Create an account and get 3 free clips per day.
Chapters
Degenerative Lumbar Stenosis | Percutaneous Vertebroplasty | 64 | Male
Degenerative Lumbar Stenosis | Percutaneous Vertebroplasty | 64 | Male
2016accessconfirmdegenerativedelivereddemonstratedfailurefluoroscopicimplantintermittentintroducedjohnsonkeithkyphonMedtronicmidazolamneedleneurogenicpercutaneouspositionproducedpropofolSIRspinalstenosistitanium
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Nodal Lymphangiography | Lymphatic Imaging & Interventions
Nodal Lymphangiography | Lymphatic Imaging & Interventions
angiographycenterscentimeterchapterductembolizationinjectinginjectionluerlymphlymphaticsneedlenodenodespropofolsyringesthoracictubing
An Overview of PET, MRI and PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
An Overview of PET, MRI and PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
cancerchapterdiagnosticglucosehypermetabolicmodalitiesMRINonepatientpelvicpositronscantomography
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
CT Angiography | Determining the Endpoints of CLI Interventions
CT Angiography | Determining the Endpoints of CLI Interventions
aneurysmsangiogramangiographycalcificationcalcifiedcenterschaptercontrastemoryequivalentinterventionkneemraoccludedpatientvessels
Case 1 PAE | Nursing Management in Prostate Artery Embolization
Case 1 PAE | Nursing Management in Prostate Artery Embolization
accessangiogramarteriesassessbaselinebasicallybladdercatheterchapterdischarge with a Foley catheter- with a 5-7 day return to voidfoleyFoley catheterinfarctmedicationmedicationsmonitorNonePAEpallorpatientpatientsprocedureprostateprotocolradialsalinescoresignssurgeryulnarurologisturologistsurologyvoid
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
Introduction - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastyarterycephalicchaptercolordisclosuresdopplerFistulafistulashemodialysispercutaneousperforatingperitonealpreoperativeradialtechnologisttotallyulnar
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
accessangiogrambiliarychaptercolonoscopyendoscopicercphopkinsinterventionlandscapeliverpercutaneouspracticequestionspecialtiesspecialty
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
Results of the US FDA Trial | Pecutaneous Creation of Hemodialysis Fistulas
Results of the US FDA Trial | Pecutaneous Creation of Hemodialysis Fistulas
anastomosisangiogramangioplastyarteryBARDBD EverlinQ (4Fr & 6Fr)brachialcalcifiedcatheterschaptercreatedevicedevicesDialysiselectrodeembolizationembolizeendpointsenergyFistulafistulasflowfrenchmagnetsmaturationofficialpercutaneousperforatorpositionpseudoaneurysmradialradiofrequencysaddlesitssurgeonsurgicallyulnarveinvena
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Interspinous Spacer | Twitter Case Files SIR 2019
Interspinous Spacer | Twitter Case Files SIR 2019
ambulatechaptercoexistingdegenerativedeliverydevicedimedotterguyshirschimagesmorbiditiespatientprocessspinetransversevertebralvertebroplasty
Q&A - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
Q&A - Percutaneous Fistula Creation | Pecutaneous Creation of Hemodialysis Fistulas
anesthesiaarterybewarebiasblockblocksbrachialcatheterchaptercoilcreationdevicesembolizeFistulamoderateneedlenervenesterpercutaneousprocedurepseudoaneurysmsedationveinvessel
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
Successes of EndoAVF Creation | Pecutaneous Creation of Hemodialysis Fistulas
accessangioplastycathetercatheterschaptercharlestonDialysiselevationsFistulamonthspatientspercutaneousphysiciansproceduresurgeonsvascularveinweeks
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
anastomosisarteryAvenu MedicalballoonbrachialcephalicchaptercreationdeviceEllipsysFistulaflowflowinglinesneedleperforatingperforatorpiccproximalpuncturepuncturedradialsurgicalultrasoundvein
PV Access | TIPS & DIPS: State of the Art
PV Access | TIPS & DIPS: State of the Art
accessaccessedangulationanterioranteriorlyballoonchaptercirrhosisglidehepatichepatic veinliverneedlepasspintoportalposteriorprolapsesagittalsheathshrinkagestenttractveinvenouswire
Rationale for Geniculate Artery Embolization- Knee | Geniculate Artery Embolization for Arthritic Pain Why How & Results
Rationale for Geniculate Artery Embolization- Knee | Geniculate Artery Embolization for Arthritic Pain Why How & Results
antibioticarteryarthritisbiopsybloodchapterclinicalcolorcytokinesdegenerativedissolveemboembolisationembolizationembolushospitalizationsincreasedinflammationinflammatoryinjectinjectionskneeleadsneurovascularnsaidnsaidsosteoarthritispainpatientspublishedresorbablerheumatologyshoulderslidessynovialvesselvessels
Background on Interventional Oncology | Interventional Oncology
Background on Interventional Oncology | Interventional Oncology
bloodcarcinomachapterdilatorinterventionalischemiaoncologypatientsradiologistresectionspecialtystenosistreatmenttumortumors
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
20 Fr Dryseal7 Fr Aptus TourGuide sheath8 Fr IVUSaccessangioplastyaortaarrowarteryballoonbasicallybrachialceliacchapterdeploydissectionfenestratedflapgraftgroinimagelaserleftlooplumenoriginpatientreentrysagittalsheathSignificant Growth of Descending Thoracic AortasnarestentsubclaviantearTEVARwire
Transcript

First case is a 64-years-old male with a neurogenic intermittent claudication, due to degenerative lumbar spinal stenosis confirmed by EMG, and with failure of medical and physical treatment.

We decide to implant a percutaneous interspinous spacer as a stand-alone system, in that case we use Aperius produced by Kyphon Medtronic. And the implant is available in four different size 8, 10, 12 and 14 mm, and it can be introduced by means of four access

Keith needle by corresponding measurements. Procedure, we performed the procedure under fluoroscopic guidance, and with local anesthesia. Subcutaneous Lidocaine, deep ropivacaine and deep sedation with Midazolam and propofol bolus. Patient is in prone position and after we perform the local anesthesia,

we introduce the first 8mm access Keith needle between the two spinous process into the spinous space, interspinous space. And the first accessory was not suitable, and so we moved for the next, 10 mm.

The second was suitable, so we decide to put the corresponding measurement prosthesis. And the prosthesis can be delivered by rotation of the implant, and when we open the wings to keep it in place it can be delivered safely. Here the final results

confirm the good position of the implant, and CT check after the procedure confirm the good position of the interspinous spacer. On the market we can find other three spacers. Lobster is an Italian product by,

thank you so much, [BLANK_AUDIO] Techlamed, and its main characteristics is to be completely removable after its delivering. HeliFix is produced by Alphatec Spine,

and it's a PEEK implant. And In-Space, produced by Johnson & Johnson is a mix, titanium and PEEK. All of them can be introduced by straight access Keith needle. Aperius can be introduced by curved access Keith needle, this is the main difference. We published last year a paper about three-year follow up results

after implant of percutaneous interspinous spacers, evaluating the area of the spinal canal and both neural foramina. And we demonstrate an increasing in a CT check three years after the procedure, and we had a good pain relief demonstrated by mean of VAS score, and the good improvement of functions demonstrated

with Oswestry. So we concluded that Aperius was a good option for a patient with neurogenic intermittent claudication, with failure of medical and physical treatment.

