Create an account and get 3 free clips per day.
Chapters
Cholangiocarcinoma | 68 | Female
Cholangiocarcinoma | 68 | Female
2016bilebiliarycholangiogramdilatedducthepaticlaparoscopicSIRstricture
Renal Fenestration Misalignment With F/EVAR Leads To Bad Outcomes: Prevention And Treatment
Renal Fenestration Misalignment With F/EVAR Leads To Bad Outcomes: Prevention And Treatment
anatomicaneurysmsanteriorcalcificationcalcifiedclinicallydeviceevarFfenestratedfenestrationsforcesgrafthorizontaliliacintraoperativematchedmesentericobservedorientationpatientpatientsphysiologicpredictrenalrotaterotationrotationalsheathingstentStent graftstifferstrategiestorsiontortuous
Long-Term Outcomes Of F/EVAR: Where Is The Technology Going
Long-Term Outcomes Of F/EVAR: Where Is The Technology Going
aneurysmaneurysmsaorticbranchedclevelandcomplexCook MedicaldatadevicesdyingendograftevarevolutionexperienceextensiveFfenestratedfreedomGORE ExcludergraftimprovedoutcomespatencypatientpatientsprocedurespublishedreinterventionrenalrepresentssurvivaltherapeuticthoracoabdominalThoracoabdominal branch endoprosthesisthoracoabdominal endovascular grafttreattreatedtreatingunitedvesselsvisceralZenith T-Branch
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Summary Of Thermal Ablation RCTs
Summary Of Thermal Ablation RCTs
ablationanteriorClosure SystemcollectedcomparingendovenousEVAEVLTexaminefrequencylaserligationMedtronicMOCAolleoutcomeoutcomespaucityproximalqualityradioactiverctsrecurrencereviewsRFAsaphenoussclerotherapystrippingsurgerysystematictherapeuticthermalThermal AblationtrialsUGFSVenaSealvenousversus
Preloaded Catheters And Guidewires To Facilitate Branch Access During F/B/EVAR: How Do They Work: Advantages And Disadvantages
Preloaded Catheters And Guidewires To Facilitate Branch Access During F/B/EVAR: How Do They Work: Advantages And Disadvantages
accessaorticaxillarybranchbranchescathetercatheterizationcatheterschroniccomplexcontralateraldeviceevarevolvedexposureF/BEVARfenestratedfenestrationfenestrationsiliacindwellinginfrarenalischemialooplumensplacingpreexistingpreloadedRedo EVARrenalsheathwirewires
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
coil embolizationPersisting Venous MalformationsclerotherapyTherapeutic / Diagnostic
How To Decrease Radiation Exposure To Operators And Assistants During Standard And Complex EVARs
How To Decrease Radiation Exposure To Operators And Assistants During Standard And Complex EVARs
advancedavoidingceliacdeclineddiagnosticdiscoverydoseendovascularevarfenestratedfindingfluoroscopicfluoroscopyframesfusionidealimagingminimizeminimizingoperatorpreoperativeradiationseptumstentsystem
Lymphatic Intervention: Thoracic Duct Embolization, Pulmonary Lymphatic Perfusion Syndrome, And Hepatic Lymphatic Disorders
Lymphatic Intervention: Thoracic Duct Embolization, Pulmonary Lymphatic Perfusion Syndrome, And Hepatic Lymphatic Disorders
accesscontrastductembolizationembolizingglueinduceinterventionalInterventionsleakagelipiodolliverlymphlymphangiographylymphaticlymphaticsneedlenodepercutaneousperfusionperiportalrefluxTherapeutic / Diagnosticthoracicultrasoundvariationvenousvesselsvisualize
How To Use Endoanchors To Treat Type 1 Endoleaks After TEVAR And EVAR
How To Use Endoanchors To Treat Type 1 Endoleaks After TEVAR And EVAR
aortaarchchannelconicaldilatedendograftendoleakendoleaksevarexcessivegraftinferiorleakmigratedneckssealseriessuccesssuperiorTEVARthoracictypezone
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
amputationarteriovenousarterycriticaldiseaseembolizedendoscopicFistulahandhemodialysisischemiaischemicmultiplemyelomaoccludedocclusionpalmarPathophysiologypatientpatientsprosthesesproximalradialradiocephalicshortestthoracictotallytransplantulnarvascular
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
When Are F/B/EVAR Procedures Better And More Cost Effective Than Open Repairs Of Complex AAAs And TAAAs: The French National Experience
When Are F/B/EVAR Procedures Better And More Cost Effective Than Open Repairs Of Complex AAAs And TAAAs: The French National Experience
aneurysmaorticcomplicationscostcostlyeffectivenessefficacyefficientF/BEVARFEVARhealthcarehospitalizationmortalityOpenpatientssurgerythoracoabdominaltreatmenttype
F/B/EVAR For Complex AAA Treatment In High Risk vs. Standard Risk Patients: These Procedures Should Be Used To Treat All Anatomically Suitable Patients
F/B/EVAR For Complex AAA Treatment In High Risk vs. Standard Risk Patients: These Procedures Should Be Used To Treat All Anatomically Suitable Patients
aneurysmaneurysmsaorticbasedbranchcomplexconsideredCook MedicaldevicedevicesendograftsendoleaksevarF/BEVARfenestratedFenestrated endovascular graftinfrarenalintracranialmedianmortalityoutcomespatencypatientsperformedperioperativerenalriskshrinkagestandardsurvivaltherapeuticthoracoabdominaltreatversusZenith Fenestrated (ZFEN)
Emerging REBOA Technologies: Lower Profile And Improved Balloon Catheters; Simpler Insertion Methods Without Imaging (Fluoro) And Partial Balloon Occlusion Techniques (6-Minute Talk)
Emerging REBOA Technologies: Lower Profile And Improved Balloon Catheters; Simpler Insertion Methods Without Imaging (Fluoro) And Partial Balloon Occlusion Techniques (6-Minute Talk)
activelyacuteballoonbleedingcathetercentersclinicaldefinitivedistalendovascularER-REBOAevolvinghemorrhageoptimalpatientpatientsportpressureprovidersPrytime MedicalREBOA (Resuscitative endovascular balloon occlusion of the aorta)resuscitationspectrumsurgeonsurgicaltechnologiestherapeutictitratetraumautilizeutilizedutilizing
Bilateral Common Iliac Aneurysms With Endo Repair Of Complex AAAs Are Troublesome And Associated With Higher Spinal Cord Ischemia And Reintervention Rates
Bilateral Common Iliac Aneurysms With Endo Repair Of Complex AAAs Are Troublesome And Associated With Higher Spinal Cord Ischemia And Reintervention Rates
abdominalaneurysmaneurysmsaorticarteryartery aneurysmbilateralbranchedcomplexcordcoveragedemographicsembolizationextensiveF/BEVARfluoroscopyhypogastriciliaciliac arteryincidenceischemiamortalityoutcomespatientspreservationproximalreinterventionspinaltreatedtreatmenttypeunilateralversus
Update On The Value Of Tight Glucose Control To Minimize SCI From TEVAR And F/B/EVAR Treatment Of TAAAs
Update On The Value Of Tight Glucose Control To Minimize SCI From TEVAR And F/B/EVAR Treatment Of TAAAs
acuteaneurysmaneurysmsantihypertensivebloodclinicalcorddecreaseeffectselevatedendovascularextremityglucosehourshydrationhyperglycemiainfusioninitiationinsulinischemiclevelslowerMBEVARmultimodalneuronalparaplegiapatientsperfusionpostoperativepreoperativeprotocolproximalspinalsubarachnoidtherapeuticthoracoabdominalundergoingunderwentVeithweakness
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
How To Overcome Difficult Branch Artery Access In Parallel Grafting Techniques: Tips And Tricks
How To Overcome Difficult Branch Artery Access In Parallel Grafting Techniques: Tips And Tricks
Amplatz super stiff guidewire (Boston Scientific)aneurysmaortaarteryballoonbranchcannulatecathetercathetersCook MedicalexpandingguidewireorificeparallelParallel grafting techniquepatientrefluxrenalrenal arteryrosensheathsstentstentsstifftherapeutictortuositytypetypicallyultimatelyvesselwires
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
adjuvantaneurysmsaorticapplicabilityarteryBEVARbridgingceliaccorddiameterendograftsendoleakendovascularevarexpandGORE MedicalGore Viabahn VBXgraftsiliacischemialimitationsmajoritymultiorganobservationalOpen AAA repairorificeparaplegiapatientpatientspercutaneouslyperformedprospectiveproximalrenalrenal arteryspinalstemstenosisstentstent graft systemstentedtherapeuticthrombectomythrombocytopeniatreatedvesselvisceralZenith T-Branch (Cook Medical)
Conformable Sheaths And Other New Techniques To Simplify And Improve The Outcomes Of F/B/EVAR: Upper Extremity Access May Become Largely Unnecessary
Conformable Sheaths And Other New Techniques To Simplify And Improve The Outcomes Of F/B/EVAR: Upper Extremity Access May Become Largely Unnecessary
(Flex introducer sheeth(Steerable guiding sheethaccessaneurysmapproachAptus TourguideballoonBEVARborebrachialceliaccontralateralDestino TwistdownwardDry SealFfenestrationFEVARfrenchglideGORE MedicalMedtronicOscor inc.renalrosenselectionsheathsheathsSteerable guiding sheathstentstrengthsSuprarenal AAA+Duplicated renal arteriestargettechniquetherapeuticvesselvesselswirewires
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
anatomyangioplastyarterialBaylis MedicalcontrastCVOdefinediagnosticfusedfusiongraftguidewireiliacLeft CIA PTA using Vessel ASSISTocclusionoutlinepatientphasePowerWire RFprettyPTAradialsnarestenosisstentstentstotallyveinsVessel ASSIST (GE Healthcare) - Fusion Imagingvesselswire
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
bicarbonateboluscardiovascularcombinationcomparingcoronarydoseevarhydrationHypertensionintralowmechanismspatientsperipheralpreviousrandomizedreducingrenalsalinesodiumstandardTherapeutic / Diagnostictrialtrialswillingness
Update On GraftWorx Implantable Piezoelectric Sensors For Remotely Measuring Vascular Graft And Stent Flows And Other Parameters: When Will They Be Available
Update On GraftWorx Implantable Piezoelectric Sensors For Remotely Measuring Vascular Graft And Stent Flows And Other Parameters: When Will They Be Available
acquireangioangioplastybloodcarotidclinicalconceptdatadetectdetectiondeviceDialysisexternalFistulafistulogramfistulogramsflowfluidgenerateGraftWorxhematocrithemoglobinImplantable Piezoelectric SensorsocclusionovinepatientsphysiologicproximalpulsatilesensorsensorsstenosisTransonictrial
DEBATE: The Evidence For The Success And Durability Of Ch/EVAR Is Poor: F/EVAR Is Clearly The Gold Standard
DEBATE: The Evidence For The Success And Durability Of Ch/EVAR Is Poor: F/EVAR Is Clearly The Gold Standard
BEVARchimneycomplexitydevicesdiameterdurableendoleakevidenceexperienceFfenestratedFEVARgraftsincorporatedincreasingparallelstentsstudiestypevessels
Where Is F/EVAR Going: Custom-Made By Industry vs. Off-The-Shelf (OTS) Devices vs. Surgeon Modified
Where Is F/EVAR Going: Custom-Made By Industry vs. Off-The-Shelf (OTS) Devices vs. Surgeon Modified
aneurysmaneurysmsbranchcharacteristicsclinicalcohortcomparedconfigurationscontrastcustomdevicedevicesdifferencedifferencesdisadvantageendograftsendpointevaluateevarFfavorfenestratedfenestrationsFEVARinvestigationallookedmatchedmodestmodifiedoperativeoutcomesperioperativepersistspreoperativereinterventionreinterventionsshelfstentstentedstentsstratifiedtargetthoracoucsfVeith
More Effective Techniques Of Thrombolysis With Microbubbles And Ultrasound: Feasibility, Safety And Effectiveness In A Clinical Study (The MUST Trial)
More Effective Techniques Of Thrombolysis With Microbubbles And Ultrasound: Feasibility, Safety And Effectiveness In A Clinical Study (The MUST Trial)
acuteadversealteplaseangiographyarterialboluscontrastduplexendothelialfeasibilityhypersensitivityinfarctionintensityischaemiaischemiclimbmechanicalmicrobubblesmilligrammyocardialnanoparticlesnativeoccludedpatientsperipheralprostheticrevascularizationrutherfordsafetyTherapeutic / DiagnosticthrombolysisthrombolyticthrombolyticsthrombosedthrombustreatedtrialultrasoundurokinaseVeithvenous
Transcript

abdominal pain and fever one week after laparoscopic cholecystectomy. The point of this case is trust no one. I mean this is a very abnormal cholangiogram

but there is a very sharp stricture of left hepatic duct and this does not look like a recently dilated biliary tree. This is like the patient ended up having a classic cholangiocarcinoma. So what's transferred in is bile duct injury, is not always a bile duct injury and have high index suspicion for something else going on. And that's the last case

I've got, thanks.

