Create an account and get 3 free clips per day.
Chapters
Diabetic Foot, Ulceration, End-stage Renal Disease, Infrapopliteal Vessel Dissection | Recanalization, Stenting | 65 | Female
Diabetic Foot, Ulceration, End-stage Renal Disease, Infrapopliteal Vessel Dissection | Recanalization, Stenting | 65 | Female
2016angiogramballoonbiphasiccoronarydistallydorsalisdrugfocalguyshelicalhemodialysishydrophiliclesionsmonophasicosteomyelitispedisposteriorproximalradiographSIRsnarestentstentstibialtrialsunfavorablewire
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Gutter Endoleaks On Completion Angiography With Ch/EVAR: When To Ignore; How To Prevent; When And How To Treat
Gutter Endoleaks On Completion Angiography With Ch/EVAR: When To Ignore; How To Prevent; When And How To Treat
aneurysmaorticchimneyChimney EVARChimney graftdisappearedendograftendoleakendoleaksgraftsnitinoloccludeoversizingparallelpatternscansealingshrinkageskeletonSnorkelstenttherapeuticthoracoabdominaltreattypezone
How To Avoid And Treat Pitfalls In Fempop Endovascular Treatments: Dissections, Difficult Lumen Re-Entry And Knowing When To Stent
How To Avoid And Treat Pitfalls In Fempop Endovascular Treatments: Dissections, Difficult Lumen Re-Entry And Knowing When To Stent
6F Sheath / Stiff Terumo guidwireAntegrade-Retrograde TechniqueballooncathetercathetersCLI Right Limb over occlusion of SFAdissectiondistaldistallyGlid Terumo guidewire 0.035x180 cmguidewireguidewiresocclusionpoplitealpreciseproximalrecanalizationrecanalizedretrogradesupporttechniqueTherapeutic / DiagnosticTrailblazer
F/EVAR For Failed Open AAA Repair And Failed EVAR: Indications, Technical Tips, Precautions And Results
F/EVAR For Failed Open AAA Repair And Failed EVAR: Indications, Technical Tips, Precautions And Results
anastomoticaneurysmbifurcatedcatheterizationcomplicationsendograftendoleakendovascularevarfailedfeasiblefenestratedFenestrated Tube / Bifurcated Graft with inverted limbFEVARgraftinflatedinoculatedmortalitypercentpreexistingpreviousprimaryproximalraftrepairsecondarystenttechnicaltherapeuticzenith
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
arteriovenousbasicallybrachiocephaliccarotidcommoncontralateraldiameterdiscordancedistalexternalFistulainternallowoccludedocclusionproximalrecanalizedrokestenosistighttumorvelocitiesvelocityvessel
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
aneurysmarterybuttockclaudicationCook ZenithdeployedendograftendoleaksevarevarsexcellentfinalgrafthelicalhypogastriciliacjapaneselandinglimbobservationalocclusionoperativepatencypatientspercentrenalrequiredspiralSpiral Z graftstenosisstentStent graftstentsstudytripleVeithzenith
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
anatomicanatomyaneurysmaneurysmsaorticarteriesballoonBARDBEVARbranchbranchedbranchesceliaccenterscombinationCoveracovereddeviceendovascularexpandableextremityfenestratedFenestrated EndograftfenestrationfenestrationsFEVARincidencemayoocclusionocclusionsphenotypeproximalproximallyrenalrenal arteriesrenalsreproduciblestentstentstechnicaltherapeutictortuositytypeversusViabah (Gore) / VBX (Gore) / Bentely (Bentely)visceral
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
Value Of Statins In CAS Patients: What Drug, What Dose And When: How Do They Help
Value Of Statins In CAS Patients: What Drug, What Dose And When: How Do They Help
antiplateletarterycarotidcarotid arteryCASclopidogrelcoronarydatadeathpatientsperlerreducedreductionretrospectiverisksickerstatinstentingstrokestudyticlopidineversus
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
The Biolux Paseo-18 Lux DCB: Advantages And Good Patency Results In Difficult Fempop Lesions
The Biolux Paseo-18 Lux DCB: Advantages And Good Patency Results In Difficult Fempop Lesions
adverseBailoux Passeo18Bailoux Passeo18 ProcedureballoonBiotronikcalcifiedcentimeterclinicalcohortdrivenfreedomglobalhydrophobiclesionlesionspaclitaxelpatencypatientspercentagephaseprimaryrandomizedregardregistriesstentstentedstentingstudysubgroupstasctherapeuticversus
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
amputationamputationsarterialatherosclerosisbaselinecalcificationcategoryclinicalcomparedcompensatoryelutingfreeInfrapoplitealintermediatekaplanlowmajormedialmeiermulticenterpatientspredictionrandomizedregressionremodelingriskrutherfordstemstentstrial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
Combination Of Atherectomy (With Stealth 360 Device From CSI) And DCB For Treating Calcified Occlusions In BTK Arteries: How The Device Works And Preliminary Results
Combination Of Atherectomy (With Stealth 360 Device From CSI) And DCB For Treating Calcified Occlusions In BTK Arteries: How The Device Works And Preliminary Results
atherectomycadavercalcificationcalcifiedcalciumcircumferentialcoatedconcentricdataDCBdrugefficacyenrollmentfabriziofreedomgunnarlatelengthlesionlesionslosslumenOASorbitalorbital atherectomyoutcomepatencypatientsPeripheral Orbital Atherectomy SystempermeabilitypreclinicalStealth 360studytrendeduntreateduptakevessel
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
What Constitutes Severe Calcification In Fempop Arteries And How Does It Influence DCB Effectiveness: What Can Be Done About It
What Constitutes Severe Calcification In Fempop Arteries And How Does It Influence DCB Effectiveness: What Can Be Done About It
analyzeatherectomybarrierbilateralcalcifiedcalciumcircumferentialconcentrationconsensusCutting Balloon / Scoring Balloon / Non Conventional Balloon / LythoplastydistributiondrugefficacyoptimalpaclitaxelpatencyreducereportedseveretherapeutictissuetrialsuptakevesselVessel Prep
Surgical Creation Of A Moncusp Valve
Surgical Creation Of A Moncusp Valve
applycompetingcontralateraldeependovascularfibroticflapflowhemodynamicmalfunctioningmobilemodelingMono-cuspid neovalveMono-cuspid Stent PrototypeparietalreconstructionrefluxstentthrombosisvalveValvuloplastyveinvenouswall
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
Transcript

