Create an account and get 3 free clips per day.
Chapters
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
angiogramarterybrachiocephaliccatheterchapterclickcoilcoilsembolizationmicromicrocatheterNonepseudoaneurysmPseudoaneurysm brachiocephalic arterystenttrachea
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
angiogramangioplastybasalbiphasicblushcalibercapillarychapterchronicallycollateralsdopplerflowhemostatincreasedischemiaizationnormaloccludedopacificationoutflowpatientsperfusionphasicpredictorsrevascularizationrevascularizesignsignaltriphasiculcerulcerationsvessel
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Q&A- Embolization: Trauma and Bleeding Cases | Emoblization: Bleeding and Trauma
Q&A- Embolization: Trauma and Bleeding Cases | Emoblization: Bleeding and Trauma
abnormalityaccessangiogrambleedbleedingchapterembolizationfoamgelfoamhemorrhagenaturenegativeNoneorganpathologypatientpatientsplacementpostpartumpreserveradialrupturescantpa
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
Scope of IR Procedures in South Africa | South African Interventional Society (SAintS)
biliarycardiologistscenterschapterinterventionalInterventionsneuroparacentesisproceduressurgeonsvascular
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
angiographybluecancerscenterschapterdiseasesdisordersembolizeflowfluidhepaticimagingInterventionsintestineleakingliverlymphlymphaticlymphaticsoncologyPathophysiologypatientsproteinthoraxtreatable
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
angiogramarteryaxialbleedcatheterizationchaptercontrastcoronalCoverage StentembolizationembolizehematomailiaciliacsimageinjuryNoneoptionpatientpseudoaneurysmRetroperitoneal hematomastentstents
Introduction to Establishing Periprocedural Screening Guidelines to reduce bleeding risk associated with Image-Guided Theraputic and Diagnostic Procedures | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
Introduction to Establishing Periprocedural Screening Guidelines to reduce bleeding risk associated with Image-Guided Theraputic and Diagnostic Procedures | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
anticoagulantscampuschapterclinicclinicalcoagulationgraduatedguidedguidelineshospitalinpatientinpatientsinterventionallabsmayomedicationsneuroNonenonvascularnursenursingpatientspracticeproceduresradiologistsradiologyrochesterspecialistultrasoundvascular
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
amputationangiogramanklearterialarterybiphasicbloodchapterclassificationclaudicationcolorcriticaldiabetesdiagnosisdiscomfortdiseasedopplerfootischemiaMRIpainpatientpatientsperipheralpredictpulsepulsesrutherfordsavetreatmentulcerultrasoundwaveformwoundwounds
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
angioAngiodynamicsAngiovac CannulaAspirex CathetercatheterschapterclotdevicedevicesfrenchIndigo ThrombectomyNonepatientPenumbraPenumbra Inc.sheathStraub Medicalthrombectomythrombustpa
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
accessangiogrambiliarychaptercolonoscopyendoscopicercphopkinsinterventionlandscapeliverpercutaneouspracticequestionspecialtiesspecialty
Introduction to Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
Introduction to Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
carotidchapterdeviceendovascularintentocclusivestentingtalk
Nodal Lymphangiography | Lymphatic Imaging & Interventions
Nodal Lymphangiography | Lymphatic Imaging & Interventions
angiographycenterscentimeterchapterductembolizationinjectinginjectionluerlymphlymphaticsneedlenodenodespropofolsyringesthoracictubing
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Introduction- Nursing Management in Prostate Artery Embolization | Nursing Management in Prostate Artery Embolization
Introduction- Nursing Management in Prostate Artery Embolization | Nursing Management in Prostate Artery Embolization
ablationsallowingarterybasicallycarechapterclinicconsultationsembolizationindicationsNonenursingpatientspractitionersprocessprostatetreatingworkup
The status before we created a freestanding IR Center | Creating a Freestanding Interventional Radiology Center Challenges and Considerations
The status before we created a freestanding IR Center | Creating a Freestanding Interventional Radiology Center Challenges and Considerations
centerschapterdelayedinpatientsinterventionalmultipleneuroradiologyNonepatientsperformingproceduresrecoveryreferrersspacestaffingvascular
Transcript

This is another case. Actually Kush mentioned about this so caping.