- I think this is a nice complementary talk to Gustavo's talk, and we'll talk about a bit of a different twist on misalignment. So, no disclosures. As you've heard from the panel, prior to this fenestrated and branched repairs of thorical, abdominal and peri-renal aneurysms is an exciting area, however, it is fraught

with some issues, when you talk about misalignment, primarily in fenestrations with renal arteries and mesenteric vessels, these can be in a vertical plane as you can see on the panel on your left, which may lead to difficulties with cannulation, and Gustavo just gave us a nice talk on some

of the strategies that we could employ to make this easier. Could always also lead to horizontal misalignment, which then applies untold forces to the covered stent and the vessel and long-term deleterious effects such as accelerated renal dysfunction. Obviously this is not multi-factorial,

we've heard about the importance of planning, and planning certainly can obviate the effects of misalignment, but there is also, for those of you who have done these cases, the issue of rotation of the stent graft upon deployment, so you can see that this

is a fenestrated devise that's deployed with anterior markers, and as the sheath is unfurled, as the graft is unsheathed, then these markers rotate in a clockwise direction, and this is because of the build up of torsional forces in calcified and tortuous iliac vessels.

This has clinical sequelae, so this was a series from our institution, where we looked at those patients who had some misalignment of fenestrations versus those that did not, and not surprisingly cases where there was misalignment, they took longer to do, there are longer fluoroscopy times,

there was more contrast and there patient effects, the patient stayed in hospital longer, also when looking at composite outcome measure of death as well as end organ ischemia, and renal dysfunction, those patients with misaligned fenestrations were more apt to have these adverse outcomes.

What can predict that rotation of the graft? We looked at multiple anatomic features, and interestingly on the ones that came out as predictive were iliac torsion or tortuosity, as well as calcification, so the stiffer or the more calcified the iliac vessels were, the more tortuous there was, there was build up

of torsional energy and then rotation of the stent graft upon sheathing and it was predictive. This rotation can be predicted with a logistic regression curve. What could we do to prevent rotation? And this is the specific topic I wanted to mention,

there are different strategies that surgeons employ, as a graft is unsheathed, you can apply counter forces to it or you can take the graft out and then reintroduce it. This was collaborative work with some of our engineers and our vascular surgeons, what we developed were some patient-specific models,

looking at the patients with different iliac geometries. And these were through four freeze/thaw cycles. There are the idealized models, and then some patient-specific models, looking at different anatomic configurations. This was a picture of the experimental apparatus

in a bath that would mimic the physiologic parameters of the patients, and there were basically three models, or patient-specific models, patient one had very straight iliac anatomy, patient two quite tortuous, but supple iliac anatomy, and patient three more stiff and calcified

and tortuous iliac anatomy. These were real patients, so they were patients that had fenestrated devices, and what you can see here is that the model matched what was observed clinically quite closely, in patient number one, where the anatomy was quite straight,

and there was minimal degree of device rotation, that was reflected in what happened in the model. And then with increasing observed rotation, with patient two and three, that was also matched in the laboratory. This slide is really the take home message,

so on the horizontal axis, are the three patients, from low-rotation to high-rotation of the graft. The white bar reflects the observed amount of rotation, so there's a dose response curve as you go from left to right, the more tortuous and stiffer the iliac model is, the more rotation there is.

The black bar is what happened when the surgeon tried to counteract the rotational forces. So, if you're observing rotation in a clockwise position, and you apply counter-clockwise force, it actually accentuated or increased the amount of rotation. The middle bar represents what happened if you're

observing rotation you take the graft out, you reinsert it and then allow it to rotate again, there is actually less rotation. In conclusion, torsion and rigidity and calcification combined are the anatomic factors that can predict and cause intraoperative stent graft rotation.

In-vivo correction of the orientation significantly actually increases the observed rotation, and if clinically appropriate, fully removing the device, and adjusting the orientation and reinserting the device will minimize rotation. Thank you very much.

- Thanks Dr. Veith, and thanks Stephan for the invitation to participate. I have no disclosures. Fenestrated and branched endografting have had a significant evolution over the past 20 years since it was first introduced with a physician-modified endograft in about 1996, with a simple hole

cut in a graft to line up with a renal artery. We've seen significant improvement in graft design since then, with reinforced fenestrations, directional branches, low-profile systems, and delivery systems that allow easy access into branches and fenestrations,

making the procedures much easier to do, and many of these are in custom-made devices. We certainly can treat patients safely, even high-risk patients safely, all the way essentially from the left carotid artery through the iliac bifurcations

to treat complex thoracoabdominal aortic aneurysms with fenestrated and branched devices. And there's been a significant worldwide experience published on this, despite lack of commercialization within the United States. The Woolard-Vime experience represents

thousands of patients that have been reported on both in the United States, Europe, and throughout the world, in prospectively collected database, and this represents an evolution of procedures, graft designs, patient selection,

and these are predominantly reported from high volume centers. But is there any long-term data on any of these patients? While this is a relatively new field, there is some long-term data that's starting to become available in the literature.

We look at our series when we were at the Cleveland Clinic, nearly 17 years of experience, so some long-term data came from out of there, and represented the work of about four people treating nearly 1,400 patients during this period of time, with increasing complexity of the aneurysms

that were treated during that time. We broke our analysis there into two groups, those that were treated with juxtarenal and type IV thoracoabdominals, and those were treated with more extensive thoracoabdominals because we thought the outcomes for these two groups

were quite different, based on our bias at the time. So we first analyzed the first group. This was the juxtarenal and type IV thoracoabdominals, and this was published by Tara Mastracci from our group, back in 2015, with a 12 year experience in treating these patients,

610 patients, and a mean follow-up of eight years, and I think that falls into the long-term follow-up category. Our overall mortality at five years was 50%, which sounds pretty good, but we start to look at our eight-year survival,

though it's only 20%, which is pretty dismal. If we look at our eight-year freedom from aneurysm-related mortality, though, it's 98%, which is just outstanding. People aren't dying from their aneurysms when we treat them with fenestrated and branched endografts.

We're just not preventing them from dying overall. The risk of dying is not varied by the extent. So if we treat less extensive aneurysms or more extensive aneurysms involving all four visceral vessels, the risk of dying long-term is the same for this group.

If we look at the freedom from a composite outcome, it's 65% at five years, and that's a freedom from secondary procedures, branch occlusions, stent migrations, endoleak, aneurysm growth, and spinal cord ischemia. The biggest component of that, obviously,

is secondary procedures, and about a quarter of those procedures over their follow-up ultimately required some sort of reintervention. This is not the only experience. Eric Verhoeven's group published on an eight-year single-center experience from Europe,

follow-up in a hundred patients over that eight-year period of time. Their median follow-up was only 24 months, but they did have a range from one month up to 87 months, so it's probably good to look at for long-term data.

Their five-year survival, pretty similar to the Cleveland Clinic experience at about 60% at five years. Their target vessel patency, also very outstanding. Five year patency at 93%, and about 9% of their patients required

a reintervention overall. If we look at more complex aneurysms, the more extensive thoracoabdominals, we had an experience treating nearly 360 patients with 1,300 target vessels with a whole variety of different graft designs

over this period of time. Our freedom from all-cause mortality, again, not really long-term, maybe more mid-term at 36 months, was about 60%. Our freedom from aneurysm-related mortality, though, was 91%.

So again, we can treat these patients, they're just not dying from their aneurysms. We see again, late reintervention is a problem with endografting. We've seen that forever, and it still remains that way with about a quarter of these patients

requiring some level of reintervention at some point in their lifetime. Branch patency is excellent long-term, nearly 98% for the visceral vessels and the renal vessels. And this isn't true just at the Cleveland Clinic, it's true in Europe.

Again, Eric Verhoeven's data, looking at 166 thoracoabdominal repairs, the five-year survival is 66%. Five-year patency is 94%, and five-year freedom from late reintervention is 70%. This data represents an evolution in devices and techniques. It's early in the experience.

Fenestrated and branched is a good alternative for patients with aortic aneurysms, but they will require reintervention, and there are a number of keys to success that we've learned over time. But where are we going with this data?

We have to have improved assessment of the procedures and devices, improved access to grafts, and a better understanding of patient selection and post-operative management. We're continuing to do this

with large volume outcomes assessment by pooling data nationwide, and this is occurring both in the U.S. and in Europe. We have to have improved availability and new devices. We're looking at off-the-shelf devices that may be available.

Everybody's familiar with the Cook T-Branch device, but we're seeing other devices entering the marketplace, such as the Medtronic Device, which is in physician-modified and endograft studies within the United States, as well as the Gore Excluder, the TAMBE device,

which has already gone through an early feasibility study in the United States. We also have to have improved medical care of the aneurysm patient, and here's why. The yellow line represents our survival curve for patients that have undergone extensive

thoracoabdominal aortic aneurysm repair. The red line represents those that are high-risk that were left untreated. So certainly we improve survival by treating their aneurysms. The blue line, though, is a U.S. life

age, gender and sex match controls, and even though we fix their aneurysms we don't bring these patients back up to their cohorts that don't have aneurysmal disease, and they're not living as long, and we need to understand why

and provide improved medical care. It's an exciting time for endo-aneurysm repair. The technology's improving, the techniques are improving, the patient care is improving, and I think that this will absolutely replace open surgery for complex aortic disease.

Thank you.

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- Thank you very much for inviting me here again and I'll be talking about thermal ablation RCTs. My coauthor, Michel Perrin from Lyon, in France, the gourmet capital in the world has collected RCTs on operative treatment of CVD since 1990. Today he has 186 collected RCTs

of the which 84 involve thermal ablation. You can find all this data for free in Phlebolymphology.org. Do we need further RCTs? Well systematic reviews and meta-analyses increasingly important in evidence-based medicine. And this development is well-described

by Gurevitch in Nature this year and criticized by Ioannidis two years earlier. Common sense is a good principle when you try to understand meta-analyses. Do most studies point in the same direction?

Is the effect significant? Are the patient-related outcome measures relevant and what happens if you exclude one study? Since 2008, 10 years back, these are the available meta-analyses and the last came from Ireland earlier this year.

It was published in the JVS, endovenous and in fact this is in March. And they found nine RCTs comparing conventional surgery and endovenous therapy with five years or more follow-up that were selected. Primary outcome was recurrence rate.

There is some sole recurrence rate was that there is no significant difference in laser versus surgery, same for radioactive frequency versus surgery and radioactive frequency versus laser. They found an inferiority

of ultrasound guided foam sclerotherapy versus laser and surgery. Their conclusions were that the quality of evidence is poor therefore more trials that are well-powered to examine long-term outcomes are warranted. The new kids on the block,

steam, MOCA, and Venaseal, are not included in the meta-analyses due to lack of more than five years follow-up in their paper. Obsolete RCTs. Endovenous laser in the presented long-term RCTs

were performed by 810-980 nanometer wavelength using a bare fiber. There is a paucity of RCTs comparing open surgery with novel endovenous laser and new RF techniques. Recent criticism against endovenous ablation, is the pendulum swinging towards high ligation

and stripping again? Olle Nelzen from Sweden in an editorial in British Journal of Surgery reconsidering the endovenous revolution, wrote that neovascularization is a dominant finding following high ligation and stripping

but proximal venous stumps and incompetent anterior accessory saphenous veins are the main factor after endovenous ablation. So long-term follow-up suggests that the recurrence rate after endovenous ablation seem to increase over time. A substantial number of patients who have undergone

endovenous ablation will eventually develop symptomatic recurrence requiring repeat therapy. And such scenario would change the equation regarding patient benefit and costs making endovenous ablation less competitive and challenging current guidelines.

So summary of needs for further RCTs. Quality of present RCTs poor in several meta-analyses, no thermal endovenous technique is superior to open surgery, RCTs rapidly obsolete due to change in technology, and more trials that are well-powered to examine long-term outcomes are warranted.

So final point, apparently we need more RCTs to satisfy the quality requirements for clinically important systematic reviews and meta-analyses. And what about the clinical guidelines? Thank you very much.

