them to be taking their medications the

day of the procedure we also do a full medication reconciliation with the patient making sure that we're checking on any anti platelets anticoagulant medications and we have a list of our hold times that we use for a reference

we already discussed for those of you who are at this session this morning the issue of liver disease is it stable liver disease they may have adequate he stasis even though their INR is not within the normal range and so we

recommend a stable INR of less than 2.5 for those patients and in our practice a lot of the providers are going away from correcting the INR s for our patients we also screen for hematological disorders do they have some known condition that

makes them more likely to bleed or conversely more likely to clot and that may factor into whether or not anticoagulation can be held do they have a current diagnosis of cancer are they going to be getting one of those

angiogenesis inhibitors might they have thrombocytopenia and we just do a brief review of the patient's chart before we call them to kind of look for those diagnoses do they have a history of bleeding especially if they have no one

platelet dysfunction you know a known history of bleeding can be a reliable predictor of bleeding risk for some patients and do they have a cardiac or a neurological history as we learned this morning patients that have recently had

a cardiac stent placed we can't just say yeah stop your plavix hold off 5 days it'll be fine that could be a very serious risk to the patient did they recently have a stroke have they had a PE why are they on their anticoagulation

if they're on it so we really need to be aware of the whole patient and having that pre-screening phone call with them can allow our nurses to figure out a lot of these problems and then alert the radiologists and try and troubleshoot

before the patient walks in the door and says yeah I took my warfarin this morning I'm all ready for my liver biopsy the radiologists don't like that much in it you know it's really a bad thing for our high volume area to have

that happen and this is just another chart of our oh did I get mixed up here you guys are gonna fire me from running this clicker there we go so the whole times are again based on the half-life and the mechanism of action and this is

pretty similar to what you saw in the the presentation earlier today and specifically that imbruvica that's something that we alert the radiologists who they have a discussion with the patient decide is this something that we

want to continue with and I will say that in our practice with the volume and the the level of acuity of our patients I think that a lot of our providers are fairly comfortable with a certain level of risk because that's just who our

patient population is you know we have a very large hospital two large hospitals and very sick patients so that's something that we you know some of them are more comfortable than others but it's a risk-benefit thing that they have

to decide on themselves with the patient obviously all right so here are our

happy to take any questions or in

ultrasound we don't usually use contrast but one of the procedures were doing for the treatment management of a pulmonary embolism is the ultrasound assisted Rumble Isis do we need contrast so for the thrombolysis is the catheter itself

so you still need to give contrast two to do the procedure but while the catheter is running you don't need to give any contrast four for that is that what you're we don't usually use contrast for ultrasound but

all right when you're treating how will you know that it sliced the clot is less what you frequently do is check the pressures so that catheter allows you to check the pressure and so once you start a patient so you do a pulmonary

angiogram which requires contrast and you put the ultrasound assisted thrombolysis catheter in the eCos catheter then after 24 hours or 12 hours you can measure a pressure directly through that catheter and if the

patient's pressure is reduced you don't have to give them anymore injections yeah and if we are using ultrasound for treatment is it possible to do it for diagnostic purposes No so not for non the prominent artists for

diagnostic imaging unless you're doing an echocardiogram which is technically ultrasound in the heart but for treatment otherwise you need you will need to inject some dye oh thank you

hi I'm Katrina I'm NGH I have one more question okay for your patients with chronic PE do most of them begin with acute PE or if they very separate sort of presentations that's that's a great question so all of them

had acute PE because you can't have chronic without acute but a lot of them are not ever caught so you'll have these patients who had PE that was silent that maybe one day they woke up and had a little bit of chest pain and then it

went away couple days later they thought they had a bronchitis or a cold and then you find out five years later that they had a huge PE that didn't affect them so badly and then they have these chronic findings they usually show up to their

family practice doctor again with hey I just can't walk as far as I can I have a little heaviness they rule them out from a heart attack but it turns out that they have CTF so you you all of them had a Q PE but it takes a lot of time and

effort to find out whether they truly have chronic PE so it's usually in a delayed fashion thank you all right well thank you guys again appreciate it [Applause]