So in this case, what are the findings of the IVC-gram? This are not some questions by the way. It's just some questions that the [INAUDIBLE]be at hand. But looking this picture, when you see a filling defect here, we always predict that this is going to be a difficult retrieval, but is there anything else? We always get lateral image, so in this case you can see filter caused endothelialization, and

also IVC scarring and the IVC narrowing in this case. So if it's small enough you may get away with this catheter manuals around the filter like in this case, but this is a companion case, it could be bigger. And this is another companion case, going back. So it could be bigger, I think there's an excuse I'm going to show you, before showing

that. If the endothelilization is too big, and it was shown in the previous slides, the hook may straighten, this is during retrieval. Hook was straightened just because of the constant tension. So at this point what to do, can you leave the filter alone as a permanent? No you can't because the filter may dislodge, and that filter is already distorted. So in this cases you can use laser or using

it as a snare just below the hook. This is an extensive filter.

here's another patient 62 year old male

patient just a similar case who had head in that cancer again after radiation therapy who experienced some bright red blood while coughing all right here's the CT scan and what I want to draw your attention to a little tough to see I

think I'll let me go up up here point it out with a mouse well I don't have a mouse so I guess not is basically you can see right in the middle of the two lungs kind of right in front of the trachea which is the black

circle alright just go right in front of that up to the top you can see the round white circle which is the brachiocephalic artery and just projecting off the back of that is another little kind of outpouching of

contrast a little nipple coming off of of the brachiocephalic artery that doesn't belong there all right here's the angiogram and it's a little difficult to see but there is a see if I can describe it better to you alright I

think this is actually a video so I'm sorry I don't know the ability to run it unless you can click on it can you guys click on the back up so if you want to look at it again you see the angiogram kind of running and just at the origin

of the brachiocephalic artery which is the first branch of the aortic arch you can see that outpouching of contrasts coming right to the right of that vessel that's a pseudoaneurysm and again we went through the same thought process we

said you know I want to put a covered stent across that but my problem was that we didn't just have the right size that would not block one of the carotid arteries and not extend too far into the aorta so we had no choice but to

consider embolization in this particular case so here's what we did here we actually put a micro catheter if you can just click I think that's a video to the left no I guess not you know what it's okay

what we did for this particular case was we went in from the arm and we put a micro catheter directly into that pseudoaneurysm because we couldn't feel we didn't feel we could put a stent across it so we put the micro catheter

in there we started to put some coils and it actually went further than we thought outside of the artery and here's the post image so you can see our final image you can see the coils that are sitting just adjacent to the

brachiocephalic artery and we preserved good flow there to end this basically

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

predictors of a successful or vascular ization there are several so obviously you know you have a great result Andrew

graphically when you say hey the vessels back that wasn't there before so Payton see if a previously occluded vessel is a good sign but what else improve vessel caliber so after an angioplasty the vessel becomes you know more normal and

caliber the flow velocity increases or the outflow improves you see less collateral so that's a good sign that you've done something good because those collaterals have only gotten large because of increased pressure and the

normal outflow vessel and then increased distal branch opacification Perry procedurally things that you can look at that indicators of success are if the pulses returned or if you have a Doppler signal

that either comes back or goes from a mono phasic I'm not gonna repeat those sounds they were way above my pay grade but go from a mono phasic signal back to a normal triphasic or sometimes even biphasic is pretty close to normal

particularly in diabetics skin discs skin coloration you sit you may see a foot pink up relatively quickly after a good revascularization and actually some patients may develop rube or if they've had prolonged ischemia because their

capillaries are chronically dilated so you now sending flow into chronically dilate a capillary bed and they may get rubriz capillary refill time as you mentioned earlier may decrease to a normal range to less than 5 seconds and

ulcerations I've seen them just begin weeping or bleeding right on the table if you do a really good job upon awaking from sedation patients who have rest paint off and indicate that the pain is gone but you have to remember that

patients with wounds may actually wake up and be in a lot of pain because you're reap refusing an area that's been dead for or dying for a long time so the wound blush is something that I'm always looking for and I'm frustrated if I

don't see it and basically this is analogous to when the when the ulcer begins bleeding after a good revascularization you may see Andrew graphically that there's now a contrast blush in the area of the ulcer and so I

like to mark on the patient usually with a hemostat or something the area of the ulcer and take my final angiogram just to kind of know where it is and to be looking for that it may it not always be visible as it may take time for the

capillary network to adapt to the new flow pathways and for basal spasm to resolve but this is an example of a patient has an ulcer underneath the base of their big toe after revascularize them and you can see

that there's increased perfusion to that area so this is a sign of a good result

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

the take-home point is this that most of the time when we see a bleeding patient we're thinking of embolization we're thinking of going in looking for an

arterial abnormality going as far into the organ that we can embolizing that organ and trying to preserve as much flow to the normal parts of the tissue that we can to preserve the function of the organ today in the back of our minds