- Thank you, Doctor Chuter. So, as you saw in Eric's presentation, really indwelling catheters and wires have become more or less routine for us. And they're nothing new to this era of complex and vascular repair. We've seen them a long time and

we started using them, of course, for iliac branch devices, as you can see here. And the concept is the same when you use them for other branches or fenestrations, as I'll show you. And here, an iliac branch is coming over with that indwelling catheter and snaring

from the contralateral end to be able to get that sheath. This is a helical-helical device, so putting that sheath over to get access to the contralateral side. So why and when do we need preloaded grafts with wires or catheters for complex aortic repair? Well, sometimes we have access issues

and it alleviates that, as I'll show you. Having the fenestrations or branches pre-catheterized will intuitively reduce X-ray exposure times and operating times, and also help catheterization in difficult anatomy, as Eric alluded to, and thereby

keeping the procedure down and avoiding large sheaths in both groins, at the same time minimizing lower-extremity ischemia time. This is an example of putting a fenestrated device in a previous infrarenal device. And the multitude of markers here

makes it very difficult to actually locate the fenestrations on the new graft, so it's very advantageous in these settings to have the fenestrations preloaded. This was first described by Krassi Ivancev back in 2010, and this is the original

preloaded design for a juxtarenal fenestrated device. And you can see a loop wire going through the top of that device. And a very simple handle with a couple of wires and things coming out of it, and some technical difficulties with wire catches

and other things made us move away from that design. It was later evolved into this bi-port delivery system, which allows you to have access to two fenestrations from a unilateral approach with indwelling renal wires and then sheaths, and having

those wires go through the renal fenestrations. And this evolved into the p-branch off-the-shelf fenestrated device from Cook, as you can see here. And you can see that loop wire coming out through that right renal fenestration

going through the top of the graft. And this is the catheter just describing how you then can use a double-puncture technique to access that renal artery and place the sheath there. The advantages of the technique

was described by Doctor Torsello's group in Munster here, showing that it does in fact reduce the amount of radiation in contrast during these procedures as well as bringing the procedure time down. And this was described by Mark Farber as well

in the experience of the off-the-shelf p-branch devices. We modified the preloaded device a little bit further by taking away that very top stent, and instead of having the loop wire is on the p-branch, just placing catheters through those fenestrations,

but still using the triport handle, and then replacing those with 018 wires to achieve stable positions. Of course, preloaded catheters and wires can then be used for branch procedures as well, as Eric Verhoeven just showed you. And in this case, just using these

indwelling catheters to allowing wires to be snared from above and then advanced into the specific branches and distal arteries. And of course, if you use a fenestrated device for thoraco-abdominal repair, the same applies. And this is from Carlos Timaran's paper

just showing how he places these wires from above in these discrete fenestrations. This is a combined device of a two-branch, two-fen device, if you would like, that has indwelling wires going through the fenestrations and out

through the branches, which we use on occasion. You can then bring that out through the axillary artery, and you get access directly from above to the branches from below for the fenestrations. And we found it very useful in the setting of narrow aortic

lumens and chronic aortic dissections, as in this case. And you can see here, then, on the wires placing the sheath, catheterizing the renals, and then at the same time, having these access catheters in the branches so you don't have to access those for a nice end result.

So in summary, Chairman, ladies and gentlemen, preloaded wire I think reduces the operative time and the X-ray exposure during these procedures. It's very useful, particularly in complex torturous aortas, during redo EVAR cases with preexisting devices, and

compromised iliac access, and in the situations of narrow aortas, like in chronic aortic dissections. Thank you very much.

- Now I want to talk about, as Chrissy mentioned AVM Classification System and it's treatment implication to achieve cure. How do I put forward? Okay, no disclosures. So there are already AVM Classification Systems. One is the well-known Houdart classification

for CNS lesions, and the other one is quite similar to the description to the Houdart lesion, the Cho Do classification of peripheral AVM's. But what do we expect from a good classification system? We expect that it gives us also a guide how to treat with a high rate of cure,

also for complex lesions. So the Yakes Classification System was introduced in 2014, and it's basically a further refinement of the previous classification systems, but it adds other features. As for example, a new description of

a new entity, Type IV AVM's with a new angioarchitecture, it defines the nidus, and especially a value is that it shows you the treatment strategy that should be applied according to angioarchitecture to treat the lesion. It's based on the use of ethanol and coils,

and it's also based on the long experience of his describer, Wayne Yakes. So the Yakes Classification System is also applicable to the very complex lesions, and we start with the Type I AVM, which is the most simple, direct

arterial to venous connection without nidus. So Type I is the simplest lesion and it's very common in the lung or in the kidney. Here we have a Type I AVM come from the aortic bifurcation draining into the paralumbar venous plexus,

and to get access, selective cauterization of the AVM is needed to define the transition point from the arterial side to the venous side, and to treat. So what is the approach to treat this? It's basically a mechanical approach, occluding

the lesion and the transition point, using mechanical devices, which can be coils or also other devices. For example, plugs or balloons. In small lesions, it can also be occluded using ethanol, but to mainly in larger lesions,

mechanical devices are needed for cure. Type II is the common and typical AVM which describes nidus, which comes from

multiple in-flow arteries and is drained by multiple veins. So this structure, as you can see here, can be, very, very dense, with multiple tangled fistulaes. And the way to break this AVM down is mainly that you get more selective views, so you want to get selective views

on the separate compartments to treat. So what are the treatment options? As you can see here, this is a very selective view of one compartment, and this can be treated using ethanol, which can be applied

by a superselective transcatheter arterial approach, where you try to get as far as possible to the nidus. Or if tangled vessels are not allowing transcatheter access, direct puncture of the feeding arteries immediately proximal to the nidus can be done to apply ethanol. What is the difference between Type IIa and IIb?

IIb has the same in-flow pattern as Type a, but it has a different out-flow pattern, with a large vein aneurysm. It's crucial to distinguish that the nidus precedes this venous aneurysm. So here you can see a nice example for Type IIb AVM.

This is a preview of the pelvis, we can here now see, in a lateral view, that the nidus fills the vein aneurysm and precedes this venous aneurysm. So how can this lesion be accessed? Of course, direct puncture is a safe way

to detect the lesion from the venous side. So blocking the outflow with coils, and possibly also ethanol after the flow is reduced to reflux into the fistulaes. It's a safe approach from the venous side for these large vein aneurysm lesions,

but also superselective transcatheter arterial approach to the nidus is able to achieve cure by placing ethanol into the nidus, but has to be directly in front of the nidus to spare nutrient arteries.

Type IIIa has also multiple in-flow arteries, but the nidus is inside the vein aneurysm wall. So the nidus doesn't precede the lesion, but it's in the vein wall. So where should this AVM be treated?

And you can see a very nice example here. This is a Type IIIa with a single out-flow vein, of the aneurysm vein, and this is a direct puncture of the vein, and you can see quite well that this vein aneurysm has just one single out-flow. So by blocking this out-flow vein,

the nidus is blocked too. Also ethanol can be applied after the flow was reduced again to reflux into the fistulas inside the vein aneurysm wall. And here you can see that by packing a dense packing with coils, the lesion is cured.

So direct puncture again from the venous side in this venous aneurysm venous predominant lesion. Type IIIb, the difference here is again, the out-flow pattern. So we have multiple in-flow arteries, the fistulaes are again in the vein aneurysm.

Which makes it even more difficult to treat this lesion, is that it has multiple out-flow veins and the nidus can also precede into these or move into these out-flow veins. So the dense packing of the aneurysm might have to be extended into the out-flow veins.

So what you can see here is an example. Again you need a more selective view, but you can already see the vein aneurysm, which can be targeted by direct puncture. And again here, the system applies. Placing coils and dense packing of the vein aneurysm,

and possibly also of the out-flow veins, can cure the lesion. This is the angiogram showing cure of this complex AVM IIIb. Type IV is a very new entity which was not described

in any other classification system as of yet. So what is so special about this Type IV AVM is it has multiple arteries and arterioles that form innumerable AV fistulaes, but these fistulaes infiltrate the tissue. And I'm going to specify this entity in a separate talk,

so I'm not going too much into details here. But treatment strategy of course, is also direct puncture here, and in case possible to achieve transarterial access very close to the nidus transarterial approach is also possible. But there are specific considerations, for example

50/50 mixture of alcohol, I'm going to specify this in a later talk. And here you can see some examples of this micro-fistulae in Type IV AVM infiltrative type. This is a new entity described. So the conclusion is that the Yakes Classification System

is based on the angioarchitecture of AVM's and on hemodynamic features. So it offers you a clear definition here the nidus is located, and where to deliver alcohol in a safe way to cure even complex AVM's.

Thank you very much.

3

- Thank you very much for having me speak and thank you for coming this late in the day for this talk. These are my disclosures. This is our current operating system with advanced imaging and this is GE Discovery IGS 740. You can see you have fusion imaging,

you have the capacity to use combined CT. What I would like to talk to you today is about how we were significantly decrease radiation over the years. What you are seeing on this graph is my personal volume of endovascular cases. In the solid bullets you've the number of fenestrated cases

which have steadily increased over the years and in the empty rounds you've the number of any endovascular case. So what this is saying is that I am doing more fenestrated than more standard endovascular cases. And nowadays these cases are becoming more complex.

You're seeing here the number of vessels incorporated went from 2.9 all the way to 3.7 per patient. Now, at the same time, I did get better over the years. You can see that the fluoroscopy time for the procedures declined after two or three years of experience but it plateaued in 2012.

So, basically, since 2012, I am not doing these cases any faster with any last fluoroscopy time. So any change in the operator or in the patient radiation exposure would be attributed to other factors but the technique. You can see here the effective dose over the years

has dramatically declined from system 1 to system 2 to now system 3 in the blue that is the GE Discovery system to approximately 1/3rd to 1/4th of our baseline dose in the first beginning of the experience. We also recorded the operator dose over the year and you can see here that my radiation dose

has significantly declined again to about 1/3rd to 1/4th of the beginning of the experience. So, how did we achieve this improvement? I will go for eight golden rules, first is doing your work ahead of time, finding out the ideal work positions, using and leveraging all preoperative cross-sectional

imaging that you've, numerous of speakers have already talked about that, our highlights the importance of lead shooting with the work of Dijon which has a thing being remarkable contribution to the understanding of this. Optimize the system geometry, I think is very important avoiding work with the detector too high, the table low

as the abstracted on these illustration or the opposite with the table too high and really finding your way to the optimal geometry. I am sorry I advanceed, the slide is wrong way. Using the ideal dose rate, you can see here that the ideal dose rate in most operators has been down

now to 7.5 frames per second, and in some systems even 3.75 frames per second. We tend to use 7.5, we found this to be the soft spot with our system. ONLAY fusion has been also an important aspect in terms of facilitating the procedure, you're seeing

a segment of a patient before chronic dissection where you're leveraging the fusion to find the septum of trolloming using a reentrance device and really minimizing the amount of contrast and minimizing fluoroscopy, finding your ideal work position or with the use of these landmark markings

than with the fusion. Finally, nice feature of the system is the digital zoom. We really rarely magnify. What you're seeing here is a basically, digitally zoom different than magnification, so that really has allowed us to keep the dose very low

coupled with the collimation. And I think, this is a nice feature. We really avoid using DSAs unless you've to interrogate vessel. It is important to remember that 1 DSA is equivalent to approximately 500 fluoroscopic look.

So, what you're seeing here is the interrogation of a left renal stent done with a fluoroscopic loop as opposed to DSA. And, that is again a very important aspect. Avoiding high angulations wave when you're working in the sma or the celiac axis, we actually tend to that often

with the AP as opposed to the lateral view as soon as you can, you kind of transfer the image to the AP view to minimize radiation. So, in summary, we came a long ways, in terms of standard and complex EVAR where living now in a narrate that we've better devices, we've cross sectional imaging and we've

advanced image and I think we need to leverage all these three aspects to minimize radiation. Thank you very much

- I have nothing to disclose but what I will tell you is that the only way for me to learn the mechanics of treating low-flow malformations has been to learn from Wayne, follow what he's doing, and basically what I've done is I've filmed every single step he's taking,

dissect that, and then present you the way that he's doing it. The best way to do that is not listen to Wayne, but to film him, and just to check that afterwards. And he goes regularly to Cairo, this is the place of Dr. Rodovan sitting here

in front of us, and with Dr. Alaa Roshdy. I've learned a lot there from Wayne. This is Wayne's techniques, so normally if you look at puncture, the low flow malformations here then you get return or you aspirate so this is what happens, they inject contrast then they find volume

and inject whatever agent you prefer to inject. It happens to be alcohol but that is not essential. More often than not, there is no return. What to do then? There is a technique that Wayne has developed. Stab-Inject-Withdraw, just under high modification inject,

identify that you're not outside the vessel, get the vessel, start to fill slowly, and identify that and inject the alcohol. Of course you can do that under exposure just to see the effect of the alcohol thrombosing, et cetera.

Another example of no return is to subcutaneously certainly show that there is a low pressure system, and again, Stab-Inject-Withdrawal, and there is a cyst. Is it extravasation or is the malformation aspirate? And if it collapses, that's the malformation.

And then continue to fill in with contrast, define how big the malformation is, and then accordingly inject the amount of abrasive agent that you're using. Lymphatic malformation is very difficult to treat because the vessel's so small, would say microscopic,

and again, Stab-Inject-Withdraw, identify that it's not extravasating but it is the vessel, and start slowly, slowly to fill and any time in doubt that should there, just do a run, identify, and that is the vessel, or the network of the vessels and

start to fill that with the agent you're using. But there are certain zones that just don't inject anything, and these are the arteries. How often do arteries occur? When you puncture them. I just directly looked at all these 155 patients I've seen Wayne treat there a matter of,

I would say, 100 patients in three days. 30 patients per day, that's about six percent. And you see the artery by pulsating flow depending on the pressure that you apply. And we see again the artery pulsating and we have no doubt about that.

However, it could be difficult to see. Depending on how much you push in the contrast and you see these being ornery so there's a No-Go-Zone, no injection of any agent and again, a tiny bit of lottery there in the foot could be disastrous.

You inject any agent, any, you will have ended up with necrosis of course if you don't inject inhibitors, but not yet. The humorous may not end up with necrosis when all the mysticism with puncture will be gone. So we have extravasation, when you say extravasation

like starting injecting, still good, looking good, but you see how the extravasation even blows up and at the end it bursts, again under pressure they should apply, so pressure is really important to control and then you stop and don't inject any more.

