Create an account and get 3 free clips per day.
Chapters
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
How To Perform An Optimal DCB Angioplasty From Anatomy To Function
How To Perform An Optimal DCB Angioplasty From Anatomy To Function
Advantage wire 0.014DCB angioplastydrug eluting balloonGluide Wire Advantageright foot Rutherford 5terumotherapeutic
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Gore Tag (Gore Medical) / Valiant (Medtronic) / Zenith Alpha (Cook Medical)RelayPlusstent graft systemTerumo Aortictherapeutic
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
Altura stent graft systemEndovascular stent graftLombard medicaltherapeutic
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
2 arch homograftsOpen Ilio-Celiac bypassSacular TAA ; Endograft AbscessTAAA repair with left heart bypassTEVARtherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
Transcript

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- Thank you Mr. Chairman. Thank you, Dr. Veith for you kind invitation. Okay, there we go. Excuse me. DEVASS stands for Dutch EVAS study Group. We all know that women have a twofold, increased risk frequency of rupture.

The average aortic size at rupture is five millimeters smaller. They have a higher rate of undiagnosed cardiovascular diseases. They have smaller ileofemo

more concomitant iliac aneurysms They have a more challenging aortic neck. Smaller proportion is eligible for EVAR and, therefore less likely to meet EVAR IFU. They have a longer length of hospital stay after EVAR, a higher re-admission rate, more major complications,

a higher mortality rate. So, women and AAA is a challenging combination. The rationale behind EVAS is known to you all, I think. The DEVASS cohort is from three high volume centers in The Netherlands. It's a retrospective cohort of 355 patients,

included from April, 2013 to December 2015. So I have two years of result data. If you look at the baseline characteristics, 45 females were in this cohort, with the age of 76 and with some known comorbidities. They were within the instructions for use of 2013, at 28.9%

and even less in the IFU of 2016. These are some more anatomical characteristics with the AAA outer diameter 5.6 centimeters. This is the procedure, most of the patients were under general anesthesia, with the cutdown and the procedure time

was about 100 minute. Straight forward procedure 33 cases out of these 45. Let's have a quick look at the clinical outcomes. The re-intervention's done in the first 12 month. One patient had to conversion to open repair at month 11 due to type 1A Endoleak, and the others were not directly

related to the procedure itself. Although, there was thrombus in approximate stand. In the second month we saw, in the second year we saw some more type 1A migrations and a Stenosis that needed relining, and two out of these patients were within IFU.

If you look at the total cohort of type 1A Endoleak, one patient was not operated on and the other were, either open conversion or relining, and one patient was within IFU. A quick look at the death characteristics. Only one patient was within IFU,

and died after open procedure. So the re-interventions, once again, the first year four patients, in the second year five patients. Conversion to open repair, in total three patients. Endovascular re-intervention was performed

in the first year in two patients and in the second year there were three relinings performed. Endoleak 1A, in total six as stated before. No type two Endoleak reported, and in the first year five patients died, which one was aneurisym related, as in the second year, two patients died,

which one was aneurysm related. If we compare this data with the EVAS Global data, of two years not the three year data, this is the freedom from all persistent Endoleak, close to 98% which is good. Freedom from type 1A Endoleak is within IFU, 97% in the global and outside IFU 85%,

and remind these patients 71% were outside IFU. Freedom from secondary interventions, we had to re-intervene in nine patients and its comparable with outside IFU. Freedom from mortality at two years, a bit higher, aneurism related mortality is 95% which is higher, and also the all cost mortality is higher in women.

So to conclude, this is the first cohort that focuses on women after EVAS. The majority of the patients was outside IFU, and as in EVAR women do not that very good in result, appear to be very much like an EVAR. Thank you.

- Yeah, thank you Mr. Chairman. These are my disclosures. Well, we know that the Heli-FX EndoAnchor System provide fixation and seal in aortic necks, and it can prevent or resolve migration or endoleaks. It's important to have an even spacing around aortic circumference and

to resolve type 1A endoleaks, you need successful, of course, deployment of EndoAnchors and adequate penetration into the aortic wall. The objectives for this study was to quantify the EndoAnchor penetration into the aortic wall in patients undergoing EVAR

and to assess the predictors of successful penetration and to associate that with postprocedural type 1A endoleaks. We searched in the ANCHOR database, and we included patients that has been treated for a type 1A endoleak, and we had to have a good quality

first postprocedure contrast-enhanced CT scan without any artifacts due to metal or glue, and without implantation of adjuvant aortic extension cuffs or stents. And then we selected two patient cohorts, patients with successful treatment

after the implantation of EndoAnchors for a type 1A endoleak, and patients with a persistent type 1A endoleak after the EndoAnchor implantation. Well, this is to show how we determined the position of the EndoAnchors, this is a good penetrating EndoAnchor

more than two millimeters in the aortic wall. This is borderline, and this means there is still a gap between the endograft and the aortic wall or the EndoAnchor itself is penetrating less than two millimeters. And this of course, a non-penetrating EndoAnchor.

The good ones are green, the borderlines are orange, and the non-penetrating are flagged red. Here are results, the anatomical criteria to predict type 1A endoleaks, as you can see here, at the left, in the type 1A endoleak patients, there is a larger aortic diameter

with a median of 30 millimeters, and neck length is shorter, less than one centimeter, compared to the patients with no endoleak. Then about the EndoAnchor penetration, in the patients with a persistent type 1A endoleak, there are significantly more EndoAnchors

which are borderline or non-penetrating. What are the predictors for a successful EndoAnchor penetration. Well, protective factors, oversizing of the endograft compared to the diameter of the infrarenal aortic neck, and the use of the endurant stents.

Independent risk factors are the aortic diameter at the lowest renal artery, and five and 10 millimeters below more than 30 millimeters, a significantly neck thrombus and calcium around the circumference and also a more than two millimeter thickness.

Predictors for a type 1A endoleak, protective factors is the neck length more than one centimeter, and good penetrating EndoAnchors and risk factors for a type 1A endoleak is, again, the aortic diameter five millimeters

below the lowest renal artery more than 30 millimeters, and also boerderline and non-penetrating EndoAnchors and in this logistic regression model, a non-penetrating EndoAnchor is really predictive for a type 1A endoleak, or a persistent type 1A endoleak. A few cases, this is an excellent job,

there are four EndoAnchors placed, and they all penetrate well, although they are not circumferentially divided around the circumference. The majority of the problems in the patients in the ANCHOR database, if a persistent type 1A endoleak

is mainly due to an incorrect indication, these are EndoAnchors red and orange, non-penetrating and borderline. That is because they are above the fabric, or they are in a no-neck aneurysm, so the indication is not correct.

This is again, a patient with an undersized endograft, of course, the EndoAnchors will never penetrate the aortic wall at a post-serial part of the aorta. This is another example of misdeployment, a huge load of calcium and thrombus, and again, to defined a no-neck aneurysm,

and again, well it's obvious that the EndoAnchors will not do their job. These are then the EndoAnchor distribution in successfully treated type 1A endoleaks at the left, 332 EndoAnchors, but if you select only the patients

with an EndoAnchor which are inside recommended use at the right, you can see that more than 90% of those EndoAnchors are good penetrating. Here are the patients at the left with a persistent type 1A endoleak, 248, and you can see the majority is red or orange,

and that means that majority of those patients had an EndoAnchor deployment beyond the recommended use. So to conclude, good EndoAnchor penetration is less likely when there is large aortic diameter, the EndoAnchor is not perpendicular to the stentgraft during deployment,

and it's beyond the recommended use, more than two millimeters of thrombus, not in the infrarenal neck, or a gap more than two millimeters. And in borderline or non-penetrating EndoAnchor, it's predictive for a type 1A endoleak.

Thank you very much.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- So thank you to the organizers and to Dr. Veith, and thank you to Dr. Ouriel for giving me the introduction of the expense of an unsuitable procedure for pain patients. We have no disclosures.

I think when you look at MRV or Venous interventions, you can look at it as providing you a primary diagnosis, confirming a diagnosis if there's confusion. Procedural planning, you can use it as a procedural adjunct,

or you can use it as a primary procedural modality. In general, flow-dependent MRI has a low sensitivity and a slow acquisition time, making it practically impractical. Flow-independent MRI has become more popular, with sensitivity and specificities

rounding at 95 to 100%. There's a great deal of data on contrast-enhanced MRI, avoiding adanalenum using the iron compounds, and you'll hear later from Dr. Black about Direct Thrombus Imaging. There has been significant work on Thrombus Imaging,

but I will leave it up to him to talk about it. MR you can diagnose a DVT, either in both modalities, and you can see here with the arrows. It will also provide you data on the least inaccessible areas for duplex and other modalities,

such as the iliac veins and the IVC, as can be seen here. It is also perhaps easier to use than CTV, because at least in my institution CTV always comes out as a CTA, and I can't help that no matter what happens.

MR can also show you collaterals, which may be very important as you are trying to diagnose a patient. And in essence it may show you the smaller vein that you're more interested in, particularly in pelvic congestion syndrome,

such as this patient with an occluded internal iliac vein. It can also demonstrate, for those of you who deal with dialysis access, or it's central line problems, central venous stenosis and Thrombus. But equally importantly

it may show you that a stenosis is not intrinsic to the wall, but it's actually intrinsic to extravascular inflammation, as in this patient with mediastinal fibrosis, and which will give you a different way of what you wish to do and treat.