we're always thinking about putting covered stents across this but in some ways you realize that's a band-aid right with just you know the arteries that we put those covered sense and we're severely injured and there's always a

chance that flow can work around there so they could be leaks around covered sense so I still think embolization is a bit more definitive than cover stent placement but I find it when a growing number of patients cover sent placement

is definitely an option for these patients so I am here for ask any questions but I can also appreciate that you have a break it's been a long day so I will not get offended if none of you have questions all right perfect

yeah yeah no that's it's the nature so what what he asked here is is that GI bleed cases tends to be unsatisfying because you hear about them and then by the time you get them down to the NGO suite and you

do an angiogram they're negative and it does happen a lot you should know it's the nature of the pathology so what ends up happening is let's be honest I mean a lot of people who work in AI are just like to push things off sometimes so

they get a call for a GI bleed or they say oh let's get a bleeding scanner let's get a CTA by the time you see them at 6 or 7 hours later and they're negative because they've stopped bleeding and that's the nature of the

pathology so my personal philosophy is to get at these patients as quickly as I can I think it's just a better way to go if someone thinks they're bleeding the faster you get at them the greater the likelihood is that you're going to see

some some abnormality there and I think that's been true I think as we start to do these faster we're seeing more positive cases it might be nice to have a CT angiogram or a bleeding scan but I think by the time you see them after

that you know they're negative it's not anything you're doing wrong it's the nature of the pathology it's intermittent bleeding and that's what happens some people feel like they can give TPA to some of those patients like

they'll go into the SMA they'll give some TPA which let's be honest right all of us are saying what the hell that seems like a horrible idea and I agree with that I mean if the body has stopped the bleeding on its own why in the world

would I give a drug to dissolve the clot to start them from bleeding again so I don't like that idea but there are people that will do a bleeding you know kind of a challenge with TPA to see if they can open up something to identify

the bleeding to then go back in and embolize it I think my bias is coming through and how I answered that I don't know we don't used to out for that anything else yeah I think gelfoam has its place I think

gelfoam has its place for things like postpartum hemorrhage or you know some maybe some trauma and a younger patient but gelfoam in general is something that you're giving over a much larger area of territory so I think if you can identify

a bleed and just coil that particular bleed you're doing a better service for the patient but all these are obviously good hey let's see it in a lecture case in real life you may or may not see something so obvious and I think if you

have a patient that had some bleeding on a CT scan a bad pelvic fracture and you just didn't see it in geographically but you know something's wrong giving gelfoam is a legitimate thing to do all of us equate gel foam with a

temporary embolization effect the truth is we're not we're second guessing that a little bit and a lot of people who use gel foam feel that the extent of the inflammation that we get when we use gel foam is probably so great that even

though the embolic agent itself may go away the occlusion that we caused with the gel foam probably stays around longer than we think so I'm not so sure it's a it's a great temporary agent but I would say which we mostly limited to

postpartum hemorrhage patients yeah what's the cause of it usually it's a uterine rupture it's a vessel rupture I've gone three more questions than the leadership guy which is great anyone else yeah

well there's no doubt about it I think that IR is moving towards radial access I think 10 years from now the vast majority cases are going to be radial access it's the one area of our practice that I think I'm starting to feel my age

in I mean you know I think and you probably may see this at your own centers I think people that have been doing ephemeral access for a long time we're just more comfortable with that one of the issues that we're facing with

radial access as we begin to think about doing more radial access at our place is that we may be comfortable with it but places like the ER and the ICUs and the other areas that we're sending our patients back to are not yet skilled

enough as to how they manage those patients so our nurses are very frequently the ones to say I don't know if they're ready for us to send a radial access patient to whichever floor we're talking about so we have some work to do

to in service those the nurses on those floors as to how to take care of those patients first and until we do that I think we're going to be limited more to outpatient work with our radial access all right guys enjoy the rest of the

meeting [Applause]

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

higher procedures that get done in the country so they are from being basics such as being para sentences and in some

centers being quite complex in Euro work and there are centers where these none of all those that IR procedures being available so it's a very unequal distribution of provision of IR services and like I mentioned earlier on vascular

surgeons and cardiologists have basically taken over the peripheral vascular work and iogic work and other known neuro speciality such as bid early interventions for example saying that these two surgeons who are in some

remote centers who are doing their own provision as biliary basic interventions there is one neuro surgeon who went and had neuro imaging and then your interventional training who is now hundred percent doing a mural

intervention so as far as procedures go my day can be in diagnostic work and you might be dreaming you doing a paracentesis the next thing you might be doing some some I our basic IR and on the same day you might be doing a set

procedure so quite varied but not available in all centers as one would want as fine stuff goes the technology

