Chapters
Hepatocellular Carcinoma, Arterial Injury|TACE (Conventional) (Repeat)|51|Male
Hepatocellular Carcinoma, Arterial Injury|TACE (Conventional) (Repeat)|51|Male
2016arterialattenuationchemotherapyconventionaldiseaseembolicembolizationfoamhepaticmonthsmultifocalmultipleocclusionpatientprescribedradioembolizationrecurrentrepeatSIRstartedstasistacetacestemporarytherapytumortypicallyunderwentvascularvessel
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
arteriovenousbasicallybrachiocephaliccarotidcommoncontralateraldiameterdiscordancedistalexternalFistulainternallowoccludedocclusionproximalrecanalizedrokestenosistighttumorvelocitiesvelocityvessel
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
acuteaneurysmangiographyarteriarterialbowelclinicianembolicembolusendovascularESVSguidelinesimagingischaemialactatemesentericrecommendationrepairrevascularisationthrombotic
New Developments In The Diagnosis And Treatment Of Popliteal Adventitial Cystic Disease
New Developments In The Diagnosis And Treatment Of Popliteal Adventitial Cystic Disease
adventitialangiogramarteryaspirationbypasscystcysticdiseaseetiologyextremelyinterpositionmajoritymraoptimaloutcomespatientspoplitealrecurrenceresectedresectionstandardizedtypicaltypicallyuncommonvascularvessel
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
How Best To Treat Pediatric Vascular Injuries
How Best To Treat Pediatric Vascular Injuries
adjunctsangiographyarterialaxialbismuthbluntbrachialcannulationcenterschildrencommoncontralateralendovascularextremityiatrogenicinjuriesinjuryinterpositionischemiclimbmechanismminimalmortalitypediatricpenetratingradialrepairrepairedsaphenoussinghstentsuturestraumatruncaltypevascularVeithversus
Do Re-Interventions Cause EVAR Infections
Do Re-Interventions Cause EVAR Infections
52 mm AAAAAA EndoprothesisanterioraortoentericbacteremiacatheterembolizationendograftendoleakendovascularevarexcluderexplantfluidglutealgoreGore Excluder cuffgraftiliacinfectioninfectionsinguinalInterventionsmedicaremortalityonsetperioperativeprophylacticpurulentreadmissionsriskscansecondaryseedingsteriletherapeuticunderwent
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
abdominalangiographyanterioraortaaorticarteriogrambasicallybleedingcarboncatheterceliaccoilcontrastdiaphragmdioxideembolizationholeimaginginjectinjectioninjectionsiodinatedliverlowmultiplepatientpelvicrenalruptureselectivesolublesplenictraumavascularizationveinvesselvesselsvolumes
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
acuteanterioraortaarterycementchroniccommonlycompresseddelayedfractureiliacimaginginflammatoryinjuriesinjuryinstrumentationpatientpositioningposteriorprivilegepronereplacementRt Iliac Massthermalthoracicvascularveinveinsvertebral
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
Progress In Blunt Thoracic Aortic Injury: Changing Classification Systems And Philosophy Of Treatment: What Is The Aortic Trauma Foundation And What Does It Do
Progress In Blunt Thoracic Aortic Injury: Changing Classification Systems And Philosophy Of Treatment: What Is The Aortic Trauma Foundation And What Does It Do
activelyalgorithmaorticbluntcenterscontroversyemergentlyfoundationgradingguidelinesinjuriesinjuryinterventionallowermedicalmulticentermultispecialtyongoingoptimaloutcomesparaplegiapatientpracticepredictorsprospectiveprovidersregistryTEVARthoracictimingtransitiontraumatraumatictreatingvascular
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
ambulationantegradearteryassessingcalcifiedCardival Medicalcathcath labCelt ACD (Vasorum) - Vascular Closure DeviceclosurecollagencomplicationcomplicationscompressionconsconsecutivedeploymentdevicedevicesdiscembolizationfemoralhemostasismanualminorminutespatientsprosrandomizedrequiringretrogradestainlesssurgicaltherapeutictimetrialVascade VCDvascularVascular Closure Deviceversusvisualize
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
avmsbleomycincomplicationcomplicationseffectiveeffectivenessethanolfacialfailuremarkedlypatientpatientsratesclerosantssclerotherapyskinstatisticalstatisticallytherapeutictransientvascularversus
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
centeredclinicaldeviceDialysisdiseasefuturehemodialysisinnovationkidneynephrologistoutcomespatientpatientsregulatorytherapiestreatmentsvascularVascular access
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
anatomyangioplastyarterialBaylis MedicalcontrastCVOdefinediagnosticfusedfusiongraftguidewireiliacLeft CIA PTA using Vessel ASSISTocclusionoutlinepatientphasePowerWire RFprettyPTAradialsnarestenosisstentstentstotallyveinsVessel ASSIST (GE Healthcare) - Fusion Imagingvesselswire
Transcript

This is a 51 year old man with HCV cirrhosis and a right hepatic lobe HCC which is recurrent after RFA 10 months prior. This is the arterial phase from his CT scan. You can see recurrent enhancing tumor around the ablation site, kinda nodular tumor on both lateral aspects of the abrasion site.