The European guidelines have addressed MR in it's future with chronic venous disease and they give it a 1C rating, and they recommend that if doesn't work you should proceed to Ibes. It can be used for the diagnoses of pulmonary embolism,

it can eliminate the use of ECHO, one can diagnose both the presence of the Thrombus, the dilatation of the ventricul, and if one is using Dynamic MR Imaging one can also see mcconnell sign or the equivalent on the septum between the two ventricles.

More interestingly it can also be used now in the chronic thrombuc, pulmonary hypertension, where it can show both the legions that are treatable and untreatable, as some of you may have heard from Dr. Roosevelt

earlier in the day, where they're now treating the outlying lesions with balloon angioplasty serial sessions. It can also look at the ventricul and give you some idea of where the ventricul stands with regard to it's performance,

we're looking at and linking this to the lungs. It can also show you the unusual, such as atresia of the IVC or it can help with you the diagnosis of Pelvic Congestion Syndrome. And it is extremely valuable

in dealing with AVM's, although it may take one, two, or three sessions with differing contrast bulosus to identify both the arterial, the intrinsic lesion, and the outflow lesions,

but a very valuable adjunct. In renal carcinoma it has two values, one is that it can may diagnosis venous invasion, and it may also let you understand whether or not you are dealing with bland thrombus or tumor thrombus,

which can change the staging for the patient and also change the actual intervention that you may perform. If you use flash imaging one will get at least an 89% sensitivity of the nature of thrombus,

whether it's bland or tumor thrombus, which may change what you need to do during the procedure. It could also tell you whether there's actual true wall invasion, which will require excision of the IVC

as opposed to the simple thromboendarterectomy. And this can run up to a specificity of 88% to exclude it. In the brain it's commonly used to diagnose the intra tumor vasculature. Diagnosing between veins and arterial systems, which can be helpful

particularly if one is considering percutaneous or other interventions. With regard to central venous stenosis there is some data and most people are now using an onlay technique where they take the MRI,

they develop the lines for the vessels and then use that as guide in one or two dimensions with fusion imaging to achieve access with a wire, catheter and balloon, as opposed to a blind stick technique.

There is data to show that you can image with the correct catheter balloons within the vessels and do serial MR's to show that it works. And finally with guidance catheters EP is now able to guide the catheter further and further in to achieve from the,

either the jugular or the venous access across the septum and to burn the entrium as appropriate. And finally, one can use MR to actually gain access, burn, and then actually use the MR to look at the specific tissue,

to show that you've achieved a burn at the appropriate area within the cardiac system and thus prove that your modality has achieved it. So in summary, we can use it for primary diagnosis, confirmatory diagnosis,

procedural planning, and procedural adjunct, but we're only still learning how to use it as a primary procedural modality. Thank you so much.

- [Instructor] Thank you very much. So, you saw some of the issues that our, oh, this is the slightest cut, but that's okay. Some of the issues that we've seen with these percutaneous mechanical devices, and, back in the 90's, and perhaps even more than a decade ago, there were a lot of these.

And this space gets hot and cold, and one of the problems is that the level of evidence for doing these is very low, and when it is done, it wasn't done well. And this is a nice registry, a lot of patients enrolled, unfortunately we didn't learn

what we had to learn from these types of registries, because of just the study wasn't done well. So the level of evidence is low, and when we did have them, they didn't really work. And you saw some of the problems, that these devices can cause.

And here's another problem that wasn't discussed. You can see the DVT, iliofemoral DVT in here, and a device is pushed a few times up and down, and sort of aspiration, a Bertoulli, that type of thing. And this looks, oh wow, well this looks good,

maybe the thing is working, except all the clot is up here. So, these devices tend to push the clot around. So the issue is, enter now more recently, these are some of the more recent ones. Note that the AngioVac is not here, I don't consider that a practical thrombectomy device,

and so, it's not here. So, we're going to be talking about JETi. This is a system that is an aspiration system with a jet that comes inside the catheter, therefore the clot is engaged and pulled in and broken down by the jet, therefore there's no hemolysis.

And this demonstrated in this case, which is acute and chronic 17 year old multiple DVTs in the past, the iliofemoral segments are stented, as you can see here, this segment is somewhat fresh clot but these, as you can see, are subacute clot. Look at this, so the system now is designed

for over the wire, but for DVT you can use it without the wire, because it works a lot better. As you can see it can really aspirate the clot, in before your eyes. Now this I have passed the device in here once, and you can see the fresh clot is gone,

we have some residual debris in there, we have not established flow yet, and then I turn the device on... and it pulls the whole thing in, okay? So, very powerful aspiration method. So, and as you can see here, we don't have

a flow establish, outflow established yet. Therefore, when you turn it on, you have a vacuum created right here, and so this tells you how strongly this device can aspirate and work. And this isn't on the table.

After a pass here, two passes here, some residual clot in here, obviously there's residual clot there. So we pass it around these areas once more, and this segment obviously needs to get stented and on the table, re-establish antegrade flow. Since May, we've had 19 patients treated, most of them DVT.

And, based on our assessment, 17 of the 19 patients at a total time of 90 minutes on the table, had better than 90% clot retrieve. We have 30-day patency data on only 16 of those patients, because this is really since this May. And 15 of those were open, one re-thrombosed

and we had to retrieve again. Conclusion, so preliminary experience indicates that this is an effective device. There were no safety issues, we don't see any hemolysis, we don't see any pushing around of the clot, but there is a learning curve to it,

and for best application, thank you.

- [Francesco] We know that the pitfalls of balloon angioplasty and mostly of the atherosclerotic disease in BTK is characterized by long and multiple occlusions. The result of POBA depends on the residual dissection, elastic recoil, and residual, of course, narrowing. Let's say 20% of patients leaving the cath lab,

they have still mechanical problem inside. And these problems may lead to vessel re-occlusion in the first month. These type of failure are mainly due to unrecognized or underestimation of residual mechanical defect after angioplasty.

Drug-coated balloon may have an impact on restenosis, reducing late lumen loss, but have no potential to face any residual mechanical defect after angioplasty. This is, everyone knows the IDEAS trial, where you can see the drug-eluting balloon arm, post-procedure, has a residual restenosis,

approximately to 40%. So it's very easy to climb over 50% and get restenosis, despite a lower late luminal loss compared to drug-eluting stent. It's not functioning, the video, again. Okay.

So how can we perform an optimal DCB angioplasty? - [Man] No. It's not good. Are you using it here? Probably just go on. Try it.

- [Francesco] Yeah, okay. Thank you. So in this 79-year-od male, type 2 diabetes, hypertension, coronary artery disease, and Rutherford 5 CLI on the right foot. You can see that there is a blunt ostial occlusion

of the anterior tibial artery. And the reperfusion is at the level of the ankle and the dorsalis pedis, so very complex and tough occlusion for the entrance and for the exit of this occlusion. Our aim is to deliver the drug at the level of the intima media

and to keep the drug for antiproliferative effect, which is an antegrade approach 5 French sheath, an Advantage wire, Terumo 0.014 with a numbered wire balloon. We want to enter in the entrance, the proximal CTO cup with an intraluminal fashion.

We do the navigation of the body of the occlusion by a subintimal approach. And then we try to reentry in the distal segment by intraluminal fashion. We also have a distal retrograde TA puncture in case we fail the antegrade approach.

We'll do a predilatation according to the vessel size by duplex, one to one balloon/vessel ratio. And we will use a drug-coated balloon, same diameter as the largest uncoated balloon that we used. Always high pressure, more than 12 for a long time.

So this is the procedure. We entered in the central luminal in the proximal cup of the artery. Then we knuckle the wire, this Advantage wire. And this wire is, in my opinion, the best wire you can use for a BTK occlusions.

When you decide to go subintimal, you don't need to push with the metal of the wire, but with this wire, you can push with a very distal segment. So the damage that you make is not so big. You are joking with me. And so at the end, we can enter the lumen

by a central luminal approach in the distal segment. Then we deliver the balloon, and we open the vessel. And we achieve, let's say a good result with a dissection inside the vessel. We also can see that at the level of the foot, the perfusion is quite nice,

but we know we don't just angiography, so we check the duplex at the level of the proximal. But we can see that there is a decrease of the velocity from the ostium to the proximal segment. Let's say it's quite significant decreasing. And then the flow stays quite constant

for all the vessel size, except for the distal part, where we reentry, where we can see there is an acceleration of the flow. So this is the distal segment of the artery. You can see it pulsing. And we have a nice lumen we can measure,

the proximal, which is 3.4, and the distal segment, which is 3.2. So we can choose a 3.5 balloon. We take another picture before the balloon, and you can see that there are these two problems. One is at the level of the ostium of the anterior tibial,

and one is at the level of the exit of the subintimal navigation of the CTO. So we do, again, the balloon dilatation with a 3.5. We have a very good lumen up to now and a very good flow to the end of the lesions. Then we can check, and there

is no more acceleration in the proximal and no more acceleration in the distal segment. So we achieved what we call an optimal angioplasty result from the anatomy, so the angiography, and from the functional point of view. We can deliver the drug-eluting balloon.