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

angiography came along towards the tail end of my fellowship so around 2011-2012

actually a children's Boston initially and then subsequently done in Penn in adults and this really became as simple as doing a lymph node biopsy basically sticking it on a lymph node while it seems novel it's really

interesting because if you go back to 1931 that's actually when they started doing some of this work when they were actually injecting the lymph nodes with these different tracers and they could see so it's a combination of a little

bit of ingenuity and looking back at our history and we the way that made it a lot easier for everybody this is basically my little setup here and I used some Italian syringes a plastic opaque three way so

that the lapa doll doesn't dissolve through it the medallion syringes hold up a lot better than the typical day we used luer lock stuff I use long propofol type thin bore tubing I attached it to a nine

centimeter long 25 to 27 gauge spinal needle I take the inner styler out of that cheeba so that because it's such a skinny needle that it bends a lot and this way I can put it right into the lymph node without having to connect it

to the tubing and then I can start my injection right away the 2115 cheeba there and that scalpel are really the only other things that I need to get started to do a successful thoracic duct embolization other thing that's really

critical is I always ask my texts and nurses to slap SC D's on the patients and if once we have the SC DS it really speeds up the procedure by an hour to two because you have this constant compression of the Venus and the

lymphatics and the legs forcing more fluid to make your thing to make your case I move along more quickly so something that was more recently adopted at many medical centers and these are the type of images that you get so I

stick my needle into the lymph node and I start this injection you give this beautiful arborization of the lap I doll contrast as it continues to spread and move from one lymph node to another you see there's a central area there that

isn't filling that's actually the lymph node that's already transmitted the lap idol and this was the image that I showed you initially so same image injection injecting of different lymph nodes you can see the transit from one

area to the rest of the chain in the pelvis hepatic lymph angiography is not

positron emission tomography is the use

of a radioactive tracer in this case FD gee her fluorodeoxyglucose to assess the metabolic activity of ourselves ftg is tagged with glucose and glucose is used by our body for energy cancer cells are thought to be our Armour hypermetabolic

so if we inject FDG to our patients it goes to areas with hyper metabolic activity this area is called a hotspot and when a hotspot is noted in a PET scan its it's thought to be cancerous this is an example of a hyper metabolic

region noted in the pelvic area of the patient this patient is diagnosed of cervical cancer and what is MRI as you all know MRI is the use of radio frequency currents produced by strong magnetic fields to provide detailed

anatomical structures it is the preferred method for imaging soft tissue organs and there's no ionizing radiation present now what is pet MRI pet MRI is a combination of these two modalities instead of going to two scans using two

scanners we have one scanner that is able to obtain pet and MRI images simultaneously so why can't we just call this pet well we run through a few problems we have fdg-pet CT where it's a PET scan with low-dose CT accompanying

it and there's fdg-pet CT with diagnostic CT we're full sequences of CT is coupled with a scan and a pet MRI always has a diagnostic MRI done with it

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

So question. I do have a wonderful group of nurses, an excellent group that I get the chance to work with

and they have asked 100 questions and they've listened to me talk a few hundred times. Anyway, hopefully, they have helped to make this a clear presentation. One of our EP physicians looked over the information and he and a device nurse also agreed

and they were wonderful. I do have the samples here, the Medtronic grip Trip Walker gave me. Anyway, you're welcome to come up and take a look at them. But before I do, do you have any questions? Yes.

- [Woman] So our Medtronic rep comes and does whatever he does, we never really know. We think you said (distant indistinct muttering) okay, they're sent to eight. We sit there with pulse ox on, they get scanned. We reset to whatever they were before and they leave,

so clearly I'm going to up it a little bit after seeing this talk. But he doesn't always stay. I know. So we don't have a device nurse. It's just this Medtronic rep.

Would that be-- - And how would you access him if you had an emergency? - [Woman] I don't know. That's what I'm going to work on-- - Totally. - [Woman] He has left the building before.

(indistinct chattering) I know! (distant indistinct muttering) - No, he shouldn't-- (distant indistinct muttering) - [Woman] So if he has the rest of these slides somehow, I mean, I got most of these but (mumbles) I got three pages here but the other things

that say like (distant indistinct muttering) stuff like that. - I don't, but it's going to be on the web or whatever they do, and it will all be there. distant indistinct muttering) Mm-hmm, mm-hmm. And your physicians, our docs know on the morning

of the procedure that all the devices that are going to happen, hopefully they will have reviewed that. - [Woman] This is how it works. Our scheduling calls the MRI, MRI says okay (mumbles) pacemaker.

An MRI technologist calls Medtronic. Medtronic or the other (mumbles) companies says yay or nay, this is our device. (distant indistinct muttering) Other than the ordering doctor, there's no doctor that knows that patient's there.

The cardiologist knows-- (overlapping dialogue) - According to this consensus statement, and it's all highlighted, you know, that if you're saying, "Hey, where are our guidelines "and how are we doing this and where does this come from?"

you have a really strong statement that is a little bit confusing. They've written a very concise guideline. It doesn't say a whole lot of information about much of anything actually in my opinion. But this statement is 50-some pages.

It has clinical studies and it has information about caring for these patients and how they should be assessed and programmed. (distant indistinct muttering) It is. And it's on the back actually of your paperwork too, the name of that study.

Mm-hmm? - [Woman] Just a question about traditional and nontraditional pace. Right now we only do, yeah, they did an x-ray (distant indistinct muttering). - You can't tell that from an x-ray.

- [Woman] Right, but I mean, the look of the model just to see if it's MRI compatible (distant indistinct muttering) just the actual pacer (distant indistinct muttering) and then we have, the EP comes down, (distant indistinct muttering) nurse that comes down and interrogates

and shuts the pacer, puts them in a certain mode before we do it, but I'm just concerned about the difference between traditional and nontraditional (distant indistinct muttering) - So she's questioning about conditional or nonconditional.

You can't tell by looking at the device. You need to have information from the programmer itself telling you what the device is and if there's a lead that matches it. Like I said one time we had recently had a patient that had a nonconditional lead,

but the device was deemed conditional. But it really would then made it a nonconditional system. And that has those extra requirements according to this guideline. Now it doesn't say this is the way it has to be. It says, your institution needs to adapt

or to make their own very clear protocols so that when you go into the scanner and you're taking responsibility for that patient, you know that they have been thoroughly, you're safe, as safe as can be. (distant indistinct muttering)

Nonconditional is a device that is not FDA approved. Conditional is FDA approved, whoops. And I think we're at about a couple seconds here, so if you have questions I'm glad to answer them. Back there too, but hmmm? (distant indistinct muttering)

She's been back there since the beginning. (distant indistinct muttering) I don't know that an LVAD would be compatible by any stretch of the imagination. Reveals or those monitors are actually, are MR compatible. There's also a single or a lead-less system

that is MR compatible. I have those up here too so if you want to take a look at those, you can. They're really cool little gadgets. But LVAD would not be. Whoops.

Sorry. - Just to keep on time because we have another like her starting. If we can just step out in the hallway and have her finish addressing your questions and getting the answers.

And to reiterate, just watch for your emails coming from ARIN and you'll have access to her lecture, her slides. So for people who want to make practice changes, it'll be available. - And I did put my contact information on those papers

that I handed you. If you have any questions, please let me know. (audience applause drowns out dialog) Thank you.

