Create an account and get 3 free clips per day.
Chapters
Gutter Endoleaks On Completion Angiography With Ch/EVAR: When To Ignore; How To Prevent; When And How To Treat
Gutter Endoleaks On Completion Angiography With Ch/EVAR: When To Ignore; How To Prevent; When And How To Treat
aneurysmaorticchimneyChimney EVARChimney graftdisappearedendograftendoleakendoleaksgraftsnitinoloccludeoversizingparallelpatternscansealingshrinkageskeletonSnorkelstenttherapeuticthoracoabdominaltreattypezone
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Gore Tag (Gore Medical) / Valiant (Medtronic) / Zenith Alpha (Cook Medical)RelayPlusstent graft systemTerumo Aortictherapeutic
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
Cook MedicalEndograft Repair using Steerable SheathGore Excluder TAMBE (Gore Medical) / Xtra-Design (Jotec)Irregular Orifice of the Right Renal Arterystent graft systemtherapeuticZenith T-Branch
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
2 arch homograftsOpen Ilio-Celiac bypassSacular TAA ; Endograft AbscessTAAA repair with left heart bypassTEVARtherapeutic
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Role Of Endovascular Treatments For Pediatric Vascular Trauma
Role Of Endovascular Treatments For Pediatric Vascular Trauma
Blunt Thoracic Aortic TraumacookendograftEndovascular StentingZenith Endograft
Transcript

- Thank you, Tim, and thank you, Frank, for giving me the opportunity to address this specific problem of the gutter endoleaks, which has been described up to 30% after ChEVAR and parallel grafting. But I have to say that in the most papers, not only gutter endoleaks were included,

but also new onset of type Ia endoleak. One paper coming from Stanford addressed specifically the question, how we should deal with the gutter-related type Ia endoleak, and they conclude that in the vast majority of the cases, these gutter endoleaks disappear

and the situation is benign. And based on my own experience, I can confirm this. This is one of the first cases treated with parallel grafts for symptomatic thoracoabdominal aneurysm. And I was a bit concerned as I saw this endoleak at the end of the angiography,

but the lady didn't have any pains and also no option for open or for other type of repair, so we waited. We waited and we saw that the endoleak disappeared after one month. And we saw also shrinkage of the aneurysm after one year.

So now, the next question was how to prevent this. And from the PERICLES registry, but also from the PROTAGORAS, we learned how to deal with this and how to prevent. And it's extremely important to oversize enough the aortic stent graft,

more than treating with the EVAR, normal EVAR. We should reach a sealing zone of at least 15, 20 millimeters. And we should avoid also to use more than two chimney grafts in such patients. The greater the number of the chimney used,

the higher is the risk of type Ia endoleak. And last but not least, we should use the right stent graft. And you see here the CT scan after using a flexible nitinol skeleton endograft on the left, and the gutters if you use a very stiff,

stainless steel skeleton in such situations. The last question was how to treat these patients. And based on the PERICLES, again, we should distinguish three different patterns. One is due to an excessive oversizing of the graft with infolding.

I have only one case, one professor of pathology, treated six years ago now without any endoleak due to this problem. The most are due to an undersized aortic endograft. And in the pattern C, we have an insufficient sealing zone and migration of the graft.

Now, we should consider the pattern B. And with an undersized aortic endograft and if the gutter is small, one possible solution would be to treat this patient with coiling, using coils or Onyx to occlude this gutter endoleaks,

like in this patient. And for the pattern C, if the sealing zone is insufficient, well, we should extend the sealing zone using the chimney parallel technique, as you can see in this case. So in conclusion, ladies and gentle,

gutters are usually benign and more than 95% disappeared in the follow-up. But in case of persistence, we should evaluate the CT scan exactly. And in case of oversizing and not enough oversizing and not enough length,

we should treat this patient accordingly. Thank you very much for your attention.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Thank you very much. Thank you, Frank, for inviting me again. No disclosures. We all know Onyx and the way it comes, in two formulas. We want to talk about presenter results when combining Onyx with chimney grafts. The role of liquid embolization or Onyx is listed here.

It can be used for type I endoleaks, type II endoleaks and more recently for treatment of prophylaxis of gutters. So what are we doing when we do have gutters? Which is not quite unusual. We can perform a watchful waiting policy, pro-active treatment in high flow gutters,

pro-active treatment low flow gutters, or we can try to have a maximum overlap, for instance with ViaBahn grafts 15 centimeters in length or we can use sandwich grafts in order to reduce these gutters in type I endoleaks. Here, a typical example of a type I leak treated with Onyx.

And here we have an example of a ruptured aneurysim treated with a chimney graft. And here is what everybody means when they're talking about gutters. Typical examples, this is what you get. You can try to coil these

or you can try to use liquid embolization. Here's the end result after putting a lot of coils into these spaces. What are these issues of the chimney-technique type I endoleak? Which are not quite infrequent as you see here.

Most of these resolve, but not all of them. So can we risk to wait until they resolve? And my bias opinion is probably not. Here, the incidents of these type endoleaks is still pretty high. And when you go up to the Arch

the results can even be different. And in our own series published here, type I endoleak at the Arch were as high as 28%. A lot of these don't resolve over time simply because it's a very high flow environment. Using a sandwich technique is one solution

which helps in a lot of cases but not all of these simply because you have a longer outlet compared to a straightforward chimney graft. You can't rely on it. So watchful waiting? There are some advocates who

prefer watchful waiting but in high flow gutters this is certainly not indicated. And the more chimneys you have, like in a thoracoabdominal aneurysm with four chimneys, the less you can wait. You have to treat these very actively,

like you see here, in these high flow areas. Here a typical example, again symptomatic aneurysm with sealing. Here Onyx was used but without any success. So what we did is we had to add another chimney and plus polymer sealing and then we had a good result.

Here some results, only small serious primary gutter sealing using Onyx with good results in a type I leak. But again, this is only a small series of patients. Sandwich technique already mentioned. When you use, like we did here for chimney grafts in the arteries, you do need Onyx otherwise you

always get problems with these gutters and they do not seal over time. Another example where liquid polymer was used. And here again, you see the polymer. The catheter in order to inject the polymer is very difficult to see but with a little bit of experience

you know where you are. And again, here it is, the Onyx, a typical example. Here another example of the Arch, bird beacon effect, extension, chimney graft. Again the aneurysm gets bigger. And so a combination of using proximal extensions

plus chimneys plus liquid embolization solves this problem after quite a long period of time. And here typically is what you see when you inject the Onyx. This does not work in all cases. Here we used Onyx in order to seal up the origin of the end tunnel.

This works very nicely but there is so ample space for improvement and in some cases it's probably better to use a fenestrated branch graft or even the opt two stabler instead of using liquid embolization. Thank you very much.

- Thank you Lowell. - Good morning, and thanks Lowell and Jose, for the invitation to come back this year. I don't have any disclosures. Well, what we're going to talk is imaging the female pelvic veneous system. And the female pelvic venous system is a complex arrangement

of four interconnected venous systems, and really you have to understand the anatomy to understand the keys to imaging it and treating it, and that's the connections between the renal vein, both the left and the right ovarian veins, the tributaries of the internal iliac veins,

and the superficial veins of the lower extremity through the saphenofemeral junction. And central to all of this are the tributaries of the internal iliac vein. Which functions as a gateway between the pelvis and the leg, and really are exactly analogous to perforating veins,

connecting the deep veins of the pelvis to the superficial veins of the leg, and you have to have an intimate knowledge of this anatomy both to image it adequately, as well as to treat it. So classically, the internal iliac vein is thought as the confluence of three tributaries.

That is, the obturator vein anteriorly, tributaries of the internal pudendal vein, sort of in the middle of the pelvis, and the superior and inferior gluteal veins, and these communicate with the legs through four escape points

that the anatomists describe anteriorly as the obturator point or the "O" point, where the round ligament vein comes through the abdominal wall, the "I point. And medially in the thigh, pudendal or the "P" point, and posteriorly the gluteal point,

which communicates both with the posterior thigh as well as with the sciatic nerve and gives rise to sciatic varices. (coughs) From our standpoint today, I'm more interested in atypical, varices, that is, pelvic source lower extremity varices,

arising from the pelvis, anteriorly for the obturator vein, and from the round ligament vein, which communicate with the vulva, branches of the internal pudendal vein, which communicate with the perineum, and the medial thigh, and posteriorly, with branches of the superior and inferior gluteal vein.

So as far as imaging goes, we're interested primarily in two clinical scenarios which the imaging requirements are somewhat different. That is, atypical pelvic source varices without any pelvic symptoms, and atypical varices with pelvic pain, and the way that we study these with venography

are quite different. Although some people do pursue blind sclerotherapy from below, I do think imaging with venography adds substantially to both the control of the sclerosant, as well as how thoroughly you're able to embolize the pelvic tributaries.

And I personally like to do sclerotherapy of the varices with venography, and use direct puncture venography using either a 23 or a 25 gage butterfly needle, that's placed under ultrasound guidance. Contrast is then injected to calibrate both

the variceal bed as well as to track the tributaries, as I'll show a minute, up into the pelvis, and usually you can embolize about to the level of the broad ligament. Simultaneously, foam sclerotherapy is performed, using a combination of Sotradecol,

and Ethiodol as a contrast media, and then is followed both by Flouroscopy, using a reverse road mapping technique to subtract the bone and other things out, and follow the contrast through as well as with ultrasound as shown here.