In this case, there is a twisting of the drug-eluting balloon, so we took another drug-eluting balloon where there was a bubble. But anyway, we deliver it, all drug-eluting balloon, for the entire long, long lesion

of the anterior tibial artery, and the result is quite, let's say, excellent. We have a very good flow to the distal. Maybe it will come, maybe not. And we can check, before one month, the result of the duplex.

And you can see that the, from a monophasic flow, it becomes a biphasic flow from the proximal to the distal segment, because what this appears is the maximal vessel dilatation that the foot had in condition of a good limb ischemia. And the result at six months, in red is the six months,

and yellow is the baseline. As you can see, at six months, the vessel is perfect, and comparing to the baseline procedure. And also, the distribution of the flow at the level of the foot increased a lot at six months compared to the past procedure.

So defining an optimal balloon angioplasty by duplex is one of the most important features that we have nowadays. In this long occlusion of the anterior tibial artery, the immediate result is good, and the flow is excellent. So you can deliver the drug-eluting balloon, and you can see that six months,

there is no late luminal loss. Vessel is patent. In this other case of anterior tibial occlusions, also blunt ostium and very long. We deliver the balloon, the drug-eluting balloon. The angiography is quite nice, no residual stenosis,

but a duplex tell that there is an acceleration of the flow at this level, in the distal segment of the artery, very significant acceleration. So you can follow this acceleration at one month that is getting worse, and also at three months that the vessel is occluded.

So we do another angiography. You see the vessel is completely open, except in the point where we had the acceleration after the procedure. So in conclusion, DCB angioplasty works for BTK as much as you do a proper vessel preparation

and balloon sizing. Optimal PTA result is a must. Duplex ultrasound is a fundamental tool for diagnosis, treatment, and followup in peripheral intervention, particularly in BTK. Duplex can enrich angiography evaluation.

And optimal duplex after DCB seems to predict success on long-term. Due to its safety, can be used for patency surveillance and indication for reintervention, so we should get skilled. Thank you.

- Good morning everybody. So first of all let me take note of it for the kind invitation to be here, again. These are my disclosures. So Juxtarenal Aneurysm has been described as those aneurysms very close to or even including in the lower margin of renal artery.

And of course the gold standard at that time was aortic supportive clamping and open surgery. Probably open surgery is still the first choice in this very short and complex aortic neck but what do in case of patients unfit for surgery? Or for patients who are asking for

a minor invasive alternative. Of course, Fenestrated EVAR are the solution, the option two, but they require time, are expensive, so what to in case of patients who have no time or cannot wait for this customization process?

Symptomatic patients, patients with huge aneurysm or patients just unfit for fEVAR because of either access or tortuous proximal neck anatomy. So solution is chimney or ovation VENT. What is ovation VENT? It's a kind of open chimney technique,

it's a combination of ovation with renal bare stent. So you know the the new concept of sealing of this stent graft, the circumferential apposition of polymer-filled ring to the aortic wall, typically at 13mm, so to just translate the length of the neck to a specific point

when a couple of millimeter when in that position of course. And you know with the previous, you have just heard the harder device, but with the standard device, the prime and the IX, we have the device positioned

13mm below the lowest renal artery. So, what to do in case of (unclear) when have no apposition of the ring to the aortic wall, we raise the ring, just very close to the renal artery, and then we place some bare metal stent

at the renal BMS. So here you can see our bench test with the fabric of the collars just moved by the bare metal stents. So, VENT is different from chimney, we don't use the covered stents so

it's a lowered provide bracket approach, and more importantly, chimney and endograft are typically competing for the same room so this the reason for gutters, while with VENT we have a stent and endograft, which are not competing for the same room.

The ring is responsible for the sealing and the stent is just responsible for the ventilation of the renal arteries. So this is a typical example, you can see here, a contained rupture aneurysm, in this point, and with a very short neck, so we decide

to land with the first neck and exactly at that level you can see here the steps of the procedure, the contemporary deployment of the renal stent, and the main graft the injection of the polymer, so the first ring is really in contact with the renal stent,

but they're not competing each other and so you can have a nice sealing of the sack. Another case, conical shaped neck, unfit for standard EVAR, unfit for EVAR, because was a huge aneurysm, much more than 8cm, so we decide again to raise the ring,

13mm and fit for standard ovation. And so here you can see the first ring just at this level, the renal stent, responsible for the patency of the renal artery, and you can see here that the first ring is just touching it in one point, the conical neck.

With good sealing. Again, another case with unfit for fEVAR, because of the small access, tortoise access, and so we plant a double VENT, in this case, you can see here again, prucodanus bracket approach, with five french shift,

contemporaneous deployment of stents, and first ring, again nice sealing, and nice follow up with completed sack screen cage, and another one year follow up. So, up to now we have performed 29 cases. We did the first case in June 2015,

technical success was high, 96.6%, we had just one type one endo-leak fixed introaperticaly with the coil embolization. The follow up is, mean follow up is 19 month, and 100% renal artery patency, no further intervention, no sac enlargement,

the majority of arteries, it's shrinkage more than 5mm. So just in conclusion, this option is in, we believe that in selected measures, it's a nice option. It is safe and effective when you can not wait for fenestration graft, like in case of symptomatic

or huge aneurysm, or just patients are unfit for fenestration because of tortuous anatomy or small iliac vessels. Thank you for your attention.

- Thank you very much for the presentation. Here are my disclosures. So, unlike the predecessor, Zenith Alpha has nitinol stents and a modular design, which means that the proximal component has this rather gentle-looking bear stents and downward-looking barbs.

And the distal part has upward-looking barbs. And it is a lower-profile device. We reported our first 42 patients in 2014. And now for this meeting we updated our experience to 167 patients operated in the last five years.

So this includes 89 patients with thoracic aneurysms. 24 patients in was the first step of complex operations for thoracoabdominals. We have 24 cases in the arch, 19 dissections, and 11 cases were redos. And this stent graft can be used as a single stent graft,

in this case most of the instances the proximal component is used or it can be used with both components as you can see. So, during the years we moved from surgical access to percutaneous access and now most of the cases are being done percutaneously

and if this is not the case, it's probably because we need some additional surgical procedures, such as an endarterectomy or in cases of aorto-iliac occlusive disease, which was present in 16% of our patients, we are going to need the angioplasty,

this was performed in 7.7% of cases. And by this means all the stent grafts were managed to be released in the intended position. As far as tortuosity concerned, can be mild, moderate, or severe in 6.6% of cases and also in this severe cases,

with the use of a brachio-femoral wire, we managed to cross the iliac tortuosity in all the cases. Quite a challenging situation was when we have an aortic tortuosity, which is also associated with a previous TEVAR. And also in this instances,

with the help of a brachio-femoral wire, all stent grafts were deployed in intended position. We have also deployed this device both in chronic and acute subacute cases. So this can be the topic for some discussion later on. And in the environment of a hybrid treatment,

with surgical branching of the supoaortic tranch, which is offered to selected patients, we have used this device in the arch in a number of cases, with good results. So as far as the overall 30-day results concerned, we had 97.7% of technical success,

with 1.2% of mortality, and endoleaks was low. And so were reinterventions, stroke rate was 1.2%, and the spinal cord injury was 2.4%. By the way we always flash the graft with CO2 before deployment, so this could be helpful. Similar results are found in the literature,

there are three larger series by Illig, Torsello, and Starnes. And they all reported very good technical success and low mortality. So in conclusion, chairmen and colleagues, Zenith Alpha has extended indications

for narrow access vessels, provide safe passage through calcified and tortuous vessels, minimize deployment and release force, high conformability, it does retain the precision and control of previous generation devices,

however we need a longer term follow up to see this advantages are maintained over time. Thank you very much.

- Thank you friends who have invited me again. I have nothing to disclose. And we already have published that as far as the MFM could be assumed safe and effective for thoracoabdominal aneurysm when used according to the instruction for use at one, three, and four years. Now, the question I'm going to treat now,

is there a place for the MFM? Since 2008, there were more than 110 paper published and more than 3500 patient treated. 9 percent of which amongst the total of published papers relating the use of the MFM for aortic dissections. So, we went back to our first patients.

It was a 40 year old male Jehovah Witness that I operated in 2003 of Type A dissection and repair with the MFM in 2010 because he had 11 centimeter false aneurysm. Due to his dissection, this patient was last to follow up because he was taking care full time off of

his severe debilitated son. When we checked him, the aneurysm seven years later shrunk from 11 to 4 centimeters wide. And he's doing perfectly well. Then the first patient we treated seven years ago, same patient with Professor Chocron

Type A dissection dissection repair in 2006. Type B treated with MFM in 2010. We already published that at one year that the patient was doing fine. But now, at three and seven years, the patient was totally cured.

The left renal artery was perfused retrogradely by aspiration. That's a principle that has been described through the left iliac artery. So what's next? Next there was this registry

that has been published and out of 38 patients 12 months follow up, there were no paraplegia, no stroke, no renal impairment, and no visceral insult. And at 12 month the results looked superior

to INSTEAD, IRAD and ABSORB studies. This is the most important slide to us because when you look at the results of this registry, we had 2.6 percent mortality at 30 days versus 11 30 and 30.7 no paraplegia, no renal failure, and no stroke vessel

13 to 12.5. 33 and 34 and 13 and 11.8 percent. With a positive aortic remodeling occurring over time with diminishing the true lumen increasing the true lumen and increasing the false lumen.