We've prescribed conventional TACE. We use triple therapeutic cocktail in this case and you can see the right hepatic angiogram showing multifocal disease, the patient underwent an uneventful therapy here. However given the multifocal disease he was brought back for multiple rounds of therapy. You can see this is a repeat TACE

five months later. Now we're starting to see some vessel abnormalities. Slight vessel attenuation in the right hepatic artery, again repeat TACE six months after that you can start to see multifocal vessel attenuation, vessel occlusion with an abrupt cutoff. And now one

month after that again lots of occlusions, lots of attenuation that completely obliterated right hepatic arterial system 13 months later. So this is a guy who has arterial injury or arterial occlusion related to TACE. This is not a complication per say but I think this is part of the natural history of multiple local-regional

therapies with embolic type treatments. The incidence spans anywhere from about 10 to 50%. You can get loss of vascular patency when TACE is performed to stasis or near stasis endpoint in a good percentage of cases. And I think most people take this to be related to caustic chemotherapy and embolics precipitating the hepatic injury. And obviously the

major consequence is loss of future access for local-regional therapy. It's been described for multiple chemotherapy drugs and embolic agents. And obviously what you're looking for here is attenuation, stenosis,

slow flow or occlusion in the vascular bed that you're treating. I don't think there's any real way to avoid this if you're gonna do multiple local-regional therapies, although you can consider embolizing to a substasis angiographic endpoint, use of temporary

embolic agents. And some practitioners will advocate bland particle embolization in this case, stating that there's a reduced rate of arterial occlusion, although I'm not necessarily certain that we know this for sure. From a management standpoint, I think this is a permanent event.

If one wants to pursue local-regional therapy you can consider looking for parasitized extra hepatic blood supply to HCC's in particular. However, I think at this point, systemic therapy is a pretty good option.

And this gentleman actually was prescribed sorafenib after his hepatic arterial loss. He underwent 7 total TACEs to both lobes and he expired more than 3 years after his first TACE, so he actually did pretty good for his tumor burden. Any questions or thoughts about this case?

>> [INAUDIBLE] >> We usually aim for complete tumor devascularization and maintenance of antegrade flow in the treated vascular bed. Given that he had so many TACEs I can't promise you that that was the case for every single procedure but that's our usual approach to these chemoembolizations. >> Has anybody got a question?

[INAUDIBLE] The question is, what's the threshold for switching modalities, if we start to see such changes after multiple TACEs. And the answer is it's probably operator preference again, I'll put that to the

to the group here. Would you guys switch modalities if you started to see arterial abnormalities in the treated vascular bed after some TACE procedures? >> I think some of it depends on your response. I'm not sure with this patient I wouldn't have gone right to Y90 you know multifocal

disease or bilobar disease or PVT is typically when I would go to a Y90 initially instead of TACE. If I could mention one thing about the temporary agent. In the past we used to use that in all patients, right, rather

than lipiodol, you kinda chase it with gel foam and I think, to be perfectly honest it didn't work. You see just as many cases like this with the temporary agent as you would. Because it's three weeks to three months generally in terms of

with gel foam particles when these things are gonna recanalize. So by then you're already persositizing it and frankly I just don't think work and it hurt very badly. >> Not to make this too complicated, we can all snicker but we started radioembolization obviously at North Western but for other reasons is because of this.

Some of these patients get many treatments over the course. You had seven TACE procedures here and we know in general with radioembolization, we can repeat the therapy. So we tend to do radial embolization if we decide that it's not working or there's early progression or we've reached radiation dose limits, then we do chemoembolization.

It's anecdotal that's the way we kinda run it now. In this particular patient you had seven time points. If you noticed that the vessels are starting to go away you know in the back of your mind that there may be a point that you're not gonna be able to do any more therapies. You could consider

going into something else such as radioembolization at that point but it's a little bit convoluted by the fact that there's evidence that doing repeated TACEs is better than doing TACE in one session and you wonder why did you do seven, is it not working. It didn't seem like you're doing

a lot of different segments, it was all re-occuring in the same spot so. >> I think it's a great point and I think it's one worth considering in a case like this. What I will say is we typically practice on demand therapy so this

gentleman actually having a response at each time point but then recurrence and repeat TACE. So I think to Bob's point, the therapy that we were applying was working although we were having kind of collateral damage

effects here. >> Who would have started with conventional TACE here? Who would have started with Y90? Who would have started with line/g embo/g? Cerefolin? Guess mostly Y90. You guys aren't answering much by the way.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- [Nicos] Thanks so much. Good afternoon everybody. I have no disclosures. Getting falsely high velocities because of contralateral tight stenosis or occlusion, our case in one third of the people under this condition, high blood pressure, tumor fed by the carotid, local inflammation, and rarely by arteriovenous fistula or malformation.

Here you see a classic example, the common carotid, on the right side is occluded, also the internal carotid is occluded, and here you're getting really high velocity, it's 340, but if you visually look at the vessel, the vessel is pretty wide open. So it's very easy to see this discordance

between the diameter and the velocity. For occasions like this I'm going to show you with the ultrasound or other techniques, planimetric evaluation and if I don't go in trials, hopefully we can present next year. Another condition is to do the stenosis on the stent.

Typically the error here is if you measure the velocity outside the stent, inside the stent, basically it's different material with elastic vessel, and this can basically bring your ratio higher up. Ideally, when possible, you use the intra-stent ratio and this will give you a more accurate result.

Another mistake that is being done is that you can confuse the external with the internal, particularly also we found out that only one-third of the people internalized the external carotid, but here you should not make this mistake because you can see the branches obviously, but really, statistically speaking, if you take 100

consecutively occluded carotids, by statistical chance 99% of the time or more it will be not be an issue, that's common sense. And of course here I have internalization of the external, let's not confuse there too, but here we don't have any

stenosis, really we have increased velocity of the external because a type three carotid body tumor, let's not confuse this from this issue. Another thing which is a common mistake people say, because the velocity is above the levels we put, you see it's 148 and 47, this will make you with a grand criteria

having a 50% stenosis, but it's also the thing here is just tortuosity, and usually on the outer curve of a vessel or in a tube the velocity is higher. Then it can have also a kink, which can produce the a mild kink like this