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

for it's very it at centers where CTA protocols are very good it's basically equivalent to a angiography has been shown in multiple papers to be so newer studies show that

CTA and Emory are equivalent so I don't know it depends on your institution there are a lot of places that still practice with the MRA is kind of the gold standard but CTA is just so much more available that CTA is becoming kind

of the new gold standard for for quick vascular assessment often like to use it to help us plan our intervention so if we don't know what's going on above the level of the groin CTA could be helpful to see whether or

not we could even go from right to left how calcified the vessels are or whether or not there's concomitant aneurysms things that we don't like to discover at the time of the procedure because we might not have the equipment we need to

treat it one of the strengths is that it's quick and that it's cheap but of course it uses contrast and just like you know we like to minimize the amount of contrast that we're using at knee and rogram this can use anywhere from 75 to

150 cc's of contrast or not a small amount and if you're gonna do an intervention the same or the next day that's a lot of dough that's a lot iodine in a couple days these are examples of what we can see at the time

of the procedure there's a 3d reconstruction and a BU these are kerf planer reformatted images what basically they draw a line down the image and you can lay the entire vessel out even if it's very squiggly and then this isn't

this an angiogram and that same patient you can see that they correlate exactly another example a patient with aortic calcification you can see that it can be potentially challenging this patient with diabetes to determine whether or

not these vessels in below the level of the knee are paetynn or not because I can tell you that the one that's closest to the small bone there is actually occluded it's just all calcified you can't really tell what's going on and

the one that's behind that is actually Payton so it could be difficult to tell whether it's calcium or contrast that you're seeing this is where MRA can be

gonna kind of move over to kind of like a case scenario study give us an example we're gonna go back to that patient that we saw earlier so again this is a 71 year old guy he's

your hypertension he's your logical history basically consists of nocturia urgency incontinence he does have a low-grade prostate cancer which is currently on close surveillance so he's not getting

any oncological therapy at this at this point well we give them the IPS a score his score was at 29 so he was categorized as severely symptomatic he'd tried flomax he doesn't like him because he gets dizzy

and so his urologists had referred to us this to explore this minimally invasive procedure another thing i that i mention is it's important to have not a lot of urologists are on board with this procedure and so and that's maybe the

reason why patients are may not beginning referred to us so we're fortunate to have a urologist that believes in this procedure so that's not another important note so again this is this MRI that we took you could see that

prostate greatly compressing on the bladder causing you know lots so when we bring a patient and in the prototype area obviously we want to confirm all his labs okay particularly the kidney function

female in him adequate make sure their penis up the play list for at least from our Center you should be at least 50 and above and we want to make sure that these coagulation studies are optimized patient with diabetic we want to make

sure that you check their glucose or routinely monitor them according to your hospital protocol we will want to confirm their fasting status during pre-op and also important to reconcile the medications especially if they stay

overnight because we don't want to interfere some of the medications that there aren't especially if they're on some type of like anti epileptic or BP meds we don't want their a BP shouldn't up during the proactive area and more

importantly we want to assess for symptoms of UTI you don't obviously we're gonna induce inflammation or prostate so someone who has a UTI currently is we're just gonna make things worse and lastly we want make

sure that we have the correct consent for the procedure itself other things to look for vital signs we want to sure we got baseline make sure that kind of we're in set it around we normally insert Foley's to all our

patient is this is basically to provide an orientation of the prostate site and other structures related to the you know the prostate so usually we'll we'll put like some contrast to the balloon that way when the doctors did that Flores

said they could they could see where the prostitutes at but we've been doing it just with saline he they're still able to visualize it without putting the I denied contrast so they'll be under the eye our physicians discretion you want

to make sure you have fluids or patient we want to hide your time accordingly to whatever their current level yes so if it's be femoral access we will make sure we check our five piece right the pain

pallor paresthesias there's a couple more that I forgot but basically you want to make sure to palpate their their from their pulses and you'll mark the site and we always want to prep both growing's in case the boxes cannot

access the right we could always go to the left we also do patients Radle access and these are usually meant for patient who does not have any coronaries or risk of stroke so someone who's healthy doesn't have any coronary

disease may be a candidate for a radial access in addition patient has to be short like me someone who is six foot tall or higher they can't be a candidate for radial axis because the catheter just doesn't go that long so it's got to

be someone like 511 or shorter okay and in pre-op we also if we are gonna go radio we want to do our Allis tests where you include both ulnar and radial area simon squeeze and you know the the fingers becomes pallor and you let go of

the ulnar artery and they should go back up after five seconds five or ten seconds later another trick that that i learned is you could actually put the pulse ox on on the finger and do your Alan's tests and when you include both

arteries you would see that wave form flatten okay and then when you're at least two older artists you should see the way back up okay so that also tells you that you're bringing back oxygenation wants to release the older

answer so it's another kind of good way of doing it having some type of objective measure right in front of you so enter procedure real quick obviously we'll make sure that we did the proper time out it's important to monitor the

vowel signs throughout and really getting to know who your patient is paying attention to patient comorbidities like renal function diabetes or any outcome routes that they may have and if the patient is someone

awake you always want to provide a good therapeutic environment if you can imagine this patients lying out there may be someone awake and you have a whole group of peor people talking a lingo that the patient may not

understand so it's very important I provide them with type of therapy environment so his procedure kind of went well so our acts are went well I lasted for three hours tea right there is just a quick picture

of preamble ization you can see all that blush blood flow go into the prostate and after employing some microspheres coils they were able to stop much much much of the blood flow through prostate now there's never one of the questions

that would ask us can you fully infarct the prostate it's probably impossible because there's so much arteries that feeds the prostate maybe it would probably be good if you mark it because he will probably no longer grow or get

bigger but you can't fully infarct the prostate another thing too is with the PA is even though if this wasn't successful they could also get surgery so surgery this is not off the table when patient gets

PAE I said matter of fact you might actually make the surgery better because they they may have less bleeding because of the embolization that we perform so post procedure when a patient gets back to our recovery room you obviously want

to you know monitor the vital signs whatever our protocol is we always want to first assess the patient's sedation level and more opponent Lee with these patients would assess their ability to avoid okay and we could do that with the

use of a bladder scan so if a patient usually patient will go home after four hours but if they can't urinate after four hours we do bladders we haven't void we do a bladderscan if it's more than a 150 usually we would

suggest a patient to go home with a Foley catheter which a lot of them don't like and so these are some of the predicts predictors that patient may go home with a Foley or may become may develop urinary retention so someone

with a high PB are on baseline someone who has eye hype IPS asked or someone who is used to doing a routine self catheterization usually we would send those patient home with a Foley someone who has a big prostate so

so at least in our practice when a patient has the prospect of hundred fifty grams we automatically would send them home with a Foley catheter so patients are usually discharged from a beds at four hours after we have to make

sure that the tolerating they died well if they're unable to urinate we have to make sure that they have a Foley in place and we have to give them appropriate discharge instructions if they do go home with a Foley we have to

be prepared that the patient has have a follow-up at the urologist if they don't we had to be referred as a service to perhaps do the void and trollop remove the Foley's so it's important for at least our department to be somewhat

familiar how to discharge the Foley catheter so in this case our guy here he spent four hours in a recovery room he was enabled aboard he was getting really anxious we did PVR his PBRs 240 so went up discharging a Foley but he did go to