Extravasation, you see how its' leaking in the back there, but you correct the position of the needle, identify all the vessels, the tiny little vessels, just have to be used to identify the pattern and then you start to inject the agent again.

Control is very essential. Here is the emphatic malformation labia and though there is this tiny little bity extravasation you continue because there is you know, run-off, it is filling the system and you can safely inject the alcohol.

Intraarticular could be malformation there and this is definitely safe pla however, if it is in the free space in the the joint, that's again, it's No-Go-Zone. How you see that is just be used to

the pattern recognition and you find that this is free. It's around the condyle there so there is no injection. Compression is again good to note to control by compression where the agents go. This is a normal vein, certainly at risk of getting with alcohol, whatever agent

you're using deep in the system, avoid that by compression. Compression can be applied manually and then that gives you a chance to fill the malformation itself and not strike connection too deep in the system. Intraosseous venous malformation,

low-flow malformations can occur anywhere, here in the spine and the axis is transpedicular patient prone because it's soft. The malformation has softened up the bone. You can just use a 21-gauge needle and identify the malformation and follow

by the agent you're using. Peculiar type of venous malformation called capillary venous malformation. Basically it's a low-flow malformation without any shunt here in the sciatic notch of the patient and geography shows that there is no shunt

there is just big veins and intense pacification. And identify the veins by indirect puncture again, see the pattern of that and inject alcohol and following geography we can see that there has decreased the density but it is a lot more left to be done.

In conclusion, direct puncture is the technique in this low-flow malformation but Stab-Inject-Withdraw is the really helpful technique for successful treatment of microvascular, microcystic lesion. No-Go-Zones for certain when you see arteries

and anytime in doubt you just have to do a run to identify if they're arteries or not. Intraarticular free space and extravasation and normal veins, similarly, No-Go-Zone. Capillary venous, intraosseous malformations can be treated successfully. Thank you.

(audience applause) - [Facilitator] Thank you, Crossey. Excellent talk, very practical and pragmatic. Any comments or questions? Dr. Yakes. - [Dr. Yakes] We have been to many meetings and people have talked about doing

other ultrasound guides, accessing the malformations. You'll never see those arteries by ultrasound. - [Facilitator] That's absolutely correct. I concur. I concur and I think some of the disasters we've seen where suddenly something falls off

have been in these situations because they don't understand or in expansile foam-based therapies, I've seen that. I've seen plenty of these, so it's always present, potentially.

- Lymphatic, so it's fun, actually, not to talk on venous interventions for once. And, naturally, the two systems are very different. But, on the other hand, they're also related in several ways and I will come back to that later. I have no disclosures, maybe only my gratitude to this man, Dr. Maxim Itkin,

who actually got me started in the field, and was gracious enough to supply me some of his material. And who is also responsible for making our lives way easier over the last years. Because in former times, we needed to do, to visualize the lymphatic system,

we needed to do pedal lymphangiography and that was very, very cumbersome. It took a long time and was very painful for the patient. And he introduced the ultrasound guided intranodal lymphangiography,

and that's fairly easy for most of us. With ultrasound you find a lymph node in the groin, you puncture that and you can control the needle position with contrast enhanced ultrasound and once you establish that position, you might do a MR lymphangiography.

Thereby showing, in this case, a beautiful, normal anatomy of the thoracic duct. I need to say, the variations in lymphatics are extreme. So, you can also visualize, naturally, the pathology, like for example, pulmonary lymphatic perfusion syndrome.

What's going on there. Normally, lymph courses up through thoracic duct, but in this case, you kind of have a reflux in the bronchial tree and lymph leakage. And you can image that again, beautifully with MR, which you can show extensive leakage

of lymph in the lung parenchyma. So you can treat that. How can you treat that? By embolization of the thoracic duct. But first we need to get into there, and that's not a very easy thing to do.

But now, again, with access to a lymph node in the groin, you can push lipiodol, and then visualize the cisterna chyli and access that transcutaneously with a 21/22 gauge needle and then push up a O-18 wire high up in the thoracic duct.

First you deploy some coils to prevent any leakage of glue inside the venous system, and then by microcatheter, you infuse glue all the way down, embolizing the thoracic duct. So, complete different group of lymphatic disorders is oriented in the liver and hepatic lymphatic disorders.

And maybe not everybody knows that, but 80% of the flow in the thoracic duct is caused by the liver and by the intestine. And many times in lymphatic disorders, there needs to be a combination of two factors. One factor is a venous variation of a,

sorry, an anatomical variation in lymph vessels and the other one is that we have an increase in lymph flow. And in the liver, that can be caused by a congestion of the liver, for example, cirrhosis, or a right side, that's congested heart failure.

What happens then is you increase the flow, the lymph flow, tremendously and if you also have a variation like in this case, when the vessels do not directly course towards the cisterna chyli, but in very close contact to the abdomen,

then you can have leakage of the lymph and leakage of proteins, which is a serious problem. So, what is then, to do next? You can access the lymph vessels in the liver by percutaneous access in the periportal space,

and induce some contrast and then later, visualize that one back, visualize that with dye that you can see with an endoscopy, thereby proving your diagnosis, and then, in a similar way,

you can induce lipiodol again with glue, embolizing the lymph vessels in the liver, treating the problem. In summary, popularity of lymphatic interventions really increased over the last years mainly because novel imaging,

novel interventional techniques, new approaches, and we all gained more experience. If you would like, I would guess that, we are at a phase where we were at venous, like 10, 15 years ago. If we are a little bit positive,

then the future is very bright. And within 10, 15 years, we find new indications and probably have much more to tell you. Thank you for your attention.

- These are my disclosures. So we all know the problems with long-term failure of EVAR and TEVAR. Type one endoleak being a particular significant concern. We've heard the results of the three year ANCHOR Registry. We know from this 85% of those cases taken on for type one endoleak were successful

and it's fantastic that these cases are still successful at three years. But I guess it's 15% failures and it's important that we talk about how we get success like this. If we're going to talk about a recipe for success we need to think about first of all the indications

for treatment of endoleaks. This is key. Not all endoleaks are the same. Those endoleaks where there's an inadvertent creation of a leak channel around the graft at the top end because of a hostile landing zone

or excessive oversiding of your graft or noncircular aorta, all can be well treated with endoanchors. Again, migration and loss of seal can also be well treated. But others where there's excessive thrombus or calcium won't work and where there's insufficient apposition between the graft and the aorta, again,

this is not a treatment case for endoanchors. So intraoperative type one endoleaks where there's poor conformability of the graft you can see here this barrel-shaped neck, there's a leak around the aorta, and there's a series of endoanchors

placed in rows circumferentially, do really well to seal up that. You can do the same at the distal end of the thoracic graft as we've just seen in those conical necks when you have a type one endoleak. If you have time to treat your leak channel,

you want to get a CT scan and evaluate where that leak channel is. Or you can do more detailed imaging with triangulation on angiography, but that's difficult. You fix the side away from the endoanchor first,

and then fixing rows of staples along the endoleak channel as you can see here, by moving the C-Arm in 15 degree increments across the aortic wall. This is a good example of a case with a leak channel. This graft is in the angulated aorta

with a channel underneath in the bottom end. There's a big endoleak there. And what we've done is fix the contralateral side first and then you're placing a series or rows of endoanchors underneath the stent graft. You can even zipper that up to change the bird beaking.

And that endoleak stayed sealed for three years. The same is true in the proximal thoracic aorta. This is one of Firas Mussa's cases. There's an endoleak on the underside of the arch and five endoanchors placed on the underside of the arch as we've just seen in JP's talk,

can resolve that endoleak quite successfully. When you are doing it in the arch you do need to plan properly. If you have an endoleak at the end of the case what you can do is put the C-Arm in an LAO position and line up the markers on the graft,

place the superior and inferior endoanchors and then rotate cranially and caudally at 15 degree intervals to put a series of endoanchors at the superior and inferior surfaces. That will fix the graft well. Otherwise, if you've got time and plan the case well,

you can work out dedicated C-Arm angles using one of the CT evaluation softwares. The best example is written by Rousseau, and I would get you to read that article to learn further. And that's how I learnt. There is a learning curve.

And this is necessary for success in treating type one endoleaks. You need some experience to gain good endoanchor placement. That's crucial, we've heard that. Start with the infrarenal segment, doing prophylactic cases,

the conical necks and slightly dilated necks, and then move into the thoracic segment. You need to use different size guides for different parts of the arch. On the upper surface the smaller guide is more useful. On the undersurface a larger guide to place the endoanchors

on the under surfaces of the arch is useful. Place them in rows coming back and have some patience. It's not all as easy as it looks right up there in the arch. For migration it's often an excellent strategy. If you can fix your migrated endograft to the native neck it's a good thing to do.

But remember these grafts have migrated and there's often great tortuosity there. If you can extend to gain a seal zone and then place a series of circumferential endoanchors it will fix that well and usually stay fixed for a good period of time.

There are limitations as I alluded to in the first few slides, excessive thrombus, excessive calcification, and where the aorta is dilated excessively and the endograft has stayed the same size. These will not work with endoanchor placement.

These are my tips, really, for success. There is a learning curve. Start with some easier ones. Think about the endoleak and why you've got an endoleak and don't be tricked into thinking the endoanchors will create a landing zone for you.

It won't. You should treat the type one endoleak immediately if you have it at the end of the case with re-interventions. You need to target that effectively and place multiple rows often cranially and caudally. And if you have one of the 13.4% failures,

remember that the use of endoanchors doesn't preclude you from doing something else so don't be too depressed. Thank you very much.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Seems that people are more interested in coffee than in cost of F evar and B evar. Anyway. I have no disclosures for this talk. Maybe you are not very well aware of cost effectiveness and why it is useful in society and when we started this study in France,

I did not know and I learned some basic things about cost effectiveness. Everybody knows that resources of the health care system are limited and there is a need to determine the most efficient procedure for a reasonable amount of money.

So let me explain to you what is the cost effectiveness calculation. When you have two treatment, you have to consider first cost and also efficacy. If, let's say, treatment A is inferior to treatment B, let's say the first option in the recent treatment

and then the efficacy of treatment A is superior to treatment B, then it is more efficient and less costly and it is obvious that new technique has to be adopted by the healthcare system. But then you have the technique in which the cost is higher than the former treatment

and the efficacy is lower. So there is no doubt that less efficient procedure, which is more costly has to be rejected. But then there are two options. The cost and the efficacy can be less efficient and less costly.

What should we do? And it can be more efficient but more costly. And then here there is discussion. Discussion between whom? Between people who pay, between people physician, between patient and so on.

That's why the cost efficiency is something which is more adapted to the evolution of the healthcare system and so on. When we started the Windows Trial some years ago, it was a prospective multicenter comparison. Non-randomized of Bevar versus open surgery

and looked for support by a public grant which paid for the, mainly for the cost of the graph and also the cost of the study. Open surgery was performed in all the, around the nation and was not supported by any grant and this study

was meant to obtain reimbursement. So it was a comparative study. The data were, came from the CRF in the Fevar and Bevar arm and the PMSI which is the national database and open surgery were only on the PMSI national database

which is mandatory to get if you want to be paid for what you've done as a surgeon. And we looked at the main diagnosis and the type of repair. Open with supra renal clamping or endo repair as mentioned before. The evaluation was clinic.

We looked at the commodities and complications for during the first hospitalization and further hospitalization and death. Economic data were provided by all the health care providers in France. So the group of patients, there were almost 2,000 patients

that were divided into three groups. One group one was pararenal arteries. In blue, you have the number of grafts and in yellow, the open surgical group. Type two, group two was a thoracoabdominal aortic aneurysm type three, type one, two and three

thoracoabdominal aortic aneurysms and these are the results. They have been published twice in the European Journal of Vascular Surgery. One was for one month outcome and the second one for the two years outcome.

Mortality here is shown. You see there's not a larger difference between the two groups. Let me remind you that the Fevar and Bevar were different for higher risk patient. Why open surgery was for patients vs open surgery.

Group two had abdominal. The mortality with Fevar was much higher and in group three, there was a benefit, clinical benefit for Fevar or Bevar. Here you have the cost. See, according to this group,

the cost is much higher, the larger, the longer than any of these, but the difference between Fevar and Open is high in the two first groups but almost, it is no longer significant in the third group. Cost effectiveness are boosted up and as shown here,

the group one is in green. You see it's more costly, but a little bit more effective because there's less death. In group three, less death, still higher cost, but in group two, more deaths and more costly. Here you have the longterm analysis.

It's similar to what we have heard this morning. Now rehospitalization, there were more rehospitalizations in Fevar and Bevar than open surgery and more cardiovascular events. Complications listed here. They were more frequent in the open group

and the total cost at two years is shown here. And there is a difference in 22,000 euros which is about the cost of the graft at least in France, and at two years, the cost effectiveness is shown here. You see that for type three, one, two, or three, direct abdominal analysis is more costly,

but more effective and for the pararenal analysis, it's so and so. So in summary, Fevar and Bevar were globally not cost effective, but thoracoabdominal aortic aneurysm were the only group close to cost effectiveness, but Windows trial has limits.

It is not a randomized trial. Open surgery included less risky patients and Fevar patients were unfit for open repair. What happened next in France? It's very amazing to see it was a favorable outcome. Fevar and Bevar were finally from Cook and Vascutek

are currently reimbursed in France, but only for a limited number of patients. That way the government tried to contain the cost of all these procedures. Well, thank you very much to all the people who worked on this.