thrombectomy is another popular way of treating patients there's a lot of different aspiration catheters the SPX catheter is actually not available currently in the US but what it basically is I can have the rectum a

device that spins in such backlot the Indigo thrombectomy system from penumbra is a yet another device that sucks out clot I think many of us have used that it's kind of like a vacuum cleaner but usually more like a dust

hand vac where it's going to suck up thrombus the angio vac is much more like a Hoover where you're going to use and put a patient on veno-venous bypass that requires a 22 French sheath and a 17 French sheath but that will take out

thrombus I personally prefer using NGO vac in the IVC in big large thrombus for that and not in the pulmonary arteries because it's very inflexible but it's very very useful in a few patient populations in

all of these devices there is no TPA that needs to be given you're just sucking out the clot and you're actually removing it from the patient's body rather than dissolving it and sending it downstream the drawbacks on all of these

devices is their larger access points the SP or X is around six French although that's not that much bigger penumbra device is 8 French and the as we mentioned the angio vac is 22 French

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

I think it's important to understand what options we have in in treating patients with carotid disease or those

in our practice medical therapy is a mainstay so all these patients regardless that they get t'car carotid stenting or otherwise need to get the best medical therapy there is a role though for each of these surgical

endovascular or a hybrid such as t'car and hopefully you have a better understanding of that option and ultimately if you understand the different techniques then we can apply the best ones depending on the patient's

anatomy or current clinical scenario and and apply that to that patient thank you [Applause]

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

people were thinking about the covered

portion actually actually would be occlusive in that paddock veins a lot of people are concerned about that this could be kind of like a but carry you're gonna actually occlude flow in the paddy vein caused thromboses that didn't pan

out at least clinically okay it didn't pan out and that's another advantage of actually accessing very close to the paddock vein IVC junction that's where the biggest vein is so you don't get a lot of occlusive problems okay but

usually clinically it does not pan out so the bigger the hepatic vein the more likely you have a lot of room around your your graft you won't be occlusive to the paddock vein that's more important for for transplants than other

than others I told you it's rare this is actually a very rare case of such that where you actually have a segmental segmental kind of but carry after a tips okay and you know this is actually from a form of venous outflow from the ematic

vein this is a perfusion defect typical it's a wedge right typical perfusion defect in the liver that's how you death so you know this is vascular this is a perfusion problem but you've got hepatic artery readout artery the red arrows

running into the segments and you have portal vein running into the segments so what's the problem it's actually a paddock vein occlusion okay by the stents subclinical no no clinical complaints you let it be

in the patients usually recover okay treat the patients and not the images okay on the other side if you put their tips too deep sometimes you actually get thromboses of the portal vein branch

again you get a call from hepatology you've got portal vein thrombosis is the patient doing okay yes treat the patient and not the images they usually resolve this it's not not a big problem another technical problem

I'm gonna focus mostly on technical for you guys this is a but key area okay and the but carry especially in the acute stage the liver is not like a cirrhotic liver is big liver is actually engorged okay so it's very large usually

your needle is too short to even reach the portal vein okay that's a big problem okay because your access needle is too short for a very large engorged the portal vein so this is as deep as it

goes do I have a see that that do you see that needle tip that's as deep as the needle tip goes okay the portal vein is a good distance away okay luckily this is a co2 porta gram luckily I'm actually in a small branch right

there I just hit it on you know and on this is not the there's not a needle tract this is just luckily hitting it a little branch and on so I'm actually accessing the portal vein and I can do a co2 porta gram here okay

typical inexperienced person would say you know this looks good I'm lucky I'm in a branch but it's a nice smooth curve I'll just pass a wire down and I'll balloon it and I'll put a stent in it's a nice curve and you know so it's my

lucky day I don't need to extend my needle or get a bigger longer needle to reach the portal vein here's the problem with this and this is exactly what this is exactly what this is they pass a wire and it looks beautiful just put a stent

and go home okay here's the problem this is actually the small branch access sites this is actually where you really need to access world vane but your needle is not long enough okay

what we found out is that if you are in a small in a small portal vein no matter how much you balloon it it will come down again and it will be narrow so believe it or not if you go sideways in a portal vein and rip it open with a