the urology clinic about a week later when he was able to disk in utero Foley and if if you if we're most of us in radiology are not familiar with this container Foley but how we would do it is why she did this in in our in our

suite one time because the patient did not want to go to urologist and want to come to us have his fully removed so basically you would instill about 150 to 200 ml of saline to the bladder or the patient feels that they're getting full

but usually about 150 ml s they're gonna feel I'm getting full and once I get full you clamp the Foley deflate the balloon and basically pull the Foley catheter and Amelie after you get the Foley catheter out you would have them

void it through a urinal or to toilet and once they void you to a better scan to make sure that your bladder is empty if it's not empty or if it's still 150 or more then we have to fully put the pulley back in

and we would only probably do this a case where they don't have a complicated Foley insertion there are some patients that we have to have scope by urologist just to put a Foley in place but so in those situations we would probably refer

them back to a specialist like the urology department so I always do a follow-up phone call with all these patients make sure that they're in compliance with their medications especially the cipro antibiotics a lot

of patients may need some education zhan what certain medication was for so for example they would be complaining of pain but yet they're not taking their pain medication ibuprofen so you want make sure that they're compliant their

medication I would also want to ask him about their angiogram site to make sure that there's no hematoma bleeding or anything going on with that and a lot of patients we would see about two to four weeks after the procedure and it takes

about a month for us to see some changes in her IPSS score so I so for the forward four so for this case number one we saw him about a month after he's angiogram Silex well yes if you remember his preoperative score was twenty six

and six a month after he was completely different man he he went down to ten and four so this is just a second case I

good morning thank you all for braving 8:00 a.m. and I'm sure you were in bed last night early about 8:30 and really enjoyed getting up for this lecture but here it is so this seems to be one of the you know there's a couple of buzzes around the meeting this year pardon my

voice I wish I was up to like what I wasn't and one of the buzzes percutaneous fistulas and then there's this extreme IR then there's this 3d virtual reality stuff is going around so in Orangeburg ER we're fortunate enough

to be very much involved with both of the newly approved fda devices what she also didn't mention was I was a technologist for eight years before I went to medical school so I kind of know where you're coming from that's why I

really enjoy not speaking to you if it's not for you guys and what you make us look good and I believe me so here's my disclosures someone said you should do well on these I said one I'm looking for more if anyone else is out there knows

any studies or anything they want me to do I'm happy to do them so I'm always looking for more disclosures after they office Access Institute in Orangeburg a little sleepy town about three-quarters of the way up from

Charleston towards Columbia John Ross built this amazing facility we are separate from the hospital you can see the hospital a little bit in the back a little bit in the back there but we're totally separate unit if you're

not familiar with us you've got six operating rooms totally dedicated to dialysis access know nothing else goes on there pardon me there's the clinical area waiting the preoperative and

post-operative a holding area there in the room for about 20 patients we do anywhere from 20 20 to 40 45 patients a day all things peritoneal hemodialysis access creation d clots angioplasty and percutaneous I think that was off the

first case for hemodialysis porcinis access and you see Jeff hole there the one of the developers of the ellipsis device I'm sort of just under the light and the caption is usually how many physicians does it take to put in a

percutaneous access a lot of them on the right this is a totally ultrasound mediated placement and then you can see that's what you get when you connect the artery in the vein you get that very beautiful color flow Doppler of a

perforating thing into a radial artery we'll talk about that now being down south I have had to get I've learned to get used to a chicken and biscuits for breakfast which I've never had to deal with before but it's all been quite

nicely folks been very nice to us so a little trip down memory lane and if you recognize this this is one of the first external officials for hemodialysis you know shrimper shunt and that was followed by of course many fistula sites

there you can see on the Left fistula sites up the radial radial ulnar element and radial cephalic rather of course called the breccia semitic fistula and should go up higher I want you to call your attention to right by the elbow

that area is where the site of percutaneous fistulas today are mostly created and these are deep fish to this and we'll get into what that means in just a moment and of course grafts there on the right

but it's a little bit out of the topic

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

good afternoon thank you so much for invitation to speak to you I have a privilege of working at Johns Hopkins and we have a fairly large practice we at the main hospital itself we have 11 rooms and during a day about two of them are have a biliary case actually going

on at the same time so it's actually a fairly large volume of our practice and so the gamut of bluie intervention goes from really simple stuff to really complex and it is something that our trainees specifically will come to

Hopkins for and many of times they will end up being the blurry and experts as soon as they arrive at a new practice so certainly it's something that we deal with every day I just wanted to give you a landscape overview and share some good

cases that we've done and hopefully you may something have some comments or learn something about the way we do it but I'm pretty sure throughout the country a lot of great Billu work has been done currently there's no question

though the Blooey access and access to the Blooey system has really been played out in most hospitals perth by GI and ir and obviously surgery but almost a lesser so today and the rat in at least four IR is the PTC PPD or transparent

Col angiogram but it's actually a recurring role and I actually speak and have a sort of special interest in transit paddock colonoscopy as well so we play scopes through the skin through the liver and do a lot of balloon

intervention I'll show you a few cases like that but in true these access points are germane to what specialty you come from and obviously endoscopic beeper oral and if you eye are usually usually through the skin and there's no

question GI now in some hospitals I'm sure you have advanced endoscopy that will go through the stomach straight into the leftover liver so there's no question of a blurry landscape is changing quickly but no question that

this is quite common but yet most patients and internal medicine specialties will be looking at blurry disease by access point through scopes through ercp so going back from the Duden up or directly through in there's

advantages disadvantages something it's fairly obvious to everybody that you know no question is selling it to a patient if it had both choices that ERCP through the mouth and nothing invasive nothing sticking out their body

is attractive yet the outcomes are very similar but nonetheless there's pros and cons and through the trance of had a crap or two percutaneous route you do definitely have tubes at least sticking out

initially and this is often solved by GI as the main differentiator at least a discomfort but yet we are able to address almost every problem at times and often where'd they pay a lot there's

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

primary Africa cm point 86% matured remember what do we say before you know not what 96% so that's the answer to the surgeons why surgeon says why should I do this why don't I just create official

it takes me 20 minutes there's no surgeon in the world who can create a fistula that's gonna mature 86 percent of the time I don't that's not happening all right the endpoints were met secondary

endpoints to needle dialysis 88% I mean that just doesn't happen surgically I'm sorry and I'll show you some other data as well where the superiority of the percutaneous fistula over surgery this is the jvi are pivotal trial I with Jeff