And so the next time, the next step, was to design an international, multicenter, prospective, non-randomized study. To treat, to use the MFM, to treat the chronic type B aortic dissection. So out of 22 patients to date,

we had mainly type B and one type A with no dissection, no paraplegia, no stroke, no renal impairment, no loss of branch patency, no rupture, no device failure, with an increase in true lumen and decrease in false lumen that was true at discharge.

That was true at one, three, and six and 12 month. And in regards with the branch occluded from the parts or the branches were maintained patent at 12 and all along those studies. So, of course these results need to be confirmed in a larger series and at longer follow up,

yet the MFM seems to induce positive aortic remodeling, is able to keep all branches patent during follow-up, has been used safely in chronic, acute, and subacute type B and one type A dissection as well. When we think about type B dissection, it is not a benign disease.

It carries at 20 percent when it's complicated mortality by day 2 and 25 percent by day 30. 30 percent of aortic dissection are complicated, with only 50 percent survival in hospital. So, TEVAR induces positive aortic remodeling, but still causes a significant 30 day mortality,

paraplegia event, and renal failure and stroke. And the MFM has stabilized decreased the false lumen and increase the true lumen. Keeps all the branch patent, favorize positive aortic remodeling. So based on these data, ladies and gentleman,

we suggest that the MFM repair should be considered for patients with aortic dissection. Thank you very much.

- [Lindsay] I would like to discuss three aspects of radiation safety that hopefully will set the basis for subsequent talks in this session. These are my financial disclosures, none of which are relevant to this talk. Over 100 years ago, radiologists developed finger and hand damage, because they were using

their own hands to adjust the radiation prior to diagnostic studies. Now we are seeing disturbing levels of radiation-induced injury, such as posterior cataract in interventionists. The knowledge of radiation biology, has evolved,

to the point that we can say there are no safe levels of radiation. That's because each of us have individual thresholds to radiation damage. Furthermore, eyes and brain are much more radiosensitive, than was previously thought.

The second concept I would like to discuss is that our protective devices are likely giving us a false sense of security. First we'll talk about aprons, because of ergonomic concerns, protective aprons use various lightweight materials in place of lead.

And they are sold on the basis of being easier on the back, but rarely is there any discussion, of their effectiveness as being a barrier to radiation. When they are looked at independently, there is considerable variable, variability and their effectiveness.

In one study, the thicker of the lightweight aprons, equivalent to 0.5 mm of lead, stopped only up to 1.6% of radiation at 70 kV and 6.7% at 100 kV, from striking our less radiosensitive, but highly-valued anatomies. Lead glasses have even more variability.

In one independent study, glasses claiming the same equivalence varied in degree of attenuation by 35-95% when the beam is directed directly at the glasses. This effect is compounded by the shape of the glasses and the position of one's head in relation to the source.

The traditional glasses with side panel, the ones that make you look like your granddad, are most effective for all geometries, and more commonly used and stylish sport-style glasses are less effective. Caps and hoods are a subject of debate.

An optimized setting using phantoms, a leaded surgical cap only reduced whole brain dose by 3.3%, the leaded cap with side drape by 55%. Again, the effect is dependent on head position in relation to the source. Remember, this is an optimized situation.

In real life, these numbers will be even lower. You will hear later in this session about the benefit of ceiling shields. We will have also added protection extending to the floor. More importantly, remember that if you double the distance that you stand from the source of scatter,

you can 1/4 of the dose, three times 1/9. So if you don't need to stand next to the tube step away. The third and final thing I'd like to discuss is that knowledge and technique are essential. The main source of exposure to you and your staff is scatter radiation.

When the primary beam strikes the table, the patient and the detector, it is scattered circumferentially, most markedly, on the tube side. Practical means to reduce your dose is really effectively described in this article

from JVS in 2012. One of the maneuvers that really increases the dose is tube angulation. When angling the tube, you're effectively making the patient much (mumbles) causing the machine to increase the dose.

LAO angulation markedly increases the dose to anyone standing on the patient's right. In addition, when angling the tube it makes it harder to use various barriers, therefore compounding the effect of angulation. This effect of LAO angulation and how the scatter

is greater than RAO angulation to someone standing on the right was quantified, again in the same article in JVS. So the take home messages I would like you to take from this talk are firstly, there are no safe doses of radiation.

Secondly, all measures to reduce radiation are additive. Just having new equipment does not really suffice. And finally, have all of your protective devices tested by your own physicist. Don't believe what the brochures say. Thank you for your attention.

- Thank you Louie, that title was a little too long for me, so I just shortened it. I have nothing to disclose. So Takayasu's arteritis is an inflammatory large vessel vasculitis of unknown origin. Originally described by Dr. Takayasu in young Japanese females.

The in-di-gence in North America is fairly rare. And its inflammation of the vessel wall that leads to stenosis, occlusion or aneurysmal formation. Just to review, the Mayo Clinic Bypass Series for Takayasu's, which was presented last year, basically it's 51 patients, and you can see

the mean age was 38. And you can see the breakdown based on race. If you look at the early complication rate and we look at specific graft complications, you had two patients who passed away, you had two occlusions, one stenosis, one graft infection.

And one patient ruptured from an aneurysm at a distant site than where the bypass was performed. If you look at the late complications, specifically graft complications, it's approximately 40%. Now this is a long mean follow up: this is 74 months, a little over six years.

But again, these patients recur and their symptoms can occur and the grafts are not perfect. No matter what we do we do not get superb results. So, look at the graft outcomes by disease activity. We had 50 grafts we followed long-term. And if you look at the patency, primary patency

right here of active disease versus non-ac it's significantly different. If you look at the number of re-interventions it's also significantly different. So basically, active disease does a lot worse

than non-active disease. And by the way, one of our findings was that ESR is not a great indicator of active disease. So we're really at a loss as to what to follow for active or non-active disease. And that's a whole 'nother talk maybe for another year.

So should endovascular therapy be used for Takayasu's? I'd say yes. But where and when? And let's look at the data. And I have to say, this is almost blasphemy for me

to say this, but yes it should be used. So let's look at some of the larger series in literature and just share them. 48 patients with aortic stenosis fro all were treated with PTA stenting.

All were pre-dilated in a graded fashion. So they started with smaller balloons and worked up to larger balloons and they used self expanding stents in all of them. The results show one dissection, which was treated by multiple stents and the patient went home.

And one retro-paret-tin bleed, which was self limiting, requiring transfusion. Look at the mean stenosis with 81% before the intervention. Following the intervention it was 15%. Systolic gradient: 71 milligrams of mercury versus 14. Kind of very good early results.

Looking at the long term results, ABI pre was .75, increased to .92. Systolic blood pressure dropped significantly. And the number of anti-hypertensive meds went from three to 1.1. Let's look at renal arteries stenosis.

All had a renal artery stenosis greater than 70%. All had uncontrolled hypertension. They were followed with MRI or Doppler follow up of the renal arteries. So, stents were used in 84% of the patients. Restenosis occurred in 50% of them.

They were, all eight were treated again, two more developed restenosis, they ended up losing one renal artery. So at eight years follow up, there's a 94% patency rate. What about supra-aortic lesions? And these are lesions that scare me the most for endovascular interventions.

Carotids, five had PTA, two had PTA plus stent. Subclavian, three PTA, two PTA. One Innominate, one PTA plus stent. One early minor stroke. I always challenge what a minor stroke is? I guess that's one that happens to your ex mother-in-law

rather than your mother, but we'll leave it that way. Long term patency at three years, 86%. Secondary patency at three years, 76%. Fairly good patency. So when Endo for Takayasu's, non-active disease is best. The patient is unfit for open surgery.

I believe short, concentric lesions do better. In active disease, if you have to an urgent or emergent, accept the short term success as a bridge to open repair. If you're going to do endovascular, use graded balloons or PTAs, start small. Supra-aortic location, short inflation times

I think are safer. And these three, for questions for the future. I guess for the VEITHsymposium in three years. Thank you.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Thank you Rod and Frank, and thanks Doctor Veeth for the opportunity to share with you our results. I have no disclosures. As we all know, and we've learned in this session, the stakes are high with TEVAR. If you don't have the appropriate device, you can certainly end up in a catastrophe

with a graph collapse. The formerly Bolton, now Terumo, the RelayPlus system is very unique in that it has a dual sheath, for good ability to navigate through the aortic arch. The outer sheath provides for stability,

however, the inner sheath allows for an atraumatic advancement across the arch. There's multiple performance zones that enhance this graph, but really the "S" shape longitudinal spine is very good in that it allows for longitudinal support.

However, it's not super stiff, and it's very flexible. This device has been well studied throughout the world as you can see here, through the various studies in the US, Europe, and global. It's been rigorously studied,

and the results are excellent. The RelayPlus Type I endoleak rate, as you can see here, is zero. And, in one of the studies, as you can see here, relative to the other devices, not only is it efficacious, but it's safe as well,

as you can see here, as a low stroke rate with this device. And that's probably due to the flexible inner sheath. Here again is a highlight in the Relay Phase II trial, showing that, at 27 sites it was very effective, with zero endoleak, minimal stent migration, and zero reported graph collapses.

Here again you can see this, relative to the other devices, it's a very efficacious device, with no aneurism ruptures, no endoleaks, no migration, and no fractures. What I want to take the next couple minutes to highlight, is not only how well this graph works,

but how well it works in tight angles, greater than 90 degrees. Here you can see, compliments and courtesy of Neal Cayne, from NYU, this patient had a prior debranching, with a ascending bypass, as you can see here.