on here, it can make the stenosis appear more than 50% when actually the vessel does have a major issue. This he point I want to make with the FMD is consistently chemical gradual shift, because the endostatin velocity is higher

than people having a similar degree of stenosis. Fistula is very rare, some of our over-diligent residents sometimes they can connect the jugular vein with roke last year because of this. Now, falsely low velocities because of proximal stenosis of

the Common Carotid or Brachiocephalic Artery, low blood pressure, low cardiac output, valve stenosis efficiency, stroke, and distal ICA stenosis or occlusion, and ICA recanalization. Here you see in a person with a real tight stenosis, basically the velocity is very low,

you don't have a super high velocity. Here's a person with an occlusion of the Common Carotid, but then the Internal Carotid is open, it flooded vessels from the external to the internal, and that presses a really tight stenosis of the external or the internal, but the velocities are low just because

the Common Carotid is occluded. Here is a phenomenon we did with a university partner in 2011, you see a recanalized Carotid has this kind of diameter, which goes all the way to the brain and a velocity really low but a stenosis really tight. In a person with a Distal dissection, you have low velocity

because basically you have high resistance to outflow and that's why the velocities are low. Here is an occlusion of the Brachiocephalic artery and you see all the phenomena, so earlier like the Common Carotid, same thing with the Takayasu's Arteritis, and one way I want to finish

this slide is what you should do basically when the velocity must reduce: planimetric evaluation. I'll give you the preview of this idea, which is supported by intracarotid triplanar arteriography. If the diameter of the internal isn't two millimeters, then it's 95% possible the value for stenosis,

regardless of the size of the Internal Carotid. So you either use the ICAs, right, then you're for sure a good value, it's a simple measurement independent of everything. Thank you very much.

- Thank you so much. I have no disclosures. These guidelines were published a year ago and they are open access. You can download the PDF and you can also download the app and the app was launched two months ago

and four of the ESVS guidelines are in that app. As you see, we had three American co-authors of this document, so we have very high expertise that we managed to gather.

Now the ESVS Mesenteric Guidelines have all conditions in one document because it's not always obvious if it's acute, chronic, acute-on-chron if it's arteri

if there's an underlying aneurysm or a dissection. And we thought it a benefit for the clinician to have all in one single document. It's 51 pages, 64 recommendations, more than 300 references and we use the

ESC grading system. As you will understand, it's impossible to describe this document in four minutes but I will give you some highlights regarding one of the chapters, the Acute arterial mesenteric ischaemia chapter.

We have four recommendations on how to diagnose this condition. We found that D-dimer is highly sensitive so that a normal D-dimer value excludes the condition but it's also unfortunately unspecific. There's a common misconception that lactate is

useful in this situation. Lactate becomes elevated very late when the patient is dying. It's not a good test for diagnosing acute mesenteric ischaemia earlier. And this is a strong recommendation against that.

We also ask everyone uses the CTA angiography these days and that is of course the mainstay of diagnoses as you can see on this image. Regarding treatment, we found that in patients with acute mesenteric arterial ischaemia open or endovascular revascularisation

should preferably be done before bowel surgery. This is of course an important strategic recommendation when we work together with general surgeons. We also concluded that completion imaging is important. And this is maybe one of the reasons why endovascular repair tends to do better than

open repair in these patients. There was no other better way of judging the bowel viability than clinical judgment a no-brainer is that these patients need antibiotics and it's also a strong recommendation to do second look laparotomoy.

We found that endovascular treatment is first therapy if you suspect thrombotic occlusion. They had better survival than the open repair, where as in the embolic situation, we found no difference in outcome.

So you can do both open or endo for embolus, like in this 85 year old man from Uppsala where we did a thrombus, or the embolus aspiration. Regarding follow up, we found that it was beneficial to do imaging follow-up after stenting, and also secondary prevention is important.

So in conclusion, ladies and gentlemen, the ESVS Guidelines can be downloaded freely. There are lots of recommendations regarding diagnosis, treatment, and follow-up. And they are most useful when the diagnosis is difficult and when indication for treatment is less obvious.

Please read the other chapters, too and please come to Hamburg next year for the ESVS meeting. Thank You

- Good morning, for all of you who got up early. It's a pleasure to be here, thank you Frank for the invitation. I'm going to talk about a problem that is extremely rare, and consequently can only be investigated by putting together databases from multiple institutions, called adventitial cystic disease.

Okay, I have no conflicts. So adventitial cystic disease is an extremely uncommon problem, but it's important because it occurs often in young people. Virtually all series of adventitial cystic disease have fewer than five patients in it,

so they essentially become case reports. And yet it's a very treatable problem. There are several theories about why it occurs, you can see this picture here. The mucin-assisting material that occurs in the popliteal artery region most commonly.

The etiology of that and the origin of that is debated, whether it comes from the joint space, whether it comes from rest, whatever. But it's not really known. In addition, what's not known is the best treatment. There are several options.

Some would advocate just simple aspiration of the cystic material, although it's very viscous. Others simply excising the cyst and leaving the vessel in place. Some both excising and either doing

an interposition graft or a bypass. Early results with every one of these options have been reported, but they're quite variable as far as the outcome. And therefore, we really don't know not only the optimal approach,

but also the best outcome. For that reason, we did a study with 13 institutions on adventitial cystic disease using a technique called vascular low-frequency disease consortium.

Where everybody uses a standardized database and similar collection to act like a single institution. The aim of this study, which is one of 20 that we've conducted over the last 15 years, was to determine first of all what people were doing

as far as current practice patterns, and then look at the outcomes with the different treatment options. And this was published in the Journal of Vascular Surgery. Adventitial cystic disease of any site was identified using both the CPT ICD-9 physician logbooks,

pathology databases, and procedure codes. And then we collected epidemiologic data as well as operative and follow-up data, with our primary endpoints being vessel patency and the need for re-intervention, since amputation is extremely uncommon and rare.