Hall and tip Jennings and here's the match of the secondary maturation procedures that had to be done all right some get an estimate and we angioplasty the anastomosis embolization of branches an angioplasty Stan's oh okay

here's the bar device and this is called the ever linked queue back in these six French days and now wave link device there are two catheters one goes into the brachial artery one goes into a brachial vein there's a big magnets this

is the six wrench device and you can see that little connection I hope you can that's a foot foot plate a little electrode that pops up between the two catheters it actually creates the official of this time with a

radiofrequency energy on the right you see a brachial artery angiogram and the point of official creation with six ranch was the common on our branch which you can see down there below you have the big dense radial artery coming up on

top and then you see the common arm branch and then the proper ol arm going down there at four o'clock and then the interosseous in the middle now with the the four french device you can create fistulas from the

radial vein to radial artery or radial arterial vein owner artery to ulnar vein and either one gives you a little more options about where you want to create well why would you want options well if you go down to the video of vena Graham

in the and the ulna vein and you don't see any flow up the the perforator well you can only switch to the other side and to try to find better flow put yourself in a better position to create a working fistula this does use

ultrasound to puncture but then uses fluoroscopy to position the devices its RF energy has a little bit of a problem with heavily calcified vessels who's ever seen that and in dialysis patient right so and because radiofrequency

energy goes around calcium it doesn't go through we've had one case where we did there was just no fistula creation everything went finally since no fistula and so that patient got a surgical fistula multiple angles to confirm

correct position of the device this was with the six french device the four french device is much less cumbersome because you want to make sure that that footplate that I showed you sits directly in the receiver area to create

otherwise if you go off to the side left and right they you can have a problem with creating pseudoaneurysm some things no angioplasty then ask to most us however in this case you do embolize on the way out because you've entered the

brachial vein and you embolize form just to stop any losing and to because you want to help to redirect flow towards the superficial system here are the two devices on the left into the four frames versus the six

range quite a difference much more easy to work with the four french doesn't have a bulky handle on the end like the six ranch did they're pretty easy to position and it's a a round electrode not a foot that comes up and it kind of

sits in what they call the saddle you can see there where it says square magnets underfloor french there's a saddle there that that loop electrode sits in and very easy in there to position

who's a candidate well doctor Ross says

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

that I have mr. case is failing new to us I don't think it's necessarily new worldwide but I found it interesting so I threw it in there so this is a

non-surgical patient this is a 92 year old guy this guy just simply asked dr. Hirsch one of our spine specialists when he saw him in clinic he was referred to us that you know all I really want to do dr. Hirsch no I'll never forget dr.

Hirsch she's a real good connector with his patients he turned him and said dr. Hurst's really all I want to do is take walks with my grandchildren which he was completely unable to do so I'm not sure that this is a crazy

complex case like some of the extreme interventions that you've seen earlier but it's certainly a meaningful case for certain patients so because of that you can see that this patient obviously had a frame role

narrowing and I'll blow up these images and show you what that looks like in really what we're trying to do here because really kind of a not necessarily a non-surgical candidate but certainly a high-risk or poor surgical candidate

because of some other coexisting morbidities so again as we get the degenerative process sort of advances you can see and stole this from Verta flex just to give them credit you can see that this like some inflammation

here are the nerves creating all kinds of issues with them being able to ambulate you have this it's a traditional setup like a vertebroplasty gonna put the patient prone access through the back you can start to see

the delivery device here there's no pointer on this but you can note that the vertebral bodies is a little bit narrowed here at least in this sort of graphical illustration here you're advancing the inner spine spacer what

happens is it's actually screwed to a rod that goes through the delivery system fairly large delivery system trying to get the exact French size from the vendor because I forgot it today what we found out is it's it's about the

size of a dime according to them so so this is what it looks like efforts deployed on the top of the device you can see sort of not the blue sort of struts of fuel but on the top of the device it's lining the spinous processes

here but you can see that that's where they actual receptacle for the screw piece of it the male piece of it actually gets screwed into it and then you unscrew it after you deploy it so that's how it's actually left behind and

then this is what it looks like in profile so you can see sort of the stabilization around the spinous process it fits right in between the spinous process in the transverse process so we've seen this patient twice he's doing

great he thinks dr. Hirsh all of a sudden is a god I think he did this case in about an hour but now he's spending time with these grandchildren and like you know when we think about it it's it's

probably the reason why 99% of the people actually got into this field so this is a real rewarding case so I threw this in there for people and so just the images plain film you can see on the left this is not a vascular case but you

can see he could use some help there too and it turns out that you know you can see on the EMR aside what's going on with his nerves this is what it looks like obviously the post-op picture I'm pretty

good position in here and then this is where it looks like in the lateral position and since I'm as interested in listening to these guys as you guys that's all I have I have two cases but before I end I do want to thank dr.

Zubin irani he trained at the dotter Institute he's a really innovative procedures he does a lot of a high-level cases and dr. Hirsch was a world-class spine person and before I walk off the stage I want to thank some of my team

who's here from MGH we have our inventory managers some of our technical managers in one of our techs and it's always a pleasure to be able to bring them here so thank you guys for everything that you do

[Applause]

go ahead your first Carolyn we bring paces back at one week and then three

weeks after the initial procedure apartment four weeks after the initial procedure we use percutaneous I'll just regular color assisted toppler and do a velocity measurement that way okay and at four weeks if they're not

pumping out in brachial artery brachial artery at six hundred CCS a minute I'm probably gonna do an intervention of some sort I'm gonna go in there with a balloon or I just see what's the problem and so then this is what catch no Jeff

holes doing in Richmond you know he calls to the the map rapid maturation program yes asked about the sedation so all of our patients currently are getting supraclavicular blocks nerve lux now we

have a luxury in our place anesthesia is there for every case whether it's a declawed or a catheter placement with a anesthesia is there so one it you know basically you block the arm they can't feel anything they get

moderate sedation for anxiety during the procedure the block also creates significant vasodilation particularly the venous side so it really gives you a bigger vein to manipulate and particularly on the ellipses side when

you're going in with that needle and working its way down towards the radial artery so the answer is yes block plus plus moderate sedation you know Bartow match does his own we would get into trouble if we started

doing our own blocks because we're we're a hospital based outpatient facility you got I don't want to get credential to do nerve blocks but a lot of people in out patient for their private centers do their own nerve blocks you got to send

them home in a sling because it's not just sensory it's motor as well so they want people to use their arm anywhere from three to eight hours until it wears off yes be beware beware of a tech with a list okay do you believe that

percutaneous fistula creation will become primary to surgical creation I think it's going to be again if you think back to what I talked about who comes for what I think it's going to be probably at least 50 to 60 percent okay

once we really get good on this and it just seems like the right thing to do the better results do you are percutaneous fistula creations are they still susceptible to pseudoaneurysm well the answer is we don't know it's a

little bit early if you look at the data from the trials there was one pseudoaneurysm created during the creation of one of the wavelength fishless and that was probably because that

footplate wasn't really aligned well between the two devices will that be pseudoaneurysm with the puncture sites interesting thought I don't think we've been out there long enough yet - no but the vein is the vein and I think if

you're puncturing it in the same place then there's a good chance that they may occur yes exactly exactly and you've got you know very often you can have a choice you're gonna have one needle maybe in each vein and so you'll have an

opportunity to rotate things and then just for clarification I missed what vessel do you imbel eyes on the way out with the bard system we embolized you enter the brachial vein and you embolize the brachial vein on the way

out all right the same vessel that you entered so you want to make sure you have enough purchased so when you pull things back you know your sheath is still in the brachial vein and then you usually down with the Berenstain

catheter and you drop you know is their commercial bias okay here's my bias I happen to like the Boston Scientific soils the detachable coils because I can put them pretty much wherever I want and they coil and they're very thrombogenic

doesn't mean any other coil in the world wouldn't work I think barn asked you to stock up on some nester coil some cook nesters I mean we use nesters in you know and pulmonary AVMs back at Yale I just like something down there that I

can retrieve if I if it's going in the wrong place you want to make sure you're above the perforator so you don't obviously embolize the vessel that you're trying to promote so I just happen to like that if it's there still