And with this extreme angulation, you can see that proximally the graph performs quite well. Here's another case from Venke at Arizona Heart, showing how well with this inner sheath, this device can cross through, not only a tortuous aorta, but prior graphs as well.

As you can see, screen right, you can see the final angiogram with a successful result. Again, another case from our colleagues in University of Florida, highlighting how this graph can perform proximally with severe angulation

greater than 90 degrees. And finally, one other case here, highlighting somebody who had a prior repair. As you can see there's a pseudoaneurysm, again, a tight proximal, really mid aortic angle, and the graph worked quite well as you can see here.

What I also want to kind of remind everybody, is what about the distal aorta? Sometimes referred to as the thoracic aorta, or the ox bow, as you can see here from the ox bow pin. Oftentimes, distally, the aorta is extremely tortuous like this.

Here's one of our patients, Diana, that we treated about a year and a half ago. As you can see here, not only you're going to see the graph performs quite well proximally, but also distally, as well. Here Diana had a hell of an angle, over 112 degrees,

which one would think could lead to a graph collapse. Again, highlighting this ox bow kind of feature, we went ahead and placed our RelayPlus graph, and you can see here, it not only performs awesome proximally, but distally as well. And again, that's related to that

"S" shaped spine that this device has. So again, A, it's got excellent proximal and distal seal, but not only that, patency as well, and as I mentioned, she's over a year and a half out. And quite an excellent result with this graph. So in summary, the Terumo Aortic Relay stent graph is safe,

effective, it doesn't collapse, and it performs well, especially in proximal and distal severe angulations. Thank you so much.

- Thank you, Mr. Chairman. Thank you, Dr. Veith for inviting again to this great meeting. It's my disclosures. Well, as we know and heard this meeting, there are some certain limitations of current EVAR (mumbles) anatomical procedure and economical reasons,

and I would like to present a relatively new device which may address current EVAR limitations with a simple low profile system, and basically, ALTURA consists of two parallel stent graft systems. ZEUS No Gate Cannulation is needed and unique features include D-shaped proximal stents

and suprarenal fixation. Multi-purpose (mumbles) possibilities as well, and the system of utilize 14 French delivery system. And as aortic components can be deployed offset to accommodate the offset renals, and then the limbs are also unique

because they're deployed retrograde from distal proximally, and this allows precise positioning, both proximally and distally. Well, as the ALTURA clinical experience includes the very first human implants as well as more recent case performed

with a fully commercial device, and a total of 90 patients with a AAA were enrolled between 2011 and 2015, and follow-ups are taken at 30 days, six months, and annually to five years, and this presentation gives a current status of follow-up, and our results with a 12-month follow-up were published earlier this year.

Our clinical data were collected in total of in 11 sites. It includes 90 patients. And you see here, the patient demographics and anatomy do a typical, which are typical for all EVAR patients and the mean follow-up was 2.7 years. And procedure of success was 99%.

Only one patient, one of the first patient was Gen1 was not implanted, and 50% patients were done percutaneously, and majority of them underwent regional or local anesthesia. So when you look into the results, we see that there was only one case of AAA ruptured,

which occurred at three years due to type II endoleak and sac enlargement as the patient, which refused treatment due to type II endoleak. And all other deaths are paired to no original causes, and two patients had device migration at two years. The same patients appear at three-year period,

and basically these were undersized grafts was sort of our learning curve, and there was no any migration later on. Four patients had type I endoleaks visible on CT, and read by independent committee between 30 days and one year.

None have required secondary treatment and have been no aneurysm enlargement observed. And at one year, not surprisingly for this kind of devices, there was 17% type to endoleaks, but only one patient required secondary procedure due significant sac expansion.

Well, wasn't, of course, what we saw, I expected majority of patients has had shrinkage. There was a four-year period. And this is a patient who was recorded with the type IA endoleak at 30 days, caused by the last calcified nodule,

as you he's here probably none of the other device would tolerate that, but the endoleak did not extended into into the sac and had a leak result spontaneously without sac enlargement through a four-year follow-up period, as we're seeing here. Well, here another patient with type IB endoleak,

due to (mumbles) generation was treated with coils and glue an extension with additional stent graft to external iliac artery. What's interesting was the device. Device can tolerate small distal aortas and five patients who were treated

with small distal aortas and the very first patient was not dilated enough and stents were not deployed, simultaneously causing some stenosis which was easily treated with PTA afterwards, so we learned but it's very great, unique feature to treat the small distal aortas for the device.

And of course, sensing what happening with them, septal endoleaks, because everybody being concerned what happening with that, and nevertheless, there were no septal endoleaks observed during the follow-up period. In conclusion, Mr. Chairman, ladies and gentlemen,

I would like to say this Novel Altura endograft concept has potential to play major role in mainstream EVAR cases and potential benefits include predictability, reposition ability to place the device very, very, very precisely, offset renals, to maximize use of the neck, and low profile

overcomes current and anatomic limitations like tortuous iliacs, narrow bifurcation or access vessels and no limbic inhalation is needed, and basically, I truly believe that this offers option for EVAR day surgery and ruptured aneurysms. Of course, first results are very encouraging.

We need more data. Thank you very much.

- Yeah, thanks very much. Well, we've already heard that things were going well with the two first EVAS trials in the U.S and Europe predominantly, at one year and then we've seen those events described by both Jeff and Matt at two years. Root cause analysis refined IFU

and then prospectively studying this in the EVAS2 trial in the U.S but also in Europe and in the Asia-Pacific, in the Forward2 trial. I'm going to give you a little bit of an update. As we know there have been some concerning reports on retrospective reviews of experience in the early term,

and we've all heard about the details of the revised IFU, and the useful outcomes or grossly improved outcomes we can expect at two years and now Jeff has just told us at three years. Sorry, we'll just go back. So, as Matt mentioned, there have been several publications

that have retrospectively applied the IFU to center's experience to see if they could replicate the good outcomes that were achieved in the retrospective analysis of the IDE trial. Certainly, what is shown is that if you apply the revised IFU, you significantly reduce

patient applicability with this particular device. It has to be acknowledged that many of the procedures that were performed in these publications were performed, a) with a device that's different to the one that we're now going to use, and b) with a procedure that was very different.

It probably impacts on outcomes. I think the major difference with what we'll call the new Nellix device, is that it has the endobag attached firmly, not only to the top of the stent, but also at the bottom. And in our experience this attachment at the bottom

has had a particular impact on aneurysm sac size. The procedure has also evolved, and the procedure now involves steps such as unfurling of the endobags before stent deployment, and also pre-fill of the endobags with saline prior to filling with the polymer,

as well as the importance, as Matt mentioned, of accurately deploying and using all of the infrenal neck and the iliac sealing zones. We also performed a retrospective analysis of our experience in consecutive cases at Aukland Hospital with considerably longer follow-up.

And you can see that the patients on the modified IFU had a significantly different and improved freedom from type 1A endoleak, and also the composite end point of type one endoleak, sac expansion, and freedom from reintervention was highly significantly improved.

So that's a little bit different to the experience reported, possibly because we've been applying the optimized technique and had access to the new Nellix device for some time. So EVAS FORWARD 2 is being performed in Europe and in the Asia-Pacific region.

A 300-patient confirmatory trial with standard parameters. This is the very first case that was done. We did this in Aukland, and you can see something we weren't observing with the earlier Nellix device without the distal seal. We're seeing some cases with significant sac shrinkage.

You can see the earlier, or interim results, I'm just presenting for the first time here today from the FORWARD 2 trial. A very high freedom from type 1A endoleak, and freedom from reintervention, as of July 2018. Just out of interest, we also did a retrospective review

of patients in our own center that has had at least one year of follow-up using the new Nellix device with optimized procedures to see what the outcome would be, and you can see at one year that there's no type one endoleaks. Impressively, absolutely no migration.

We have seen at two years a couple of patients that had some sac growth. Even on IFU we felt that they had degeneration of their iliac arteries with loss of seal. Here you can see a case where you can see the dramatic sac shrinkage we're now seeing

in some cases, and this is the one where we saw some sac growth where we ended up doing a second reintervention to extend the distal seal. Of course, the real driver for us to continue with the Nellix and EVAS technology is this suggestive but very impressive freedom

from all cause in cardiovascular mortality. That really is driving us to use this technology in our patients. So in conclusion, we'll know that, in fact, there's ongoing evolution of this technology, and we're looking forward to being involved

in next generation EVAS that will follow the important EVAS2 and EVAS FORWARD trials sometime later in 2019. Thanks very much. (applause)

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

- I have no disclosures. - So the eye lens is a highly radiosensitive tissue. And the radiation damage is a cataract, this is a cancer-like pathology resulting from mutating events. It's a posterior sub-capsular cataract. And in several studies we have seen quite a large number of interventionalists or vascular surgeons or cardiologists

showing this exact type of posterior lens changes, characteristic of radiation exposure. About half of the interventionalists in this study. The risk increases with duration of work years and decreases with regular use of protection. So the conclusion in this paper was

that radiation injuries to the lens can be avoided. By, for example, reducing the dose. So this is obvious that we should do in every way we can do it. And there are many steps shown in this excellent paper published in the European Journal of Vascular Surgery.