balloon it will stay open but if you go down of small portal vein and balloon it open it will always contract down okay so you cannot do a tips simply by ballooning and putting a stent in in this case okay what we do is we actually

denude the vein itself we actually rip it off okay and make it a raw parenchyma and we do that with a Tortola device we literally rip off the paddock the paddock portal sorry the portal vein endothelium and media and adventitia rip

it off make it completely raw as if it's an access as if it's a liver brain coma which is which it is now and then we then we balloon dilates okay rip it off denude it angioplasty it's okay and then put the stent and see that aggression

despite all that aggression of ripping it off it still has an hour kind of an hourglass shape to the to the tips okay that little constraint there that's the hepatic venous access sites this is the parenchymal tract to see nice and open

with a balloon but the but the actual vein that we've been through despite our aggression in actually ripping it off it's still narrowed down but this is as good as it gets okay

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

criteria for CTF means that the patient has a mean pulmonary arterial pressure which we measure intraoperatively exceeding 25 millimeters mercury at rest with the mean pulmonary capillary wedge pressure less than 15 so I'm not a

cardiologist but what that means to me is a mean capillary pulmonary wedge pressure less than 15 means that their left heart is not failing so if you have a capillary wedge pressure higher than 15 that means your left heart is not

working correctly and you can't blame it on the CTF so you can't blame it on the right side if the left side isn't working other things that matter are the abnormal pulmonary vascular resistance and having a systolic pulmonary artery

pressure greater than 40 so what I want to show you and highlight is the law the lost art of pulmonary angiography which i think is now sort of again a lost art some places do a lot of it and some places don't do very much but diagnostic

pulmonary angiography is actually the gold standard in the planning of either surgery or medical management for patients with CTF we do we do these on almost all of our patients with CTF to make that decision with the surgeons and

the cardiologists so the utility is very it's very useful you're able to measure our pressure you're able to decide whether we're the where the thrombus exists in this image here in patients with disease in the

blue and yellow outlined areas those are the patients who can have the operation the operation is curative it's not just medication that you have to take for the rest of your life you can actually remove that chronic clot it's much like

a femoral endarterectomy that are done for patients with peripheral arterial disease although it's a lot more complicated because they have to crack your chest open what's important is getting very very

good high-quality pulmonary angiogram xand so we do we used to do about we do about a hundred of these a year where I trained or actually where I work now and you get very magda up views and you're gonna show all of the vessels and so

these are the views that we use at our institution they happen to be the pipette criteria so it's the same thing you used to do for acute PE you put a flush catheter in the main pulmonary arteries when you're looking at the

upper lobes and when you're looking at the lower lobes you want to push the catheter further into the pulmonary arteries and inject usually what I do is a two to three second injection so that you can stack the images very well and

show all of them in one view this allows your surgeon to make a decision easily as to whether they can operate or they can't operate on this and then I use a higher frame rate usually because these patients are wide awake we when we do

this case we give our patients twenty five mics of fentanyl one time and that's it just to help get the sheath in I usually do this with a seven French sheath and then use a flush cap pulmonary artery catheter many of which

are currently off the market but when we do this we just give them that twenty five Mike's because they have to hold their breath and I usually go up to a high frame rate in the first run and then adjust based off of how well that

patient is holding their breath this really takes a team effort from our nursing technologists and the and the physicians in the room to make sure that this patient does a good job because it's gonna change their management so

there are a lot of different types of angiographic findings on one of these pulmonary angiogram they're really really interesting pulmonary angiogram zin these patients and they're sometimes not at all subtle so you're looking for

a pruning of distal vessels if we start in the top left where you're just not seeing the Brent normal branch pattern you look for stenosis so we're not usually used to looking at stenosis and the pulmonary arteries but this is

actually what you're looking for in CTF you're looking for webs or bands so you'll usually see little areas where you just doesn't look like there's great opacification there's little areas that there's not good at pacification those

are little webs inside the vessel believe it or not looks like a cobweb that grew inside there from that thrombus and then you're looking for areas of complete occlusion that there's just no vessels there those are all