And just as an example, here's some vulvar varicosities, that communicate both with the obturator vein up here, with the round ligament vein through the "I" point, as well as with the saphenofemoral junction here. And although you could do this blindly, I do think you get a much better understanding

of the anatomy and the volume of sclerosant required, doing it with venography. These are posterior thigh varicosities, that communicate through the "G" point here, and you can actually see the contrast refluxing into the inferior gluteal vein shown here,

and all of this can be treated with sclerosant. The second clinical scenario, is that of atypical varices with pelvic pain, in which case you do want to make sure you treat the pelvic variceal bed completely. And for this, the venography techniques are

balloon occlusion venography performed from above. My preference is right internal jugular vein approach, because it's easier to place the occlusion balloon into the right and left internal iliac veins, which a sequentially selected, and then I use a Berenstein occlusion balloon

and then place it just below the confluence of the internal iliac vein and the external iliac veins, inflate the balloon, inject contrast, which both blocks antegrade flow, and allows reflux into the varices. Most of the time you can't see these varices if you don't have an occlusion balloon,

and then as you see the varices, sequentially select more distal tributaries with a glide wire, put the balloon down, inflate it, and perform sclerotherapy and occasionally, depending on the size of the vein, use coils if you need to. Here is an example of the balloon

in the internal iliac vein, you see the "O" point. We've already sclerosed the contralateral obturator vein, and you see this classical obturator hook here, which is classical for the obturator vein. Here the occulsion balloon is in tributaries of the internal pudendal vein,

you see it communicating through the "P" point with varices in the medial thigh, and then with the great saphenous vein here, with a type two junction. Here the balloon is in the inferior gluteal vein. You see communication with the "G" point here,

as well as communication with sciatic varices, this classic horsetail look shown here. So in conclusion, understanding anatomy is critical to the treatment of pelvic venous disorders, you do clearly have to understand the anatomy of the internal iliac vein, as well as the escape points,

and vary your venographic technique, based on the patient's symptoms. Thank you very much.

- Thank you Rod and Frank, and thanks Doctor Veeth for the opportunity to share with you our results. I have no disclosures. As we all know, and we've learned in this session, the stakes are high with TEVAR. If you don't have the appropriate device, you can certainly end up in a catastrophe

with a graph collapse. The formerly Bolton, now Terumo, the RelayPlus system is very unique in that it has a dual sheath, for good ability to navigate through the aortic arch. The outer sheath provides for stability,

however, the inner sheath allows for an atraumatic advancement across the arch. There's multiple performance zones that enhance this graph, but really the "S" shape longitudinal spine is very good in that it allows for longitudinal support.

However, it's not super stiff, and it's very flexible. This device has been well studied throughout the world as you can see here, through the various studies in the US, Europe, and global. It's been rigorously studied,

and the results are excellent. The RelayPlus Type I endoleak rate, as you can see here, is zero. And, in one of the studies, as you can see here, relative to the other devices, not only is it efficacious, but it's safe as well,

as you can see here, as a low stroke rate with this device. And that's probably due to the flexible inner sheath. Here again is a highlight in the Relay Phase II trial, showing that, at 27 sites it was very effective, with zero endoleak, minimal stent migration, and zero reported graph collapses.

Here again you can see this, relative to the other devices, it's a very efficacious device, with no aneurism ruptures, no endoleaks, no migration, and no fractures. What I want to take the next couple minutes to highlight, is not only how well this graph works,

but how well it works in tight angles, greater than 90 degrees. Here you can see, compliments and courtesy of Neal Cayne, from NYU, this patient had a prior debranching, with a ascending bypass, as you can see here.

And with this extreme angulation, you can see that proximally the graph performs quite well. Here's another case from Venke at Arizona Heart, showing how well with this inner sheath, this device can cross through, not only a tortuous aorta, but prior graphs as well.

As you can see, screen right, you can see the final angiogram with a successful result. Again, another case from our colleagues in University of Florida, highlighting how this graph can perform proximally with severe angulation

greater than 90 degrees. And finally, one other case here, highlighting somebody who had a prior repair. As you can see there's a pseudoaneurysm, again, a tight proximal, really mid aortic angle, and the graph worked quite well as you can see here.

What I also want to kind of remind everybody, is what about the distal aorta? Sometimes referred to as the thoracic aorta, or the ox bow, as you can see here from the ox bow pin. Oftentimes, distally, the aorta is extremely tortuous like this.

Here's one of our patients, Diana, that we treated about a year and a half ago. As you can see here, not only you're going to see the graph performs quite well proximally, but also distally, as well. Here Diana had a hell of an angle, over 112 degrees,

which one would think could lead to a graph collapse. Again, highlighting this ox bow kind of feature, we went ahead and placed our RelayPlus graph, and you can see here, it not only performs awesome proximally, but distally as well. And again, that's related to that

"S" shaped spine that this device has. So again, A, it's got excellent proximal and distal seal, but not only that, patency as well, and as I mentioned, she's over a year and a half out. And quite an excellent result with this graph. So in summary, the Terumo Aortic Relay stent graph is safe,

effective, it doesn't collapse, and it performs well, especially in proximal and distal severe angulations. Thank you so much.

- Thanks, Germano. Thanks, Gustavo. These are my disclosures as it pertains to this talk. I will be talking about the devices not yet FDA approved in the U.S. for use. We know that with endovascular repair, we need to consider all the aspects

and how we can potentially get this therapy into more people's hands. So, the Gore Company really talked to many of the key opinion leaders about the steps in doing these types of cases, how to make them simple,

they talked about anatomic screening and case planning needs to be thoughtful and careful. We emphasized with them the need to have minimized aortic coverage to limit spinal cord ischemic risk and also to talk about real world applicability

and make sure the device can be used in a wide variety of patients and not in a limited subset. If you look at the other device that has extensive use with off-the-shelf thoracoabdominal repairs, it really involves the t-Branch.

In this case, the device generally requires coverage up through 11 centimeters above the celiac artery. Marcella Ferrara has described ways to limit that with modification of the device but this is it in its current stage. With that, W.L. Gore really came up with a device

that shortened that length. It generally requires about six and a half centimeters of coverage above the celiac artery. It has been designed to work with their balloon-expandable VIABAHN device. You see on the right there,

the device has four preloaded hypo-tubes. That allows for passing four wires in to pre-catheterize each of the branches. That wire system is then brought out through a subclavian access, either right or left, through a DrySeal sheath

that then allows the implantation device in the deployment. The sequential deployment is done with the device being partially open. The portals are then catheterized from above, as you see on the far left,

and the wires placed in that. Once those have been successfully done, the branch stints are placed and then eventually the distal device is deployed and then the distal completion with the bifurcated and iliac components as necessary.

Now the technical aspects of this has been presented at this meeting and has recently been submitted and accepted for publication in JVS. Dr. Oderich is the lead author on this and really comprises the initial 13 implants with the 30-day outcomes.

Now those outcomes really focus on two things, you see the mean procedure time can vary quite a bit. That really depends upon some of the aspects about use of different axillary catheters and thoraco sheaths to get it done. But the other main thing was the blood loss

which can exceed, in a few cases, quite a bit. And that, in this trial, was mainly because they used the 12 French Flexible Cook Ansel Sheath and not the DrySeal. Once we moved to the DrySeal sheath, we see that the number of amount of blood loss

through the central port is a lot less and that's going to limit that in the future trial. Now, currently there have been 16 worldwide implants and this comprises the entire cohort that's been done. You see that early on, we only had access to the retrograde and about a third of the patients

had retrograde renal portals but since that time, mid Spring of 2016, we moved to an anterograde version alone. Most cases are type four thoracos that were done in this initial experience. What about the short-term outcomes?

Well the short-term outcomes are about 18 months. Overall survival 92 percent. One patient presented four months with multi-system failure from three vessels being occluded. The right renal had already been occluded at the time of the initial implant.

Serious adverse events. About 46 percent of patients, which is very typical, acute kidney injury and only 23 percent, and no type one or three endoleaks. There have been seven branch vessel occlusions, four in that one patient that presented acutely,

one patient a year and a half with renal artery occlusions from severe dehydration and one unilateral renal artery occulusion at approximately six months. That was managed with lysis and stenting. No difference in occlusion rates

between anterograde and retrograde. So in conclusion, the TAMBE device has completed its feasibility study with similar results for complete endovascular repair of thoracoabdominal aneurisms. Longer follow-up and a Pivotal study are planned

in pursuit of FDA approval. Thank you.

- Good morning. Happy to discuss with you some of the issues of the currently available stents. Nutcracker Syndrome patients most frequently present with left flank pain, pelvic pain, hematuria, usually due to a significant narrowing in front of the aorta between the aorta and the superior mesenteric artery.

Open surgical treatment has been kind of a gold standard. Left renal vein transposition done most frequently followed by gonadal vein procedures or even renal auto-transplantation. Renal vein stenting, in this country, has been done using Wallstents or SMART stents.

In our experience, where we reported 37 surgical patients. We used stents only for secondary procedures. Three of the six stents had problems of either migration or in-stent restenosis. There is a systematic review in the JVS-VL, recently published, 180 patients, 7 series.

Interestingly, 175 were treated in China with good clinical results in 6-126 months. Stent migration was observed from 0 to 6.7%, depending on the series. We have seen stent migration, sometimes it's immediately during t

and that's obviously the easiest to take care of. Or immediately after, before any healing, that is also a more favorable situation. The problem is when it travels to the heart. It is not frequent, but it happens.

This is the largest series, 75 patients, stented, 5 of them had migration. Two of them to the right atrium, one of them required a medium sternotomy to remove it. Stents not only migrate, although again it's rare,

but even one patient is too frequent in this series that usually involves young, female patients. Stents in this position unfortunately can also fracture. If they don't fracture, they can thrombos. If they don't thrombos, they can be compressed.

If they don't compress, that's a stiff stent, it practically always will perforate their renal vein because of the arching configuration of the renal vein and because the unavailability of less than four centimeter long stance. So it is a problem.

It can actually cause significant, severe migration, completely occluding the inferior vena cava together with perforation of the renal vein. Obviously these cases require open surgical repair,

and have a chance to remove a few of these stents. Percutaneous retrieval, fortunately, is possible in about 90% of the cases, and sometimes, if it doesn't cause significant cardiac injury even from the heart or the pulmonary artery and

we had several case reports, of stents, especially after the TIPS procedure, early on, that migrated into the central circulation that would be removed with different types of techniques, of snaring and pulling the lost stent into a large sheath,

whether you snare it at the end or you snare it in the middle. There are good case reports. This patient that we had, we could use a balloon, pull it down to the vena cava, and then from above and below, we could remove it

with a large sheath. Current stents, if you really don't want it to migrate, the only option we see is transposition patch and using hybrid procedure to fix the stents in the renal vein.