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

interrupting something else getting back

to a paddock with angiography something that we're starting to look at the group at University of Pennsylvania has a publication out on this as well I looked at the liver lymphatics certainly the livers where we produce a

lot of protein it goes through the lymphatics to be returned to the circulation in patients who have heart failure they tend to have increased lymphatic flow in the liver and they think that protein lost in enteropathy

protein losing a property happens when the liver lymphatic leaks into the intestines just some images from their article you see them looking at the hepatic lymphatics there and once they had a needle in the hepatic lymphatics

they actually put her scope in and they injected blue dye and as a proof-of-concept they saw the blue dye leaking into the intestine so now that they see that the blue dye leaking the intestine they say well we can embolize

that they embolize it with some glue and that's what it looked like at the end and then the algorithm levels and all these patients return to near normal so a new a new frontier and lymphatic intervention so just to summarize

lymphatic imaging the current status you know we have very effective non-invasive as well as in vases imaging in the peripheral and central lymphatics we certainly need to this allows for improved diagnosis and once we have

these diagnostic capabilities we were able to come up with these novel treatments for these diseases that were previously untreatable we still don't have good ways to consistently visualize the paddocks invasively and then and

non-invasively it would be great to be able to see that hepatic and intestine lymphatics cuz that's 80% of lymphatic flow so if we can find a way to image these under mr it could be a game-changer for a lot of diseases in

terms of lymphatic interventions Calla thorax interventions greater than 90% effective technical knowledge you know when I was a trainee was really centered to just a few major medical centers now it's defusing out to more places we've

certainly shown as a proof of concept the plastic bronchitis lymphatic flow disorders cattle societies and protein losing enteropathy are all treatable and we're getting emerging experience so don't be surprised if you start to see

more requests for this more patients at your centers these are uncommon disorders that's not to say that you still won't see them every once in a while the role of lymphatics in pathophysiology is still being studied

particularly in terms of heart failure transplant as well as in different cancers in the spread one of the cool stuff that we're looking at right now is actually sampling different lymphatic fluid in different areas of the body

trying to see how the different cancers may spread and/or possibilities in immunology immuno oncology thank you guys and just something I noticed a couple weeks ago in jeopardy clear body lymph continuing white blood cells body

fluid and you guys know what is limp that's your answer so thank you saying thank you to the avir committee and it's been a pleasure [Applause]

patient who experienced the heart attack who had right little quadrant pain after a cardiac catheterization all you like oh so here's the cat scan and what you should appreciate there is in the front of that first image which is the axial

image all right you can see the hematoma that's brewing kind of in the front you notice how all these pictures kind of look the same that's the good part about giving a lecture on bleeding and trauma because they all kind of look the same

so that's the hematoma on the front part of the pelvis and on the on the right image which is more of a coronal like looking at the patient image you can see it right near the right groin you can see that hematoma all right so our next

step was to do an angiogram and this is what the angiogram looks like who wants to volunteer what do they say all right I saw someone raise his hand over here some walk over here what do you think yeah well yes so it is a retro hematoma

would you say describe the angiogram for everybody right where it's at the external iliac down the common femoral looks like there's contrast going up to the left and down to the right probably close to where they accessed yeah

probably but so yeah probably probably too high but the other thing is that's probably a pseudoaneurysm that probably is the evidence that there was a bleed there we're not seeing Frank extrapolation of contrast in a literally

contrast pouring out but we are seeing the effects of an injury to the artery and the constraining of the the remaining normal tissue to hold on to that bleed so the question is what do we want to do no that was very good because

I fooled you it's not always embolization so sorry I lied so in today's world a lot of times when we see this type of pathology we have again relatively new technology available to us again we

could go into that pseudoaneurysm and embolize it and that would be a legitimate treatment but my friend here is right you know this is a great case for a covered stent so we could go in and put a stent right across that area

of injury and stent it so these days looking at coverage stands as an option for patients with arterial injury is a very legitimate option you just have to be able to deliver it has to be the right artery you have to be able to get

the stent where it needs to go we all work with vascular surgeons who are great and they can put these stents and iliacs and aortas but they can't make those turns into livers and kidneys and spleens it's got to be the right artery

this is this is the right artery okay we saw this patient and we said well we could kind of get a micro catheter into that area of injury and embolize it or we could just put a cover sent across it and all go home to have dinner with our

kids so that was option B is what we chose here so this is a great cover stent case okay here's another patient