This is the process for the low-frequency disease consortium. Where not only is a standardized database used, but each institution collects their data after getting IRB approval. And then deidentifies it

before sending it to a central server. So there's no way that there could be a security breach. And then we do an analysis of the data. The results of this study were that in the small number of institutions, 15 institutions, 47 patients were identified.

The majority were male, and the majority were smokers. What was interesting to us was that not all are in the popliteal region. And actually there were several patients as you can see, who had upper-extremity adventitial cystic disease, although it's far more common in the popliteal space.

And also there was actually one patient who had adventitial cystic disease of the femoral vein. The symptoms were typically claudication, and ischemic rest pain or tissue loss were quite rare. If you look at the risk factors, smoking, which was probably a comorbidity

and would not be claimed to be the etiology but was present. Other than that, this is a typical distribution of patients with vascular disease. As far as imaging here, you can see a duplex ultrasound

showing the cystic mass and how it typically looks. The majority of patients had a duplex, but also they often had an MRA or CTA as well as an angiogram. And the angiogram was typically part of the treatment paradigm.

This is just the typical appearance of an MRA showing what some people would call the scimitar sign, which is that it's not a typical plaque. And this is a picture of a CT angiogram showing a similar view of a vessel. The results,

so there were some that did not treat only the cyst, but also resected the artery. And either bypassed it, as you can see here, or did an interposition graft,

here's just a picture of one of those. And there were others that just treated the cyst, and either aspirated it alone or resected the cyst and patched the artery. Or did cyst drainage and nothing else to the vessel. If you look at the typical incision of these patients,

this is a posterior approach of the popliteal region. And the small saphenous vein as you can see is marked, and uses the conduit for bypass. The outcomes of these patients were similar as far as length of stay, complications. The one you'll notice is that

two of the five with cyst resection had a complication, so that's a little bit higher. But otherwise they're quite similar as far as the short-term outcomes and results. The main problem, and also if we look at the improvement in ABI,

although cyst resection with bypass had a higher increase in ABI, the rest of the treatments were similar. In other words, the initial outcome was similar with any of those different options.

The one thing you can see circled in red is the patients who had simple cyst aspiration. It was not durable, and consequently they often had to have a second procedure. And the resection of the artery was generally, or bypass of the artery,

generally had better long-term outcomes. The follow-up was 20 months, and here you can see the recurrence and the types of modality of follow-up. So I just conclude by saying that our experience from multiple institutions

is that this is an uncommon problem, that cyst recurrence is very high if aspiration alone is used, and either interposition or bypass is the optimal treatment. Thanks very much for your attention.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- Good afternoon, Dr. Veith, organizer. Thank you very much for the kind invitation. I have nothing to disclose. In the United States, the most common cause of mortality after one year of age is trauma. So, thankfully the pediatric vascular trauma

is only a very small minority, and it happens in less that 1% of all the pediatric traumas. But, when it happens it contributes significantly to the mortality. In most developed countries, the iatrogenic

arterial injuries are the most common type of vascular injuries that you have in non-iatrogenic arterial injuries, however are more common in war zone area. And it's very complex injuries that these children suffer from.

In a recent study that we published using the national trauma data bank, the mortality rate was about 7.9% of the children who suffer from vascular injuries. And the most common mechanism of injury were firearm and motor vehicle accidents. In the US, the most common type of injury is the blunt type

of injury. As far as the risk factors for mortality, you can see some of them that are significantly affecting mortality, but one of them is the mechanism of injury, blunt versus penetrating and the penetrating is the risk factor for

mortality. As far as the anatomical and physiological consideration for treatment, they are very similar to adults. Their injury can cause disruption all the way to a spasm, or obstruction of the vessel and for vasiospasm and minimal disruption, conservative therapy is usually adequate.

Sometimes you can use papevrin or nitroglycerin. Of significant concern in children is traumatic AV fissure that needs to be repaired as soon as possible. For hard signs, when you diagnose these things, of course when there is a bleeding, there is no question that you need to go repair.

When there are no hard signs, especially in the blunt type of injuries, we depend both on physical exams and diagnostic tools. AVI in children is actually not very useful, so instead of that investigators are just using what is called an Injured Extremity Index, which you measure one leg

versus the other, and if there is also less than 0.88 or less than 0.90, depending on the age of the children, is considered abnormal. Pulse Oximetry, the Duplex Ultrasound, CTA are all very helpful. Angiography is actually quite risky in these children,

and should be avoided. Surgical exploration, of course, when it's needed can give very good results. As far as the management, well they are very similar to adults, in the sense that you need to expose the artery, control the bleeding, an then restore circulation to the

end organ. And some of the adjuncts that are using in adult trauma can be useful, such as use of temporary shunts, that you can use a pediatric feeding tube, heparin, if there are no contraindications, liberal use of fasciotomy and in the vascular technique that my partner, Dr. Singh will be

talking about. Perhaps the most common cause of PVI in young children in developed countries are iatrogenic injuries and most of the time they are minimal injuries. But in ECMO cannulation, 20-50% are injuries due to

ECMO have been reported in both femoral or carotid injuries. So, in the centers are they are doing it because of the concern about limb ischemia, as well as cognitive issues. They routinely repair the ECMO cannulation site.

For non-iatrogenic types, if is very common in the children that are above six years of age. Again, you follow the same principal as adult, except that these arteries are severely spastic and interposition graft must accommodate both axial and radial growths of these arteries, as well as the limb that it's been

repaired in. Primary repair sometimes requires interrupted sutures and Dr. Bismuth is going to be talking about some of that. Contralateral greater saphenous vein is a reasonable option, but this patient needs to be followed very, very closely.