flow I might drop a nester on top of a boss interlock coil but that's my way of doing it so forgive me for the endorsement do you have a preference between the two systems well I haven't open the answer is no and and for a

number of reasons one I say I'm a test pilot I'm not a salesman for either company I'm just testing these things to have to see how it's going to the world go because we're so well known down there in Orangeburg if I said you know

we prefer this that would have tremendous economic repercussions across the country you know because oh well Ross upriver improvers you know ellipses and so we're gonna get ellipses so we don't get into

those discussions I think there's gonna be room as the pie grows as I said part for both of these devices to do very well and so I have no preference maybe if I had to differentiate if I saw something with heavily calcified

arteries I might go ahead and do an ellipses which has no problem with calcifications and stay away from the the bar device thank you okay thank you

fish through creation one is screening with ultrasound you really have to be able to look at these patients and I'm you know when I talk to our physicians they say we have a great

ultrasonographer named Megan and so I say the first thing you need to get yourself a meg everybody needs a meg and May because meg knows what to look for what to look for what's a measure where to get flows and she submits that to us

now other than the anatomic part you know at our place you know we're very particular about and selected we try to be thoughtful about you know who gets what access and that's what the new dokey guidelines are gonna say you know

the best access for the right person at the right time so for example you know if you come in with a catheter and we can you know we'd won from a 275 mile radius people come to us you know for access because you know they they've

they've been given up the cases have been given up by local people and you've got a catheter my first thing I say is how long is the catheter been in and they said well catheters been in for eight months you're not getting a

percutaneous fistula if your catheters been in for eight months I'm gonna call one of the surgeons think I am with part of my group you know we have no competition there's no turf wars we're all friends we like each other we like

working together it's a great place I say Karl Karl Willy who was recently from Tampa - Karl illustration - sick catheter for six months is okay I'm going to create they put a flick seen graphed in the

upper arm probably with a suture listen a stenosis and pull the catheter tomorrow that patient's going to be dilating with a graph where the dialyzer will be graphed you know because after six months you don't want a cath over

there when you start going down that road of infection endocarditis vascular damage all that kind of stuff if you come in and you started with a catheter because somebody wasn't looking ahead far enough and you got a catheter and

they come here for accents placement catheters been in for you know two weeks three weeks one month there's a good chance you're gonna be seriously mapped for a percutaneous special because now we have time we've got we arbitrarily

have considered the six months window that we can probably work with the catheter there's nothing to prove that there's nothing in the literature in fact I had a discussion last night with someone from one of the companies who

wants to do some type of a trial to look and see when can these catheters really do go bad and so you're gonna get worked up for a percutaneous fish and clearly if you come with stage four you know know you're not on dialysis they don't

know when you're gonna go into Alice's but they you know you're going in that direction you're gonna get seriously worked up for a percutaneous fistula one patients are still psychologically trying to wrap their head around the

fact that they're going to be on dialysis it's much easier to tell them you come in you're gonna get a puncture two punctures you're gonna go home with a band-aid and we'll take care of this we'll get this up and running over the

next six weeks eight weeks ten weeks and when you need it it's gonna be ready to go and you won't need a catheter then we tell them you don't not gonna need this catheter sticking out of your neck they're very happy and they usually

agree to do the percutaneous miss doula also since you don't get those big ropey fish - as I talked about when these patients are in dialysis you know how many people ever been to a dialysis unit that's how I tell physicians you want to

you know you want to look build a practice like this go to the dialysis unit talk to the charge charge nurse do rounds once a month or once every couple of weeks with a nephrologist and that's how you build the practice but these

patients they're in the chairs they're talking to each other right and they say hey how come you don't look like a cling-on you know with this big veins you know you where's your fistula and then they want that you know they it's

really cosmetically very pleasing these patients are so deserving and they have such horrible I was being tied to that machine three days a week so any little bit of hope we can give them I think is is worth it alright in summary it's not

a one-step procedure and then we try to make patients understand this you may need a secondary angioplasty or embolization in the future hopefully not usually about 30% of the time has great value in the stage Forge so we

talked about more acceptable to patients coming to grips with their future may make a significant difference with the catheter people starting with a catheter and I think whoever is going to do this really has to have a commitment to

access this is not you're not doing a procedure you're actually developing a treatment plan or a treatment system and so then these patients are yours once you do this you're following them you're keeping them working you know how do you

sell this to the surgeon you sell to the surgeons this way because if you start this program you know people are gonna start coming to you they're gonna come out of the woodwork it's like if we start doing AVM stuff that they start to

come from nowhere and you're gonna draw so many patients the in that surgeons are going to have more work and there's no question because everybody's not going to be a candidate and so I mean when bobwhite if hopkins years ago

started doing angioplasty the business of surgery increased by 15% so you're gonna see you're gonna make the pie bigger that's how you sell it you're making the pie bigger and everybody can feast on the pie leverages our expertise

as interventional radiologists and image guided procedure list to make these procedures work I think we're in a great position a really great position if you listen to Alan Matsumoto the other day at the toddler lecture we're in a great

position for the new age of medicine and it may be the ideal procedure for multidisciplinary collaboration I can't do basilic vein transpositions or elevations or brachial vein elevations so it's good to have a surgeon that

you're friendly with that will make these things happen they're all part of the group that's necessary and I think that could be it yes ah I'm from New York and I'm a shameless marketer and so I would encourage you if you're

interested or some of your attendings or interests come to the vasa practicum it's gonna be done in Houston with dr. Eric Pete and chief of vascular surgery is running the meeting you get to put your hands on all these devices and put

and stuff you can all do it I mean it doesn't have to be doctors you have big models and they'll have live cases and it's a great opportunity in 2020 since I'm the president-elect of Vassar we're gonna run the meeting in

Charleston that's gonna be held out a hell of a lot of fun so we encourage you to come to Charleston in 2020 thank you very much not questions yeah

here a little bit okay the ellipsis device Avenue medical from California developed by Jeff Howe in Richmond ultrasound imaging only don't need

fluoroscopy everybody in the room like staff they'd off to where lid you advance the needle into the either the very distal cephalic vein or through the actual perforator under ultrasound and once you're there you

follow the tip of the needle keeping it in the center of the lumen of the vein under ultrasound guided down to the point where it's just adjacent to the radial artery and then once you're adjacent to the radial artery this may

take a little bit of torquing of the needle but you know even putting in PICC lines for what 15 years 20 years so it's nothing not more difficult than that which is you know why I tell the fellows do the PICC lines you're not doing the

PICC lines just to do pickle and you're doing them so you can do these kinds of procedures then you puncture the radial artery then you get arterial blood flow you put a wire down and you get a sheath down and you put the device down I'll

show you the device in just a second it's called tissue welding it's an electronic device that creates a anastomosis doesn't really succumb to any problems with vascular wall calcifications usually takes just 30 to