I'm Nikki Jensen Nicole is what my mother calls me but that's alright thank you all for joining us today I am the clinical resource nas I work in a clinical nurse specialist position I graduated in May so I'll finally be called the clinical nurse specialist

after I passed my boards in nonvascular radiology so at Mayo Clinic Rochester we are kind of split up between I are in our IR practice where we have non vascular procedural Center CT MRI ultrasound guided procedures we'll go

over a list of our standard perform procedures as well as our neuro interventional and vascular interventional practice so Kerri and I work in the non vascular so we do not do any neuro interventional or vascular

vascular interventional procedures so these guidelines are going to focus on your LR CT or ultrasound guided procedures how many of you went to the combined session this morning great this is going to be an overview because what

we saw presented there really reiterates what we are have brought into our practice but then we're also going to share how we created nursing guidelines and how we rolled that into our practice this is Carrie Carrie is a staff nurse

in our department I worked as a staff nurse for seven years prior to this position I've been in this position now for four years and really enjoy it I do want to give a little shout-out to Carrie and I presented or sorry we

published an article in the June 28th volume 37 issue - that really coincides with our presentation today so I would encourage you to read that publication and then you'll get additional information on how we did this yes all

right we have nothing to disclose unfortunately or fortunately right so the purpose of this presentation is to help you all understand the importance of creating reviewing the literature

understanding your for one your coagulation casket as well cascade as well as anticoagulants that are out there or new up-and-coming medications and understanding that yes it's very important to establish and create these

guidelines so that within your practice you don't have differing radiologists that have differing opinions if you're working with doctor so-and-so today you need to worry about these labs if you're working with you know dr. Johnson

tomorrow he doesn't care about the labs we did this to help standardize that to help reduce the amount of questions our nurses have how many times we're interrupting our radiologists but then also we need to take into consideration

the importance of the patients and their different disease processes and we'll be going over that too so it's nice to have established guidelines but then also we need to take into consideration why patients are on certain medications this

here is our list of objectives I'm not going to read them for you you can all read them and we've provided you all with handouts too but really we want to just help kind of explain mechanism of actions and different medications and

how we established our guidelines this here is where Kari and I come from full disclosure we do have snow on the ground so these pictures were not taken before we came we are really enjoying this nice warm weather but for those of you who

are not familiar with the history of Mayo Clinic in Rochester who we have a hundred and fifty plus year tradition of implementing evidence-based care to assure the needs of our patient come first we are divided up into one

downtown campus but we have three different main areas so we have our st. Mary's Hospital this is where Kerry is based out of this is this houses most all of our ICUs as well as most all of our inpatients so we do a lot of

inpatients but we also see outpatients in this hospital Rochester Methodist Hospital this is where our he mock patients typically are we do have one ICU within Hospital as well but then right here my

office is right there this is our Mayo downtown campus so this is where most of our patients come for outside procedures or outpatient diagnostic imaging exams this here is the group that I'm part of the clinical nursing specialist group

within our clinical nursing specialist group there are 77 of us there are five like myself clinical resources as we have not graduated as of yet I'm right there in the middle w

that work in over 70 ambulatory areas in 58 inpatient areas we also support some areas in our Arizona and Florida campuses and then we have Mayo Clinic Health System hospitals that are scattered throughout Iowa

Wisconsin in Minnesota as well I am the only one in radiology across all of our

of critical of ischemia well a lot of times it starts in our office with a physical examination so we do a risk

factor assessment and this is what happens before they get on our table with with everyone in this room and us seeing the patient assessment of intermittent claudication and it can be subtle many patients don't come in and

say oh yeah I have pain when I walk for a short time and then it I rest and it goes away a lot of times it's yeah you know my leg gives out or now it doesn't hurt it's kind of this weird feeling when I walk and it these atypical

symptoms and then obviously if they have a wound you have to a wound evaluation on physical examination things we're looking for feeling a pulse you'll be surprised how many primary care providers never feel a pulse and if we

say if you feel a pulse you may save a life because you may be the first one to say hey this patient doesn't have a pulse maybe they have got peripheral artery disease and if they prefer order these maybe have coronary artery disease

and maybe they should we start on aspirin or statin and save them from a heart attack and stroke and so you really can save a life abnormal capillary refill so in other words you've got such bad blood flow

that if you smush on their foot it takes a long time for that blood to come back because they have such poor perfusion there's something a Peugeot stess TWEN that if you lift their leg gravity alone pushes their blood isn't it overcomes

the force of blood and so there are foot becomes power becomes losing some color and then when you put them down it dilates and you get sort of this ruborous red color so that's a burger sign I just had a good example in clinic