All these patients are diabetics for the most part. Okay, the vast majority of them. This one happens also to be on hemodialysis coming in with ulceration.

This is the greatest radiograph of osteomyelitis I have ever seen. So, that's why I had to throw it in here. obviously here is the non invasive cc pretty much a biphasic way from the posterior tibial and then monophasic in the dorsalis pedis. So here's what the angiogram

looks like we top's completely normal. You see obviously a severely and [UNKNOWN] TP trunk lesion. It's calcified, and then below you have single vessel run off the perennial artery. So a lot of work to do here, and actually you don't see any of the dorsalis pedis distally it's not reconstituted whatsoever.

So decided to use angioscope balloon here. This is a balloon that actually has a helical scoring elements, it's similar to a cutting balloon although it's not [UNKNOWN] these aren't razor blades, these are sort of less sharp tipped. They have a higher rated burst pressure. They're a little more flexible.

They track a little bit better than your typical cutting balloons. So I like to use them with [UNKNOWN] lesions. So that was used there, skip through that but this is what it looked like afterwards. So then after that we're going to tackle the posterior tibial artery which

you see here. You see a large collateral coming off. At above the proximal third of the daises. So the goal here is to just cross and reconnect the dots, and then this happens. So I'm using regalia guide wire to hydrophilic tip or the one

for wire. And I'm probing gently with finesse, and then we have this, obviously unfavorable what do you guys do. Obviously this is proliferation, no doubt about it. >> Do nothing.

>> Do nothing. So just continue from above? >> Continuing from below or whatever, continue your procedure [CROSSTALK] >> I do follow ACTs I get this patient probably 8000 [UNKNOWN] and I do not reverse. I just immediately go from below the foot's already prep.

Go from below, pass the wire and the wire just ran right up, no problem. Snare it from above. There's actually a loop snare there, pull through and through so now I have floss.

Put up the balloon. This is probably a two and a half by 200 balloons or something balloon below this is what it looks like and this is what you're left with. So you've got a dissection, sort of maybe some residual. What do you guys do?

You guys leave this? You like it? It's okay. >> How about a corner stent short. >> Yes, so I agree with you here, this is one of the best uses of I think coronary drug eluding stent in this location, okay

so there's a lot of data out there, initially the impetus to use these in the tibial cranial vessels was the coronary data in the spirit trials but they're now since that time, they've been a lot of other trials that have shown that they're valuable in the [UNKNOWN]

vasculature, balloon mounted ever aligned these stents [UNKNOWN] I use designs from Avit/g and here it is here, post stent placement so. Again I use drug eluding stents for focal lesions obviously is their short stents are meant to be used in the coronary arteries, so they come in 2 cm,

3 cm, that sort of length. So for focal spot lesions like that, I like to use the drug eluding

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you, Tim, and thank you, Frank, for giving me the opportunity to address this specific problem of the gutter endoleaks, which has been described up to 30% after ChEVAR and parallel grafting. But I have to say that in the most papers, not only gutter endoleaks were included,

but also new onset of type Ia endoleak. One paper coming from Stanford addressed specifically the question, how we should deal with the gutter-related type Ia endoleak, and they conclude that in the vast majority of the cases, these gutter endoleaks disappear

and the situation is benign. And based on my own experience, I can confirm this. This is one of the first cases treated with parallel grafts for symptomatic thoracoabdominal aneurysm. And I was a bit concerned as I saw this endoleak at the end of the angiography,

but the lady didn't have any pains and also no option for open or for other type of repair, so we waited. We waited and we saw that the endoleak disappeared after one month. And we saw also shrinkage of the aneurysm after one year.

So now, the next question was how to prevent this. And from the PERICLES registry, but also from the PROTAGORAS, we learned how to deal with this and how to prevent. And it's extremely important to oversize enough the aortic stent graft,

more than treating with the EVAR, normal EVAR. We should reach a sealing zone of at least 15, 20 millimeters. And we should avoid also to use more than two chimney grafts in such patients. The greater the number of the chimney used,

the higher is the risk of type Ia endoleak. And last but not least, we should use the right stent graft. And you see here the CT scan after using a flexible nitinol skeleton endograft on the left, and the gutters if you use a very stiff,

stainless steel skeleton in such situations. The last question was how to treat these patients. And based on the PERICLES, again, we should distinguish three different patterns. One is due to an excessive oversizing of the graft with infolding.

I have only one case, one professor of pathology, treated six years ago now without any endoleak due to this problem. The most are due to an undersized aortic endograft. And in the pattern C, we have an insufficient sealing zone and migration of the graft.

Now, we should consider the pattern B. And with an undersized aortic endograft and if the gutter is small, one possible solution would be to treat this patient with coiling, using coils or Onyx to occlude this gutter endoleaks,

like in this patient. And for the pattern C, if the sealing zone is insufficient, well, we should extend the sealing zone using the chimney parallel technique, as you can see in this case. So in conclusion, ladies and gentle,

gutters are usually benign and more than 95% disappeared in the follow-up. But in case of persistence, we should evaluate the CT scan exactly. And in case of oversizing and not enough oversizing and not enough length,

we should treat this patient accordingly. Thank you very much for your attention.