The most common type of injury is upper extremity and Dr. McCurdy is going to be talking about this. Blunt arterial injury to the brachial artery is very common. It can cause ischemic contracture and sometimes amputation.

In the children that they have no pulse, is if there are signs of neurosensory deficit and extremity is cold, exploration is indicated, but if the extremity is pulseless, pink hand expectant treatment is reasonable. As far as the injuries, the most common, the deadliest injuries are related to the truncal injuries and the

mechanism severity of this injury dictates the treatment. Blunt aortic injuries are actually quite uncommon and endovascular options are limited. This is an example of one that was done by Dr Veith and you can see the arrow when the stent was placed and then moved.

So these children, the long-term results of endovascular option is unknown. So in summary, you basically follow many tenets of adult vascular trauma. Special consideration for repair has to do with the fact that you need to accommodate longitudinal

and radial growth and also endovascular options are limited. Ultimately, you need a collaborative effort of many specialists in taking care of these children. Thank you.

- Good morning. I'd like to thank everybody who's in attendance for the 7 A.M. session. So let's talk about a case. 63 year old male, standard risk factors for aneurismal disease. November 2008, he had a 52 mm aneurism,

underwent Gore Excluder, endovascular pair. Follow up over the next five, relatively unremarkable. Sac regression 47 mm no leak. June 2017, he was lost for follow up, but came back to see us. Duplex imaging CTA was done to show the sac had increased

from 47 to 62 in a type 2 endoleak was present. In August of that year, he underwent right common iliac cuff placement for what appeared to be a type 1b endoleak. September, CT scan showed the sac was stable at 66 and no leak was present. In March, six months after that, scan once again

showed the sac was there but a little bit larger, and a type two endoleak was once again present. He underwent intervention. This side access on the left embolization of the internal iliac, and a left iliac limb extension. Shortly thereafter,

contacted his PCP at three weeks of weakness, fatigue, some lethargy. September, he had some gluteal inguinal pain, chills, weakness, and fatigue. And then October, came back to see us. Similar symptoms, white count of 12, and a CT scan

was done and here where you can appreciate is, clearly there's air within the sac and a large anterior cell with fluid collections, blood cultures are negative at that time. He shortly thereafter went a 2 stage procedure, Extra-anatomic bypass, explant of the EVAR,

there purulent fluid within the sac, not surprising. Gram positive rods, and the culture came out Cutibacterium Acnes. So what is it we know about this case? Well, EVAR clearly is preferred treatment for aneurism repair, indications for use h

however, mid-term reports still show a significant need for secondary interventions for leaks, migrations, and rupture. Giles looked at a Medicare beneficiaries and clearly noted, or at least evaluated the effect of re-interventions

and readmissions after EVAR and open and noted that survival was negatively impacted by readmissions and re-interventions, and I think this was one of those situations that we're dealing with today. EVAR infections and secondary interventions.

Fortunately infections relatively infrequent. Isolated case reports have been pooled into multi-institutional cohorts. We know about a third of these infections are related to aortoenteric fistula, Bacteremia and direct seeding are more often not the underlying source.

And what we can roughly appreciate is that at somewhere between 14 and 38% of these may be related to secondary catheter based interventions. There's some data out there, Matt Smeed's published 2016, 180 EVARs, multi-center study, the timing of the infection presumably or symptomatic onset

was 22 months and 14% or greater had secondary endointerventions with a relatively high mortality. Similarly, the study coming out of Italy, 26 cases, meantime of diagnosis of the infection is 20 months, and that 34.6% of these cases underwent secondary endovascular intervention.

Once again, a relatively high mortality at 38.4%. Study out of France, 11 institutions, 33 infective endographs, time of onset of symptoms 414 days, 30% of these individuals had undergone secondary interventions. In our own clinical experience of Pittsburgh,

we looked at our explants. There were 13 down for infection, and of those nine had multiple secondary interventions which was 69%, a little bit of an outlier compared to the other studies. Once again, a relatively high mortality at one year. There's now a plethora of information in the literature

stating that secondary interventions may be a source for Bacteremia in seeding of your endovascular graft. And I think beyond just a secondary interventions, we know there's a wide range of risk factors. Perioperative contamination, break down in your sterile technique,

working in the radiology suite as opposed to the operating room. Wound complications to the access site. Hematogenous seeding, whether it's from UTIs, catheter related, or secondary interventions are possible.

Graft erosion, and then impaired immunity as well. So what I can tell you today, I think there is an association without question from secondary interventions and aortic endograft infection. Certainly the case I presented appears to show causation but there's not enough evidence to fully correlate the two.

So in summary, endograft infections are rare fortunately. However, the incidence does appear to be subtly rising. Secondary interventions following EVAR appear to be a risk factor for graft infection. Graft infections are associated without question

a high morbidity and mortality. I think it's of the utmost importance to maintain sterile technique, administer prophylactic antibiotics for all secondary endovascular catheter based interventions. Thank you.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

- I'd like to thank Dr. Veith and the committee for the privilege of presenting this. I have no disclosures. Vascular problems and the type of injuries could be varied. We all need to have an awareness of acute and chronic injuries,

whether they're traumatic, resulting with compression, occlusion, tumoral and malformation results, or vasospastic. I'd like to present a thoracoscopic manipulation of fractured ribs to prevent descending aortic injury

in a patient with chest trauma. You know, we don't think about this but they can have acute or delayed onset of symptoms and the patient can change and suddenly deteriorate with position changes or with mechanical ventilation,

and this is a rather interesting paper. Here you can see the posterior rib fracture sitting directly adjacent to the aorta like a knife. You can imagine the catastrophic consequences if that wasn't recognized and treated appropriately.