So, in general, open surgery remains the first line of intervention. Stents have a reported high mid-term success rate but migration, fracture, perforation, thrombosis, restenosis are problems and if you go to the FDA website, you see that there are much more cases than

those that are reported. So what do we need? We need dedicated renal vein stents that are short, flexible, resist fracture and migration, and we need them urgently. Thank you.

- Thank you, Mr. Chairman. Good morning ladies and gentleman. I have nothing to disclose. Reportedly, up to 50 percent of TEVARs need a left subclavian artery coverage. It raises a question should revascularization cover the subclavian artery or not?

It will remain the question throughout the brachiograph available to all of us. SVS guidelines recommend routine revascularization in patients who need elective TEVAR with the left subclavian artery coverage. However, this recommendation

was published almost ten years ago based on the data probably even published earlier. So, we did nationwide in patient database analysis, including 7,773 TEVARs and 17% of them had a left subclavian artery revascularization.

As you can see from this slide, the SVS guideline did affect decision making since it was published in 2009, the left subclavian artery revascularization numbers have been significantly increased, however, it's still less than 20%.

As we mentioned, 50% of patient need coverage, but only less than 20% of patient had a revascularization. In the patient group with left subclavian artery revascularization, then we can see the perioperative mortality and morbidities are higher in the patient

who do not need a revascularization. We subgroup of these patient into Pre- and Post-TEVAR revascularization, as you can see. In a Post-TEVAR left subclavian revascularization group, perioperative mortality and major complications are higher than the patient who had a revascularization before TEVAR.

In terms of open versus endovascular revascularization, endovascular group has fewer mortality rate and major complications. It's safer, but open bypass is more effective, and durable in restoring original profusion. In summary, TEVAR with required left subclavian artery

revascularization is associated with higher rates of perioperative mortality and morbidities. Routine revascularization may not be necessary, however, the risks of left subclavian artery coverage must be carefully evaluated before surgery.

Those risk factors are CABG using LIMA. Left arm AV fistula, AV graft for hemodialysis. Dominant left vertebral artery. Occluded right vertebral artery. Significant bilateral carotid stenosis.

Greater than 20% of thoracic aorta is going to be or has been covered. And a history of open or endovascular aneurysm repair. And internal iliac artery occlusion or it's going to be embolized during the procedure. If a patient with those risk factors,

and then we recommend to have a left subclavian artery revascularization, and it should be performed before TEVAR with lower complications. Thank you very much.

- Thank you, thank you Frank for inviting me, again. The ascending aorta, as you know, is still the holy grail of endovascular aortic therapy. Especially, when dealing with true aortic aneurysms. There are a lot of contraindications to ascending stenting as we have listed here. So, these are all good cases for aortic surgery.

On the other hand there isn't a reason to treat some of these patients as partially high-risk patients with Endo. What about the technique? Transvalvular manipulation is essential. You basically have to do what cardiologists

are doing when they perform a TAVI procedure. And you have to know how to get across the aortic valve. There are straight forward cases like pseudo aneurysms as you can see here, which you can treat with coronary angioplasty and subsequent stenting. But the problem

or the real challenge are true ascending aneurysms. So, there are two options, bending of the ascending aorta in order to create a proximal landing zone or bending of all the ascending aorta. What about the technical details? Of course, a mediastinotomy is required.

You can use a mediastinotomy and we prefer a polypropylene mesh, which you see here. Which is additionally covered with a PTFE wrap. Just in case a recent otomy is required to prevent adhesions between the posterior

surface of the sternum and the ascending aorta. This creates downsizing of the aorta and facilitates endo-grafting here. Here typical example, the usual configuration of the true ascending aortic aneurysm wrapping with polypropylene mesh is what you get.

So, here you have your landing zone for the stent graft. When you dissect you have to circumferentially dissect the aorta. You have to make sure that you don't get into too close contact with the pulmonary artery. Here again, mediastinotomy in most cases,

is sufficient to do the procedure. Diameter reduction can be calculated according to this formula then I do know the length of my graft. You can combine this with supraoptic de-branching or bypass procedures whatever is

necessary in order to deal with this. In a lot of these cases get a landing zone for complete endo-treatment of the aortic arch with Sandwich grafts or similar techniques. We do know from these bio-mechanical studies that wrapping of the aorta reduces shear stress.

The whole concept only works in an ascending aorta up to a diameter of 6.5 cm, but no more. Here typical example, downsizing all the proximal landing zone. Subsequently, what you do get in some of these cases is in falling through here a stent graft makes sense

and then you can treat these patients with a stent graft. You would use a chimney in order to avoid compromising the origin of the innominate artery. Again, a typical example. The question is why do I have to use a stent graft at all after wrapping.

The answer is because you want to get a smooth inner surface and you don't want to have thrombus inflammation where the wrapping causes in-folding, but in all these cases you get very good results. Durable result, in term of the mediastinotomy. The mediastinotomy is very well tolerated

by these high risk patients. When you look at the age of these patients we have no neurological complications. No severe adverse events. This is a procedure, which can be offered to high risk patients

who have a lot of contraindications for open aortic surgery. Of course, this will be the future but not until maybe in ten years from now. Thank you very much.

- Good morning, I want to thank Professor Vitta for the privilege of presenting on behalf of my chief, Professor Francesco Speziale, the result from the EXTREME Trial on the use of the Ovation stent graft. We know that available guidelines recommend to perform EVAR in patient presenting at least a suitable

aortic neck length of >10mm, but in our experience death can be a debatable indication because it may be too restrictive, because we believe that some challenging necks could be effectively managed by EVAR. This is why when we published our experience 2014,

on the use of, on EVAR, on the use of different commercially available device on-label and off-label indication, we found no significant difference in immediate results between patient treated in and out IFU, and those satisfactory outcomes were maintained

during two years of follow-up. So, we pose ourself this question, if conventional endografts guarantee satisfactory results, could new devices further expand EVAR indication? And we reported our experience, single-center experience, that suggests that EVAR by Ovation stent-graph can be

performed with satisfactory immediate and mid-term outcomes in patient presenting severe challenging anatomies. So, moving from those promising experiences, we started a new multi-center registry, aiming to demonstrate the feasibility of EVAR by Ovation implantation in challenging anatomies.

So, the EXTREME trial was born, the expanding indication for treatment with standard EVAR in patient with challenging anatomies. And this is, as I said, a multi-center prospective evaluation experience. The objective of the registry was to report the 30-day and

12 month technical and clinical success with EVAR, using the Ovation Stend-Graft in patient out of IFU for treatment by common endograft. This is a prospective, consecutively-enrolling, non-randomized, multi-center post market registry, and we plan to enroll at least 60 patients.

We evaluated as clinical endpoints, the freedom from aneurysm-related mortality, aneurysm enlargement and aneurysm rupture. And the technical endpoint evaluate were the access-related vascular complications, technical success, and freedom from Type I and III endoleaks, migration,

conversion to open repair, and re-interventions. Between March 17 and March 18, better than expected, we enrolled 122 patients across 16 center in Italy and Spain. Demographics of our patient were the common demographic for aneurysm patients.

And I want to report some anatomical features in this group. Please note, the infrarenal diameter mean was 21, and the mean diameter at 13mm was 24, with a mean aortic neck length of 7.75mm. And all grafts were released accorded to Ovation IFU. 74 patients out of 122

presented an iliac access vessel of <7mm in diameter. The technical success reported was 98% with two type I endoleak at the end of the procedure, and 15 Type II endoleaks. The Type I endoleak were treated in the same procedure

by colis embolization, successfully, and at one month, we are no new Type Ia endoleaks, nine persistent Type II endoleaks, and two limb occlusion, requiring no correction. I want to thank my chief for the opportunity of presenting and, of course, all collaborators of this registry,

and I want to thank you for your attention, and invite you, on behalf of my chief, to join us in Rome next May. Thank you.

- Thank you very much Germano. Thanks to Dr. Veith for inviting us and allowing us to present this here. This is work that we've done in a group in Hamburg together with Nikolaos Tsilimparis. And these are my disclosures. It's been now, more than 15 years ago

that branched endografting has been introduced as a technique for thoracoabdominal aneurysms. And for about five years we have access to the T-Branch device as we've learned from the presentations before. And as we heard from Mark Farber

there's more companies going into that space. In Europe it's also the JOTEC company, which is CryoLife now, and we will, I believe, see more companies going into this space. So, about access, we've been discussing in the past

very much about whether right or left side is the better, or safer, access for branched TEVAR, and at that moment in this publication from our center, we phrased this, the unavoidable use of an upper extremity access. We show you that we've been believing that it's unavoidable.

But is it really unavoidable? In some cases I believe it should be avoided, because we have aortic branch vessels that are occluded, thrombotic, we have AV-fistulas and LIMA Bypasses that we may risk. And we may have antegrade branches

from previous artery repair which we would judge as almost a no antegrade access option here. So what can we do in those cases? And furthermore, upper extremity access has complications and it comes at a cost.

Not only hematoma and nerve damage, plexus damage at the access site, but also stroke is reported being a complication of arm access. We've looked into our experience from two years and found that about 5% of patients needed

some sort of re-operations from complications of upper extremity access, and this is just one of the more severe complications we had with a brachial on the stick due to too small access vessels. Another point is radiation.

Because radiation also as we've shown here, this is unpublished data, is significantly higher if a operator stands at the arm compared to standing at the groin. Is it really unavoidable? If we think about this as our traditional access,

but how about this? I know this has been used a lot in fenestrated endografting. But we started applying this technology also for branched endografting to avoid upper extremity access. First case that we did was a patient

that had an irregular orifice of the right renal artery and it was only one branch that we didn't want to go through all the hassle with upper extremity access. You see here, steerable sheath. You can very well attach that artery without upper extremity access.