about a week or two ago so what do we ask for patients do of any pain or discomfort in the leg thigh or butt with walking your exercise I will sell you tell you I often don't use the word pain because everyone thinks pain is

different so so some people say well it's not paying it's a key lake ease pain to me I'm a guy everything's pain to me right low low threshold but discomfort is a good way of asking it foot or toe pain

that disturbs your sleep do you have any skin ulcers or sores on your ankles feet or toes I think it's very important to know what kind of patient you're talking to in terms of Education level or in terms of just language so some patients

don't know what it all sir is and they use the term sore some people don't know what a sore is they used term wound and so just sort of you ask things different ways I think is really important when we all talk to our patients and again a lot

of classic history will miss a large majority of PAE because patients don't read the textbook the one thing I'll say is I hear this all the time well the patient had pulses and so they don't have P ad that is hashtag false and the

reason is pulse exam is insensitive so in other words even if you feel pulses they can still have peripheral artery disease okay now if you don't feel pulses they certainly have peripheral artery disease or you're just terrible

at it PID classification the way we talk about patients with PA D we use a classification scale called Rutherford it may come up so in other words patient who has PA D but asymptomatic is

Rutherford zero a patient who has got major tissue loss and is basically 1 for amputation is Rutherford 6 and then everything in between is sort of a gradation we cut off 3 to 4 so 3 is claudication pain only 4 is critical in

ischemia rest pain alright so rather for classification when we talk about wounds you may see this you don't need to go in details but there's a Wi-Fi classification that sort of Germans how bad is the ulcer and how likely are you

to to lose your leg it's sort of a prognostic I will remind you that in medicine there's differentials for everything in other words the patient comes to you with pain or you talk to your friend or whatever with pain

there's a lot of things in cause pain it could be back pain arthritis infection DVT so there's things we have to think about when I was in medical school I sort of loved this my OB GaN professor said when he sees a patient the first

thing he does is say what do I think this patient have if this were a man because you get so pigeon-holed in your specialty every patient we see as well must be vas here must be vas care but you've got to take a step back and say

okay well am I missing something maybe it's arthritis may something else so don't get pigeonholed by your own prejudices which is a good life lesson in general there's also a differential for wounds so obviously

when we see a wound we could have arterial arterial tends to be sort of the toes and distal foot it can be severe pain if you see an ulcer around the ankle that tends to be more venous so vein related which again we

can treat and then a common cause is neuropathic so if you see I'm sort of at the pressure points where people walk a lot of times patient diabetes will step on something and where you and I would be like oh man that hurts

I better oh my god I have a wound there I better check that out they'll never know because they don't feel their feet and so they could have this monster ulcer and finally someone inspects their feet and says you know you have like a

golf ball sized hole in your foot and that's the first time they ever notice it so how do we test ever for peripheral artery disease well a lot of it is non-invasive now we do a B is a b is is a measure of blood pressure in the foot

or leg we can do some ultrasound to actually look at the artery and obviously we can do CT and MRI when we look at ultrasound you may look at this every once a while this is a normal ultrasound Doppler waveform where we've

got good blood flow up down and back three now the reason that's important is that correlates the sounds so if you listen to a artery i'ma do my best Doppler impression out okay a normal artery goes once you start getting

peripheral artery disease you lose that triphasic waveform it becomes biphasic when you get severe peripheral artery disease you lose that biphasic waveform it becomes monophasic and when you have nothing it becomes

okay so here's want to be alert to that so ankle brachial index is important and it's helpful again some patients who have calcific us a-- fication it's not helpful for I will tell you a B eyes alone actually not only do they predict

PA D they predict death that's how important PA D is link to mortality CT and MRI is very useful you can see here we can see a good anatomic description of the arteries unfortunately patients with calcium

sometimes we can't see as well because the calcium is so bright on CT scan that it obscures the lumen so we have other problems in patients with diabetes and heavy calcification and a lot of those patients just need to go to angiogram

and as you know my techs and nurses know sometimes rarely but sometimes we do an angiogram and it's normal and we say or there's mild disease we say okay perfect we've taken that off the table we need to move on when some of these

non-invasive testings aren't as clear so alright so in summary critical of ischemia is a morbid disease and can be the first presentation of PA d clinical suspicion and accurate diagnosis is essential for early diagnosis and

treatment and a multidisciplinary team that includes vascular venture loss who know critical limb ischemia not just the SFA and iliac artery jockeys and wound care specialists do decrease amputation rates I like this quote it's not mine

but I'm going to steal it with impunity amputation is not a treatment option it is a treatment failure okay so we have to keep that in mind I appreciate everyone's attention because we can save questions to the end or you do it now if

there's pressing I think we may need new batteries or my thumb's weak which is also a possibility any questions