- I want to thank Dr. Vee for the invitaion and the opportunity to participate. These are my disclosures. I also want to acknowledge my friend, Gustav Aldrich, some of the images and the slides were shared by him with me. So, as you know, 20% to 40% of infrarenal abdominal

aortic aneurysms are considered complex because either they don't have any neck or because the aneurysm extends above the renal arteries and therefor, cannot be treated with the standard lever devices. And obviously thoracoabdominal aortic aneurysms

are primarily treated, at least in the United States, using open repair. And as you know, the problem with open repair is that the morbidity and mortality are really significant and that is particularly true when you analyze the outcomes of population based studies.

And that's obviously something that needs to improve. Overall mortality almost 20% in 30 days. Now, fenestrated branch devices would allow you to treat most of these complex aortic aneurysms. In fact, there is over 60,000 of these endografts that have been implanted world-wide.

In the United States the only one available, fenestrated device available, is the Z-Fen device which only allows you to treat juxta-renal triple A's. In order to get access to more complex devices that would allow you to treat thoracoabdominal aneurysm, you have to get an IDE.

We were fortunate to get one of these several years ago. And our experience is based on the use about the Z-Fen and these types of devices. Patient with fenestrating branch is that it has been used primarily for high-risk patients. But, it's unknown if this could be used also for all-comers,

especially patients with standard risk. And they know this study which just says the perioperative outcomes of fenestrated branch EVAR among patients that are considered standard risk versus those that are high risk. One of the important points to highlight here

is that IRD allows us to treat all patients, not only high risk patients, which is a little different from most of the other IDE's. So, during a four year period, 206 patients underwent fenestrated-branch EVAR. 81% of these were male, 19% female.

The median age of these patients was 72 years, and the median aneurysm size was 58 millimeters. Half of the cases were performed with a Z-Fen device. 40% were performed with custom-made devices, 4% with a P-branch off the shelf device. And 4% with a T-branch device.

Now we separated or defined the surgical risk based on the ESVS medical cardio-mobility graded system. Which says the cardio status, pulmonary status, the renal condition and other minor components such as hypertension and age, the lower the score the lower the risk, usually standard risk patients

are those considered fit for open repair. Now based on this score, 78% of the patients were considered high risk versus 22% were considered standard or low risk. The early results, technical success was 100%. The median operative time was a little longer

for the high risk patients, 243 minutes versus 192 in the standard risk patients. Median hospital stays was not significantly different. And the median ICU stays was similar. The 30 day results, there was two patients that died for the 30 day mortality of 1%.

This was due to urosepsis and intracranial bleeding. Complications, 35% for high risk and 28% for standard risk. One year results, for the entire cohort, freedom from endoleaks 85%, freedom from re-intervention 78%, target vessel patency 98%.

And patient survival at one year, 87% for high risk patients and 100% for standard risk patients. Obviously, there's an added benefit in survival for standard risk patients. Sac shrinkage was noted in the majority of patients. So we believe that based on these results

fenestrated-branch EVAR is safe and effective in both high and standard risk patients. But we believe the standard risk patients benefit the most given their significant improved survival as well as their early recovered. So we believe for that reason fenestrating-branch EVAR

should be expanded to all patients. Thank you.

- Again, I think I'm going to continue the theme here on talking about REBOA technologies and techniques, so thank you, Dr. Veith, again for allowing us this format. No disclosures on my part. Everyone by now has heard this term multiple times and I think this is a community that understands

Resuscitative Endovascular Balloon Occulsion of the Aorta. Not new technology, very familiar to everyone in this audience who frequently is called upon to deal with the ultimate model of noncompressible hemorrhage,

that of the rupturing abdominal aortic aneurysm. Dr. Veith showed us many years ago that we could get appreciable outcomes improvement with endovascular balloon occlusions here, and the military was certainly listening. Colonel Rasmussen developed this paper

describing the first techniques. The diagram on your left, one of our first civilian centers, in a classic military-civilian collaboration, that we rolled this out at at Shock Trauma, this is the algorithm that is utilized there and it has been exported to countless trauma centers

for incorporation into their own protocols. And, as it was also mentioned, the American Association for the Surgery of Trauma AORTA Registry is capturing these prospectively. We now have 34 centers and over 568 REBOAs captured as of November 2018.

And this hopefully will continue to provide us some of the data that we need to better differentiate optimal patient selection and optimal practices. So, again, another encouraging anyone in the audience to likewise contribute to those 34 centers. And we have evolving advances in technology, clearly,

some of that has been discussed about here already. And better understanding through the Endovascular Resuscitation Trauma Management Society, and other meetings like that, to look at procedural approaches that work and share knowledge across the full spectrum.

We have lower profile devices. We have the ability to monitor the patients to step up care in a stepwise fashion to optimize the survival of bleeding patients. The old Coda balloon we initially utilized for this approach for REBOA back when I started doing this in about 2008 was,

or 2009, was has largely been replaced by these military specific civilian and trauma specific technologies that Colonel Rasmussen mentioned briefly. The REBOA in 2018, the majority of centers coming on board from the trauma center perspective or utilizing the prime time ER REBOA catheter,

this is FDA approved for floroscopic, for use. It is 7 French compatible, has a distal arterial pressure monitoring port distal to the balloon, does not require a guide wire, and is exceedingly user-friendly for the majority of the people who are going to be putting these in,

which is the acute care trauma surgeon who's at bedside when these patients arrive. The techniques that we utilize and we teach in our American College of Surgeons Basic Endovascular Skills for Trauma course, our best course, which is our current standard for training of REBOA

to trauma and acute care providers and, increasingly a larger subset of providers, utilizes external landmarks. And this has been shown through both CT morphometric studies and clinical applications to be a very reliable modality in that patient who is actively

attempting to code in front of you. And Colonel Rasmussen also touched on our growing experience here. The Northern paper was really a banner presentation and an eye-opening report for we, as military providers, and the trauma community, with their 100 percent

survival to the next echelon of care. We've learned a lot from these groups and their ability to employ this device effectively in really a resource-limited environment where they don't have blood providers become a resource that is very limited.

It's a challenging environment and they were able to deploy this quite effectively. And, more recently, the Tactical Combat Casualty Care committee has released guidelines for utilizations technology across a wider spectrum of small, not just surgical teams,

but also resuscitative teams. These are some of the pictures of some of the crews that I deployed with recently. And we are small team living out of a backpack with very limited blood utilization. And having this capability in your backpack,

to get that patient to more of a hard stand definitive surgical facility is a game-changer for all of these types of providers put in these situations across huge geographic footprints including Africa and parts of the Middle East.

Refinement of techniques is also continuing to evolve. Tal Horer talked briefly about partial REBOLA, this is how I utilize this technology. In a more refined fashion, utilizing a manual compression of the balloon to titrate a blood pressure that keeps the heart and the brain happy

with normal tension and keeps the operative field until definitive surgical control's obtained in hypotensive resuscitation state. So we're not disrupting clot, we're not causing more bleeding and propagating the deadly triad with ongoing cuagulopathy.

It's a wonderful tool, wonderful approach, I think. This is how it works. To some degree you can see the surgeon, the REBOA catheter in place, that was placed before the abdomen was opened. The surgeon actively working to obtain definitive control.

And we have here the balloon, the pressure in the balloon, the monitoring port above the balloon. This is the pressure below the balloon, as measured off the side port of the 7 French sheath. So now I'm able to titrate a pressure that minimizes the risk of hypotension

for the brain, the heart, those critical organs, yet perfuses the distal organs to a safe degree so that we don't have that reperfusion payback after subsequent definitive surgical control's obtained. And this technology continues to grow across a wide spectrum of indications,

non-trauma hemorrhage indications. When you look at global health burden, post-partum hemorrhage is more likely, in 10 years, to benefit from the further integration of REBOA, than any trauma bleeding that we encounter. That's really just a huge global health burden

and there's an active community in both the U.S. and South America developing registries for implementation there and partnerships across multiple specialties. And there's now actually an NIH funded, clinical research project in development

to look at the use of these balloons in CPR, those patients in Vfib that are not refractory to electroshock, and to see if we can salvage some of those patients. So that is also in effect. Some conclusions, REBOA continues to evolve

for applications for trauma and has evolving opportunities, as well, in non-trauma areas and wider utilization is going to continue to be facilitated by continued device improvements, training and research. Thank you.

- That's a long title, thank you. We shortened the title, and just said, The Iliac Artery's Complicating Complex Juxtarenal and Thoracal Abdominal Repair. I have no disclosures. So, Iliac artery preservation is important whenever we start doing complex aortic aneurysm repair.

We don't understand completely what the incidence is with these extensive aneurysms. We know with AAAs, anywhere in the 10 to 40% have some sort of iliac artery involvement. It certainly can complicate the management as we get to these more complicated repairs.

Iliac artery preservation may be important for prevention of spinal cord ischemia, and those people in whom we can maintain both hypogastric arteries, it occurs at a less significant rate, with less severe symptoms and higher rates of recovery.

The aim of our study was to evaluate the incidence, management, and outcomes of iliac artery aneurysms associated with complex aortic aneurysms treated with fenestrated and branched endografts. Part of a PS-IDE study over a 15 year period of time,

this is dated from the Cleveland Clinic for the treatment of juxtarenal aneurysms and thoracal abdominal aortic aneurysms. For the purpose of this study, we defined an iliac artery aneurysm is 21 mm or greater as determined by diameter

by our core lab. We chose 21 mm because this was outside of the IFU for the iliac wounds that we had currently available to us at that time. We did multivariable analysis on the number of different outcomes. And we looked at the incidence

of iliac artery aneurysms by repair type. In all the aneurysms we treated, we see about a third of the patients had some level of iliac artery aneurysm involvement. In those patients that had less extensive thoracal abdominals, the type three

and type four abdominals, it occurred in about a third of the cases. A little bit less than the type two and the type one thoracal abdominals. We look at the demographics between those that had iliac artery aneurysm

involvement and those that did not have iliac artery involvement. It was more common in males to have iliac artery involvement than any other group. There are more females that didn't have iliac artery aneurysms. The rest

of the demographics were the same between the two groups. We look at the anatomic characteristics of the iliac artery aneurysms, about 60% of them were unilateral, about 40% of them were bilateral.

The mean iliac artery aneurysm size was 28 mm and that was the same on both sides. And we look at thought the percent that were actually very large, or considered large enough to potentially in and of themselves the repairs

greater than three centimeters. About 28% of them were greater than three centimeters on each side. If we look at our iliac artery aneurysm treatment type, this is 509 iliac artery aneurysms that

were treated out of all these patients. About 46% of them, we were able to obtain a seal distal to the iliac artery aneurysm. So it really only involved the proximal portion, the proximal half of the iliac artery.

20% of them, we placed a hypogastric branched endograft, and about 20% of them, we placed a hypogastric coverage plus embolization of that internal iliac artery. About 13% of them were left untreated at the time for a variety of different operative reasons.

Why is there a difference between the hypogastric coverage and embolization? It was availability of devices and surgeon choice at the time. At one point, we had a opportunity to be able to treat both fairly easily

on both sides and at one point we did not. Larger iliac artery aneurysms were treated with hypogastric coverage or hypogastric branched endografts, and there was a significant difference between the two. Most of the mean

size of those that were actually treated with either hypogastric branch or embolization for greater than three centimeters. If we look at peri-operative outcomes in those without iliac artery aneurysms versus those with iliac artery aneurysms.

We see that the fluoroscopy estimated blood loss is larger for those with iliac artery aneurysms, fluoroscopy time was longer and procedure duration was a bit longer as well. Obviously, a bit more complicated procedure,

more steps that's going to take a little bit longer to perform them. It did not effect the length of stay for these patients or the length of stay in the intensive care unit following the procedures. We look

at all-cause mortality at five years, no difference in whether they had an iliac artery aneurysm or not. It didn't matter whether it was unilateral or bilateral. If we look at aneurysm-related mortality, it's the same whether

they had the iliac artery aneurysm or not. Same for unilateral versus bilateral as well. Where we start to see some differences are the freedom from reintervention. This did vary between, among the three groups. In those patients without an iliac

artery aneurysm, they had the lower reintervention rate than those with the unilateral iliac artery aneurysm, and even lower rates from freedom from reintervention in those that had bilateral iliac artery aneurysms. Spinal cord ischemia, one of the

reasons we try to preserve both the hypogastric arteries. Look at our total spinal cord ischemia incidents. It didn't vary between the two groups, but if we look specifically, the type two thoracal abdominal aortic aneurysms in those patients that had bilateral

iliac arte higher rate of spinal cord ischemia compared to those that did not have any iliac artery aneurysms or those that had an internal iliac, a single iliac artery aneurysm.

So, iliac artery aneurysms affect about a third of the patients with complex aortic disease. They do not, their presence does not affect all-cause mortality or aneurysm related mortality. They are associated with a higher reintervention rate.

In extensive aneurysms, may be higher association with higher spinal cord ischemia rates. We need additional efforts are needed to improve outcomes and understanding appropriate application of different treatment options for patients with

complex aortic disease. Thank you.