Next case, for fenestrated and branched, then have one branch difficult celiac artery, very small stenotic orifice from a large aneurism, but it was attachable from the groin, a good result. Next case, two branches, two fenestrations. As you can imagine,

it also went well for the SMA and for the celiac with a good result without the need of touching arm, without the need going through the arch. This is a more severe one. This is a redo after EVAR patient with an occluded one-sided iliac lack

and a crossover bypass. This is the SMA. This is the right renal artery. You see that we were able to complete this repair from one access side alone, doing a full four-branch thoracoabdominal repair using steerable sheaths.

This series has been recently published as a case series, but we have extended on that experience. I can tell you in all patients that we tried to do it, it was possible to avoid the upper extremity access. Concluding: Endovascular repair has matured over years

and can, in my view, be considered gold-standard for thoracoabdominal repair. Upper extremity access is avoidable if possible. Success rate of femoral access with steerable sheath is safe. And I thank you very much for your attention.

- Thank you Dr. Melissano for the kind interaction. TEVAR is the first option, or first line therapy for many pathologies of the thoracic aorta. But, it is not free from complications and two possible complications of the arch are the droop effect and the bird-beak. I was very interested as Gore came up with the new

Active Control System of the graft. The main features of this graft, of this deployment system are that the deployment is staged and controlled in putting in the graft at the intermediate diameter and then to the full diameter. The second important feature is that we can

optionally modify the angulation of the graft once the graft is in place. Was very, very interesting. This short video shows how it works. You see the graft at the intermediate diameter, we can modify the angulation also during this stage

but it's not really used, and then the expansion of the graft at the full diameter and the modification of the angulation, if we wished. This was one of the first cases done at our institution. A patient with an aneurysm after Type B dissection. You see the graft in place and you see the graft after

partial deployment and full deployment. Perhaps you can appreciate, also, a gap between the graft and the lesser curvature of the arch, which could be corrected with the angulation. As you can see here, at the completion angiography we have an ideal positioning of the graft inside the arch.

Our experience consisted only on 43 cases done during the last months. Mostly thoracic aneurysm, torn abdominal aneurysm, and patients with Type B aortic dissection. The results were impressive. No mortality, technical success, 100%,

but we had four cases with problems at the access probably due to the large bore delivery system as you can see here. No conversion, so far and no neurological injury in this patient group. We have some patients who came up for the six months follow-up and you see here we detected one Type 1b endoleak,

corrected immediately with a new graft. Type II endoleak which should be observed. This was our experience, but Gore has organized all the registry, the Surpass Registry, which is a prospective, single-arm, post market registry including 125 patients and all these patients

have been already included in these 20 centers in seven different countries in Europe. This was the pathology included, very thorough and generous, and also the landing zone was very different, including zone two down to zone five. The mean device used per patient were 1.3.

In conclusion, ladies and gentlemen, the Active Control System of the well known CTAG is a really unique system to achieve an ideal positioning of the graft. We don't need to reduce the blood pressure aggressively during the deployment because of the intermediate diameter

reached and the graft angulation can be adjusted in the arch. But, it's not reversible. Thank you very much for your attention.

- Thank you Louie, that title was a little too long for me, so I just shortened it. I have nothing to disclose. So Takayasu's arteritis is an inflammatory large vessel vasculitis of unknown origin. Originally described by Dr. Takayasu in young Japanese females.

The in-di-gence in North America is fairly rare. And its inflammation of the vessel wall that leads to stenosis, occlusion or aneurysmal formation. Just to review, the Mayo Clinic Bypass Series for Takayasu's, which was presented last year, basically it's 51 patients, and you can see

the mean age was 38. And you can see the breakdown based on race. If you look at the early complication rate and we look at specific graft complications, you had two patients who passed away, you had two occlusions, one stenosis, one graft infection.

And one patient ruptured from an aneurysm at a distant site than where the bypass was performed. If you look at the late complications, specifically graft complications, it's approximately 40%. Now this is a long mean follow up: this is 74 months, a little over six years.

But again, these patients recur and their symptoms can occur and the grafts are not perfect. No matter what we do we do not get superb results. So, look at the graft outcomes by disease activity. We had 50 grafts we followed long-term. And if you look at the patency, primary patency

right here of active disease versus non-ac it's significantly different. If you look at the number of re-interventions it's also significantly different. So basically, active disease does a lot worse

than non-active disease. And by the way, one of our findings was that ESR is not a great indicator of active disease. So we're really at a loss as to what to follow for active or non-active disease. And that's a whole 'nother talk maybe for another year.

So should endovascular therapy be used for Takayasu's? I'd say yes. But where and when? And let's look at the data. And I have to say, this is almost blasphemy for me

to say this, but yes it should be used. So let's look at some of the larger series in literature and just share them. 48 patients with aortic stenosis fro all were treated with PTA stenting.

All were pre-dilated in a graded fashion. So they started with smaller balloons and worked up to larger balloons and they used self expanding stents in all of them. The results show one dissection, which was treated by multiple stents and the patient went home.

And one retro-paret-tin bleed, which was self limiting, requiring transfusion. Look at the mean stenosis with 81% before the intervention. Following the intervention it was 15%. Systolic gradient: 71 milligrams of mercury versus 14. Kind of very good early results.

Looking at the long term results, ABI pre was .75, increased to .92. Systolic blood pressure dropped significantly. And the number of anti-hypertensive meds went from three to 1.1. Let's look at renal arteries stenosis.

All had a renal artery stenosis greater than 70%. All had uncontrolled hypertension. They were followed with MRI or Doppler follow up of the renal arteries. So, stents were used in 84% of the patients. Restenosis occurred in 50% of them.

They were, all eight were treated again, two more developed restenosis, they ended up losing one renal artery. So at eight years follow up, there's a 94% patency rate. What about supra-aortic lesions? And these are lesions that scare me the most for endovascular interventions.

Carotids, five had PTA, two had PTA plus stent. Subclavian, three PTA, two PTA. One Innominate, one PTA plus stent. One early minor stroke. I always challenge what a minor stroke is? I guess that's one that happens to your ex mother-in-law

rather than your mother, but we'll leave it that way. Long term patency at three years, 86%. Secondary patency at three years, 76%. Fairly good patency. So when Endo for Takayasu's, non-active disease is best. The patient is unfit for open surgery.

I believe short, concentric lesions do better. In active disease, if you have to an urgent or emergent, accept the short term success as a bridge to open repair. If you're going to do endovascular, use graded balloons or PTAs, start small. Supra-aortic location, short inflation times

I think are safer. And these three, for questions for the future. I guess for the VEITHsymposium in three years. Thank you.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- Okay, thank you very much. I appreciate the invitation from Dr Veith to discuss this technique and really, this is a how to do it technique. These are my disclosures. So we know that if you're doing a type B dissections that are chronic and you're going to use a fenestrated

device often times you have vessels that are on the false lumen that are not easily accessible. You can see in this picture up above, here's you're flap, this is the right renal artery across the fenestration and you can't really see the actual original fenestration.

There can also be some misalignment between the natural fenestration and where you want to put your fenestration. So this technique allows us to create a neo-fenestration at your site of choice. So here's our stent graft planning in this particular patient.

Here's the dissection flap, here's our graft in the true lumen with the SMA and celiac and the right renal. We've placed the fenestration for the left renal right opposite the left renal artery. And this is a schematic representation of

our in press article. Basically once you've accessed the bottom of the graft you can use a steerable directional sheath and put it right at the level of your fenestration. Use the power wire from Baylis, and what you do is put it right up against the graft.

It's like a cautery, you step on the pedal, it gives a one second burst and that goes across the flap. You can then widen it and then connect your stent graft. This is an example of one of our early cases. Here you can see injection in the true lumen with the right renal, you can't see the left renal,

that's bowel gas and another one of the true lumen branches. You can see with the fusion imaging we've now been able to put the graft, the right renal and the graft expanded. Here you can see an injection and we've got our catheter right up against the left renal fenestration. And here you can next see, the power wire,

the tip of the power wire is just at the edge of the catheter. And if you step on the pedal you can see that the power wire goes across into the false lumen right near here, you can inject your false lumen, you can see your renal

and after that you can see that we've now accessed the artery. We balloon it and then stent it. So these are the tools that are required. You need the power wire generator, you need the power wire itself,

you need a pad on the patient just like a cautery pad, and an Oskar or other steerable sheath is very effective in helping you. A short pulse in one second is usually enough to cross the lumen. Here's a second example.

A patient again with a false lumen, the right renal artery is the one this particular time. You can see the dissection flap is here. We planned the fenestration right opposite the renal artery.

And you can see here similar technique with the catheter. The power wire is already actually been deployed across the channel and then put in place. So this is a relatively simple technique that you can use to access false lumen branches. It allows planning the fenestration on your pre-op plan

close to the target vessel, and it assists you when the natural fenestration is not visible, or misaligned. And it uses an existing technique that we've used for left subclavian in situ fenestration and for some aortic dissection acute cases where you need to fenestrate the false lumen.

Thank you.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- Thank you, and thanks to Dr. Veith for the opportunity to share some of our data. These are my disclosures, some devices presented here are investigational and I want to acknowledge my friend Gustavo, who actually shared some of the slides that we'll show. And I want to reference some of his papers. So a spinal cord ischemia has been presented here

as a devastating complication, after both open and endovascular repair of thoracoabdominal aortic aneurysms. The spinal drains are routinely used to ameliorate the frequency and also the severity of spinal cord ischemia, the problem with this trains is that they may result inherent morbidity and mortality.

Now, intraoperative neuromonitoring has been used to not only monitor, but also to manage potential cases of spinal cord ischemia, this is a study by the group at the Mayo Clinic, led by Gustavo. 49 patients, of which 90% had thoracoabdominal aortic aneurysms, all these patients have spinal drain splice,

spinal cord ischemia was seen in six patients. But interestingly, 63% of the patients had significant decrease in the amplitude of both motor and somatosensory evoked potentials. And interestingly all of these changes came back to baseline except in one patient once

their lower legs were reperfused. However, and despite all of these papers that have, you know, talk about the use of spinal drains for endovascular reparative thoracoabdominal aortic aneurysms against the effectiveness of the spinal drains has not been shown.