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

thrombectomy is another popular way of treating patients there's a lot of different aspiration catheters the SPX catheter is actually not available currently in the US but what it basically is I can have the rectum a

device that spins in such backlot the Indigo thrombectomy system from penumbra is a yet another device that sucks out clot I think many of us have used that it's kind of like a vacuum cleaner but usually more like a dust

hand vac where it's going to suck up thrombus the angio vac is much more like a Hoover where you're going to use and put a patient on veno-venous bypass that requires a 22 French sheath and a 17 French sheath but that will take out

thrombus I personally prefer using NGO vac in the IVC in big large thrombus for that and not in the pulmonary arteries because it's very inflexible but it's very very useful in a few patient populations in

all of these devices there is no TPA that needs to be given you're just sucking out the clot and you're actually removing it from the patient's body rather than dissolving it and sending it downstream the drawbacks on all of these

devices is their larger access points the SP or X is around six French although that's not that much bigger penumbra device is 8 French and the as we mentioned the angio vac is 22 French

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

good afternoon thank you so much for invitation to speak to you I have a privilege of working at Johns Hopkins and we have a fairly large practice we at the main hospital itself we have 11 rooms and during a day about two of them are have a biliary case actually going

on at the same time so it's actually a fairly large volume of our practice and so the gamut of bluie intervention goes from really simple stuff to really complex and it is something that our trainees specifically will come to

Hopkins for and many of times they will end up being the blurry and experts as soon as they arrive at a new practice so certainly it's something that we deal with every day I just wanted to give you a landscape overview and share some good

cases that we've done and hopefully you may something have some comments or learn something about the way we do it but I'm pretty sure throughout the country a lot of great Billu work has been done currently there's no question

though the Blooey access and access to the Blooey system has really been played out in most hospitals perth by GI and ir and obviously surgery but almost a lesser so today and the rat in at least four IR is the PTC PPD or transparent

Col angiogram but it's actually a recurring role and I actually speak and have a sort of special interest in transit paddock colonoscopy as well so we play scopes through the skin through the liver and do a lot of balloon

intervention I'll show you a few cases like that but in true these access points are germane to what specialty you come from and obviously endoscopic beeper oral and if you eye are usually usually through the skin and there's no

question GI now in some hospitals I'm sure you have advanced endoscopy that will go through the stomach straight into the leftover liver so there's no question of a blurry landscape is changing quickly but no question that

this is quite common but yet most patients and internal medicine specialties will be looking at blurry disease by access point through scopes through ercp so going back from the Duden up or directly through in there's

advantages disadvantages something it's fairly obvious to everybody that you know no question is selling it to a patient if it had both choices that ERCP through the mouth and nothing invasive nothing sticking out their body

is attractive yet the outcomes are very similar but nonetheless there's pros and cons and through the trance of had a crap or two percutaneous route you do definitely have tubes at least sticking out

initially and this is often solved by GI as the main differentiator at least a discomfort but yet we are able to address almost every problem at times and often where'd they pay a lot there's

I was tasked or asked to give a talk on carotid interventions and and there's actually been some change you know I've given to carotid talks over the years I've been doing this now eleven years at the Medical College and there wasn't a lot of innovation for a period of time

and then there's been a sudden kind of tic upwards with the last acronym here t car so we're gonna talk about these three ceac s and T car how many other room are involved with carotid stenting at the local institution I'm gonna do T

car all right so it's not gonna be brand new that's great but there's still I think for some of you pardon me an opportunity to kind of see a new device that's been brought to market over the last few years so with

that what are we gonna talk about these are the objectives it's not really gonna be a data talk this is not the intent I wanna bore you with data there will be a little bit of just sort of what's the purpose for why we do things you know

and percentage of what not but I'm not gonna go through clinical trials the intent here is really to discuss the three main treatment options for carotid occlusive disease and then review the indications for intervention so why

would we treat to symptomatic asymptomatic and then finally review the the endovascular devices or the approaches in general for carotid artery stenting in a strictly endovascular environment or in a hybrid environment

which is what the t'car device is so why

angiography came along towards the tail end of my fellowship so around 2011-2012

actually a children's Boston initially and then subsequently done in Penn in adults and this really became as simple as doing a lymph node biopsy basically sticking it on a lymph node while it seems novel it's really