And, on top of that, of course, use radiation shields. And I've been focused today on different eye shields. So we tested the eye dose reduction with several commercially-available protection glasses and shields during realistic endovascular procedures in an experimental setting,

using phantoms and dosimeters at the front of the eyes, the left and the right eyes. And this was an EVAR protocol using a Siemens C-arm. So we tested the more modern sports glasses. The reduction to the left eye was only 15 to 50 percent, or in some glasses just 10 to 15 percent.

So much, much lower than what's promised in the brochure. The fit over glasses protected best, especially if you don't use them over personal glasses. So this is because of the, it's if there is just a small gap between the cheek and the glasses, there's scattered radiation pulsing in there.

And it also scatters on your face up to the eye lens. We also tested visors and you can see the effect of having them at a correct angle. They should be downward-angled, and you have a pretty good protection. But the best of all was the ceiling-mounted shield,

if it's properly used with a very high reduction, 90 to 95 percent. So this is an image from our hospital. I'm in the middle with these fit-over glasses that we have all now beginning to use. So in this paper, it was nicely shown that the position

of the shield also is very important. So it should be very tight to the patient and close to the femoral access. Other protective measures like these surgical drapes, we use them and there is a good additive reduction of radiation exposure

to the chest and hands, shown by this paper. But no one has ever related the reduction to the head or the eye. And the latest addition in our center is this zero-gravity suit that has been shown to significantly reduce radiation exposure

to the whole body, including the head and the eyes. So I think this is a very important new device. In this study, from the London group, we can see that adherence to use these kinds of shields is depressingly low. Use of lead-protective glasses was only 36 percent

among the operators and ceiling-mounted leaded shields, no one uses them, at that time at least. So, in conclusion, there are several radiation protection eyeglasses used today. They offer a highly limited dose reduction, giving a false sense of security.

A proper use of ceiling mounted lead shields is essential for adequate protection to the eye lens. And the protection eyeglasses and visors should only be used as a complement. And consider also using additional devices as full-body protection to maximize your protection, thank you.

- [Presenter] Dear colleagues, good afternoon. I present an update on the double-blinded trial on CCSVI Brave Dreams. This is my disclosure. The first data coming out from the Brave Dreams trial were affected by the (mumbles). Where venous PTA did not demonstrate additional effect

on the measure of disability and the new MRI lesion in relapsing remitting (RR) Multiple Sclerosis group at 12 month follow up. The major limitation of the trial is the inefficiency of balloon angioplasty in restoring flow in all the presentation of CCSVI

because in the prime, the flow was restored just in 79% of people. It means in favor of gravity and CCSVI criteria were solved in only 54% of the PTA arm. However, the technique demonstrated to be safe. Pre-operatory morphology affects the effectiveness

of PTA in jugulars, and Giaquinta demonstrated that patients who exhibit hypoplasia, external compression, or longitudinal endoluminal defects did not respond very well to the treatment. And commenting on this, Moneta proposed an additional post hoc analysis focusing

on the PTA responder group identified by Giaquinta in the materials of Brave Dreams trial. So Ladies and Gentlemen, is the hypothesis to be rejected? The CCSVI hypothesis could be considered valid if the subgroup with restored flow

following balloon angioplasty shows benefits compared to the subgroup in which the PTA did not work. So we performed a sub-analysis by comparing the patients with jugular flow not Doppler detectable in upright at 12 months, respect to those

who presented a mono-directional phasic jugular flow. The flow data of the balloon angioplasty arm was matched with a caffeine point, which have accumulation of new lesion on MRI. And the result was extraordinary because 91% of people with restored flow in upright

showed no lesion accumulation. This time the analysis was significant also at 0-12 months where we found 77% of people with restored flow, lesion free. And more than 20% of people protected by PTA were near follow up.

So Ladies and Gentlemen, in conclusion, PTA is safe but restored the flow in favor of gravity in the jugulars in just 79% of patients. However, a post-hoc analysis demonstrates a significant decreased risk of new lesion development at MRI in patients with restored jugular flow

following balloon angioplasty, as compared to those with absent flow and/or to sham. Further analysis and investigation may provide the pre-operatory ID of such a subgroup of responders. Thank you very much.

- Rifampin-soaked endografts for treating prosthetic graf y work? I have no conflicts of interest. Open surgery for mycotic aneurysms is not perfect. We know it's logical, but it has a morbidity mortality of at least 40% in the abdomen and higher in the chest.

Sick, old, infected patients do poorly with major open operations so endografts sound logical. However, the theoretical reasons not to use them is putting a prosthetic endograft in an infected aorta immediately gets infected. Not removing infected tissue creates

an abcess in the aorta outside the endgraft and of course you have to replace the aorta in aorto-enteric fistulas. So, case in point, saccular aneurysm treated with a TEVAR and two weeks later as fever and abdominal pain.

You start out like this, you put an EVAR inside you get an abcess. Ended up with an open ilio-celiac open thoraco with left heart bypass. Had to sew two arches together. But what about cases where you can't

or you shouldn't do open? For example, 44 year old IV drug user, recurrent staph aureus endocarditis, bacteremia, had a previous aorto-bifem which was occluded, iliac stents, many many laparotomies ending in short bowel syndrome and an ileostomy.

CT scan and a positive tag white cell scan shows this. It's two centimeters, it's okay, treat it with antibiotics. Unfortunately, 10 days later it looks like this, so open repair. So, we tried for hours to get into the abdomen. The abdomen was frozen and, ultimately,

we ended up going to endografts so I added rifampin to it, did an aorta union and a fem fem and it looked like this and I said well, we'll see what happens. She's going to die. Amazingly, at a year the sac had totally shrunk. I remind you she was on continuous treatment.

She had her heart replaced again for the second time and notice the difference between the stent at one year to the sac size. So adding rifampin to prosthetic Dacron was first described in the late 1980's and inhibits growth in vivo and in vitro.

So I used the same concentration of 60 milligrams per milliliter. That's three amps of 600, 30 CC's water injected into the sheath. We published this awhile back. You can go straight into the sheath in a Cook.

Looks like this, or you can pre deploy a bit of little Medtronic and sort of trickle it in with an angiocatheter. So the idea that endografts in infected aortas immediately become infected, make it worse. I don't think it's true.

It may be false. What about aorto-enteric fistulas? This person showed up 63 year old hemorrhagic shock, previous Dacron patch, angioplasty to the aorta a few years ago, aorto-duodenal fistula not subtle. Nice little Hiroshima sign

and occluded bilateral external iliac arteries. Her abdomen looked like this. Multiple abdominal hernias, bowel resections, and had a skin graft on the bowel. Clearly this was the option. I'm not going to tell you how I magically got in there

but let's just leave it at that I got an endograft in there, rifampin soaked, sealed the hole and then I put her on TPN. So the idea that you have to resect and bypass, I'll get back to her soon, I think it's false. You don't necessarily have to do it every time. What about aorto-esophageal hemorrhagic shock, hematemesis?

Notice the laryng and esophageus of the contrast, real deal fistula. Put some TEVARs in there, and the idea was to temporize and to do a definitive repair knowing that we wouldn't get away with it. On post update nine, we did a cervical esophagostomy

and diverted the esophagus with the idea that maybe he could heal for a little while. He went home, we were going to repair him later, but of course he came back with fever, malaise, and of course gas around the aneurysm and we ended up having to fix him open.

So the problem with aorto-enteric fistulas is when you put an endograft in them it's sort of like a little boomerang. You get to throw them out and it's nice and it sails around but in the end you have to catch it. So, in the long term the lady I showed you before,

a year and a half later she came back with a retroperitoneal abscess. However, she was in much better shape. She wasn't bleeding to death, she'd lost weight, she'd quit smoking. She got an ax-bi-fem, open resection,

gastrojejunostomy and she's at home. So, I think the idea's, I think it's false but maybe realistically what it is, is that eventually if you do aorto-enteric fistulas you're going to have to do something and maybe if you don't remove the infection

it may make it worse. So in conclusion, endografts for mycotic aneurysms, they do save lives. I think you should use them liberally for bad cases. It could be a bad patient, a bad aorta, or bad presentation. Treat it with antibiotics as long as possible

before you put the endograft in and here's the voodoo, 60 milligrams per mil of rifampin. Don't just put in there, put it in with some semblance of science behind it, put it on Dacron, it may even lead to complete resolution. And I've also added trans-lumbar thoracic pigtail drains

in patients that I literally cannot ever want to go back in. Put 'em in for ten days wash it out. TPN on aorto-enterics for a month, voodoo, I agree, and I use antibiotics for life. Have a good plan B because it may come back in two weeks or two years, deploy them low

or cut out the super renal fixations so you can take them out a little easier. Thank you.

- Good morning, I want to thank Professor Vitta for the privilege of presenting on behalf of my chief, Professor Francesco Speziale, the result from the EXTREME Trial on the use of the Ovation stent graft. We know that available guidelines recommend to perform EVAR in patient presenting at least a suitable

aortic neck length of >10mm, but in our experience death can be a debatable indication because it may be too restrictive, because we believe that some challenging necks could be effectively managed by EVAR. This is why when we published our experience 2014,

on the use of, on EVAR, on the use of different commercially available device on-label and off-label indication, we found no significant difference in immediate results between patient treated in and out IFU, and those satisfactory outcomes were maintained

during two years of follow-up. So, we pose ourself this question, if conventional endografts guarantee satisfactory results, could new devices further expand EVAR indication? And we reported our experience, single-center experience, that suggests that EVAR by Ovation stent-graph can be

performed with satisfactory immediate and mid-term outcomes in patient presenting severe challenging anatomies. So, moving from those promising experiences, we started a new multi-center registry, aiming to demonstrate the feasibility of EVAR by Ovation implantation in challenging anatomies.