- Oh, thank you, dear colleague, that's a very long title. This is my disclosure, this. We are all very efficient for treating all those patient, but sometimes, especially on the very long recanalization, we may fail to reenter into the very precise distal landing zone,

and that's when we fail, please do not panic. That's how to perfectly reenter into the distal lumen and I think that's the retrograde approach. Distal puncturing is very useful and very efficient, very safe technique to increase the long recanalization. And it needs to be consider very, very rapidly,

very quickly, usually in my daily practice this is in less than 10 minutes after failure to rentry into the distal zone. Thus, we have many site of puncture, of distal punctures, and what is also very important,

this is to have the very dedicated devices. Usually I use a 16-gauge needle, and also this is quite always a sheathless technique. Thus, let me share with you this case and answer to all the question. This is a case with an long occlusion

of on the right side of the SFA. This I've used, as maybe many of us, the crossover technique. The crossing was really not a problem. It was quite difficult, we have used many guidewires

and also many support catheter but we crossed finally to the distal zone, but it was impossible to reenter very precisely and very safely into the distal SFA into the P1 popliteal artery. That's once again no hesitation.

We do a direct puncture into the P1 popliteal artery zone. The patient have been always prepared before, and, as you may see, this is an 16-gauge needle. That's after, once again, we inserts the guidewires and note this is a sheathless technique and directly thereafter the support catheter

and this is so very important to inject to be sure that we are very precise for the punctures. After this is a two team work, one from below and one from above,

and this is the mix between two 3D dissection and the main goal, this is to connect one dissection with the other and also thereafter is to insert one guidewire into the other support catheters to have at the end only one guidewires. And after we use a telepherique technique

by pulling the balloon for the predilitation of the first opening of the SFA by pulling on the guidewires that is exiting on the proximal popliteal arteries. And only at the end you may exchange the way of the guidewires to move it distally

and thereafter you push on the balloon that is inflated during at least three minutes for the distal sealing. And this is the initial control that is quite, very, very bad. By the way, I'm answer

to the other question, "When is it important to stent?" And especially I know that we are into a less metal left behind era, but it's a very, very good indication for sustaining these recanalized long lesion,

especially flow limiting dissection and residual stenosis. And this is what we have made for obtaining this by the end very, very good result. Thus, in conclusion, for the long recanalization, especially if it's very, very calcified,

experience is definitely required. And we needs to be familiar with a lot of guidewire and support catheter of a very good portfolio. The retrograde access that made, this is very safe, and that may increase technically the success rate and the stenting, I mean the scaffolding is quite

always necessary on the long recanalization. And keep in mind that the patience is really the key of all those procedures. Thank you.

- [Doctor] Good morning, thank you Mr. Chairman. Dear colleagues, ladies and gentlemen, I would like to thank Dr. Veith for the very kind invitation and I really apologize for not being able to be able to be here today due to family reasons. These are our disclosures.

And obviously bust opened endovascular repair can fail over time and most commonly this difficult clinical scenario to deal with. Our group and also other institutions have already shown that FEVAR is a feasible technique to repair failed previous open or endovascular repair.

And here we see due to indications of secondary FEVAR. So after previous EVAR the main indication is actually to repair proximal endoleak into different several reasons as for example, into extension of disease over time, or migration, or even poor initial planning to start with. Now over open repair, the two main cases of FEVAR

are basically proximal extension of disease or anastomotic aneurysm for main. So FEVAR is indeed to feasible to repair failed EVAR and open repair. I want us to consider some additional technicalities used. For example, we have as we see here short working length

to work to use pre-existing stent raft or (mumbles) raft of things inside. One way to deal with this issue is to use only a short fenestrated tube and stay on approximately, but if one needs to go all the way down to have a complete relining and sealing, then we can design a bifurcated graft

with an inverted limb which enables us to work also in very short working lengths. And of course, maybe the best thing here is to try to be proactive, using a long body surgical graft during the primary operate. And the same goes for the primary lever procedure.

Using an endograft with a longer body provides a longer working length so second-graft FEVAR repair is needed in the future. Catheterization of the previous stent-graft can be also cumbersome, especially inoculated and nautilus, and also grafts with inner stent-graft.

Our suggestion, actually here, is to use always an inflated balloon, and by withdrawing this inflated balloon, we can easily confirm that we're behind the struts of the stent-graph as we see in the image. Now for oculated anatomy like this,

stretching the previous stent-graft can be also very challenging and how we do this through and through wire, and apply the wired plastic technique, we gain upper access and the femoral access can really helpful to stress aorta and finally enable position of the graft in the desired place.

Now catheterisations target vessels through previous stent-grafts is also not without problems. And as you see here, visualizations of marks is not quite easy due to the pre-existing grafts. So the rotation of this (mumbles) might be helpful in order to make more room for the catheter to follow

when sometimes we have to either catheterise again and again until we finally find a better entry that will enable advancement of the preexisting graphs. Here we see the summary of our experiencing Nuremberg. Up to June of 2018, we have performed a total of 92 secondary FEVAR procedures, 50 after open repair,

and 42 after (mumbles) endovascular. Technical success goes at 96 percent of the patients in the after open repair group, first of 93 percent in after EVAR group, including (mumbles) conversion of the (mumbles) required into seen here technical progress. 30 day mortality was two percent in the after open repair

group, while there was no mortality in the after EVAR group. Now major complications were four percent in the after open repair group, and seven percent in the after EVAR group with most of this complications in the after EVAR group been associated clearly with in comparative technical difficulties.