We heard this morning in the venous session that the veins change positions based on the arteries. Well, we need to remember that the arteries and the whole vascular bundle changes position based on the spine

and the bony pieces around them. This is especially too when you're dealing with scoliosis and scoliotic operations and the body positioning whether it's supine or prone the degree of hypo or hyperkyphosis

and the vertebral angles and the methods of instrumentation all need to be considered and remembered as the aorta will migrate based on the body habits of the patient. Screws can cause all kinds of trouble.

Screws are considered risky if they're within one to three millimeters of the aorta or adjacent tissues, and if you just do a random review up to 15% of screws that are placed fall into this category.

Vertebral loops and tortuosity is either a congenital or acquired anomaly and the V2 segment of the vertebral is particularly at risk, most commonly in women in their fifth and sixth decades,

and here you can see instrumentation of the upper cervical spine, anterior corpectomy and the posterior exposures are all associated with a significant and lethal, at times, vertebral artery injuries.

Left subclavian artery injury from excessively long thoracic pedicle screws placed for proximal thoracic scoliosis have been reported. Clavicular osteosynthesis with high neurovascular injury especially when the plunge depth isn't kept in mind

in the medial clavicle have been reported and an awareness and an ability to anticipate injury by looking at the safe zone and finding this on the femur

with your preoperative imaging is a way to help prevent those kinds of problems. Injuries can be from stretch or retraction. Leave it to the French. There's a paper from 2011 that describes midline anterior approach

from the right side to the lumbar spine, interbody fusion and total disc replacement as safer. The cava is more resistant to injury than the left iliac vein and there's less erectile dysfunction reported. We had a patient present recently

with the blue bumps across her abdomen many years after hip complicated course. She'd had what was thought to be an infected hip that was replaced, worsening lower extremity edema, asymmetry of her femoral vein on duplex

and her heterogeneous mask that you can see here on imaging. The iliac veins were occluded and compressed and you could see in the bottom right the varicosities that she was concerned about. Another case is a 71-year-old male who had a post-thrombotic syndrome.

It was worsened after his left hip replacement and his wife said he's just not been the same since. Initially imaging suggests that this was a mass and a tumor. He underwent biopsy

and it showed ghost cells. Here you can see the venogram where we tried to recanalize this and we were unsuccessful because this was actually a combination of bone cement and inflammatory reaction.

Second patient in this category, bless you, is a 67-year-old female who had left leg swelling again after a total hip replacement 20 plus years ago. No DVTs but here you can see the cement compressing the iliac vein.

She had about a 40% patency when you put her through positioning and elected not to have anything done with that. Here you could see on MR how truly compressed this is. IVA suggested it was a little less tight than that.

So a vascular injury occurs across all surgical specialties. All procedures carry risk of bleeding and inadvertent damage to vessels. The mechanisms include tearing, stretching, fracture of calcific plaques,

direct penetration and thermal injury. The types of injuries you hear are most common after hip injuries, they need to be recognized in the acute phase as looking for signs of bleeding or ischemia. Arterial lesions are commonly prone then.

Bone cement can cause thermal injury, erosion, compression and post-implant syndrome. So again, no surgery is immune. You need to be aware and especially when you look at patients in the delayed time period

to consider something called particle disease. This has actually been described in the orthopedic literature starting in the 70s and it's a complex interaction of inflammatory pathways directed at microparticles that come about

through prosthetic wear. So not only acute injury but acute and chronic symptoms. Thank you for the privilege of the floor.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you Tal. It's a privilege again to take the podium here. No disclosures. Everyone in here in this audience understands how important Traumatic Aortic Injury is, the second leading cause of death, primarily due to blunt mechanisms,

that are well known to the trauma and vascular community. And, we've learned a lot about how to care for these patient's in the transition in the vascular age. And, that began with the American Association for the Surgery of Trauma Studies in 2008 and 2009, which showed that TEVAR was associated

with an improved mortality and decreased paraplegia compared to older modalities. And, these are the graphs at my old training grounds at UT Houston, which, I'm sure would be the same at most other centers. A gradual transition to almost completely TEVAR

for every patient who has appropriate anatomy. And, we now have over a decade worth of survival data to show the outcome comparisons are the same as the older modalities. But the question has become now, are we over treating some of these injuries?

We need an optimal algorithm and an optimal algorithm requires an optimal grading system. And, that grading system should determine the treatment we utilize, it should guide the timing of the treatment. And, should provide some prediction of the natural history

in those patient's that we do not immediately treat. The SVS in 2011 developed a very nice anatomical based grading system, however, this is a lesionology type algorithm if you will, and not incorporating any of the valuable information that the patient also may possess

in terms of associated injuries. There have been alternative proposals: Vancouver, the Harborview "Minimal Aortic Injuries" is one that is very familiar and commonly utilized in the literature. And, even the Baltimore Classification which includes some physiology elements.

And the reality is, there are also other elements of ongoing issues Blunt Thoracic Aortic Injury, including not only how to manage those Grade 1/Grade 2 injuries but the timing of repair. How do we prioritize repair in the context of other sev

rain Injury and other bleeding solid organs and what's the optimal follow up regimen for these patients? It was with those questions in mind that 3 years ago we developed the Aortic Trauma Foundation. This is a non-profit organization with a Multispecialty

International Medical Advisory Board and a Board of Directors. We really wanted to improve outcomes of patient's with Traumatic Aortic Injury through education and research. We started with several initial, kind of low hanging fruit exercises, the first of which was a practice pattern survey

from members of the SVS, trauma organization, thoracic surgery organizations in interventional radiology and we found that there were some contingents here, and some very interesting findings in this survey. In fact, a majority of providers who care for these injuries don't rely on any guidelines at all.