vessels that can be treated in patients with CTF so this is the Jameson classification before we talk about the sort of the interventional management the surgical management is again the curative and dr. Jameson is the head

surgeon at University of California in San Diego which is the largest Palm CTF program in the in the world and he's done I think over 3 500 of these operations I think he's retired at this point but they named the classification

after him and so type 1 is proximal disease so it involves the main pulmonary arteries these are the ideal patients who can get the best benefit from this in their life type 2 is the next best

it's segmental proximal just type 3 is distal segmental and then type 4 is just a mess of sort of all of it but you can't really get a good surgical plane so type 1 and 2 are treated with pulmonary thromboembolism

towards balloon pulmonary angioplasty or BPA and type 4 are generally treated with medication so PT II or pulmonary

that was one example so these are there have a lot of potential complications reperfusion pulmonary edema is a very very big potential complication so you could get through the case patient does

great you open up multiple pulmonary arteries and then they start coughing up blood and then they end up started drowning in their own blood and the ICU so we do not want to push that and the initial papers that you can see down

below on that table they had a very high almost 10% in some cases pulmonary edema requiring treatment requiring patients being put on CPAP or being intubated and that is because they treated too much at one time

and so now as this when this first started in the early 2000s the operators were treating multiple segments at multiple times at one time and they were using large balloons and we figured out that that was what was killing patients

and so we changed our treatment so this is the first study that was ever performed for this it was performed by dr. Feinstein I believe this was published in circulation it was done in Harvard at MGH they had 18 patients with

36 month follow-up they all improved in their ability to walk as well as their lifestyle but many of them 11 out of 18 patients had reperfusion injury so this was the first paper and at that time it became the last paper because so many

patients did poorly but here's what they're sort of what they did and the ones that did okay they you could see that they had an improvement in the New York Heart Association classification again that just means they can walk

further they're not less short of breath and that they could walk further in 6 minutes which is again our sort of first test outcomes over time whence this has become increased so you can see that study was in 2001 and then

it kind of went away for a long time and it came back in 2012 in Japan where the most operators are there they've treated up to 255 procedures now since this slide was made we're up to a thousand in Japan and those patients are doing very

well but you'll notice that they have multiple procedures so again you don't try to one-and-done these patients they come back four to six times we've treated a couple patients where I work and we've treated that was patients four

times already and so they do much better but it's a slow slow and steady treatment so I want to wrap up with saying that the IR team is very critical to patients who are getting treated for PE we're involved in the diagnosis as

the radiology team acute and chronic PE it's very important to know as I've shown you in some of the examples and some of the images which when it's acute and versus chronic doing thrombolysis on a patient with chronic PE is useless all

you're doing is putting them at a risk you're not going to be able to break up that clot it's very important to have inter and multidisciplinary approach to patient care so interdisciplinary meaning everybody in this room nurses

technologists and physicians working together to take care of that patient that's on your table right now and multi-disciplinary because you have to work with cardiology vascular medicine the ICU teams and the

referring providers whether it's neurosurgery vascular surgery whomever it is who's Evers patient gets a PE you have to work together and it's very important again to have collaborative care in these patients if we're doing a

procedure and somebody notices that the patient is desaturating that's very very important when you're working in the pulmonary arteries if somebody notices that the patient's groin is bleeding you have to speak up so it's very important

that everybody is working together which is really what we need to do for these patients so there's my references and there's my kid so thank you guys very much hopefully this was helpful I'd be

now let's look at non-invasive ventilation and I know about like five

percent of the patient population that you are seeing is on some form of non-invasive whether they're on by level ventilation or continuous positive airway pressures right so see if HAP using to stent the Airways open and

maintain a pro a Peyton airway and improving oxygenation but BiPAP and patients that need co2 elimination right need help with the by level support so there's a lot of questions that come up when we give

these talks I'm like how does capnography work effectively with these different technologies of non-invasive ventilation and especially because more and more of our patients are requiring these so we're gonna look at some of the

comparisons of co2 capnography data from three different sample sites and remember I showed you that picture so that picture I showed you with the patient wearing the sampling line with a nasal oral scoop and then there was the