And the aim of our study was to assess the outcomes of spinal cord protection without the routine use of spinal drains. We actually has some complications in this report, we decided that we were going to use only selectively in our series, the device is used for this in patients

were all part of a physician-sponsored investigational device exemption, demonstrating branch devices were used including the drainage device. We use a similar protocol as the one described by the Mayo Clinic group, which rely on permissive hypertension maintaining the maps above 90 or 100,

and the systolic pressures above 140. However, as mentioned, we did not place spinal drains routinely, the spinal drains were only considered in those patients that had persistent motor evoked potential deficits, at the end of the procedure. Once the legs have been reperfused, we did not use

conduits, we did percutaneous access in all patients. But of note, we did use endo conduits in all patients that have significant iliocclusive disease, not only to be able to deliver the device, but also to maintain flow to the lower extremities, to avoid distal ischemia. So 34 patients were enrolled in this study,

all patients had intraoperative neuromonitoring, and select spinal drains were placed. 10 patients, 29%, were extent 4 thoracoabdominal repairs, and 24 were extent type one to three. Important all patients with type one and three thoracoabdominal aneurysms underwent a staged repair.

We use in 20% of the cases off-the-shelf device is specifically the debranch, and 80% underwent custom made devices, all these devices were pre-loaded with wires. So, of these patients, 73 were male, 9% Type I, 38% Type II, 24% were Type III,

and 29% were Type IV. We saw significant changes in the evoked potentials in 80% of the patients. In all of them those changes came back to baseline except in one patient, who actually had a spinal drain at the end of the procedure.

30-day mortality in two patients, spinal drain was required eventually in only four patients, that's 12%. One because of sustained changes in the motor evoked potentials, spinal cord ischemia occurred in four patients, in all cases secondary to hypertension. After a procedure, in these cases two were permanent,

the cases had spinal drain splice, however, the deficit persisted, two had transient paraplegia, one resolved with permissive hypertension, and one resolved with a spinal drainage, I mean, the spinal drain was only effective in half of those patients. We did have two cases of intracranial bleeding,

associated with hypertension. So in conclusions, we don't believe that the spinal drains are necessary in all patients. A standard protocol that relies on perioperative maintenance of adequate blood pressure in intraoperative neuralmonitoring is however required.

And we believe that tight blood pressure control is mandatory to avoid possible complications related to uncontrolled hypertension, thank you.

- Thank you, honored to present this work on behalf of our group at the VA, the Michael E. DeBakey VA in Houston, led by Dr. Kougias. Disclosures are here, Dr. Kougias does consultation for Cook Medical. So compared to EVAR, FEVAR has greater lower extremity ischemic times due to larger sheaths,

visceral cannulation, complexity of procedures. And lower extremity complications have been reported as high as 15%, but there's not been a careful analysis of this. So we decided to look at the incidence of lower extremity sensory or motor deficit

after FEVAR, and to look specifically at lower extremity ischemic time, iliac artery occlusive disease, and lower extremity neurologic impairment after FEVAR. So this is a retrospective study over a four-year period. Early experience with our FEVAR cases was included,

and we generally used bilateral femoral access. Iliac stenotic lesions were dilated when required to allow an 18 or 20 French sheath to be placed. Graft alignment was achieved by centering the graft over at least two sheaths in the visceral arteries

before releasing the diameter-reducing wire. Visceral stents were used for all fenestrations and selectively for some scallops. We used perfusion adjunct techniques selectively, such as antegrade 7 French sheath placement into the FSA or sometimes a Dacron conduit into the common

femoral artery, which allows you to retract the sheath. A primary outcome was neurologic impairment. Secondary outcomes were major amputations and ability to ambulate at 30 days after surgery. We measured continuous lower extremity ischemic time from the time of the large sheath insertion into

the femoral artery until it was removed. If we used perfusion adjuncts, we measured the time from the sheath insertion to the perfusion initiation via the adjunctive modality, and the longest ischemic time for each extremity was recorded. We measured common iliac artery lumen diameters.

It was the distance of inner wall to inner wall, the narrowest segment of each common iliac artery. And we entered this as a binary variable based on eight millimeters. Statistics, we did both uni- and multivariate analysis, and I'll just run through that here quickly.

And we did an interaction model looking at the association between lower extremity ischemic time, size of the residual patent common iliac artery lumen versus neurologic impairment in the lower extremities. So there was 101 FEVAR patients with 202 limbs.

Percutaneously done in 16% of cases, we used perfusion adjuncts based on understanding of the case and how long it was going to take. Conduit in eight cases, and antegrade SFA sheath placement in three cases. The configurations are shown here.

Majority were one scallop and two fens, and the ischemic times are shown there. Operative time was about three hours was the average, but the standard deviation was 122 minutes. You can see the fluid requirements there. We looked at intra- and postoperative transfusions.

Then we looked at patients with neurologic impairment. So there were 18 patients who had some neurologic impairment postoperatively. 12 of these patients has mild sensory loss, eight has complete sensory loss, and only two had motor dysfunction.

The deficits tended to resolve within four days, almost all within 14 days. But we had four limbs with persistent sensory deficits, and only one with a persistent motor deficit. Two patients could not ambulate normally at 30 days. No patient underwent an amputation.

If you look at the univariate analysis, limb ischemic time, common iliac lumen less than eight millimeters, intraoperative blood loss, change in hemoglobin, and total transfusion all seem to indicate lower extremity motor dysfunction or sensory dysfunction.

But on multivariate analysis, there are only two factors: limb ischemic time and common iliac artery diameter less than eight millimeters. If you looked at the interaction model we prepared, if the common iliac artery diameter was less than eight millimeters after about two and

a half hours of continuous ischemia, the incidence of neurologic impairment went up. This went up more slowly if it was more than three hours if the iliac artery diameter is greater than eight millimeters. So, in conclusion, lower extremity permanent

neurologic impairment is very low after FEVAR, but there is a relatively high instance of reversible neurologic impairment associated with two things: extremity ischemic time and the presence of pre-existing occlusive disease in the common iliac artery.

We acknowledge this was a single center study. We weren't able to look at extent of aortic coverage or associated spinal cord ischemia, but we conclude that when you anticipate long ischemic times based on the iliac artery diameter, you should consider adjunctive perfusion techniques.

Thank you.

- I have no disclosures. So I'm going to show you some pictures. Which of the following patients has median arcuate ligament syndrome? A, B, C, D, or E? Obviously the answer is none of these people.

They have compression of their celiac axis, none of them had any symptoms. And these are found, incidentally, on a substantial fraction of CT scans. So just for terminology, you could call it celiac compression

if it's an anatomic finding. You really should reserve median arcuate ligament syndrome for patients who have a symptom complex, which ideally would be post-prandial pain with some weight loss. But that's only I think a fraction of these patients.

Because most of them have sort of non-specific symptoms. So I'm going to say five things. One, compression of the celiac artery is irrelevant in most patients. It's been found in up to 1/3 of autopsies, MRIs, diagnostic angiography, CT.

This is probably about par, somewhere in that 5% or 10% of CT scans that are in asymptomatic patients will have some compression of the celiac axis. The symptoms associated with median arcuate ligament syndrome are non-specific,

and are really not going to tell you whether patients have the disease or not. So for instance, if you look here's like 400 CT scans, 19 of these patients had celiac compression. But the symptom complex in patients

who had abdominal pain for other reasons looked exactly the same as it did for people who had celiac compression. So symptoms isn't going to pull this apart. So you wind up with this kind of weird melange of neurogenic, vascular,

and you got to add a little psychogenic component. Because if any of you have taken care of these people, know that there's a supertentorial override that's pretty dramatic, I think, in some fraction of these people. So if you're not dizzy yet, the third thing I would say,

symptom relief is not predicted by the severity of post-operative celiac stenosis. And that's a little distressing for us as vascular surgeons, because we think this must be a vascular disease, it's a stenotic vessel. But it really hasn't turned out that way, I don't think.

There's several papers, Patel has one just in JVS this month. Had about a 66% success rate, and the success did not correlate with post-op celiac stenosis. And here's a bigger one,

again in Annals of Vascular Surgery a couple years ago. And they looked at pre- and post-op inspiratory and expiratory duplex ultrasound. And basically most patients got better, they had an 85% success rate. But they had patients,

six of seven who had persistent stenosis, and five of 39 who didn't have any symptoms despite improved celiac flow. So just look at this picture. So this is a bunch of patients before operation and after operation,

it's their celiac velocity. And you can see on average, their velocity went down after you release the celiac, the median arcuate ligament. But now here's six, seven patients here who really were worse

if you looked at celiac velocity post-op, and yet all these people had clinical improvement. So this is just one of these head scratchers in my mind. And it suggests that this is not fundamentally a vascular problem in most patients. It goes without saying that stents are not effective

in the presence of an intact median arcuate ligament. Balloon expandable stents tend to crush, self-expanding stents are prone to fracture. This was actually published, and I don't know if anybody in the audience will take credit for this.

This was just published in October in Vascular Disease Management. It was an ISET online magazine. And this was published as a success after a stent was put in. And you can see the crushed stent

because the patient was asymptomatic down the road. I'm not discouraging people from doing this, I'm just saying I think it's probably not a great anatomic solution. The fifth thing I'd say is that comorbid psychiatric diagnoses are relatively common

in patients with suspected median arcuate ligament syndrome. Chris Skelly over in Chicago, they've done an amazing job of doing a very elaborate psych testing on everybody. And I'll just say that a substantial fraction of these patients have some problems.

So how do you select patients? Well if you had a really classic history, and this is what Linda Riley found 30 years ago in San Francisco. If they had classic post-prandial pain with real weight loss and a little bit older patient group,

those people were the easiest and most likely to have a circulatory problem and get better. There are some provocative tests you can do. And we did a test a few years ago where we put a catheter in the SMA and shoot a vasodilator down,

like papaverine and nitroglycerin. And I've had patients who spontaneously just said, "That's the symptoms I've been having." And a light bulb went off in our head and we thought, well maybe this is actually a way you're stealing from the gastroduodenal collaterals.