Just their own personal knowledge of literature and their experience over their practice lifespan. Likewise, these mid-grade injuries represent some significant controversy with almost half the providers thinking that these just need medical therapy and observation as an outpatient.

And the remainder treating them emergently with TEVAR. Or, urgently with TEVAR. And we also conducted a large Retrospective Multicenter Study, 382 patient's from US Level 1 Trauma Centers and we found the at TEVAR compared to Open Repair

was associated with lower transfusion, lower overall mortality, lower aortic related mortality. None of these were surprising findings. But again, this study identified some controversy here, particularly with the, there's no difference in outcomes with those Minimal BTAI patient's if they're treated

with TEVAR or undergo medical non-operative management. Which suggests at least that in some of these patient's we are actually over-treating them. We have, as ongoing effort, our Aortic Trauma Foundation International, Multicenter PROSPECTIVE Blunt Thoracic Aortic Injury Registry

designed to identify predictors of early rupture, develop some multi-specialty consensus guidelines on treatment and management and establish long term outcomes. Anyone in this audience can join this effort, we have always gotten good contribution from VEITH.

We have a region based involvement, mechanism to promote the not only ATF involvement but the prospective registry in the US and abroad. And, we've had some good results. This initial registry went live in 2016, as of 2018, we have 381 patient's

in 23 centers internationally. And we plan to do a feasibility report when we cross the 500 patient threshold. And we invite anyone who seeks to become a member of the Aortic Trauma Foundation and actively contributes to utilize this data.

We all want to as a community, identify and define optimal care practices. We are going to actively solicit and review proposals for use and we hope that this data will produce a foundational platform upon which we can develop some really meaningful multi-specialty guidelines

that are evidence and practice based. Thank you.

- I'd like to thank Dr. Veith for this kind invitation and the committee as well. So these are my disclosures, there's none. So for a quick background regarding closure devices. Vascular closure devices have been around

for almost 20 years, various types. Manual compression in most studies have always been shown to be superior to vascular closure devices mainly because there's been no ideal device that's been innovated to be able

to handle all sorts of anatomies, which include calcified vessels, soft plaque, etc. So in this particular talk we wanted to look at to two particular devices. One is the Vascade vascular closure device

made by Cardiva and the other is the CELT arterial closure device made by Vasorum in Ireland. Both these devices are somewhat similar in that they both use a disc. The Vascade has a nitinol disc

as you can see here that's used out here to adhere to the interior common femoral artery wall. And then once tension is applied, a series of steps is involved to deploy the collagen plug

directly on to the artery which then allows it to expand over a period of time. The CELT is similar in that it also uses a stainless steel disc as you can see here. Requires tension up against the interior wall of the common femoral artery.

Nice and tight and then you screw on the top end of the device on to the interior wall of the artery creating a nice little cylinder that compresses both walls of artery. As far as comparability is concerned between the two devices you can see

here that they're both extravascular, one's nitinol, one's stainless steel. One uses a collagen material, the other uses an external clip in a spindle-type fashion. Both require about, anywhere between three to seven minutes of pressure

to essentially stop the tract ooze. But the key differences between the two devices, is the amount of time it takes for patients to ambulate. So the ambulation time is two hours roughly for Vascade, whereas for a CELT device

it's anywhere from being immediate off the table at the cath lab room to about 20 minutes. The data for Vascade was essentially showing the RESPECT trial which I'll summarize here, With 420 patients that was a randomized trial

to other manual compression or the device itself. The mean points of this is that the hemostasis time was about three minutes versus 21 minutes for manual compression. And time to ambulation was about 3.2 hours versus 5.7 hours.

No major complications were encountered. There were 1.1% of minor complications in the Vascade versus 7% in the manual compression arm. This was actually the first trial that showed that a actual closure devices

had better results than manual compression. The main limitations in the trial didn't involved complex femoral anatomy and renal insufficiency patients which were excluded. The CELT ACD trial involved 207 patients that were randomized to CELT or to manual

compression at five centers. Time to hemostasis was anywhere between zero minutes on average versus eight minutes in the manual compression arm. There was one complication assessed at 30 days and that was a distal embolization that occurred

early on after the deployment with a successfully retrieved percutaneously with a snare. So complication rate in this particular trial was 0.7% versus 0% for manual compression. So what are some pros and cons with the Vascade device?

Well you can see the list of pros there. The thing to keep in mind is that it is extravascular, it is absorbable, it's safe, low pain tolerance with this and the restick is definitely possible. As far as the cons are involved.

The conventional bedrest time is anywhere between two to three hours. It is a passive closure device and it can create some scarring when surgical exploration is necessary on surgical dissections.

The key thing also is you can not visualize the plug after deployment. The pros and cons of the CELT ACD device. You can see is the key is the instant definitive closure that's achieved with this particular device, especially in

calcified arteries as well. Very easy to visualize under fluoroscopy and ultrasound. It can be used in both antegrade and retrograde approaches. The key cons are that it's a permanent implant.

So it's like a star closed devised, little piece of stainless steel that sits behind. There's a small learning curve with the device. And of course there's a little bit of discomfort associated with the cinching under the (mumbles) tissue.