- Good morning. Thank you Dr. Veith for this kind invitation to present our data. These are my disclosures. So despite multimodal strategies to improve spinal cord perfusion permanent paraplegia still occurs in up to ten percent of patients undergoing

complex thoracoabdominal procedures. And the rates of transient lower extremity weakness are even higher. Hyperglycemia is associated with worsened clinical outcomes after acute ischemic stroke, severe head injury and subarachnoid hemorrhage.

In experimental date in animal studies suggests that hyperglycemia may be deleterious in the setting of spinal cord ischemic injury, but human studies are lacking. We have previously shown that elevated blood and CSF glucose levels were significantly associated

with postoperative lower extremity weakness in patients undergoing multi-branched endovascular aortic aneurysm repair. And importantly these elevated glucose levels preceded the onset of lower extremity weakness. Based on the findings of this study, we initiated

an insulin infusion protocol to maintain postoperative glucose levels to less than 120 milligrams per deciliter in all patients undergoing MBEVAR. And the purpose of this current study was to determine whether using this insulin infusion protocol to achieve tight postoperative blood glucose control

decrease the rate of lower extremity weakness after MBEVAR. This was a single center prospective clinical trail of asymptomatic patients with thoracoabdominal or pararenal aneurysms who underwent MBEVAR. All patients were admitted one day prior to the procedure and treated with IV fluid hydration and their

antihypertensive medications were held peri-operatively. All of these patients underwent preoperative placement of a lumbar catheter for drainage of CSF. And in October of 2013 we began to collect blood and CSF samples on these patients for further analysis. In July of 2016 we began the insulin infusion protocol.

And in all patients who had a blood glucose level of greater than or equal to 120 milligrams per deciliter, they were started on a regular IV insulin infusion which was further titrated based on subsequent glucose measurements and then continued in the ICU for the first 48 hours postoperatively.

Between October of 2013 and April of 2018, 43 patients without pre-existing paraplegia underwent MBEVAR. The mean age of the cohort was 73 years and the majority were men. 19% of these patients had diabetes mellitus, but none of these patients were on insulin preoperatively.

53% of patients underwent treatment for either a type four or a pararenal aneurysm, but the proximal seal zone was in the superceliac aorta in all of these patients. Before initiation of the insulin infusion protocol 22 patients underwent MBEVAR, and after initiation of the insulin infusion protocol

21 patients underwent MBEVAR. There's no difference in demographic characteristics, comorbidity, or operative parameters between the two groups of patients. Before initiation of the insulin infusion protocol, seven of twenty-two patients developed

lower extremity weakness within the first 48 hours of repair. This was temporary in five patients, leaving two patients with permanent paraplegia. After we instituted the insulin infusion protocol, no patients developed lower extremity weakness

within the first 48 hours of repair. One patient did develop paraplegia on postoperative day four which was two days after the insulin had been stopped. This rate of early lower extremity weakness was significantly lower after initiation of the insulin infusion protocol.

And important to note that all patients in group B did require insulin at some point in the postoperative period. This table just describes the onset, laterality and nature of the deficit in the two groups of patients with lower extremity weakness.

Before initiation of the insulin infusion protocol, the blood and CSF glucose levels were significantly higher in the postoperative period in patients who develop lower extremity weakness compared to those who did not. After initiation of the insulin infusion protocol the glucose levels in the blood and CSF in this group

of patients was similar to those patients in the earlier group who did not have lower extremity weakness. So in conclusion, patients with elevated blood and CSF glucose levels are at higher risk for postoperative lower extremity weakness.

And strict control of their blood glucose levels in the first 48 hours appears to decrease this risk. And maybe that elevated glucose levels are directly toxic to neuronal tissue and what we're seeing are the protective effects of euglycemia. However, insulin receptors are abundant throughout the CNS,

so it's possible that we're also seeing one of the pleiotropic effects of insulin as it's known to have anti-inflammatory and vasodilatory effects throughout the CNS. So we're actually speculating that this postoperative hyperglycemia could be due to a state

of acute insulin resistance. And we're currently studying some changes in neuron-derived blood exosomes before and after MBEVAR to try to understand the processes at play. So stay tuned.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- So in terms of overcoming difficult access, when we're doing parallel grafting, and we're going to use more than one branch or parallel graft, typically we come in from the axillary artery. It gives good pushability, it decreases the length for what you need to get from you access point

down to the branch vessels. We find that no conduit is needed. We typically just access this in three offset manners. We'll put a purse string in at each site, so that there's limited bleeding. When you come in, you have to think about

what the aortic arch construct looks like. You can have a type one, a type two or type three arch, which can make things more difficult. As you can see here, this sheath takes quite a significant bend to get down to the renal visceral segment.

You also can have tortuosity within the thoracic aorta, which can compromise your ability to cannulate. So when we think about the arch, you want to think about coming in from the right or left, which ever one makes it better. Typically, if all things are equal,

we'll come in from the left side. When you get your sheaths down one at a time, we leave the stiff wire in to try to straighten out the anatomy. Sometimes you have to snare and get through and through access.

And then you want to think about where your sheaths position is. You want it to be high enough so that you can allow your catheters to form, but also low enough so that you can reach the vessel of interest.

There are a couple of things, I think from a pre-planning perspective that are very important to try to set up, to allow yourself the optimal chance of cannulating these vessels. Appropriate C-arm projections, you want to think about

whether or not your going to use a cephalad or caudad parallel graft. Think about the tortuosity as well as the composition of the branch. What type of stent are you going to use in that? How much purchase is needed?

How much purchase can you get? And, How difficult is it going to be to cannulate these vessels? And also whether or not there's orifice stenosis. So, here's an example of a patient we did. You can see that left renal artery

is actually quite anterior. If you look at the AP view here, you can see how it would be quite difficult to cannulate, 'cause the orifice basically runs into the aneurysm in the AP view, if you just move your II to a 30 degree RAO,

then it becomes very perpendicular and very easy to cannulate and see. This is a situation where you think about periscoping or caudad parallel graft. It's much easier coming from below, it's an upwards approaching renal artery.

Coming from above, you can see it can bow out towards that large aneurysm and also potentially reflux down into infra-renal segment. This is a patient with a very short branch of main renal artery, and you can see if you just put

a typical self expanding stent, there's a higher chance that this thing's just going to pull out into the aneurysm, and what we did here is, we put a balloon mounted stent, followed by a self expanding stent

to lengthen afterwards and it worked out really nicely. And this is just the patient that has significant orifice stenosis and these patients will be hard to cannulate. Sometimes you have to pre dilate before you introduce your stents into the vessels.

You also want to think about the aorta and what configuration of the aorta is. What's the tortuosity, the calcification. Are you in a situation where you're trying to cannulate within the aneurysm and how much thrombus is there as well.

So, you can see here in the first picture, the aorta's somewhat tortuous, and going after that left renal artery probably would be easier, but going after that right renal artery becomes potentially difficult

as the catheters and sheaths are going to be pushing you away, and may make that more challenging. You may want to think about things, and certainly catheters selection before approaching. And definitely, any time you have an aneurysm

and your in a big space without a lot of thrombus, that makes things a little more difficult, 'cause you're flopping around in a large open space trying to cannulate a vessel. When you're accessing the vessel sometimes from above, what will happen is the tendency is

for the catheters and the wires, to reflux down into that infrarenal space. This is a no not well known trick, where you put a coda balloon and you can have your wires and catheters bounce off of that coda balloon

to help you navigate into that branch vessel. Sometimes that doesn't work, and it still continues to reflux, and what we've done more recently is, we'll come in from below, put a four millimeter balloon

in the distal renal artery, and then we'll pin our soft wire, be able to do a catheter exchange, exchange for our stiff wire, and ultimately, there's the catheter, ultimately in the stiff wire.

And then ultimately bring in your stent graft, all with that balloon still in place to hold and pin that wire in position, and allow things to track over that wire, rather than reflux down. Just some general thoughts, again,

thinking about the appropriate catheters, what length catheter do you need, what kind of angulation do you need, stiff versus angle glide wires. We typically use Rosen and Amplatz wires for our stiff wires to track our stents in.

And then different platforms, depending upon what your anatomy ultimately looks like. So in conclusion, a lot of pre-planning is important, I think to optimize your accessing of these vessels. And there's a lot of techniques and technology, that currently exist to help assist with this.

Thank you.

- So thank you for the kind introduction and thanks for professor Viet for the invitation again this year. So, if we talk about applicability, of course you have to check the eye views from this device and you're limited by few instructions for users. They changed the lengths between the target vessel

and the orifice and the branch, with less than 50 mm , they used to be less than 25 mm. Also keep in mind, that you need to have a distance of more than 67 mm between your renal artery cuff and your iliac bifurcation. The good thing about branch endografts

is that if you have renal artery which comes ... or its orifice at the same level of the SME, you can just advance and put your endorafts a bit more proximally, of course risking more coverage of your aorta and eventually risking high rate

of paraplegia or spinal cord ischemia. Also if your renal artery on one side or if your target vessel is much lower with longer bridging stent grafts which are now available like the VBX: 79 mm or combination of bridging stem grafts, this can be treated as well.

Proximally, we have short extensions like the TBE which only allows 77 or 81 mm. This can also expand its applicability of this device. The suitability has already been proven in.. or assessed by Gaspar and vistas and it came around plus 60%

of all patients with aortic aneurysms. Majority of them are limitations where the previous EVAR or open AAA repair or the narrow diameter reno visceral segment in case of diabetes sections. So, what about the safety of the T-branch device?

We performed an observational study Mister, Hamburg and Milner group and I can present you here the short term results. We looked at 80 patients in prospective or retro prospective manner with the t-branch as instructed for use.

Majority were aneurysms with the type two or type four Crawford tracheal aneurysms, also a few with symptomatic or ruptured cases. Patient characteristics of course, we have the same of the usual high risk cardiovascular profiling,

this group of patients that has been treated. Majority was performed percutaneously in 55%. The procedure time shows us that there is still a learning curve. I think nowadays we can perform this under 200 minutes. What is the outcome?

We have one patient who died post operative day 30, after experiencing multiorgan failure. These are 30 day results. No rupture or conversion to open surgery. We had one patient with cardiac ischemia, seven patients with spinal cord ischemia

and one patient has early branch occlusion. There was both renal arteries were occluded, he had an unknown heparin induced thrombocytopenia and was treated with endovascular thrombectomy and successfully treated as well. Secondary interventions within 30 days were in one patient

stent placement due to an uncovered celiac stent stenosis In one patient there was a proximal type one endoleak with a proximal extension. One patient who had paraplegia or paraparesis, he had a stenosis of his internal iliac artery which stem was stented successfully,

and the paraparesis resolved later on in this patient. And of course the patient I just mentioned before, with his left and right renal artery occlusion. So to conclude, the T-branch has wide applicability as we've seen also before, up to 80% especially with adjuvant procedures.

Longer, more flexible bridging stent grafts will expand the use of this device. Also the TBE proximal extensions allows aortic treatment of diameters for more than 30 mm and I think the limitations are still the diameter at reno visceral segment,

previous EVAR or open AAA repair and having of course multiple visceral arteries. Thank you.

- Thank you Dr. Veith and Dr. Helan for the honor of the podium and for being included in this very prestigious panel. I appreciate it greatly. These are my disclosures. So there's a number of established strategies with fenestrated EVAR to overcome some of the challenges

that we face during these procedures. For downward oriented target arteries we employ brachial access, we deflect wires and catheters off of the top cap or a balloon that can be inflated. Fixed angle sheaths,

getting access into the target vessels can be accomplished by swallowing the balloon or replace a balloon into the target vessel first, inflate it and then deflate it while we're pushing forward on the sheath. And also the large bore femoral access

on the contralateral side allows us to have multiple access sites, multiple sheaths, but this oftentimes requires 20, 22 French sheaths to accomplish this. Well this standard FEVAR technique is what I adopted when I first went out into practice

and as often is the case, necessity becomes the mother of invention. And when we lost access to the beacon tip Van Schie catheters, we had to come up with alternative techniques for gaining access to these vessels

and for accomplishing these procedures. And what this strategy has eventually evolved in to is what I've coined as next generation FEVAR, and I take a slightly different approach from the well-established techniques. And these are the ancillaries that you need

to perform these procedures. The main thing is the conformable sheaths which has completely changed my approach to doing these procedures. And I'll show you a single case that illustrates many of the strengths of these conformable sheaths

and the strengths of this technique. But the conformable sheaths that are available in the United States are twofold. The Oscor Destino Twist, which is available in 6.5, seven French, and 8.5 French. There's also a 12 French sheath available as well

with variable deflection curves. The Aptus TourGuide is actually manufactured by Oscor and sold through an OEM to now Medtronic, but it is exactly the same type of the conformable sheath available in the same sizes and deflectable curves.

As far as our contralateral sheath, what I've found with this technique is that we've been able to significantly downsize the contralateral sheath to allow access by only using Rosen wires and leaving Rosen wires only behind in most of

the selected and wired vessels. This is a 16 French and now what I employ is a 14 French dry seal in almost all of our cases. So this is a patient with a juxtarenal aneurysm that had an accessory lower pole or duplicated left renal and a rather large IMA

that we incorporated through a PMAG design in the, in his repair. And this video shows the conformable sheath acting as not only the sheath but the selection catheter as it goes in to the fenestration and out into the target artery.