45 minutes I did the last one the other day in 15 minutes and angioplasty the anastomosis immediately following the creation of the fissure with a 5 millimeter 1/8 balloon of your choice here's the device you can see it opens

up there's like a little bit of a window there and so it goes down through the vein it crosses over into the artery you're able to see this under ultrasound you position that window as you see on the right with the artery and wall the

vein artery vein and artery walls between that space and then the debate the device closes down on them then the machine will give you a reading of what the distances you push to the button and you got a fistula and it's very pretty

straightforward then you go ahead and balloon that with a five millimeter balloon to make sure the anastomosis is open and running and that's it then you pull out and you can compress with one finger you know on the vein and here's a

look at the the anatomic and that's office Jilla that it does create you know you don't mobilize there's no surgical trauma patient goes home with a couple of band-aids here's a dissection with ultrasound of the area that you're

working in there on the right you can see the perforator coming down it's sitting over the PRA the right proximal radial artery and that's right where you're going to make your puncture from one vessel into the other and this is

what you're left with on the left of course you see a big surgical scar from a prior creation of probably in the brachiocephalic fistula and on the right you can see the very prominent cephalic vein after fish through the creation

which is getting ready to to be punctured here's the illustration of what you've just done again perforating vein going down towards the radial artery create the fish stool and now you have a brachial artery down radial

artery so you have a radial proximal radial perforating vein fistula I don't know whether it hopefully it goes up the cephalic vein if it goes up the basilic vein you may have to consider doing transpositions or elevation to get that

vein in a position of yeah so that it can't be punctured here's another ultrasound from one of our cases again showing a nice you know red to blue flow of the fistula here's another one you know I have to see these a while you say

wow it's really pretty amazing and what we do is we get velocity measurements at the time of the procedure one week later then at four weeks later and at four weeks if they're not flowing at least 500 to 600 cc's a minute then we'll go

in and do a secondary balloon or something to get things going there's that same patients actually this is our patients arm it's a different patient and you can see the flow map there and when you see that diastolic component

got halfway up the systolic that means you're flowing at about 600 500 to 600 cc's a minute it's a good indication that you've got a you've created a fistula with working potential if you have to re intervene it's a radial

puncture you go right up the the radial artery I'm sure your dad is familiar with doing that for the most part and that goes right across that and ask Tomo system so if you have to dilate the anastomosis to get a larger you're in

good position if you have to go up and redirect flow by embolization of small collaterals nor the brachial veins now you can do that all from the the radius it's nice highway right up into the fistula

and here's the results of the FDA trial

so this shows you this shows you how so this typically you've accessed the portal vein now and you're in next up you basically pass the wire down this just gives you a little depiction of

what you're what you're what you're doing here this think of this is a sagittal and Deliver okay hepatic vein and portal vein it's the sagittal and what you're trying to do is

and if you're in the right hepatic vein you need to pass your needle anteriorly to hit the right portal vein okay and the right portal vein is usually anterior and interfere to the Patek vein okay so you pass your wire you're you

NEET your needle and when if you're missing the portal vein usually what's happening is that you're scooping behind it okay your posterior to it and sometimes you'll find the operators will actually increase the curve in the

needle so they can actually reach anterior anterior and actually hit the portal vein because usually usually if you if you know you're in the right place that the right hepatic vein not in the middle of petting vain and

you're missing the portal vein you need to reach anterior more so they put a little extra curve in the kelp into needle to actually catch that right portal vein okay with liver cirrhosis you get shrinking shrinkage of the liver

size the liver decreases the portal vein starts moving more anterior and more superior and closer to that paddock vein okay and it becomes more and more difficult to actually hit it so the smaller the liver the harder the liver

the smaller the space and you've got a thick mat piece of metal okay it's very difficult to hit that okay it becomes more and more challenging with with smaller levels to hit to hit the portal vein especially centrally okay this is

an access kit a new access kit by Gore it's basically the similar to the similar to the Cal Pinto needle it's a little longer with a little bit increase angulation compared to the traditional ring kits or the Cole Pinto needle but

once accessed you pass a wire okay into the portal circulation there are two ways of doing this okay there's a traditional old-school way that's my way is that to use a Benson wire okay the youngsters the Millennials are using

glide wires okay so if you're dealing with a millennial physician they're usually going for the glide okay if you're dealing with them with an older you know guy or gal they're using usually using a Benson wire okay the

advantage of the Benson wire is that has a floppy tip it actually you just push it in and hits the wall it prolapses into the main portal vein right away as you can see just prolapse and portal vein if you're using a glide where

you're catching all sorts of things you'll have small branches you don't know where you're going your V's even sometimes dissecting outside of the portal vein they're second-guessing themselves all the time but actually the

good way with a little bit of more different skillset is that you use use actual good old fashioned Benson wire actually goes in prolapses right away into the ends of the main into the main portal vein rarely would I actually use

light or switch to a glare that's usually if I'm coming in in a small in a small branch or an orchid angle where I have to use a glide right to try to get around the angle because I don't have enough room for a Benson to actually hit

the wall and prolapse is very really really tight space so tights Bates funny angles I'll switch to a glide where if it's a straight forward a Benson as very is very straight forward okay try to get the sheath as much into the portal vein

over the over the needle over the wire as possible and then you balloon your tract okay through the sheath okay some people will balloon with a six millimeter boom some people will balloon with an eight millimeter blue eye

balloon with an eight four okay at night and I make sure it's a four so that I actually use the balloon as the measurements for this four centimeters actually you I actually use the balloon to measure my to measure my Viator's

stance okay with the balloon there there'll be two waists there's a portal venous entry site and the Ematic venous entry site so you actually gauge that and take a picture of it so you actually see how long your tract is where's your

hepatic venous access who has your portal venous axis actually gives you a lot of anatomy here been engaging in actually putting where your Viator stent is okay usually high pressure balloon I use it and ate some people will use a

six or even a seven millimeter balloon

I'm gonna talk about me and shoulder embolization I'll take out my phone here so I know the timer perfect and I will try and cover everything about knee and shoulder embolization as quickly as I can so why are we doing this is really what I'm going to talk about there are

two different disease processes and the knee we're talking about arthritis and in the shoulder I'm talking about frozen shoulder so these are my disclosures obviously you know knee knee osteoarthritis is a major problem that

affects more than 30 million people in the United States and there are more than a hundred thousand hospitalizations a year just from NSAID toxicity in this patient population who takes NSAIDs for pain of course and they end up with

things like GI bleeds there are more deaths just related to n says the United States and there are more than four million knee injections performed annually in the

United States keep this in mind there are double-blind randomized placebo-controlled studies that show that knee injections don't work and yet there are four million every year okay so what's the rationale for genicular

artery embolisation so in the knee we always learn that knee arthritis is degenerative right there's no inflammation like rheumatoid arthritis but many years ago they discovered that there's actually an underlying synovial

inflammation that leads to an increase in these cytokines being released that leads to new blood vessel growth or angiogenesis and then this is the cycle of pain that occurs after that how does this actually occur and like I mentioned

it's not a new concept here as you can see this is a depiction from a 2005 article from Journal Rheumatology it just blown-up knee joint and what happens here is in the lining with that sort of peach color or light color on

the lateral aspect of the image where it says synovium gets inflamed releases these cytokines those cytokines break down the cartilage lead to new blood vessel growth and it's an inflammatory process so not just a degenerative

process and that it's that inflammation that we aim to target with genicular artery embolisation if you even take biopsies of patients who have inflammatory diseases and the joints here if you look at those two

slides on top we're all those little dark staining blood vessels there there that's a biopsy specimen from somebody with frozen shoulder to two slides below or actually biopsy specimens of someone's synovium who has just a

rotator cuff tear and you'll see there's no increased blood vessels in the two slides below but on the top there are increased blood vessels every time you have more blood vessels you have more nerves that's why they

call it a neurovascular bundle because they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month