Finally, if we have a look at the preemptive primary advances, we see a cracked door to more advances over time in the FEVAR after EVAR group compared to FEVAR after open repair group, implying that probably FEVAR's open repair might be more stable background for a secondary FEVAR compared to previous EVAR.

So the concluders summarized their colleagues, ladies and gentleman, FEVAR for failed open and endovascular repair is probably the best option that is technically feasible but one has to consider that additional technical difficulties both in planning and execution. Results appear to be similar after open after

and endovascular repair, but FEVAR after EVAR is clearly more solid in (mumbles). Again, thank you very much, and I apologize for not being here today, thank you.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- [Nicos] Thanks so much. Good afternoon everybody. I have no disclosures. Getting falsely high velocities because of contralateral tight stenosis or occlusion, our case in one third of the people under this condition, high blood pressure, tumor fed by the carotid, local inflammation, and rarely by arteriovenous fistula or malformation.

Here you see a classic example, the common carotid, on the right side is occluded, also the internal carotid is occluded, and here you're getting really high velocity, it's 340, but if you visually look at the vessel, the vessel is pretty wide open. So it's very easy to see this discordance

between the diameter and the velocity. For occasions like this I'm going to show you with the ultrasound or other techniques, planimetric evaluation and if I don't go in trials, hopefully we can present next year. Another condition is to do the stenosis on the stent.

Typically the error here is if you measure the velocity outside the stent, inside the stent, basically it's different material with elastic vessel, and this can basically bring your ratio higher up. Ideally, when possible, you use the intra-stent ratio and this will give you a more accurate result.

Another mistake that is being done is that you can confuse the external with the internal, particularly also we found out that only one-third of the people internalized the external carotid, but here you should not make this mistake because you can see the branches obviously, but really, statistically speaking, if you take 100

consecutively occluded carotids, by statistical chance 99% of the time or more it will be not be an issue, that's common sense. And of course here I have internalization of the external, let's not confuse there too, but here we don't have any

stenosis, really we have increased velocity of the external because a type three carotid body tumor, let's not confuse this from this issue. Another thing which is a common mistake people say, because the velocity is above the levels we put, you see it's 148 and 47, this will make you with a grand criteria

having a 50% stenosis, but it's also the thing here is just tortuosity, and usually on the outer curve of a vessel or in a tube the velocity is higher. Then it can have also a kink, which can produce the a mild kink like this

on here, it can make the stenosis appear more than 50% when actually the vessel does have a major issue. This he point I want to make with the FMD is consistently chemical gradual shift, because the endostatin velocity is higher

than people having a similar degree of stenosis. Fistula is very rare, some of our over-diligent residents sometimes they can connect the jugular vein with roke last year because of this. Now, falsely low velocities because of proximal stenosis of

the Common Carotid or Brachiocephalic Artery, low blood pressure, low cardiac output, valve stenosis efficiency, stroke, and distal ICA stenosis or occlusion, and ICA recanalization. Here you see in a person with a real tight stenosis, basically the velocity is very low,

you don't have a super high velocity. Here's a person with an occlusion of the Common Carotid, but then the Internal Carotid is open, it flooded vessels from the external to the internal, and that presses a really tight stenosis of the external or the internal, but the velocities are low just because

the Common Carotid is occluded. Here is a phenomenon we did with a university partner in 2011, you see a recanalized Carotid has this kind of diameter, which goes all the way to the brain and a velocity really low but a stenosis really tight. In a person with a Distal dissection, you have low velocity

because basically you have high resistance to outflow and that's why the velocities are low. Here is an occlusion of the Brachiocephalic artery and you see all the phenomena, so earlier like the Common Carotid, same thing with the Takayasu's Arteritis, and one way I want to finish

this slide is what you should do basically when the velocity must reduce: planimetric evaluation. I'll give you the preview of this idea, which is supported by intracarotid triplanar arteriography. If the diameter of the internal isn't two millimeters, then it's 95% possible the value for stenosis,

regardless of the size of the Internal Carotid. So you either use the ICAs, right, then you're for sure a good value, it's a simple measurement independent of everything. Thank you very much.

- Thank you, Ulrich. Before I begin my presentation, I'd like to thank Dr. Veith so kindly, for this invitation. These are my disclosures and my friends. I think everyone knows that the Zenith stent graft has a safe and durable results update 14 years. And I think it's also known that the Zenith stent graft

had such good shrinkage, compared to the other stent grafts. However, when we ask Japanese physicians about the image of Zenith stent graft, we always think of the demo version. This is because we had the original Zenith in for a long time. It was associated with frequent limb occlusion due to

the kinking of Z stent. That's why the Spiral Z stent graft came out with the helical configuration. When you compare the inner lumen of the stent graft, it's smooth, it doesn't have kink. However, when we look at the evidence, we don't see much positive studies in literature.

The only study we found was done by Stephan Haulon. He did the study inviting 50 consecutive triple A patients treated with Zenith LP and Spiral Z stent graft. And he did two cases using a two iliac stent and in six months, all Spiral Z limb were patent. On the other hand, when you look at the iliac arteries

in Asians, you probably have the toughest anatomy to perform EVARs and TEVARs because of the small diameter, calcification, and tortuosity. So this is the critical question that we had. How will a Spiral Z stent graft perform in Japanese EIA landing cases, which are probably the toughest cases?

And this is what we did. We did a multi-institutional prospective observational study for Zenith Spiral Z stent graft, deployed in EIA. We enrolled patients from June 2017 to November 2017. We targeted 50 cases. This was not an industry-sponsored study.

So we asked for friends to participate, and in the end, we had 24 hospitals from all over Japan participate in this trial. And the board collected 65 patients, a total of 74 limbs, and these are the results. This slide shows patient demographics. Mean age of 77,

80 percent were male, and mean triple A diameter was 52. And all these qualities are similar to other's reporting in these kinds of trials. And these are the operative details. The reason for EIA landing was, 60 percent had Common Iliac Artery Aneurysm.