As we move to the next step, the glide wire then is passed into the vessel followed by a quick cross catheter, and then we exchange the glide wire for a Rosen, and then leave the Rosen behind and move on to the next vessel.

This is selection of the celiac and then selection of the right renal. And then the left renal. And actually we were able to get the second renal as well with this setup. This is one of the,

so this is delivering the stent to the celiac as we move back up and we kind of just reverse the order as we go back to one of the first vessels that we selected. And we would never attempt this maneuver with a fixed angled sheath. But the strength of the conformable sheath

allows it to maintain its shape and actually throw the stent across the fenestration and into the vessel rather than having the sheath into the target vessel and unsheathing it. We then can use the conformable sheath to select downward deflected branches as the IMAs illustrates.

And on the one month post-CTA all vessels are stented, widely patent, aneurysm sac has actually begun to shrink, and this is our 3D rendering of that one month CTA. So with my move I started keeping track of the amount of time it takes to catheterize these vessels. Real time from the start of catheterization to the end

of the final vessel being catheterized. And we did this in 57 consecutive cases with a total of 215 total fenestrations. I used brachial access not at all during any of these cases and we recorded this time. And what we found in those 57 cases

is that we had a mean of 30 minutes from the time we put the conformable sheath in to the time we were done selecting all of the vessels, that all the target vessels and had Rosen wires in those vessels. When we subtracted out the few outliers that we had

with high grade stenoses or extreme angulated origins, we ended up with a mean and a median that came together at about 21 minutes. The cost comparison has been raised as an issue, but when you actually only use one sheath it's actually cheaper to use the conformable approach

and it doesn't take into account the billed hybrid OR time which can be upwards of $200 per minute. The cost of brachial access and decreased target cannulation wire time. So in summary FEVAR with this approach and with conformable sheaths

facilitates selection of fenestrations, downward deflected branches and target arteries. It avoids the complications of brachial access and large bore contralateral sheaths. It provides additional stability to allow delivery of appropriately sized covered stents

and it simplifies the technique and decreases the costs. Thank you.

- I'd like to share with you our experience using tools to improve outcomes. These are my disclosures. So first of all we need to define the anatomy well using CTA and MRA and with using multiple reformats and 3D reconstructions. So then we can use 3D fusion with a DSA or with a flouro

or in this case as I showed in my presentation before you can use a DSA fused with a CT phase, they were required before. And also you can use the Integrated Registration like this, when you can use very helpful for the RF wire

because you can see where the RF wire starts and the snare ends. We can also use this for the arterial system. I can see a high grade stenosis in the Common iliac and you can use the 3D to define for your 3D roadmapping you can use on the table,

or you can use two methods to define the artery. Usually you can use the yellow outline to define the anatomy or the green to define the center. And then it's a simple case, 50 minutes, 50 minutes of ccs of contrast,

very simple, straightforward. Another everybody knows about the you know we can use a small amount of contrast to define the whole anatomy of one leg. However one thing that is relatively new is to use a 3D

in order to map, to show you the way out so you can do in this case here multiple segmental synosis, the drug-eluting-balloon angioplasty using the 3D roadmap as a reference. Also about this case using radial fre--

radial access to peripheral. Using a fusion of image you can see the outline of the artery. You can see where the high grade stenosis is with a minimum amount of contrast. You only use contrast when you are about

to do your angiogram or your angioplasty and after. And that but all everything else you use only the guide wires and cathers are advanced only used in image guidance without any contrast at all. We also been doing as I showed before the simultaneous injection.

So here I have two catheters, one coming from above, one coming from below to define this intravenous occlusion. Very helpful during through the and after the 3D it can be helpful. Like in this case when you can see this orange line is where

the RF wire is going to be advanced. As you can see the breathing, during the breathing cycle the pleura is on the way of the RF wire track. Pretty dangerous stuff. So this case what we did we asked the anesthesiologist

to have the patient in respiratory breath holding inspiration. We're able to hyperextend the lungs, cross with the RF wire without any complication. So very useful. And also you can use this outline yellow lines here

to define anatomy can help you to define where you need to put the stents. Make sure you're covering everything and having better outcomes at the end of the case without overexposure of radiation. And also at the end you can use the same volt of metric

reconstruction to check where you are, to placement of the stent and if you'd covered all the lesion that you had. The Cone beam CT can be used for also for the 3D model fusion. As you can see that you can use in it with fluoro as I

mentioned before you can do the three views in order to make sure that the vessels are aligned. And those are they follow when you rotate the table. And then you can have a pretty good outcome at the end of the day at of the case. In that case that potentially could be very catastrophic

close to the Supra aortic vessels. What about this case of a very dramatic, symptomatic varicose veins. We didn't know and didn't even know where to start in this case. We're trying to find our way through here trying to

understand what we needed to do. I thought we need to recanalize this with this. Did a 3D recan-- a spin and we saw ours totally off. This is the RFY totally interior and the snare as a target was posterior in the ASGUS.

Totally different, different plans. Eventually we found where we needed to be. We fused with the CAT scan, CT phase before, found the right spot and then were able to use

Integrated registration for the careful recanalization above the strip-- interiorly from the Supraaortic vessels. As you can see that's the beginning, that's the end. And also these was important to show us where we working.

We working a very small space between the sternal and the Supraaortic vessels using the RF wire. And this the only technology would allowed us to do this type of thing. Basically we created a percutaneous in the vascular stent bypass graft.

You can you see you use a curved RF wire to be able to go back to the snare. And that once we snare out is just conventional angioplasty recanalized with covered stents and pretty good outcome. On a year and a half follow-up remarkable improvement in this patient's symptoms.

Another patient with a large graft in the large swelling thigh, maybe graft on the right thigh with associated occlusion of the iliac veins and inclusion of the IVC and occlusion of the filter. So we did here is that we fused the maps of the arterial

phase and the venous phase and then we reconstruct in a 3D model. And doing that we're able to really understand the beginning of the problem and the end of the problem above the filter and the correlation with the arteries. So as you can see,

the these was very tortuous segments. We need to cross with the RF wire close to the iliac veins and then to the External iliac artery close to the Common iliac artery. But eventually we were able to help find a track. Very successfully,

very safe and then it's just convention technique. We reconstructed with covered stents. This is predisposed, pretty good outcome. As you can see this is the CT before, that's the CT after the swelling's totally gone

and the stents are widely open. So in conclusion these techniques can help a reduction of radiation exposure, volume of contrast media, lower complication, lower procedure time.

In other words can offer higher value in patient care. Thank you.

- Thank you very much, chairman and ladies and gentlemen. The funding of this trial was from The Academy of Medical Sciences and The Royal College of Surgeons of England. AKI due to the influence EVAR is actually more common than we all think. This is being shown by prospective studies and registries.

Why is it important? Well, it's associated with a higher intra or inter hospital mortality, cardiovascular events and also long term cardiovascular events and longterm mortality. As even more common and complex, EVAR, and this can range from 22% up to 32%.

These are some of our cases, some of our first, including FEN astrate EVAR in 2010 Thoraco-Abdominal Branch repair 2016 and Fen astrated TEVAR 2018. These are longer procedures, usually with more contrast and direct ventilation after removing arteries.

What are the mechanisms for acute kidney injuries due to infer-renal EVAR? While this involves use of contrast, systemic inflammatory response syndrome, due to ischemic re-perfusion injury, manipulation of the thrombus, aorta and catheterizations which will ------ alpha

and also from high prophalinemia. There is no high-quality evidence for AKI prevention in EVAR. What about Sodium Bicarbonate? Well it's been well know to reduce what been used commonly to reduce CIN in high risk patients in perrifical and

corona graphy. There are two main mechanisms as to how this works. Firstly, from reducing renal tubular ischemia. Secondly, by reducing oxygen deprived free radical formation in the tubules. What is the evidence?

Well this is a met analysis, comparing Sodium Bicarbonate directly with hydration with normal saline, as shown in the orange box. There is no difference. We can look at the population ll

mostly CKD patients or diabetic patients, certainly Hartmann's patients but they are not EVAR patients. They are coronary patients or peripheral an-graphy patients. In addition, serum bicarbonate and the urine pH was not reported so we do not know how effective the Bicarbonate was in these RCT's.

The authors went on to look other outcomes including needful hemo dialysis, cardiac events, the mortality and they found no difference but they concluded the strength of this evidence was low and insufficient. A further Meta-analysis this time published in BMJ this time comes in favor of bicarbonate

but again this is comparing bicarbonate with saline no use of combination therapy. There are again no use of EVAR patients and these patients all have a low eGFR. The preserved trial, a large trial published earlier this year in the New England Journal again using various

treatments again comparing sodium bicarbonates and saline again no difference. But again this compares bicarbonate direct with saline with no combination therapies. In addition, there were no EVAR patients, and these are low eGFR patients.

The met-analysis also showed that by using bicarbonates as a bolus dose rather than a continuous infusion, which was actually the way they used bicarbonates in most of these patients might be better. And using a higher dose of bicarbonate may also be better as shown in this Japanese paper.

So we come to HYDRA trial. They're using a high dose bicarbonate in combination with hydration to protect renal function. We did a UK wide survey of anesthetists of day to day and they felt the best volume expander they would like to use was Hartmann's solution.

So we randomized patients between standard hydration with Hartmann's solution verses standard hydration Hartmann's plus high dose bicarbonate per operatively and low slow intravenous infusion bicarbonate during the surgery. Importantly, with these patients,

we kept the map within 80% of baseline, 90% of the time in contrary to all the RCT's coronary and angeo-porphyry. We're going to skip that slide. This is the inclusion criteria, any patient undergoing infra EVAR, with any renal disfunction,

the primary area you must look at is recruitment and the second area you must look at is AKI. We screened 109 patients of which, 58% were randomized and there were only 2 crossovers. There was a willingness for patients to participate and there was also a willingness for PET 4 Clinitions to

recruit as well. This is the demographics, which is typical of aortic patients they are all on by a few MRSA patients, have normal renal function. Most of the patients wear statins and anti pace agent, only 13% were diabetic.

The patients were matched in terms of hypertension and also fluid hydration pre-operatively measures of via impedance. Here are the results of the trial. The AKI instance in the standard hydration group was like 3% and 7.1% with standard hydration plus bicarbonate. And it was similar in terms of organotrophic support into

and postop and also contrast volume used. It's a safe regime with none of the patients suffering as a result of using bicarbonate. So to conclude, to answer professor Veith's question, about how was this trial different to all the other trials? Well, certainly the previous trials have compared

bicarbonate with saline, there's lack of combination studies that involve mostly coronary an peripheral procedures, not EVAR. And the the most only included patient with low eGFR. HYDRA is different, this is not a regime using high dose bolus of sodium bicarb combined with standard hydration.

It shows promise of reducing AKO. This is an EVAR specific pilot RCT. Again, Unlike previous trials using bicarbonate, 90% of the patients had normal or mild impaired renal function. And unlike previous trials, there's more aggressive management of hypertension intra and postoperatively.

Thank you for listening.

- Thanks again, and thanks to Dr. Vieth for the kind invitation again this year. I am on the scientific advisory board for the device. So remotely monitoring flow in vascular structures is not a new concept, Dr. Vieth and colleagues actually reported this several years ago. But the technology has finally caught up with that concept.

So this device involves a microsensor which is a piezoelectric polymer, bluetooth technology to then wirelessly transmit this data for external processing. At this meeting in the past we've reported our initial in vitro results with the bench top model

showing the concept is possible on the bench top, both to determine degree of stenosis, and actually location of the stenosis, distal or proximal to the sensor. There's also in-vivo data in an animal model, an ovine carotid bypass model,

which shows the ability of the sensor to transmit through the tissue under physiologic conditions. We then use this to also show the ability of the sensor to detect stenosis and occlusion in an in-vivo ovine carotid model. Most recently, we've actually done a human

proof of concept trial in AV fistula patients, using an external patch containing the sensor and the transmitting equipment. Seventy six patients were studied, that were coming in to and angio suite for fistulograms and or angioplasty

for their fistula and their access, and measurements were taken at that time, both pre and post evaluation. We found 100% success, both in acquiring data and in storing this data remotely.

And the findings were actually corroborated by the fistulogram that was then performed. Eleven patients actually didn't have significant stenosis, and 65 had stenosis or occlusion, and you can see the data, which is generated by the device,

in the lower bars, showing both stenosis, on the left, and occlusion on the right, and juxtaAnastomotic stenosis of 75% in the lower blue bars. Additional sensors can be placed on the device. This can be done with new microsensors, which can be placed right next to the original sensor.

Phonoangiography can give volumetric flow rates, accelerometers can be placed, which can actually show thrills and pulse and generate acoustic data. Photplethysmography sensors can be placed, and thermal sensors can be placed

to generate such data as hematocrit, degree of stenosis, heart rate, possibly even blood pressure in the future. Some of these sensors have been placed, and there's a high correlation when they're used to Transsonic flow probes under pulsatile flow conditions

to show that we can actually generate information on flow, both peak and lack of peak, and it's very accurate in terms of its comparison to these Transonic flow probes. You can also detect hematocrit. So the sensor can actually be utilized to show

hematocrit in human blood samples with a strong correlation to standard measures of hematocrit and hemoglobin using the device. Detection of blood volume is also possible with these new added microsensors. There's peak detection of the photoacoustic spectrum,

which can allow a determination of total blood volume. So the concept is to acquire the raw data through whatever array of sensors are desired. Initially, right now, we're still using the piezoelectric sensor to really just monitor flow and stenosis.