follow-up for knee embolization for bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people

with arthritis he actually used an antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used an antibiotic so many of you know if

antibiotics are like crystalline substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve

and they're resorbable so they cause a like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95

knees in which he had an excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of

these patients still had knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we

no thanks to the avir we really wouldn't be able to do anything that we can without y'all so I take great great pride in sharing things from our perspective said you folks can start contributing your own thoughts your own opinions and your own vision during

these cases I think it's certainly something that I've appreciated since the first day of doing invention where do you all do so having said that we're just a smidge in the behind side so we'll try to focus today is mainly a

survey to stimulate everyone in terms of what's actually happening on the other end of the catheter with respect to the patient why are we doing these things where's our role and I think that's gonna add hopefully some value the next

time you folks step in on one of these cases alright so as you know dr. daughter first was able to visualize the inside of a blood vessel and find a stenosis and a lady who had limb ischemia and then was able to use a

dilator to fix that so obviously that gave birth to interventional radiology so we started taking pictures of tumors just to diagnose tumors back in the day before we had actual imaging and what we found

was well if tumors have a high demand for blood just like anything else what happens if we take away that blood and this is a 1975 image of renal cell carcinoma is to call them hyper and if Roma's back then but basically the

concept of interventional ecology was born the moment you could do something to make the environment for the tumor less hospitable and to try to palliate patients if they weren't subject to the the gold treatment standards like

resection in this case so fast forward to 2016 there was a huge study was International where they looked at over 3 000 patients who have primary liver cancer or her pata cellular carcinoma and what they found was that regardless

of where but if you sum all the treatment decisions that are related to those patients about 70% will see treatment by an interventional radiologist as you know that was a astounding amount

so si are listened to a lot of these types of messages even outside of obviously oncology basically we realize that there's a tremendous responsibility and the best thing to do is to dedicate ourselves fully to that and that's why I

think with IR now is a separate medical specialty we're going to start seeing more of the clinical involvement of this and certainly think the caseloads going to go up so why interventional oncology

so my Xtreme ir case is a TVR with on a patient with a type you tie section and then we use laser to find a straight the dissection flap and I just want to before I start I just want to give a big shout-out to my attending dr. Kasia and Rudy pump Adi on our IR resident Rudy

put these really cool illustrations together as you will see on these upcoming slides and dr. Kaja he did this case and basically it helps me with everything so since your old male patient presenting with history of

chronic type UTI section um he was medically managed with and I'll G Saxena antihypertensives and then he came into the ER a couple months later and it was complaining of severe back and chest pain so a CTA was

performed and and they found that there was a significant growth in the descending thoracic aorta and so we have a couple images here we have a 3d reconstruction of the aorta as well as the sagittal image of that CTA and does

anyone notice anything about this 3d on aorta no so this patient has a variant he has a bull vine arch actually so the left common carotid is coming off the right you nominate um but vessel the arteries so it's nice for us when we're

placing that and negraph we have more more of a landing zone so we're not covering any of important structures other than the less left subclavian artery and so we're the two arrow heads are on the sagittal image you will see

that there's reentry tears so if you look at the 3d image so the dissection is that line right in the middle and so it's starting at the origin of near the LSA and ending at the level of the celiac artery okay so we obtained right

and left common femoral access and you obtain left brachial access as well and the reason for left particular access is once we get our enter graph gen we're going to go ahead and I'm pass the wire through and a laser through and find us

to find a straight through that under graft so you can have flow but I will talk about that later so we put a twenty French dry seal sheath and the right groin and in the left groin we had a 8 by 45

she's and that was basically to accommodate IVA so they can kind of get a feel for what we're doing it just like another resource we have so we have two IVs images here the one on the left with the yellow arrow basically is just

showing us that thickened dissection flap and the Ibis on the right is the love of the celiac artery so the celiac artery is where that green arrow is pointing to and the white arrow head is basically just showing us that reentry

tear at that level and so through the right through the right the sheet on the right hand side the 20 French try seal sheets we placed the 7 by a 55 Aptus on steerable tour tour guide sheath so that basically can angle up to 180 degrees so

we place that up to sheath in the true lumen of the aorta and pointing towards the false lumen and then I just put some pictures up of what a dissection looks like I don't know if a lot of people a lot of you guys on do dissection their

frustrations I mean your practice but I just thought it would be nice to show and so once we have the Aptus sheep up in the true lumen and have it pointed towards on the false women we confirmed with the eye this just to make sure

we're on the right spot and we're not we're not going to harm any other structures when we laser so once we have that up we use laser to kind of poke a hole and fenestrated create that's here and once we did that we dragged while

the laser was on we dragged the baptists sheath down 4 centimeters and created a large terror so the whole goal is to open up that dissection so we could eventually place that under graph so once and that there's a florist got the

image of ibis and apt the Aptus sheath and all that and so we created a large tiara and then what we did was we passed the 18 wire into the false live and we angioplasty with the 14 by 4 centimeter balloon and as you can see that there is

some waste on that balloon and then eventually it dilated up to you know now I'm gonna burst rate which was 18 and so that Ibis is basically showing us that's here that we just made in our dissection flap

okay am I not there we go okay so once we angioplasty be repeated the same thing so we put the laser back up get a small tear right underneath large penetrations here that we just said and then we angioplasty it so once we

angioplasty we connected that top tier and bottom tear together we opened it all up and we angioplasty it again after that so once that I mean go back so once the angioplasty so right underneath that big tear that we just made so between

the tear that we just made and the re-entry is here at the level of a celiac you still have that little piece of a dissection flap that we still need to open to place our under graft so once we did that once we angioplasty through

the right groin we passed up a glide catheter and the true lumen and pointed it towards the false women and through on the tear that we just made we passed the v18 wire and through the left groin we went up with a 20 millimeter loop

snare and so we grabbed the the 18 wire and so that loop snare went and that reentry tear and like into the false lumen so our whole point is to get through and through access with that wire so we can use as a wire cutter to

cut the remaining flaps so that's what we did so we we grabbed that snare we grab that v18 with the snare we pulled it out of the left groin and we obtained through and through access okay so you're just ripping it down yeah

basically it's like it she goes somewhere yeah yeah you got it yeah that's exact don't ask a question to what you don't want the answer so basically that's what we did so once we got through into access we advanced both

sheets and we kind of like pull down to to cut the remaining flap so once we did that we basically had everything open so we were ready to place our under graft so we did angiography and then we ended up

deploying the descent and then so once we would deploy the stent we basically covered that LSA the left subclavian artery so that's exactly why we got brachial access so we pass the wire through and got to the origin of the LSA

and then we ended up putting the laser down and then we turn the laser on poked a hole and so now we have this hole and this endograft so once we did that we angioplasty it and then we deploy the stents okay and so now we have a diagram

of the pates and LSA following stenting so we sent in the aorta and where the dissection was and then resented the LSA so we have nice nice flow the REC lab donal angiogram basically is just demonstrating feeling of the celiac in

superior mesenteric artery as you can see in that middle image distally so one of our missions that Rudy made which is pretty awesome so illustration of fenestrated t-bar with LSA sensing and adequate just so Co following the

dissection flap that we usually there's open so BAM there you go so that's Rudy and I in the middle my one of my co-workers Kevin and when my mentor is dr. Kaja dr. Marley and myself so thank you hi dr. Kasia thanks for joining

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.