12 percent had Hypogastric Artery Aneurysm. And 24 percent had inadequate CIA, meaning short CIA or CIA with thrombosis. Outside IFU was observed in 24.6 percent of patients. And because we did fermoral cutdowns, mean operative time was long, around three hours.

One thing to note is that we Japanese have high instance of Type IV at the final angio, and in our study we had 43 percent of Type IV endoleaks at the final angio. Other things to notice is that, out of 74 limbs, 11 limbs had bare metal stents placed at the end of the procedure.

All patients finished a six month follow-up. And this is the result. Only one stenosis required PTA, so the six months limb potency was 98.6 percent. Excellent. And this is the six month result again. Again the primary patency was excellent with 98.6 percent. We had two major adverse events.

One was a renal artery stenosis that required PTRS and one was renal stenosis that required PTA. For the Type IV index we also have a final angio. They all disappeared without any clinical effect. Also, the buttock claudication was absorbed in 24 percent of patients at one month, but decreased

to 9.5 percent at six months. There was no aneurysm sac growth and there was no mortality during the study period. So, this is my take home message, ladies and gentlemen. At six months, Zenith Spiral Z stent graft deployed in EIA was associated with excellent primary patency

and low rate of buttock claudication. So we have most of the patients finish a 12 month follow-up and we are expecting excellent results. And we are hoping to present this later this year. - [Host] Thank you.

- Thank you and thanks again Frank for the kind invitation to be here another year. So there's several anatomic considerations for complex aortic repair. I wanted to choose between fenestrations or branches,

both with regards to that phenotype and the mating stent and we'll go into those. There are limitations to total endovascular approaches such as visceral anatomy, severe angulations,

and renal issues, as well as shaggy aortas where endo solutions are less favorable. This paper out of the Mayo Clinic showing that about 20% of the cases of thoracodynia aneurysms

non-suitable due to renal issues alone, and if we look at the subset that are then suitable, the anatomy of the renal arteries in this case obviously differs so they might be more or less suitable for branches

versus fenestration and the aneurysm extent proximally impacts that renal angle. So when do we use branches and when do we use fenestrations? Well, overall, it seems to be, to most people,

that branches are easier to use. They're easier to orient. There's more room for error. There's much more branch overlap securing those mating stents. But a branch device does require

more aortic coverage than a fenestrated equivalent. So if we extrapolate that to juxtarenal or pararenal repair a branched device will allow for much more proximal coverage

than in a fenestrated device which has, in this series from Dr. Chuter's group, shows that there is significant incidence of lower extremity weakness if you use an all-branch approach. And this was, of course, not biased

due to Crawford extent because the graft always looks the same. So does a target vessel anatomy and branch phenotype matter in of itself? Well of course, as we've discussed, the different anatomic situations

impact which type of branch or fenestration you use. Again going back to Tim Chuter's paper, and Tim who only used branches for all of the anatomical situations, there was a significant incidence of renal branch occlusion

during follow up in these cases. And this has been reproduced. This is from the Munster group showing that tortuosity is a significant factor, a predictive factor, for renal branch occlusion

after branched endovascular repair, and then repeated from Mario Stella's group showing that upward-facing renal arteries have immediate technical problems when using branches, and if you have the combination of downward and then upward facing

the long term outcome is impaired if you use a branched approach. And we know for the renals that using a fenestrated phenotype seems to improve the outcomes, and this has been shown in multiple trials

where fenestrations for renals do better than branches. So then moving away from the phenotype to the mating stent. Does the type of mating stent matter? In branch repairs we looked at this

from these five major European centers in about 500 patients to see if the type of mating stent used for branch phenotype grafts mattered. It was very difficult to evaluate and you can see in this rather busy graph

that there was a combination used of self-expanding and balloon expandable covered stents in these situations. And in fact almost 2/3 of the patients had combinations in their grafts, so combining balloon expandable covered stents

with self expanding stents, and vice versa, making these analyses very very difficult. But what we could replicate, of course, was the earlier findings that the event rates with using branches for celiac and SMA were very low,

whereas they were significant for left renal arteries and if you saw the last session then in similar situations after open repair, although this includes not only occlusions but re-interventions of course.

And we know when we use fenestrations that where we have wall contact that using covered stents is generally better than using bare stents which we started out with but the type of covered stent

also seems to matter and this might be due to the stiffness of the stent or how far it protrudes into the target vessel. There is a multitude of new bridging stents available for BEVAR and FEVAR: Covera, Viabahn, VBX, and Bentley plus,

and they all seem to have better flexibility, better profile, and better radial force so they're easier to use, but there's no long-term data evaluating these devices. The technical success rate is already quite high for all of these.

So this is a summary. We've talked using branches versus fenestration and often a combination to design the device to the specific patient anatomy is the best. So in summary,

always use covered stents even when you do fenestrated grafts. At present, mix and match seems to be beneficial both with regards to the phenotype and the mating stent. Short term results seem to be good.

Technical results good and reproducible but long term results are lacking and there is very limited comparative data. Thank you. (audience applauding)

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- Thank you and maybe we trying to get rid of women's, I don't know, we'll see. Thank you Dr. Veith. No relevant disclosures to this talk. But we know statin is very beneficial in carotid endarterectomy. Several published data already,

one of them is threefold reduction in the risk of stroke and fivefold reduction in the risk of death done by Dr. Perler over 1,500 patients. Another study by Kennedy, showing 75% reduction in the risk of stroke as well and this is one larger cohort, about 3,300 patients.