interesting because if you go back to 1931 that's actually when they started doing some of this work when they were actually injecting the lymph nodes with these different tracers and they could see so it's a combination of a little

bit of ingenuity and looking back at our history and we the way that made it a lot easier for everybody this is basically my little setup here and I used some Italian syringes a plastic opaque three way so

that the lapa doll doesn't dissolve through it the medallion syringes hold up a lot better than the typical day we used luer lock stuff I use long propofol type thin bore tubing I attached it to a nine

centimeter long 25 to 27 gauge spinal needle I take the inner styler out of that cheeba so that because it's such a skinny needle that it bends a lot and this way I can put it right into the lymph node without having to connect it

to the tubing and then I can start my injection right away the 2115 cheeba there and that scalpel are really the only other things that I need to get started to do a successful thoracic duct embolization other thing that's really

critical is I always ask my texts and nurses to slap SC D's on the patients and if once we have the SC DS it really speeds up the procedure by an hour to two because you have this constant compression of the Venus and the

lymphatics and the legs forcing more fluid to make your thing to make your case I move along more quickly so something that was more recently adopted at many medical centers and these are the type of images that you get so I

stick my needle into the lymph node and I start this injection you give this beautiful arborization of the lap I doll contrast as it continues to spread and move from one lymph node to another you see there's a central area there that

isn't filling that's actually the lymph node that's already transmitted the lap idol and this was the image that I showed you initially so same image injection injecting of different lymph nodes you can see the transit from one

area to the rest of the chain in the pelvis hepatic lymph angiography is not

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

so my name is Paul I'm one of the nurse practitioners from UCI Irvine healthcare and what am i one of our minerals in there is basically working on patients for consultations doing the patient rounds writing notes ordering labs etc we also have several clinics that we run

at UCI Medical Center involving patients needing consultations for Libra direct therapies ablations and so forth and one of the more recent clinic that we started running is basically treating patients with BPH and so what we would

know inspiration is basically treating and regarding their symptoms and the procedures pretty much called a prostate artery embolization so the main purpose of this patient excuse me the main purpose of this

topics is basically to provide the general information of what the procedures are about illustrating indications risk and to hopefully help our nursing staff to better take care of these patients sorry so first and

foremost I just wanted to thank my team UC Irvine for allowing me to take some time off of work and enjoying Austin and its many food and object and and allowing me to speak to you guys a little bit about prostate ammo on our

pitchers basically you can't I don't know laser printer but our physicians dr. Karen Nelson she's one of our chief of IR dr. Dan through Fernando dr. Nadine a bitch day and dr. James Castro thesis

he's got daughter Kat Reese is our main doctor that does most of our process embolization our excellent iron nursing team and of course my fellow nurse practitioners who is holding the fort back home Pamela and Takara and watch

and Lou sorry but so our objectives for discussions basically to illustrate the indications and benefits of prostate artery embolization we're going to go over the side effects and risk complications associated with this

procedure and also recognize the value of nursing care going starting from the workup leading to the proper process in trot process and post procedure care sort of a brief outline of what we're gonna be

talking about we're just gonna go over the basic fundamentals of BPH as well as the treatment for PAE and the second portion of this lecture is going over how we walk patients up in clinic what we tell patients and we're gonna go

through the proper care and drop care ask well ask the post-op care and we're going to go through a couple of cases in there it's just to describe to you guys how we care for these special population

my co-presenter and colleague anne mccaffrey couldn't be here this morning she recently had a baby and was not cleared to fly just yet so I will be presenting by myself wish you were here so where we began we were seeing an average of 20 to 25 outpatient

outpatients a day between multiple services vascular I our neuro interventional neuroradiology our procedures were often delayed due to lack of recovery space to move post procedure patients into several 6-hour

recoveries mostly our angiograms and our kidney biopsies would take about half to two-thirds of the available recovery space for most of the day so as you can see we did not have a lot of space for the amount of procedures that we were

performing room utilization was at a high of a hundred and twelve percent q four that's because we were doing bedside procedures on impatience as well and we were performing procedures in our recovery room too that's what we look

like so our service rapidly expanded over the past five years and created multiple problems long scheduling delays led to a delay in diagnosis and treatment for patients which led to unhappy patients and unhappy refers

located in a major metropolitan area with many major academic medical centers led to a lot of competition and we didn't want our internal referrers to send their patients to other centers prolonged hospital stays for our

inpatients led to delayed discharge until vascular access was obtained or feeding tubes were inserted and then for staffing our staff our staff was unhappy with the frequently man øt and leadership was unhappy with the

increased staffing costs so for our

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.