And this is inducing gastric ischemia. I think it's still not a bad test to use. An alternative is gastric exercise tonometry, which is just incredibly elaborate. You got to sit on a bicycle, put an NG tube down to measure mucosal pH,

get an A-line in your wrist to check systemic pH, and then ride on a bike for 30 minutes. There's not many people that will actually do this. But it does detect mucosal ischemia. So for the group who has true circulatory deficiency, then this is sort of a way to pick those people up.

If you think it's fundamentally neurogenic, a celiac plexus block may be a good option. Try it and see if they react, if maybe it helps. And the other is to consider a neurologic, I mean psychologic testing. There's one of Tony Sadawa's partners

over at the VA in Washington, has put together a predictive model that uses the velocity in the celiac artery and the patient's age as a kind of predictive factor. And I'll let you look it up in JVS. Oddly enough,

it sort of argues again that this is not a circulatory problem, in that the severity of stenosis is sort of inversely correlated with the likelihood of success. So basically what I do is try to take a history,

look at the CTA, do inspiratory and expiratory duplex scans looking for high velocities. Consider angiography with a vasodilator down the SMA. If you're going to do something, refer it to a laparoscopist. And not all laparoscopists are equal.

That is, when you re-op these people after laparoscopic release, you often times find a lot of residual ligament. And then check post-operative duplex scans, and if they still have persistent symptoms and a high-grade stenosis,

then I would do something endovascular. Thank you.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

- Yeah, thank you Mr. Chairman. These are my disclosures. Well, we know that the Heli-FX EndoAnchor System provide fixation and seal in aortic necks, and it can prevent or resolve migration or endoleaks. It's important to have an even spacing around aortic circumference and

to resolve type 1A endoleaks, you need successful, of course, deployment of EndoAnchors and adequate penetration into the aortic wall. The objectives for this study was to quantify the EndoAnchor penetration into the aortic wall in patients undergoing EVAR

and to assess the predictors of successful penetration and to associate that with postprocedural type 1A endoleaks. We searched in the ANCHOR database, and we included patients that has been treated for a type 1A endoleak, and we had to have a good quality

first postprocedure contrast-enhanced CT scan without any artifacts due to metal or glue, and without implantation of adjuvant aortic extension cuffs or stents. And then we selected two patient cohorts, patients with successful treatment

after the implantation of EndoAnchors for a type 1A endoleak, and patients with a persistent type 1A endoleak after the EndoAnchor implantation. Well, this is to show how we determined the position of the EndoAnchors, this is a good penetrating EndoAnchor

more than two millimeters in the aortic wall. This is borderline, and this means there is still a gap between the endograft and the aortic wall or the EndoAnchor itself is penetrating less than two millimeters. And this of course, a non-penetrating EndoAnchor.

The good ones are green, the borderlines are orange, and the non-penetrating are flagged red. Here are results, the anatomical criteria to predict type 1A endoleaks, as you can see here, at the left, in the type 1A endoleak patients, there is a larger aortic diameter

with a median of 30 millimeters, and neck length is shorter, less than one centimeter, compared to the patients with no endoleak. Then about the EndoAnchor penetration, in the patients with a persistent type 1A endoleak, there are significantly more EndoAnchors

which are borderline or non-penetrating. What are the predictors for a successful EndoAnchor penetration. Well, protective factors, oversizing of the endograft compared to the diameter of the infrarenal aortic neck, and the use of the endurant stents.

Independent risk factors are the aortic diameter at the lowest renal artery, and five and 10 millimeters below more than 30 millimeters, a significantly neck thrombus and calcium around the circumference and also a more than two millimeter thickness.

Predictors for a type 1A endoleak, protective factors is the neck length more than one centimeter, and good penetrating EndoAnchors and risk factors for a type 1A endoleak is, again, the aortic diameter five millimeters

below the lowest renal artery more than 30 millimeters, and also boerderline and non-penetrating EndoAnchors and in this logistic regression model, a non-penetrating EndoAnchor is really predictive for a type 1A endoleak, or a persistent type 1A endoleak. A few cases, this is an excellent job,

there are four EndoAnchors placed, and they all penetrate well, although they are not circumferentially divided around the circumference. The majority of the problems in the patients in the ANCHOR database, if a persistent type 1A endoleak

is mainly due to an incorrect indication, these are EndoAnchors red and orange, non-penetrating and borderline. That is because they are above the fabric, or they are in a no-neck aneurysm, so the indication is not correct.

This is again, a patient with an undersized endograft, of course, the EndoAnchors will never penetrate the aortic wall at a post-serial part of the aorta. This is another example of misdeployment, a huge load of calcium and thrombus, and again, to defined a no-neck aneurysm,

and again, well it's obvious that the EndoAnchors will not do their job. These are then the EndoAnchor distribution in successfully treated type 1A endoleaks at the left, 332 EndoAnchors, but if you select only the patients

with an EndoAnchor which are inside recommended use at the right, you can see that more than 90% of those EndoAnchors are good penetrating. Here are the patients at the left with a persistent type 1A endoleak, 248, and you can see the majority is red or orange,

and that means that majority of those patients had an EndoAnchor deployment beyond the recommended use. So to conclude, good EndoAnchor penetration is less likely when there is large aortic diameter, the EndoAnchor is not perpendicular to the stentgraft during deployment,

and it's beyond the recommended use, more than two millimeters of thrombus, not in the infrarenal neck, or a gap more than two millimeters. And in borderline or non-penetrating EndoAnchor, it's predictive for a type 1A endoleak.

Thank you very much.

- Thank you Mr. Chairman. Thank you, Dr. Veith for you kind invitation. Okay, there we go. Excuse me. DEVASS stands for Dutch EVAS study Group. We all know that women have a twofold, increased risk frequency of rupture.

The average aortic size at rupture is five millimeters smaller. They have a higher rate of undiagnosed cardiovascular diseases. They have smaller ileofemo

more concomitant iliac aneurysms They have a more challenging aortic neck. Smaller proportion is eligible for EVAR and, therefore less likely to meet EVAR IFU. They have a longer length of hospital stay after EVAR, a higher re-admission rate, more major complications,

a higher mortality rate. So, women and AAA is a challenging combination. The rationale behind EVAS is known to you all, I think. The DEVASS cohort is from three high volume centers in The Netherlands. It's a retrospective cohort of 355 patients,

included from April, 2013 to December 2015. So I have two years of result data. If you look at the baseline characteristics, 45 females were in this cohort, with the age of 76 and with some known comorbidities. They were within the instructions for use of 2013, at 28.9%

and even less in the IFU of 2016. These are some more anatomical characteristics with the AAA outer diameter 5.6 centimeters. This is the procedure, most of the patients were under general anesthesia, with the cutdown and the procedure time

was about 100 minute. Straight forward procedure 33 cases out of these 45. Let's have a quick look at the clinical outcomes. The re-intervention's done in the first 12 month. One patient had to conversion to open repair at month 11 due to type 1A Endoleak, and the others were not directly

related to the procedure itself. Although, there was thrombus in approximate stand. In the second month we saw, in the second year we saw some more type 1A migrations and a Stenosis that needed relining, and two out of these patients were within IFU.

If you look at the total cohort of type 1A Endoleak, one patient was not operated on and the other were, either open conversion or relining, and one patient was within IFU. A quick look at the death characteristics. Only one patient was within IFU,

and died after open procedure. So the re-interventions, once again, the first year four patients, in the second year five patients. Conversion to open repair, in total three patients. Endovascular re-intervention was performed

in the first year in two patients and in the second year there were three relinings performed. Endoleak 1A, in total six as stated before. No type two Endoleak reported, and in the first year five patients died, which one was aneurisym related, as in the second year, two patients died,

which one was aneurysm related. If we compare this data with the EVAS Global data, of two years not the three year data, this is the freedom from all persistent Endoleak, close to 98% which is good. Freedom from type 1A Endoleak is within IFU, 97% in the global and outside IFU 85%,

and remind these patients 71% were outside IFU. Freedom from secondary interventions, we had to re-intervene in nine patients and its comparable with outside IFU. Freedom from mortality at two years, a bit higher, aneurism related mortality is 95% which is higher, and also the all cost mortality is higher in women.

So to conclude, this is the first cohort that focuses on women after EVAS. The majority of the patients was outside IFU, and as in EVAR women do not that very good in result, appear to be very much like an EVAR. Thank you.

- Rifampin-soaked endografts for treating prosthetic graf y work? I have no conflicts of interest. Open surgery for mycotic aneurysms is not perfect. We know it's logical, but it has a morbidity mortality of at least 40% in the abdomen and higher in the chest.

Sick, old, infected patients do poorly with major open operations so endografts sound logical. However, the theoretical reasons not to use them is putting a prosthetic endograft in an infected aorta immediately gets infected. Not removing infected tissue creates

an abcess in the aorta outside the endgraft and of course you have to replace the aorta in aorto-enteric fistulas. So, case in point, saccular aneurysm treated with a TEVAR and two weeks later as fever and abdominal pain.

You start out like this, you put an EVAR inside you get an abcess. Ended up with an open ilio-celiac open thoraco with left heart bypass. Had to sew two arches together. But what about cases where you can't

or you shouldn't do open? For example, 44 year old IV drug user, recurrent staph aureus endocarditis, bacteremia, had a previous aorto-bifem which was occluded, iliac stents, many many laparotomies ending in short bowel syndrome and an ileostomy.

CT scan and a positive tag white cell scan shows this. It's two centimeters, it's okay, treat it with antibiotics. Unfortunately, 10 days later it looks like this, so open repair. So, we tried for hours to get into the abdomen. The abdomen was frozen and, ultimately,

we ended up going to endografts so I added rifampin to it, did an aorta union and a fem fem and it looked like this and I said well, we'll see what happens. She's going to die. Amazingly, at a year the sac had totally shrunk. I remind you she was on continuous treatment.

She had her heart replaced again for the second time and notice the difference between the stent at one year to the sac size. So adding rifampin to prosthetic Dacron was first described in the late 1980's and inhibits growth in vivo and in vitro.