So, the EXTREME trial was born, the expanding indication for treatment with standard EVAR in patient with challenging anatomies. And this is, as I said, a multi-center prospective evaluation experience. The objective of the registry was to report the 30-day and

12 month technical and clinical success with EVAR, using the Ovation Stend-Graft in patient out of IFU for treatment by common endograft. This is a prospective, consecutively-enrolling, non-randomized, multi-center post market registry, and we plan to enroll at least 60 patients.

We evaluated as clinical endpoints, the freedom from aneurysm-related mortality, aneurysm enlargement and aneurysm rupture. And the technical endpoint evaluate were the access-related vascular complications, technical success, and freedom from Type I and III endoleaks, migration,

conversion to open repair, and re-interventions. Between March 17 and March 18, better than expected, we enrolled 122 patients across 16 center in Italy and Spain. Demographics of our patient were the common demographic for aneurysm patients.

And I want to report some anatomical features in this group. Please note, the infrarenal diameter mean was 21, and the mean diameter at 13mm was 24, with a mean aortic neck length of 7.75mm. And all grafts were released accorded to Ovation IFU. 74 patients out of 122

presented an iliac access vessel of <7mm in diameter. The technical success reported was 98% with two type I endoleak at the end of the procedure, and 15 Type II endoleaks. The Type I endoleak were treated in the same procedure

by colis embolization, successfully, and at one month, we are no new Type Ia endoleaks, nine persistent Type II endoleaks, and two limb occlusion, requiring no correction. I want to thank my chief for the opportunity of presenting and, of course, all collaborators of this registry,

and I want to thank you for your attention, and invite you, on behalf of my chief, to join us in Rome next May. Thank you.

- Thanks Stephan, yes I just want to give you five tips and tricks that I've learnt with my experience to this technique, and also then I'll present some results from the Ascend International Trials. I have an obvious disclosure that is important to show.

So, I do think that custom-made devices or phenostate graphs are the gold standard in this area of the difficult neck to aneurysm, but there are constraints with it, both financially and atomically, and of course its not the perfect solution

so we still need to strive to find better solutions for patients and indeed an off the shelf solution is very useful especially in emergency situations. I think we're all quite surprised by the outcomes from parallel grafts.

I certainly, when I saw this originally thought this was never going to work but actually, the results from standard evar with chimneys are really quite good. There is however always the potential for gutter endoleaks when aligning

parallel grafts with conventional EVAR stents which are not really designed for this purpose. So, endovascular sealing with parallel grafts offers a solution to this with the prevention potentially of gutter endoleaks because the polymus bag will seal alongside

the parallel grafts. And in practice this works quite well so you can position two, three or even four parallel grafts alongside the nellix sealing device to give yourself a really good seal and an example is shown here on the CT.

So tips for getting good outcomes from this, well the first is an obvious one, but its to plan very carefully, so do think you need to be very cautious in your planning of these with regard to multiple levels of the technique

including access, the type, length, and the nature of the parallel grafts you're going to use. I'll talk a bit more about the neck lengths but aneurysm lengths as well because there are some restraints with the

nellix device in this regard. You need to take very carefully about seal both proximally and distally and I do think you need to do this in a hybrid theater with experienced operators. I mentioned neck lengths and my Tip two is

you have to not compromise on neck quality and neck length. So you need straight healthy aorta of at least 15mm, of less than 30 diameter and a low thrombus burden. If you do compromise you'll see situations as the one on the photograph shows

where you get migration stents so you must not compromise on the quality and length of your aortic neck and if that means doing more chimneys, do it that's not a major problem but if you compromise on neck,

you will have problems. I mentioned the parallel grafts, again this is part of the planning but we use balloon expandable stents of a reasonable length to ensure that you get at least a centimeter into each of the branches

and you have to be careful to position these above the polymer bags so that they don't become constrained by the polymer bags from the nellix device. You have to be very careful when positioning these so the tip four is watch the parallax in

two different angles to be sure, as in the case here, that you line up all your stents appropriately and that you don't get crushing of any of the individual stents. So parallax is vital. And th

ltiple levels of redundancy in the nellix system which you can use to your advantage to ensure you get a good seal. So here's an example where the bags you can see are not entirely filled using the primary fill.

And it is quite difficult because often you get polymer pressures that are slightly erroneous in the endo bags. So use the redundancy including what's called the secondary fill of these bags so you can adequately fill the bags

right up into the aortic neck and ensure a very good proximal seal. So what are the results, well this is the post-market registry of Ch-EVAS this is an open-label study with no screening and I'll just show you a few slides of the data

on 154 de-novo procedures, which are a combination of single, double triple, and even quadruple chimneys. And if we look firstly at outcomes at 30 days the outcomes are good, that you'd expect in these difficult anatomies,

so 2.6% mortality and stroke, and just two cases of temporary renal failure. And if we look out 12 months, the freedom from aneurysm related and all cause mortality is favorable and comparable with any of the other endovascular techniques

in these difficult anatomies, in the upper 90 percents. And endoleak rates, you pretty much eradicate type two and type three endoleaks, but remember this is only 12 months, and very low levels of type one endoleak

and its really the type one endoleaks that are difficult to fix and if you ensure that proximal neck is adequate this shouldn't occur. And finally just secondary interventions, again this is out 12 months. Secondary Interventions are low and again

I think with the tips that I've shown you, you can reduce this to an absolute minimum. So this does offer an off the shelf alternative I don't think in any way this is to match the current gold standard which to me is the custom-made devices, but it's a very useful

adjunct to the techniques we have, and again provides that off the shelf solution which in emergencies and urgent cases is essential. Don't compromise on your neck, the outcomes I think, in this group are promising, but of course, the long term durability is

absolutely essential so it's important we follow these patients out to at least 5 years. Thank you.

- Thank you so much for having me here. I must confess it's not my talk. It's Professor Veroux's talk. Veroux couldn't join us, so I hope you will forgive me if I cannot read it properly as he would have done. It's just a friendship act of being here.

Talking with you about the potential of these treatment of ventricular veins for relief symptoms, headache like. Professor Veroux published on PlosOne Single-center open label observational study was conducted from January 2011 to December 2015.

Basically focused on 113 headache positive patients. As you see there were different kinds of MS patients involved. 82 were relapsing emitting. 22 were secondary progressive. Nine were primary progressive.

Basically the including criteria included headache resistant to the best medical therapy. There was a bilateral internal jugular vein with a stenosis bigger than 50% of moderate to severe insufficiency of the flow. The stenosis of course were suitable for treatment

and they were followed up at least for 12 months. Basically the followup included a variation of the MIDAS, Migraine Disability Assessment Score. It was preformed the day before angioplasty. Then three months after angioplasty and then at the end of the follow-up.

As it was appears,. Of curse we can add the different kinds of lesions of the juvenile level. As it was previously reported, the Professor Veroux ended selection. It is mandatory in these kinds of procedures.

Adding the transversal defect the single most important criteria for determining if the PTA would be successful or not. Of course, again, transversal rather than longitudinal defects are preferred in the treatment of

this kind of patients. The exclusion criteria were the possibility of hypoplasia or extreme muscle compression. In particular, as you know there is the omohyoid possibility of compression.

Looking at a followup that is significantly of three years or more. The clinical results in these patients affected by headaches lead to significant reduction. And 86% of them with an improvement of the MIDAS scores in the three months following up.

At the same time, the improvement was maintained throughout the followup period up to three years. Mainly in the relapse remitting and the secondary progressive patients. So the conclusion of the investigation you can again (mumbles)

is that patient selection is mandatory, of course, again, on the transverse lesion mainly. Balloon valvuloplasty is feasible in these patients and has succeeded with a good result at three years followup in the MIDAS score. Of course, these findings are suggesting

that it could be a useful intervention for selected MS patients with persistent headaches and of course, non-thrombosis stenosis of the IJVs. Thank you so much.

- Thank you Dr. Melissano for the kind interaction. TEVAR is the first option, or first line therapy for many pathologies of the thoracic aorta. But, it is not free from complications and two possible complications of the arch are the droop effect and the bird-beak. I was very interested as Gore came up with the new

Active Control System of the graft. The main features of this graft, of this deployment system are that the deployment is staged and controlled in putting in the graft at the intermediate diameter and then to the full diameter. The second important feature is that we can

optionally modify the angulation of the graft once the graft is in place. Was very, very interesting. This short video shows how it works. You see the graft at the intermediate diameter, we can modify the angulation also during this stage

but it's not really used, and then the expansion of the graft at the full diameter and the modification of the angulation, if we wished. This was one of the first cases done at our institution. A patient with an aneurysm after Type B dissection. You see the graft in place and you see the graft after

partial deployment and full deployment. Perhaps you can appreciate, also, a gap between the graft and the lesser curvature of the arch, which could be corrected with the angulation. As you can see here, at the completion angiography we have an ideal positioning of the graft inside the arch.