So what about carotid stenting? If you look at the data, there's not a lot of data out there so we did a lot of work looking at medication in general in carotid stenting. For instance, we know that dual antiplatelet therapy is very beneficial.

We don't have one, we actually have two randomized trials comparing clopidogrel or ticlopidine with asprin versus Heparin and asprin. Both studies showed significant reduction in the risk of neurological event. In the first study, reduction from 25% to 0%.

In the second one, from 16% to 2%. So beta-blockers, not a lot of people believe this data but this is very powerful study, a large cohort of patients that received beta-blockers. There was a 65% reduction in the risk of stroke and death in carotid artery stentings

and mainly in the group who developed hypertension after the procedure. So how about statin? Statin and carotid artery stenting, if you look in the literature, very poor data. This is one of the largest studies out there,

it has about a thousand patients, a little over a thousand patients, about 40% of them are on statin and in this particular study there was 70% reduction in the risk of stroke and death if you're on a statin versus not.

And that persisted at long term followup. So if you're on statin at five years, your risk of mortality overall was reduced by 50% and your risk of stroke also was reduced by about 60%. We went out to see what happened in real world data so we used the Premier dataset

to represent 20% of all discharges in the United States. And it has more than 700 hospitals. So we have from 2009 to 2015, 17,800 carotid stent, making this the largest retrospective study done to date. 70% of these patients were on statin and as you can expect they're slightly older, more male,

more history of hypertension, diabetes and prior stroke, prior MI and coronary artery disease, there was significantly more CHF, COPD. Bottom line, they were a lot more sicker and that's why they were on statins. But the group that did not receive statin,

were more likely to receive an urgent or emergent carotid artery stenting. Surprising was that actually the risk of stroke and MI was larger in the group who are on statin but the death was half. So that making a case for a rescue phenomenon

and as you can see here, chances of dying, if you're on statin and develop major stroke or MI after carotid stenting was reduced from 26% to 11%. When we did the adjusted analysis, the difference in stroke went away but the difference in MI persisted.

So if you're on statin, twice as much MI. Obviously, this is why you're on statin in the first place because you have a lot of coronary artery disease so it is not surprising why there is more MI. But again, the risk of death was reduced by more than 60% and the risk of death following a major stroke

or major MI was reduced by 63%. Limitation, of course, is a retrospective analysis. We only looking at post-operative outcomes, we don't know really the exact, we do but we didn't analyze the dosage and the type of statin, that's another study.

But this study is published recently in the Journal of Vascular Surgery. And in conclusion, 64% reduction in odd of death, 18% reduction in odd of stroke and death if you're in statin verus not and undergo a carotid artery stenting.

And most interesting finding, 63% reduction in failure to rescue. And I urge you to have all your patients on statin, if you're performing carotid artery stenting based on this and other data but we need further study to look at the dose effect

and the type of statin that need to be used. Thank you so much.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- Yeah, thank you very much. We all know that DCBs are kind of a workhorse right now for SFA-PA disease but when it comes, this has been proven randomized controlled studies, but when it comes to real world patients this might not have been included in the randomized conduit study and therefore

these registries are very available. And I present on this BIOLUX P-III study [Unintelligible] the standard versus the non-standard sub-group. This is just a quick overlook about the Passeo-18 Lux DCB it's an O-18 platform, has three micrograms

[Unintelligible] Paclitaxel on the balloon The excipient is a BTHC and this is an hydrophobic excipient and the sizes available are from two to seven millimeter in diameter and four 80 and 100 millimeter in length. This is the overlooks about the Passeo-18 Lux

they are out there, we have from phase one to phase three studies, randomized controlled and global registries. 1,600 patients including in this clinical program. With regard to the full cohort at 12 month we have now 878 patients available, you see with regard to the clinical characteristics

heavy smokers... a high percentage of smokers, high percentage of diabetes, more than 40% of CLI, 76% calcified lesions, the lesion length was around 9 centimeter and one-third of the patients had TASC C or D lesions. This is a higher payload stenting rate

this is not surprising with this complex cohort about 20% and with that the primary patency of the full cohort at 12 months is 84.3% and the freedom from clinical driven TLR is 93.5%. So this is the overlook of the full cohort at 12 months. With regard to the different subgroups you see

you have a consistent freedom from clinical driven TLR primary patency and freedom from major target limb amputation throughout all the subgroups. And I just now want to highlight the bail-out stented versus the DCB only group because this follows the concept of the so-called leave, at least leave less behind

as possible, this so-called spot-stenting concept. Out of this 878 patients we had 715 treated with a DCB only and in the bail-out stent group we had 163 patients. The patients in the bail-out stented group had a longer lesion length... 11 compared to 8 centimeters

in the DCB only group. With regard to all the others correctors there was no difference besides TASC C and D lesions there had been a higher percentage of TASC C and D lesions in the bail-out stented group than in the DCB only group.

We did the same vessel prep for both arms and with that we had the freedom from clinical driven TLR in the bail-out stented group of 92.8 compared to 92.2% in DCB only group. Primary patency was a little bit lower but freedom from a major adverse event

at 12 months was the same. When we bring this into context to other randomized, other real-world data out there freedom from clinical driven TLR in comparison to the In.Pact global stented group is the same as well as in the Lutonix global stented group.

With regard to freedom from major adverse event we can only refer to the In.Pact global stented group which is the same. So just let me conclude the Passeo-18 Biolux P-III study continues to show consistent, clinical performance of the Passeo-18 Lux Drug Coated Balloon

throughout all subgroups. There is no difference in clinical performance between DCB only versus payload stented even for the bail-out stented group had more complex lesions and the results of the Biolux P-III payload stenting subgroups are in line with the results

of current Global registries stented subgroups. Thank you very much.