So I used the same concentration of 60 milligrams per milliliter. That's three amps of 600, 30 CC's water injected into the sheath. We published this awhile back. You can go straight into the sheath in a Cook.

Looks like this, or you can pre deploy a bit of little Medtronic and sort of trickle it in with an angiocatheter. So the idea that endografts in infected aortas immediately become infected, make it worse. I don't think it's true.

It may be false. What about aorto-enteric fistulas? This person showed up 63 year old hemorrhagic shock, previous Dacron patch, angioplasty to the aorta a few years ago, aorto-duodenal fistula not subtle. Nice little Hiroshima sign

and occluded bilateral external iliac arteries. Her abdomen looked like this. Multiple abdominal hernias, bowel resections, and had a skin graft on the bowel. Clearly this was the option. I'm not going to tell you how I magically got in there

but let's just leave it at that I got an endograft in there, rifampin soaked, sealed the hole and then I put her on TPN. So the idea that you have to resect and bypass, I'll get back to her soon, I think it's false. You don't necessarily have to do it every time. What about aorto-esophageal hemorrhagic shock, hematemesis?

Notice the laryng and esophageus of the contrast, real deal fistula. Put some TEVARs in there, and the idea was to temporize and to do a definitive repair knowing that we wouldn't get away with it. On post update nine, we did a cervical esophagostomy

and diverted the esophagus with the idea that maybe he could heal for a little while. He went home, we were going to repair him later, but of course he came back with fever, malaise, and of course gas around the aneurysm and we ended up having to fix him open.

So the problem with aorto-enteric fistulas is when you put an endograft in them it's sort of like a little boomerang. You get to throw them out and it's nice and it sails around but in the end you have to catch it. So, in the long term the lady I showed you before,

a year and a half later she came back with a retroperitoneal abscess. However, she was in much better shape. She wasn't bleeding to death, she'd lost weight, she'd quit smoking. She got an ax-bi-fem, open resection,

gastrojejunostomy and she's at home. So, I think the idea's, I think it's false but maybe realistically what it is, is that eventually if you do aorto-enteric fistulas you're going to have to do something and maybe if you don't remove the infection

it may make it worse. So in conclusion, endografts for mycotic aneurysms, they do save lives. I think you should use them liberally for bad cases. It could be a bad patient, a bad aorta, or bad presentation. Treat it with antibiotics as long as possible

before you put the endograft in and here's the voodoo, 60 milligrams per mil of rifampin. Don't just put in there, put it in with some semblance of science behind it, put it on Dacron, it may even lead to complete resolution. And I've also added trans-lumbar thoracic pigtail drains

in patients that I literally cannot ever want to go back in. Put 'em in for ten days wash it out. TPN on aorto-enterics for a month, voodoo, I agree, and I use antibiotics for life. Have a good plan B because it may come back in two weeks or two years, deploy them low

or cut out the super renal fixations so you can take them out a little easier. Thank you.

- Thank you so much. Seattle, like many other cities in the U.S. is facing a terrible, heroin epidemic crisis. We are the safety net for these patients. I was honored, when I was asked to came and share with you how we manage these patients at Harrow View Medical Center. Over the last few years, we have educated our ED doctors,

in order to avoid over-head page to vascular surgery. That they don't do any I&Ds at the bedside. If a patient with a history of IV drug use present with induration or pain on the groin. On those patients, they get triaged for sepsis, they get an IV access, can take some time.

They take labs, including blood cultures. If we can, we do ABIs, this is during the day, and we start the patient on broad-spectrum antibiotics. After that, the patient goes for a CAT Scan. The CAT Scan is really useful for us, it help us not only see the anatomy,

see if the cell is coming close to the external iliac or close to the bifurcation. But maybe even more important, it help us, and you can see the upper emissions, find a lot of needles that have broke and left over by the patients that --

It's a huge hassle for your team in the operating room. So once we have the CAT Scan. We go to the operating room, we get the patient under general anesthesia, we puncture the contralateral side, and this is our preferred method to

take care of this patient. We go up and over, we put the sheath at the end of the external iliac artery, we give some heparin, we do an angiogram that shows exactly where is the injury and we put an occlusion balloon,

usually like a 7 by 60 does the job. Once we have the ballon, we can then ride directly in the pseudoaneurysm. When you open, you take out all the clot and puss and all that tissue. And once you irrigate and debride,

you will see at the bottom, your wound. Usually you see the balloon inside the artery, with a rupture wall, and the proximal ends of the artery. So what we do with with arterial ligation, we resect to help the artery until we gain control, we paralyze vessel loops, remove the balloon

and we do the ligation both the stems and usually we try to preserve the bifurcation. It is a long puncture, it's not possible, we try to preserve our zincuflex, so the patient will have a collateral pathway to their leg. After that, we try to approximate the tissue on top,

or we do an sartorius flap. Now our patient that use black tar heroine, sometimes there's too much inflammation, too much puss, we just put the dressing and we come back in a couple of days for a wash out, to take care of the wound.

After that, the patient goes to intensive care unit, and you will notice that I didn't mention, we ever raise the foot. We don't put any pulse oximeters or do any studies. The foot is going to be okay. The patients usually have some kind of chronic compression

previously and they will tolerate ischemia pretty well. Patient goes to the ICU and the first thing that we do, we avoid hypotension, but we call ID and Pain Service. This patient's outcomes are going to be better if the pain is going to be well controlled, because they will be compliant with the treatment.

ID recommends that antibiotics treatment and helps with management other comorbidities. I know we're starting to have a lot of patients that have PE's during admission, so we try to rule out DVT study and we'll start the patients in treatment.

When we look at our cases, we have more than 50% patient that present with bacteremia, and of those, almost 40% was due to MRSA, so it's a very severe condition that the patient require several weeks of IV antibiotics. Post OP ABI, immediately,

we have a median of 0.41, so the leg is viable. And our amputation rate for these patients is very low. We have only lost 4 legs and of those 4 legs that we have to amputate, 2 patients we revascularized the immediate post-op period and both were infected.

So we actually avoid actively doing revascularizations in the accurate period. In conclusion, the vascular emergencies due to IV drug use are increasing and we as vascular surgeons should be prepared to deal with this and educate our colleagues

on how to treat them. Femoral artery ligation is well tolerated and we recommend not performing an immediate revascularization. The amputate rate is low and ID and Pain Service collaboration is essential for these procedures. Thank you so much.

- Thank you very much for the presentation. Here are my disclosures. So, unlike the predecessor, Zenith Alpha has nitinol stents and a modular design, which means that the proximal component has this rather gentle-looking bear stents and downward-looking barbs.

And the distal part has upward-looking barbs. And it is a lower-profile device. We reported our first 42 patients in 2014. And now for this meeting we updated our experience to 167 patients operated in the last five years.

So this includes 89 patients with thoracic aneurysms. 24 patients in was the first step of complex operations for thoracoabdominals. We have 24 cases in the arch, 19 dissections, and 11 cases were redos. And this stent graft can be used as a single stent graft,

in this case most of the instances the proximal component is used or it can be used with both components as you can see. So, during the years we moved from surgical access to percutaneous access and now most of the cases are being done percutaneously

and if this is not the case, it's probably because we need some additional surgical procedures, such as an endarterectomy or in cases of aorto-iliac occlusive disease, which was present in 16% of our patients, we are going to need the angioplasty,

this was performed in 7.7% of cases. And by this means all the stent grafts were managed to be released in the intended position. As far as tortuosity concerned, can be mild, moderate, or severe in 6.6% of cases and also in this severe cases,

with the use of a brachio-femoral wire, we managed to cross the iliac tortuosity in all the cases. Quite a challenging situation was when we have an aortic tortuosity, which is also associated with a previous TEVAR. And also in this instances,

with the help of a brachio-femoral wire, all stent grafts were deployed in intended position. We have also deployed this device both in chronic and acute subacute cases. So this can be the topic for some discussion later on. And in the environment of a hybrid treatment,

with surgical branching of the supoaortic tranch, which is offered to selected patients, we have used this device in the arch in a number of cases, with good results. So as far as the overall 30-day results concerned, we had 97.7% of technical success,

with 1.2% of mortality, and endoleaks was low. And so were reinterventions, stroke rate was 1.2%, and the spinal cord injury was 2.4%. By the way we always flash the graft with CO2 before deployment, so this could be helpful. Similar results are found in the literature,

there are three larger series by Illig, Torsello, and Starnes. And they all reported very good technical success and low mortality. So in conclusion, chairmen and colleagues, Zenith Alpha has extended indications

for narrow access vessels, provide safe passage through calcified and tortuous vessels, minimize deployment and release force, high conformability, it does retain the precision and control of previous generation devices,

however we need a longer term follow up to see this advantages are maintained over time. Thank you very much.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- Thanks Stephan, yes I just want to give you five tips and tricks that I've learnt with my experience to this technique, and also then I'll present some results from the Ascend International Trials. I have an obvious disclosure that is important to show.

So, I do think that custom-made devices or phenostate graphs are the gold standard in this area of the difficult neck to aneurysm, but there are constraints with it, both financially and atomically, and of course its not the perfect solution

so we still need to strive to find better solutions for patients and indeed an off the shelf solution is very useful especially in emergency situations. I think we're all quite surprised by the outcomes from parallel grafts.

I certainly, when I saw this originally thought this was never going to work but actually, the results from standard evar with chimneys are really quite good. There is however always the potential for gutter endoleaks when aligning

parallel grafts with conventional EVAR stents which are not really designed for this purpose. So, endovascular sealing with parallel grafts offers a solution to this with the prevention potentially of gutter endoleaks because the polymus bag will seal alongside

the parallel grafts. And in practice this works quite well so you can position two, three or even four parallel grafts alongside the nellix sealing device to give yourself a really good seal and an example is shown here on the CT.