Signal processing can then be performed using machine learning. This has actually being placed into the algorithm, so that machine learning can accumulate and analyze the data. For clinical metrics which can then be

acted upon by the clinician. There will be a trial beginning in 2019 in Europe, again utilizing an external patch sensor, and dialysis access patients to see if we can acquire real time, remotely monitored information, and then alert the clinicians appropriately to

predetermined clinical criteria. This is the current variation of the patch. It is worn for 7 days, is sweat and waterproof. It could actually be worn longer than that, but we're going to have the patients change the device after 7 days.

It's easy to apply, comfortable to wear, it does have this multi-modal sensor capacity. It can add up to ten sensors on the device to generate both optical, acoustic, thermal, and mechanical information, and it will automatically monitor the patient's dialysis

access over which it's placed. The battery life is 2-3 months, but we're going to change the patch, each one, after only seven days, so that won't be an issue. And you can automatically measure, you can actually generate as much data as you'd like,

but we're going to generate at least eight pings, or eight data acquisitions per day. So the real time fluid management is also possible with this device. You can actually utilize this to generate, hopefully, both flow information and

information on fluid volumes. So this is our timeline. We'll start the trial in 2019. We hope to have FDA approval for hematocrit, flow, stenosis, and cardiac output in Q1, Q1 and Q4 of 2020, and we look forward to

presenting the data at further meetings here in the future. Thank you very much.

- Thank you for the honor of the podium and for this very interesting debate. I have a couple disclosures. The largest one being is that I actually don't use Ch-EVAR in my practice for what it's worth. And so take everything I say with a grain of salt. I don't believe in parallel grafts for a very good reason.

My opponent and the people who present and publish on parallel grafts are honest-looking, wonderful people who are good surgeons but I don't think that branch stents were tested to be radially or externally compressed. And I don't think there's such a thing as a mild type 1A endoleak.

But more importantly, we have a better alternative. We have fenestrated devices. And as Doctor Eagleton very, very astutely pointed out earlier in this session, the 12 year experience or the long term experience with fenestrated devices has been well established and there is almost no

aneurism related mortality in people who are implanted with a fenestrated device correctly over the rest of their lifespan. And we also know because the guys in Momo have shown us so nicely that aneurism diameter actually decreases once you are

the owner of a fenestrated device, suggesting that we change the natural history of disease. We've also learned since early experience that if we use enough of a landing zone, the risk of a type 1A endoleak in the post-operative period is almost nothing and that means that we're

increasing the complexity of our repair. We also know that the late type 1A endoleaks that we used to see can be obliterated if we use enough of a landing zone that we work against progression of disease. And many centers, this is the data from my center,

have shown that over time, increasing your repair to a four vessel fenestrated, to be quite aggressive with your ceiling zone, means that you will have an extraordinarily durable repair. So why wouldn't you use FEVAR? I don't see any good reason in the literature

not to use FEVAR other than the fact that in some patients, when you need it urgently, you don't have it. So for this reason, when I started the aortic center at my place, we looked very seriously at the evidence behind chimney devices to see if there is a reason

for us to use Ch-EVAR in emergency or urgent situations. Chimneys have been around for quite a long time and there's actually a good volume of evidence out there to talk about it. But the trouble is the evidence is heterogeneous. We don't know how many vessels are often incorporated

and we don't really know how those stents will land in the aorta and the bottom line is that despite a great deal of accumulated experience, there's still a lot of type 1A endoleaks, even amongst experienced providers. One of my opponents in this debate has published extensively

very large volumes of evidence with great deal of experience but there's still an 8% risk of type 1A endoleak and there is no clinically significant decrease in aneurism diameter over the long term. This is likely because as the repairs increase in complexity the gutters are too long to seal

and there is persistent type 1A endoleaks. There are four studies out there looking at Ch-EVAR versus FEVAR and in these people who have the choice of both, even when they can make the best clinical decisions for their patients, they still, great 30 day outcomes.

So we know we can get people off the table but there's no evidence of improved durability. When I look at the literature, I do a much less systematic read of it because I'm not a medinolisist or any of these kind of special statistical scientists

but I picked 10 really good FEVAR studies and 10 really good Ch-EVAR studies. And the size of the bubble shows how many people there are in each of those studies. And I plotted survival, long term survival, against the number of months of follow up.

And you can see that the evidence is clearly biased against Ch-EVAR. People who have Ch-EVAR seem to live less long or live shorter lives than people with FEVAR. And it's unclear why. I don't think we can blame the technology

but we need to know this. But what's really important, and if you take one thing from this talk, I'd really like you to look at this slide. This is those same studies comparing the percentage of endoleak post-operatively

against the number of vessels incorporated. And the orange bubbles are the Ch-EVAR literature. You can see as you slowly need more vessels incorporated in Ch-EVAR, the rate of type 1 endoleak goes up. So increasing complexity disadvantages the technology.

Where as in FEVAR, as you incorporate more vessels, the whole technology actually does better. So increasing complexity is beneficial to fenestrated technology. And what that says to me is that fenestrated is a more durable repair.

So despite their convenience, I still don't think chimney grafts or parallel grafts are as good a repair as fenestrated over time. And why is this important? Because the economists who are reading our literature are now holding us to account for long term outcomes.

And we have to make sure that we have paid attention to durability. So in conclusion, I think FEVAR is more durable for all of these reasons. And then I hope if there's a vote, you vote for me.

- Thanks very much Dr. Veith and thanks Stefan for the opportunity to be here. This is my only disclosure. Our center is currently performing a physician-sponsored investigational device exemption trial to evaluate FEVAR and BEVAR using physician-modified endographs

and company manufactured devices. And we're doing this with an external core imaging lab, a clinical events committee of outside physicians, and an external clinical research organization that audits our books. We all know that PMEG got commercially available

aortic endografts that are modified on the back table by a surgeon. With the advantage that the devices are available immediately for modification and with the disadvantage that there are some limited design options. Company-manufactured devices are

CMDs provided by the surgeon based on preoperative measurements provided to the surgeon. The advantages are rigorous quality control, a range of options for customizations. But a disadvantage of about an eight to 12 week graft manufacturing time

and limited availability. We wanted to better evaluate the differences in outcomes between CMD devices and PMEG devices. So we evaluated the differences in perioperative and one year outcomes between PMEG and CMD using a matched cohort analysis.

We looked at 113 consecutive fenestrated branch repairs, which consisted of 42 PMEG and 71 CMD. And then we did one to one matching based on relevant variables, to arrive at a cohort with 41 PMEGs and 41 CMDs. And they were specifically matched

on the number of target vessels intended for treatment, the extent of aneurysm, the aneurysm diameter, the device configuration, and the date of the operation. Our primary endpoint were perioperative outcomes at 30 days. Our secondary endpoint were postoperative outcomes

out to one year using Kaplan-Meier method. And all analysis were stratified by the device type, PMEG or CMD. When we looked at our cohort characteristics after matching, they were all exactly the same. Except not surprisingly the PMEG group

had more urgent or symptomatic aneurysms than the CMD group. When we looked at operative characteristics after matching, there were no difference in the number of target arteries incorporated, number of stented fenestrations or branches, or the number of stents placed

for each of the target arteries. There were modest differences in the fluoroscopy time, the volume of contrast used, the operative time, and the ICU length of stay. Many of these likely related to the fact that there were more urgent aneurysms in the PMEG group.

When we looked at 1-year survival there was no difference between PMEG and CMD. Similarly no difference between one-year type one or three endoleak. No difference between one-year target artery patency. However when we looked at the one-year reintervention rate,

we did find that the PMEGs in our hands were associated with a higher reintervention rate of 37% compared to a CMD reintervention rate of 13%. So in summary CMD has had a significantly reduced rate of one-year reinterventions over physician modified endographs.

And then some modest differences favor CMD in operative technique and efficiency, such as the volume of contrast used, the radiation exposure and the operative times. However the clinical significance of this is very small. So what about off the shelf devices?

In our ID study the only devices that we have are P branch as well as T branch. And the question becomes well how often are these usable? Doctor how long is written on this looking at P branch where he looked at 353 custom grafts and showed that using the two configurations available

this would target approximately 76% of patients. Similarly Tim Shooter did a very similar study over at UCSF where they mapped out the vessel locations relative to the SMA and showed that with T branch it would be applicable in 88%

of cases with thoraco that would have otherwise been treated using customized stent grafts. Having said that at least in our experience, we've used these off the shelf devices in less than 10% of cases because I think there is always some trade-off

compared to using a custom patient specific device. So in conclusion, in the context of an ID clinical trial, CMD and PMEG both appear to function equally well, aside from advantages in one-year reinterventions and important to understand that these are just short-term outcomes to date.

Further studies in long term durability data are imperative to evaluate whether this relative equivalence persists over the long term. And off the shelf devices are attractive and can be used without manufacturing delay, but do always require some compromise

compared to a patient specific designs. Thanks very much for your kind attention and the opportunity to be a part of this panel.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- So thank you ladies and gentleman, thank you Doctor Veith for inviting me again this year. These are my disclosures. So more effective thrombolysis by microbubbles and ultrasound has been proven actually effective in earlier studies, treating a myocardial infarction or acute ischemic stroke.

But what are these microbubbles? These are 1 to 10 micrometers, gas-filled bubbles with a lipid shell. It oscillate when subjected to low intensity ultrasound, and can cavitate when subjected to high intensity ultrasound. Initially they were designed for diagnostic use

as intravascular contrast enhancers. However, they have many advantages, non-specifical mechanical effects, to induce thrombus breakdown due to mechanical force of microbubbles if they are subjected to ultrasound. So we conducted the first human trial

in peripheral arterial diseases in Microbubbles and UltraSound-accelerated Thrombolysis, the MUST study for peripheral arterial occlusions. Which is a single phase two trial for actually safety and feasibility study. The MUST-TRIAl consist out of 20 patients

for safety and feasibility, which in 10 patients will be treated with Urokinase, and 10 with Alteplase. And then added, for the first hour, microbubbles and we evaluated the VAS pain scores, duplex echography for circulation or revascularization, microcirculation and daily angiography as usual.

Included were men and women 18 to 85 years. A maximum of two weeks of symptoms of lower limb ischaemia due to thrombosed or occluded lower limb peripheral native arteries or venous or prosthetic bypass grafts. And Rutherford class 1 or 2A. They have to understand the nature of the procedure

and written informed consent. And excluded were all known factors that exclude standard thrombolysis therapy, hypersensitivity to contrast enhanced agents, a recent acute coronary syndrome. Endpoints, again, it's a safety

and then a technical feasibility trial. Also we looked at the organisation, and the treatment duration for technical, angiographic, and clinical success. We looked at the severe adverse event and mortality rates, VAS-pain scores and microcirculation.

If the patients came in, we inform them about the MUST trail, we performed an ECG analysis and informed consent. They fill out some questionnaires and when they come in to the angio-room, we started a thrombolysis with a catheter, the Mc Nemara.

And the first group, the Urokinase 10 patients, we treated with 500 units of bolus and then continued with a 50,000 units of Urokinase per hour. The Alteplase group had started with a 5 milligram bolus and then they continued with 1 milligram per hour

for the first 24 hours. And then, the ultrasound room, they got a bubble infusion for the first hour of treatment. Then we would continue with thrombolysis on a surgical ward, every sixth hour we'd look at if there was revascularization at the duplex ultrasound.

And if signs of revascularization are observed on the duplex ultrasound or on the next day, we routinely perform the angiography. Then we could cessate the thrombolytic therapy, and if necessary, acute or elective additional intervention to correct underlying lesions,

or to establish patencies. We check the wound and then we follow-up these patients every six weeks, three months, 6 months, and one year after thrombolytic therapy. So these are the patient characteristics, mostly of these were male, 70 years,

and five of them were native bypass, and five were a bypass occlusion, venous or prosthetic. And two of them had multiple occlusions, whether Rutherford class 1 or 2A. And these were the first 10 patients that were treated with Urokinase and I will present here

the results of these 10 patients first. So, very important, there were no deaths, no severe adverse events, and it was technical feasible. The flow at the duplex examination was there after 24 hours, but most of our patients actually had it already after 6 hours.

The amputation rate, right now, is zero. And also no bypasses were now needed. So we will continue this MUST trial right now and January we probably will have the inclusion of the group with the Alteplase, which I'll present next year.

And we think that microbubbles with Urokinase is a safe combination right now. We will further include the groups of adults placed and further optimalisation of the microbubbles technique with nanobubbles. Had a talk about that yesterday, so you can look it up.

And nanobubbles are nanoparticles of 5 to 500 nanometers, which are very small, they do not penetrate the endothelial barrier of the doubt and it damage. And it can carry the thrombolytics actually to the side the aorta catheter need it. You can also make the magnetic paste,

which means you can paste these patients on the MRI. Then you can have local treatment of thrombolytic therapy. So thank you for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.