- Thank you chairman, ladies, and gentlemen. These are my disclosures. The objective was to asses the prognostic value of a high or immeasurable Ankle-Brachial Index at baseline for major amputation and Amputation Free Survival in patients with CLTI. And, we did this within two randomized control trials,

the PADI trial and the JUVENTAS trial, which I will spend a bit on later. We did a regression analysis of both trials, and had data pooled at a patient level, looking at risk factors such as Diabetes, Cardiovascular Comorbidities,

and Ankle-Brachial-Index. Patients were divided in either low, intermediate, or a high, or immeasurable, ABI. So, in short, the PADI trial was a Multicenter 2-arm randomized clinical trial with controls looking at Rutherford Category over three on

Infrapopliteal Lesions comparing Drug Eluting Stents verses PTA and without bail out stenting, endpoints, patency, major amputation, and mortality. This study was published in 2017. The JUVENTAS Trial, was a stem cells trial with double-blinded placebo controlled giving a

infusion of bone marrow stem cells versus placebo. And again, the endpoints were major amputation and mortality, published in 2015. Overall from these two trials, we were able to collect 260 patients, and this is the baseline table.

You can see that the majority of patients fitted in the Low ABI group, 146 patients. And, 33 patients fitted in the High ABI group. Overall, the prevalence of Diabetes, History of Stroke Coronary Disease, and Impaired Renal Function, was significantly higher in the High ABI group.

Follow-up of these patients with median of 229 weeks, and in this period we observed 59 amputations, and 103 deaths. The majority of this major amputations was performed, actually, in the first year after inclusion within these trials,

which you can see here in this Kaplan Meier Curve, showing that the amputation rate was about double in the High ABI group, as compared to the Low or Intermediate group. Looking at ABI for its Amputation Free Survival, again showed significantly higher rate of amputations

in the High ABI group, as compared to Low or Intermediate. And, at five years, you can see that almost all patients in the High ABI group either had amputation or had died. This was about 50% in the Low or Intermediate group. Looking at the Multivariate Regression Analysis, we observe the Rutherford Category and ABI

in the High or Immeasurable group, related to major amputation, and is same for amputation or death, now adding also age. So, the interrelation between ABI and major events, is J shaped, and actually, there's a higher risk for patients with a high or immeasurable ABI for major events,

as compared to patients with a low ABI. So why is this so? Well, it's not fully elucidated, but it's believed to be related to Medial Arterial Calcifications, being an independent age associated pathway different from Atherosclerosis.

And, the stiffness due to this calcification, may prevent compensatory positive remodeling related to Atherosclerosis when both diseases coincide. And, actually it's coexistence of Medial Calcification Atherosclerosis is not that uncommon, even up to 80%. So, what is the clinical relevance of all this?

Well, we did look at the PREVENT-III prediction model for Amputation Free Survival. You can see on the slide, the included factors in the original PREVENT-III model. We added the I, or Immeasurable ABI to this model, and has lead to an increase in C-statistics from 46% to 72%

Net Reclassification Improvement of 0.38. So, ladies and gentlemen, in conclusion, a high or immeasurable ABI in patients with CLTI and Infrapopliteal Arterial Obstructive Disease is an independent risk factor of major amputation and of poor Amputation Free Survival.

Incorporating this factor in a PREVENT-III prediction model improves its performance. Thank you very much, also to the research groups.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- Yes, thank you, this is the talk about the combination of atherectomy and DCB for treating calcified lesions in below-the-knee arteries. As we've heard from Fabrizio Fanelli, we know that calcium is really an issue in our daily practice, especially when we use DCB. As circumferential calcium increases,

the efficacy of DCP decreases, late lumen loss increases, and primary patency decreases. This has been shown also for a longer term follow up by Gunnar Tepe, and retrospective analysis of 91 patients that as calcium increases,

late lumen loss increases at 6 months. The severity of lesion calcification was a single independent predictor of late lumen loss outcome after DCB treatment. We have a lot of below-the-knee studies out there with really different results.

But anyway, we have in the meantime, one study which has positive results about DCB trials, so I guess all these usage will become broader in below-the-knee treatment, and then we have to trust calcium. This is the Peripheral Orbital Atherectomy System

which I do not have to explain here in the United States. This has a unique mode of action, changing compliance using Centrifugal Force and is 360 degree crown contact is designed to create a smooth, concentric lumen

and allows constant blood flow and particulate flushing during orbit. You do not need a filter to use this atherectomy system which is very comfortable, especially in below-the-knee arteries because the particulates are so small

and there is not an issue of distal embolization. Calcified plaque modification alters local drug delivery and this has been shown by cadaver study. You see on the left hand side, the untreated vessel and the drug uptake in the circumstance of an untreated vessel.

And this is the drug uptake of a calcified cadaver vessel after orbital atherectomy treatment and drug coated balloon applied. So the Optimize-BTK study was Optimal Orbital Atherectomy plus DCB verse DCB Alone in below-the knee arteries.

Pilot study, non-powered, prospective one to one randomization. Only calcified lesions below the knee. And we used as a comparative Lutonix Drug Coated Balloon. We had 65 patients were planned.

The number of available patients should be 50. We figured out the inclusion criteria. Only lesions below the knee, and we figured out the calcium. We had the Cts come before and they had to confirm the distribution of the calcium.