So tips for getting good outcomes from this, well the first is an obvious one, but its to plan very carefully, so do think you need to be very cautious in your planning of these with regard to multiple levels of the technique

including access, the type, length, and the nature of the parallel grafts you're going to use. I'll talk a bit more about the neck lengths but aneurysm lengths as well because there are some restraints with the

nellix device in this regard. You need to take very carefully about seal both proximally and distally and I do think you need to do this in a hybrid theater with experienced operators. I mentioned neck lengths and my Tip two is

you have to not compromise on neck quality and neck length. So you need straight healthy aorta of at least 15mm, of less than 30 diameter and a low thrombus burden. If you do compromise you'll see situations as the one on the photograph shows

where you get migration stents so you must not compromise on the quality and length of your aortic neck and if that means doing more chimneys, do it that's not a major problem but if you compromise on neck,

you will have problems. I mentioned the parallel grafts, again this is part of the planning but we use balloon expandable stents of a reasonable length to ensure that you get at least a centimeter into each of the branches

and you have to be careful to position these above the polymer bags so that they don't become constrained by the polymer bags from the nellix device. You have to be very careful when positioning these so the tip four is watch the parallax in

two different angles to be sure, as in the case here, that you line up all your stents appropriately and that you don't get crushing of any of the individual stents. So parallax is vital. And th

ltiple levels of redundancy in the nellix system which you can use to your advantage to ensure you get a good seal. So here's an example where the bags you can see are not entirely filled using the primary fill.

And it is quite difficult because often you get polymer pressures that are slightly erroneous in the endo bags. So use the redundancy including what's called the secondary fill of these bags so you can adequately fill the bags

right up into the aortic neck and ensure a very good proximal seal. So what are the results, well this is the post-market registry of Ch-EVAS this is an open-label study with no screening and I'll just show you a few slides of the data

on 154 de-novo procedures, which are a combination of single, double triple, and even quadruple chimneys. And if we look firstly at outcomes at 30 days the outcomes are good, that you'd expect in these difficult anatomies,

so 2.6% mortality and stroke, and just two cases of temporary renal failure. And if we look out 12 months, the freedom from aneurysm related and all cause mortality is favorable and comparable with any of the other endovascular techniques

in these difficult anatomies, in the upper 90 percents. And endoleak rates, you pretty much eradicate type two and type three endoleaks, but remember this is only 12 months, and very low levels of type one endoleak

and its really the type one endoleaks that are difficult to fix and if you ensure that proximal neck is adequate this shouldn't occur. And finally just secondary interventions, again this is out 12 months. Secondary Interventions are low and again

I think with the tips that I've shown you, you can reduce this to an absolute minimum. So this does offer an off the shelf alternative I don't think in any way this is to match the current gold standard which to me is the custom-made devices, but it's a very useful

adjunct to the techniques we have, and again provides that off the shelf solution which in emergencies and urgent cases is essential. Don't compromise on your neck, the outcomes I think, in this group are promising, but of course, the long term durability is

absolutely essential so it's important we follow these patients out to at least 5 years. Thank you.

- Good afternoon. So as we've already heard, traumatic injuries are the leading cause of death and disability in children over the age of one. Fortunately, these types of injuries are relatively infrequent, most commonly involving the lower extremities, for example femur fractures,

causing disruption of the SFA or popliteal artery, or the upper extremities, supracondylar humeral fractures will cause damage to the axial or to the brachial artery. Retrospective review of a children's registry from 1993-2005 with 103 patients all of whom were under the age of 18, most were males.

The majority are penetrating wounds. And most frequently, the extremities were involved. Open surgical repair was favored, primary repair when possible, vein patches for use for those under the age of six, and an interposition graft or bypass was used

for those over the age of 12. Non-operative management was selectively chosen in about 10%, and the outcome in this cohort, 10% mortality, 11 amputations, and limb length discrepancy did become a problem over time, necessitating revascularization in 23%.

A nationwide Swedish registry from 1987-2013 looked at 222 patients, children under 15. In this scenario, 2/3 were male, 2/3 had blunt trauma. Once again, upper extremity injuries were more commonly seen in those under 10. Lower extremity injuries more frequently seen

in those between the ages of 11-15. With that cohort that we talked about, 96% were treated with open surgical repair, similar to what we saw before. Interposition grafts, vein patches for the young, and primary repair whenever possible. However, endo therapy was introduced in this scenario,

with eight patients undergoing intervention for axillary, subclavian artery, iliac, and aortic trauma. A summary of four large series was pooled here, and essentially shows you once again the majority of the injuries are in the extremities. The gold standard to date remains open surgical repair,

either with patch, endo anastomosis, or interposition graft, depending on the age and the location. Lajoie presented this abstract, which is a single center retrospective review, nine years, 60 patients, all under the age of 18. And once again with vascular trauma pediatric group,

majority of treatment is with open, however 16% underwent endovascular intervention with embolization, stents, and stent grafts utilized. None of the stents were implanted in anyone under the age of 13. Follow-up six weeks showed no difference

in the amputation rates or the mortality rates, however reinterventions were certainly higher in those who underwent endovascular therapy. National Trauma Databank from 2007-14 of pediatric trauma under the age of 16. 35,000, so it's a very large cohort.

And you're going to see here, it's not just a trend. This was statistically significant. There is an increase endovascular therapy utilization across the board in that time frame, and specifically for blunt trauma, increasing from 5.8% up to 15.7%.

And what you can take away from this is that the increased endovascular therapy was utilized in children over 12, larger hospitals, level one trauma centers, and those who resided in northeast. In addition to that, those who had a higher

injury severity score also underwent endovascular therapy. The most common procedures, embolization of the internal iliac, and TEVAR for blunt aortic trauma. Unfortunately, despite this, the in-hospital survival failed to improve.

So now there's a plethora of data out there, and multiple single-site institutional reviews of their own experience. Here's what I can say. I think there are some select indications for which endovascular therapy appears to be advantageous.

Without question, as you've heard already, the blunt thoracic aortic trauma. Here's a 17-year-old, fell from a seven-story building and successfully underwent endovascular intervention. Another case, a 16-year-old gunshot wound to the thigh, injury to the profunda femoris was a large

false aneurysm in the anteromedial thigh, who underwent coil embolization successful exclusion of this area where the pseudoaneurysm happened to be, but maintained perfusion through the SFA and the remaining branches of the profunda. Is there a role here for blunt femoral trauma in the child?

Well, I'm not a big fan of it, doing it in adults, but there is a paper on it. 13-year-old popliteal artery trauma, high ISS score, this occlusion was recanalized and a self-expanding stent placed. And I will note that a bridging technique was utilized.

Once the other injuries were addressed, the patient underwent bypass. 12-year-old with polytrauma, iatrogenic orthopedic screw injury to the SFA, successfully treated with a Jomed stent, and then planned bridging procedure,

who underwent open repair a few days later with an interposition vein graft from the contralateral leg. One more case, 14-year-old polytrauma, self-expanding covered stent placed for an axillary artery injury, and this was a planned procedure as a bridging technique. He, unfortunately expired prior to that opportunity

to perform the bridging technique on him with a bypass. So, in summary, I do think pediatric vascular injuries are uncommon. Open repair, once again, remains the gold standard. Endovascular therapy appears to be increasing, especially TEVAR and embolization.

Endovascular therapy in the extremities is an option as a bridge in older people over 12 who have higher ISS scores. And a nationwide pediatric database for arterial trauma would be beneficial. Thank you.

- Mister Chairman, ladies and gentlemen. Good morning. I am excited to present some of the data on the new device here. These are my disclosure. There are opportunities to improve current TEVAR devices. One of that is to have a smaller device,

is a rapid deployment that is precise, and wider possibilities to have multiple size matrix to adapt to single patient anatomy. The Valiant device actually tried to meet all these unmet needs, and nowadays the Navion has been designed on the platform

of the Valiant Captivia device with a completely different solution. First of all, it's four French smaller than the Valiant Captivia, and now it's 18 French in outer diameter for the smallest sizes available.

The device has been redesigned with a shorter tip and longer length of the shaft to approach more proximal diseases, and the delivery system deploys the graft in one step that is very easy to accomplish and precise.

The fabric has been changed with nowadays the Navion having the multi-filament weave of the Endurant that already demonstrates conformability, flexibility, and long-term durability of the material. It's coming with a wide matrix of options available. In terms of length, up to 225 mm.

Diameters as small as 20 mm, and tapered device to treat particular anatomical needs. But probably the most important innovation is the possibility to have two proximal configuration options: the FreeFlo and the CoveredSeal.

Both tied to the tip of the device with the tip-capture mechanism that ensures proximal deployment of the graft that is very accurate. This graft is being under trial in a global trial

that included 100 patients all over the world. The first 87 patients have been submitted for primary endpoint analysis. 40% of the patients were females. High risk patients showed here by the ASA class III and IV. Most of the patients presented

with a fusiform or saccular aneurysm, and the baseline anatomy is quite typical for these kinds of patients, but most of the patients have the very tortuous indices, both at the level of the access artery tortuosity and the thoracic aorta tortuosity.

Three-fourths of the patients had been treated with a FreeFlo proximal end of the graft, while one-fourth with the CoveredSeal. Complete coverage of the left subclavian occurred in one-fifth of the patients. Almost all had been revascularized.

Procedure was quite short, less than one and half hour, percutaneous access in the majority of cases. There were no access or deployment failures in this series. And coming to the key clinical endpoints, there were two mortality reported out of 87 patients.

One was due to the retrograde type A dissection at day one, and one was not device related almost at the end of the first month. Secondary procedures were again two. One was in the case of retrograde type A dissection, and the second one in a patient

that had an arch rupture due to septicemia. Type 1a endoleak was reported in only one case, and it was felt to be no adverse event associated so was kept under surveillance without any intervention. Major Adverse Events occurred in 28% of the cases. Notably four patients had a stroke

that was mild and not disabling, regressing in two weeks. Only one case of spinal cord ischaemia that resolved by drainage and therapy in 20 days. In summary, we can say that the design enhancement of Valiant Navion improved upon current generation TEVAR.

Acute performance is quite encouraging: no access or deployment failure, low procedural and fluoro times, low rate of endoleaks, Major Adverse Events in the range expected for this procedure.

Nowadays the graft is USA FDA approved as well as in Europe CE mark. And of course we have to wait the five years results.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.