mask sampling port and then there was the port on the ventilator circuit distally so that's what we're looking at here so the diamonds that go I wish I had a pointer I don't have a laser pointer I'm sorry but across the top the

diamonds represent our end tidal capnography values from one liter all the way up to eight liters so as the props are as the pressures go up for CPAP they were monitoring leak rates and what they found is the cat nog rafi

values across all of those were pretty accurate when we're monitoring right here the squares and the diamonds represent the mask sampling port and the the ventilator in the circuit distal to the mask and as you could see that

quality of our monitoring goes down as we progress okay to use yes but just know the limitations of your equipment right and again this is the same thing for our BiPAP Dave data are by level ventilation we're seeing again

across the top if we're sampling right at the airway we have pretty consistent readings but then they start to fall off and we look at the other devices that are further down the downstream what we're seeing here is our end tidal

measurements again with CPAP data and what we're looking at is the patient leak so there's always leaks right when we have these devices on and that's a question well sue if I have a leak how accurate am i okay so now the red is our

nasal oral scoop and if you look at the red graph all the way across depending on the leak rate pretty consistent values right the charcoal color is the mask sampling port and that's pretty consistent probably until about like 10

right until our patient like leak rate 10 liters per minute coming out of that mast and then that value starts to fall off and even more so even further distal down our circuit when we're sampling from the circuit at the past the mask

that's the cream color pretty accurate when there's a minimal leak but as the leak goes up that falls off pretty significantly and the same holds true for our by level ventilation pretty similar distribution here with the

patient leak and the sampling so when we're using non-invasive ventilation yes it's accurate and yes it's accurate we're using high flows and yes it's accurate if we have a huge leak only if we're sampling right where the patient

is exhaling so now I hope that clears that up with the patients that are getting supplemental pressure support with your sampling and you know in those just whatever it can sample from the mouth and the nose right at the source

of exhalation has proven to be the most reliable out of all of the different sampling devices so third evaluate your

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

there a better option this is where a carotid artery stenting was developed over a couple decades ago and this is a

less invasive viable option for treating carotid artery stenosis it was generally started off as a trends ephemeral approach but I'll show you what the new approach is that many of us are involved in it involves the use of

in volunteer tection so it's one of the unique vascular territories where embolic protection is required if you're gonna get Medicare reimbursement for this you have to involvement and bollocky protection if you do without

you can do the procedure but you won't get it you won't get reimbursed and ultimately it's it was proven to show much better outcomes if you use involved protection because even doing the procedure and trying to place the stent

there is some small embolic degree that that that shuttles off and if it happens in the foot you may or may not lose a toe but if it happens in the brain you're gonna lose brain cells and it's gonna be potentially catastrophic so

significant adjunct to the stenting procedure is doing embolic protection and there's two types of embolic protection there's distal and there's proximal I'll walk through each of those with some diagrams here and then anyone

that gets a carotid stent has to be on dual antiplatelet therapy so if they have an allergy they're unable to be on aspirin and plavix they don't get a stent because there's early stent thrombosis that can't occur in these

patients if they don't have that dual antiplatelet therapy so let's go through

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

I was tasked or asked to give a talk on carotid interventions and and there's actually been some change you know I've given to carotid talks over the years I've been doing this now eleven years at the Medical College and there wasn't a lot of innovation for a period of time

and then there's been a sudden kind of tic upwards with the last acronym here t car so we're gonna talk about these three ceac s and T car how many other room are involved with carotid stenting at the local institution I'm gonna do T

car all right so it's not gonna be brand new that's great but there's still I think for some of you pardon me an opportunity to kind of see a new device that's been brought to market over the last few years so with

that what are we gonna talk about these are the objectives it's not really gonna be a data talk this is not the intent I wanna bore you with data there will be a little bit of just sort of what's the purpose for why we do things you know

and percentage of what not but I'm not gonna go through clinical trials the intent here is really to discuss the three main treatment options for carotid occlusive disease and then review the indications for intervention so why

would we treat to symptomatic asymptomatic and then finally review the the endovascular devices or the approaches in general for carotid artery stenting in a strictly endovascular environment or in a hybrid environment

which is what the t'car device is so why

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.