Our experience consisted only on 43 cases done during the last months. Mostly thoracic aneurysm, torn abdominal aneurysm, and patients with Type B aortic dissection. The results were impressive. No mortality, technical success, 100%,

but we had four cases with problems at the access probably due to the large bore delivery system as you can see here. No conversion, so far and no neurological injury in this patient group. We have some patients who came up for the six months follow-up and you see here we detected one Type 1b endoleak,

corrected immediately with a new graft. Type II endoleak which should be observed. This was our experience, but Gore has organized all the registry, the Surpass Registry, which is a prospective, single-arm, post market registry including 125 patients and all these patients

have been already included in these 20 centers in seven different countries in Europe. This was the pathology included, very thorough and generous, and also the landing zone was very different, including zone two down to zone five. The mean device used per patient were 1.3.

In conclusion, ladies and gentlemen, the Active Control System of the well known CTAG is a really unique system to achieve an ideal positioning of the graft. We don't need to reduce the blood pressure aggressively during the deployment because of the intermediate diameter

reached and the graft angulation can be adjusted in the arch. But, it's not reversible. Thank you very much for your attention.

- Thank you, Mr. Chairman. Good morning ladies and gentleman. I have nothing to disclose. Reportedly, up to 50 percent of TEVARs need a left subclavian artery coverage. It raises a question should revascularization cover the subclavian artery or not?

It will remain the question throughout the brachiograph available to all of us. SVS guidelines recommend routine revascularization in patients who need elective TEVAR with the left subclavian artery coverage. However, this recommendation

was published almost ten years ago based on the data probably even published earlier. So, we did nationwide in patient database analysis, including 7,773 TEVARs and 17% of them had a left subclavian artery revascularization.

As you can see from this slide, the SVS guideline did affect decision making since it was published in 2009, the left subclavian artery revascularization numbers have been significantly increased, however, it's still less than 20%.

As we mentioned, 50% of patient need coverage, but only less than 20% of patient had a revascularization. In the patient group with left subclavian artery revascularization, then we can see the perioperative mortality and morbidities are higher in the patient

who do not need a revascularization. We subgroup of these patient into Pre- and Post-TEVAR revascularization, as you can see. In a Post-TEVAR left subclavian revascularization group, perioperative mortality and major complications are higher than the patient who had a revascularization before TEVAR.

In terms of open versus endovascular revascularization, endovascular group has fewer mortality rate and major complications. It's safer, but open bypass is more effective, and durable in restoring original profusion. In summary, TEVAR with required left subclavian artery

revascularization is associated with higher rates of perioperative mortality and morbidities. Routine revascularization may not be necessary, however, the risks of left subclavian artery coverage must be carefully evaluated before surgery.

Those risk factors are CABG using LIMA. Left arm AV fistula, AV graft for hemodialysis. Dominant left vertebral artery. Occluded right vertebral artery. Significant bilateral carotid stenosis.

Greater than 20% of thoracic aorta is going to be or has been covered. And a history of open or endovascular aneurysm repair. And internal iliac artery occlusion or it's going to be embolized during the procedure. If a patient with those risk factors,

and then we recommend to have a left subclavian artery revascularization, and it should be performed before TEVAR with lower complications. Thank you very much.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- Mister Chairman, ladies and gentlemen. Good morning. I am excited to present some of the data on the new device here. These are my disclosure. There are opportunities to improve current TEVAR devices. One of that is to have a smaller device,

is a rapid deployment that is precise, and wider possibilities to have multiple size matrix to adapt to single patient anatomy. The Valiant device actually tried to meet all these unmet needs, and nowadays the Navion has been designed on the platform

of the Valiant Captivia device with a completely different solution. First of all, it's four French smaller than the Valiant Captivia, and now it's 18 French in outer diameter for the smallest sizes available.

The device has been redesigned with a shorter tip and longer length of the shaft to approach more proximal diseases, and the delivery system deploys the graft in one step that is very easy to accomplish and precise.

The fabric has been changed with nowadays the Navion having the multi-filament weave of the Endurant that already demonstrates conformability, flexibility, and long-term durability of the material. It's coming with a wide matrix of options available. In terms of length, up to 225 mm.

Diameters as small as 20 mm, and tapered device to treat particular anatomical needs. But probably the most important innovation is the possibility to have two proximal configuration options: the FreeFlo and the CoveredSeal.

Both tied to the tip of the device with the tip-capture mechanism that ensures proximal deployment of the graft that is very accurate. This graft is being under trial in a global trial

that included 100 patients all over the world. The first 87 patients have been submitted for primary endpoint analysis. 40% of the patients were females. High risk patients showed here by the ASA class III and IV. Most of the patients presented

with a fusiform or saccular aneurysm, and the baseline anatomy is quite typical for these kinds of patients, but most of the patients have the very tortuous indices, both at the level of the access artery tortuosity and the thoracic aorta tortuosity.

Three-fourths of the patients had been treated with a FreeFlo proximal end of the graft, while one-fourth with the CoveredSeal. Complete coverage of the left subclavian occurred in one-fifth of the patients. Almost all had been revascularized.

Procedure was quite short, less than one and half hour, percutaneous access in the majority of cases. There were no access or deployment failures in this series. And coming to the key clinical endpoints, there were two mortality reported out of 87 patients.

One was due to the retrograde type A dissection at day one, and one was not device related almost at the end of the first month. Secondary procedures were again two. One was in the case of retrograde type A dissection, and the second one in a patient

that had an arch rupture due to septicemia. Type 1a endoleak was reported in only one case, and it was felt to be no adverse event associated so was kept under surveillance without any intervention. Major Adverse Events occurred in 28% of the cases. Notably four patients had a stroke

that was mild and not disabling, regressing in two weeks. Only one case of spinal cord ischaemia that resolved by drainage and therapy in 20 days. In summary, we can say that the design enhancement of Valiant Navion improved upon current generation TEVAR.

Acute performance is quite encouraging: no access or deployment failure, low procedural and fluoro times, low rate of endoleaks, Major Adverse Events in the range expected for this procedure.

Nowadays the graft is USA FDA approved as well as in Europe CE mark. And of course we have to wait the five years results.

- Thank you, good afternoon. I have no disclosures. Well, obesity really is a worldwide epidemic, but among all of the industrialized nations the United States seems to lead the league in terms of the percentage of our population overweight and/or obese.

We're all aware of the adverse health effects of obesity including predisposing to diabetes, itself an epidemic problem, at least in this country. In fact the AMA has suggested obesity should now be declared a disease state with its own ICD-10 code. If that's true as this article in time magazine said

if obesity is a disease why are so many obese patients seemingly healthy? We do know that obese patients tend to have smaller myocardial infarct size, they have improved survival after episodes of heart failure, there's improved survival

after CABG and coronary angioplasty procedures, and there's reduced early and late mortality after acute stroke. In fact we're seeing this so-called obesity paradox play out in vascular surgery. This was an early review of 7500 patient undergoing

a variety of vascular surgical procedures and what you see is this U-shaped curve where is overweight, mildly and moderately obese patients have significantly lower operative mortality. This was a similar NSQIP analysis of over 5000 patients undergoing AAA repair and among all procedures

again you see that same U-shaped curve largely reflected the reduced mortality for open surgery for overweight, mildly and moderately obese patients. We became interested in whether this would play out on a low risk procedure, relatively speaking, carotid endarterectomy.

We investigated 23000 patients undergoing carotid endarterectomy in the NSQIP database. Only a quarter of our patients were normal weight, about 40% over weight, and then nearly 30% were obese. And we found the very same thing, although mortality is exceedingly low, 0.6%,

it was significantly lower in overweight, mildly and moderately obese patients. The overall stroke rate was 1.4% and again that very same U-shaped curve. Stroke rate lower in overweight, mildly and moderately obese patients.

In the most recent and the largest data set ever analyzed, 92000 patients undergoing the spectrum of vascular surgical procedures. A third of the patients only normal weight, about a third overweight, and more than a quarter severely overweight.

We found that mortality was actually higher in underweight compared to normal weight individuals. So it's not good to be thin, many of us take comfort in that. We found that, they found that mortality was lower in overweight compared to normal weight individuals.

Mortality was lower in obese compared to normal rate individuals and this reflected the fact that cardiac complications occurred significantly less often in obese compared to normal weight individuals. And respiratory complications occurred less often

in obese compared to normal weight individuals. How do you explain this? Well this was a fascinating report from the Health Professionals Follow-Up Study. 38000 individuals, men middle-aged who have been followed for up to 25 years, and if you look at overall

mortality, again that very same U-shaped curve. But what they did in this study was they divided BMI into lean body mass and fat body mass and as you can see there is that U-shaped relationship with respect to lean body mass, but when they ferreted out statistically fat body mass

there was a direct proportional correlation with mortality. How do we explain this? Well we're learning that adipose tissue is more than just a storage depot for energy, it is also an endocrine organ. Adipose tissue produces molecules called adipokines

the most important of which is adiponectin. An elevated BMI is associated with reduced levels of adiponectin which has a positive impact on cardiovascular complications. So in summary, the impact of weight on vascular outcomes is complex.

Modest excess weight appears to be protective for perioperative mortality and cardiorespiratory morbidity. Excess weight is a risk factor for wound complications but the obesity paradox may be related to the endocrine function of adipose tissue. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.