They had to be a length of calcium of more than 25% of the total lesion length or more than two centimeters in total length. And the target lesion length could be up to 20 centimeters. Late lumen loss, the primary outcome measures were late lumen loss patency of the target lesion

freedom from major adverse event and freedom from clinically driven TLR follow up and freedom from unplanned, unavoidable major amputation. The enrollment have been completed in May 2018. We have enrolled 66 patients. 32 of the Orbital Atherectomy plus DCB

and 34 did DCB. This study has been conducted in Australia and Germany, so I hope we will be able to present the data next year. Just to conclude, calcified lesions may reduce the efficacy of DCBs by blocking uptake into the vessel wall. Preclinical data suggest that Orbital Atherectomy treatment

to calcified plaques trended in greater drug permeability and the Optimize trial is designed to test this hypothesis and we will be happy to present six month data next year. Thank you very much.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

- [Narrator] Calcium is a big challenge for hope in intervascular procedure. In particular, it can increase the risk of complications and also reduce the efficacy of drug-coated balloons. The presence of calcium will reduce the vessel compliance, so it is barrier for the optimal dilatation.

And also reduce the tissue permeability, and is a barrier for optimal drug uptake. Different studies, in-vivo and ex-vivo, confirm that circumferential distribution is more important than longitudinal. When we have a complete circumferential

distribution of calcium, drug uptake is less. The effect of calcium on drug uptake is confirmed by this study. They have evaluated the tissue concentration of paclitaxel before and after atherectomy in calcified and non-calcified lesion.

In the absence of calcium, you can see that there was not a big difference in terms of tissue concentration before and after atherectomy. On the opposite, tissue concentration of paclitaxel was higher after atherectomy

in case of heavy calcified lesion. There is not a consensus on calcium definition. Nowadays, we have five different classifications, but all of them say the importance of bilateral or circumferential distribution to define the calcium severity.

If we analyze the five most common trials on DCBs, we can observe that calcium-related exclusion criteria are very similar. Generally, DCB trials do not include severe calcifications. For example, the IN.PACT-SFA, LEVANT 2 and ILLUMENATE European reported,

more or less, 10% of severe calcified lesions. On the contrary, more that 40% of severe calcium have been included in the ILLUMENATE US and ILLUMENATE GLOBAL. If we analyze the one year primary patency of these studies, we observe, more or less, the same outcome.

However, keep in mind that two of them, the ILLUMENATE GLOBAL and the ILLUMENATE US, included more that 40% of patients with severe calcification. To increase the efficacy of drug-coated balloons in heavily calcified lesions,

vessel preparation is mandatory. Different devices can be used for vessel prep. We can use a simple PTA balloon. We can use a special balloon, like cutting or scoring. We can use atherectomy or also lithoplasty. Very good data have been reported

by the Definitive AR study, where atherectomy was used in combination of DCB in long, calcified lesions. Also, scoring balloon plus DCB can improve the permanent patency rate, as reported by the PANTHER registry. Matching data has been reported

with the use of lithotripsy in complex, calcified lesions. The DISRUPT PAD II study reported very good results, especially in terms of primary patency and clinical driven TLR after one year, in such complex lesions.

In conclusion, calcium limits the optimal dilatation. Circumferential or bilateral distribution increased the complexity of the lesion. Circumferential distribution reduced the drug uptake. In case of complex lesion, proper vessel prep is mandatory. And what we are looking forward in the near future,

is a consensus that can be reached to define calcium grading. Thank you for your attention.

- Thank you (mumbles). The purpose of deep venous valve repair is to correct the reflux. And we have different type of reflux. We know we have primary, secondary, the much more frequent and the rear valve agenesia. In primary deep venous incompetence,

valves are usually present but they are malfunctioning and the internal valvuloplasty is undoubtedly the best option. If we have a valve we can repair it and the results are undoubtedly the better of all deep vein surgery reconstruction

but when we are in the congenital absence of valve which is probably the worst situation or we are in post-thrombotic syndrome where cusps are fully destroyed, the situation is totally different. In this situation, we need alternative technique

to provide a reflux correction that may be transposition, new valve or valve transplants. The mono cuspid valve is an option between those and we can obtain it by parietal dissection. We use the fibrotic tissue determined by the

sickening of the PTS event obtaining a kind of flap that we call valve but as you can realize is absolutely something different from a native valve. The morphology may change depending on the wall feature and the wall thickness

but we have to manage the failure of the mono cuspid valve which is mainly due to the readhesion of the flap which is caused by the fact that if we have only a mono cuspid valve, we need a deeper pocket to reach the contralateral wall so bicuspid valve we have

smaller cusps in mono cuspid we have a larger one. And how can we prevent readhesion? In our first moment we can apply a technical element which is to stabilize the valve in the semi-open position in order not to have the collapse of the valve with itself and then we had decide to apply an hemodynamic element.

Whenever possible, the valve is created in front of a vein confluence. In this way we can obtain a kind of competing flow, a better washout and a more mobile flap. This is undoubtedly a situation that is not present in nature but helps in providing non-collapse

and non-thrombotic events in the cusp itself. In fact, if we look at the mathematical modeling in the flow on valve you can see how it does work in a bicuspid but when we are in a mono cuspid, you see that in the bottom of the flap

we have no flow and here there is the risk of thrombosis and here there is the risk of collapse. If we go to a competing flow pattern, the flap is washed out alternatively from one side to the other side and this suggest us the idea to go through a mono cuspid

valve which is not just opens forward during but is endovascular and in fact that's what we are working on. Undoubtedly open surgery at the present is the only available solution but we realized that obviously to have the possibility

to have an endovascular approach may be totally different. As you can understand we move out from the concept to mimic nature. We are not able to provide the same anatomy, the same structure of a valve and we have to put

in the field the possibility to have no thrombosis and much more mobile flap. This is the lesson we learn from many years of surgery. The problem is the mobile flap and the thrombosis inside the flap itself. The final result of a valve reconstruction

disregarding the type of method we apply is to obtain an anti-reflux mechanism. It is not a valve, it is just an anti-reflux mechanism but it can be a great opportunity for patient presenting a deep vein reflux that strongly affected their quality of life.

Thank you.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.