So we looked at our own experience with both devices at the Christie Clinic. We looked at Vascade with approximately 300 consecutive patients and we assessed their time to hemostasis, their time to ambulation,

and their time to discharge, as well as the device success and minor and major complications. And the key things to go over here is that the time to hemostasis was about 4.7 minutes for Vascade, at 2.1 hours for ambulation, and roughly an average

of 2.4 hours for discharge. The device success was 99.3% with a minor complication rate of .02% which we have four hematomas and two device failures requiring manual compression. The CELT ACD device we also similarly did

a non-randomized perspective single center trial assessing the same factors and assessing the patients at seven days. We had 400 consecutive patients enrolled. And you can see we did 232 retrograde. We did a little bit something different

with this one, we did we 168 antegrade but we also did direct punctures to the SFA both at the proximal and the mid-segments of the SFA. And the time to hemostasis in this particular situation was 3.8 minutes,

ambulation was 18.3 minutes, and discharge was at 38.4 minutes. We did have two minor complications. One of which was a mal-deployment of the device requiring manual compression. And the second one was a major complication

which was an embolization of the device immediately after deployment which was done successfully snared through an eighth front sheath. So in conclusion both devices are safe and effective and used for both

antegrade and retrograde access. They're definitely comparable when it comes, from the standpoint of both devices (mumbles) manual compression and they're definitely really cost effective in that they definitely do increase the

throughput in the cath lab allowing us to be able to move patients through our cath lab in a relatively quick fashion. Thank you for your attention.

- I just like the title 'cuz I think we're in chaos anyway. Chaos management theory. Alright, unfortunately I have nothing to disclose, it really upsets me. I wish I had a laundry list to give you. Gettin' checks from everybody, it would be great. Let's start off with this chaos, what has been published.

Again "Ul Haq et al" is a paper from Hopkins. Bleomycin foam treatment of malformations, a promising agent. And they had 20 patients, 21 Bleomycin procedures. (mumbles) sclerosants in a few other patients, 40% complication rate, 30% minor, 10% major.

On a per procedure basis it was a 29% with about 7% major. All patients had decrease in symptoms. But to say "I use Bleomycin" or "I use X" because a complication (mumbles) is nonsense, you're mentally masturbating. It ain't going to be that way, you're going to have complications.

Alright, the use of Bleomycin should be reserved for locations where post-procedure swelling would be dangerous. Well they used it, and one patient required intubation for four days and another patient 15 days. So, it can happen with any agent.

So I don't know why that statement was made. "Hassan et al", noninvasive management of hemangiomas and vascular malformations using Bleomycin again, this handles the plastic surgery a few years ago. 71% effectiveness rate, 29% failure rate,

14% complication rate, 5 major ulcerations. Ulcerations happen with any agent. You're not going to escape that by saying, "Oh, well I'm not going to use alcohol because (mumbles)." No you're going to get it anyway. You all in the literature.

"Sainsbury", intra-lesional Bleomycin injection for vascular birthmarks five year experience again, 2011. 82% effectiveness, 17.3 for failure. Compli- severe blistering, ulcers, swelling, infections, recurrences. Okay, everybody's reporting it.

"Bai et al" sclerotherapy for lymphatic, oral and facial region, 2009. 43% effectiveness, but they found if they used it with surgery they had a higher effectiveness rate. Good. But again that's their effectiveness.

"Young et al", Bleomycin A5 cervico-facial vascular surgery, 2011. 81% effectiveness rate 19% failure for macrocystic. 37% failure from microcystic disease. Complications: ulcerations, hematoma, bleeding, fevers, soft tissue atrophy.

"Zhang et al." Now this is a study. They're goin' head-to-head alcohol versus Bleo. Oh, isn't that a nice thing to do. Huh, funny how that can happen sometimes. There's another paper out of Canada

that doesn't matter, there's 17 pages and there's no statistical significance for that. 138 patients, you got a lot of statistics. "Zhang et al", 138 children. 71 of 75 patients, which is 95% of that serie, were either cured,

markedly effective, or effective, with alcohol. In the Bleo group 41 of 63, that is 65% of the patients, had effective treatment. That means no cures, no markedly effective, just effective. That's their head-to-head comparison. Difference between Ethanol and

the Bleo group again was statistically significant. Ethanol at 75 patients of 14 cases skin necrosis. Bleo group at 63 patients of 5 cases skin necrosis. And in that group they stated it is statistically superior to Bleo. 95 versus 60, that's a big deal.

Again, cured, disappearance post-treatment without recurrence. Markedly effective, meant that greater than 80% was ablated. Effective means about less that 80% reduction but improved. Ineffective, no change. That was their criterion on that paper.

Again, 30 cases, superficial VMs effective rate was 95% in the Ethanol group and the deep group 94%. Okay. What was in the Bleo group? 68% superficial, 56% of deep group. So that's a statistical significance

of failure, between the two agents, comparing head-to-head in anatomic areas. Ethanol VM papers, let's go on to that, we're goin' to do other stuff. "Lee et al", advanced management, 2003, midterm results. 399 procedures in 87 patients,

95% significant or complete ablation, 12.4% complication. "Johnson et al", Kansas. University of Kansas med center, 2002. 100% success rate in tongues. One patient had a massive tongue and had breathing difficulties prior to treatment

remained intubated 5 days and then uneventfully discharged, that was their only complication. "Su et al", ethanol sclerotherapy, face and neck. Again, these are complex anatomies with complex issues of cranial nerves as well as airway control. 2010, 56 of 60 procedures, 90%, four minimal residual,

no skin necrosis, no nerve injuries. "Orlando", outpatient percutaneous treatment, low doses under local anesthesia. This is a very interesting paper out of Brazil. They did 'em under IV sedation, just a little bit by little bit.

They said they had trouble gettin' general so they had to figure another way. Smart, I like people thinkin' things out. Who here doesn't have a problem with anesthesia? Gettin' 'em not to quit before two o'clock? (laughs)

Alright, used local only 39 patients extremity VMs, main symptoms of pain. Cure or significant improvement in 94%. One ulcer, 3 transient paresthesias. "Lee et al", sclerotherapy craniofacial again, 2009. 87 patients, 75% were reductions.

71 of 87 excellent outcomes. One patient transient, tongue decreased sensation. One transient facial nerve palsy, no skin injuries. "Vogelzang" is a very important paper of a single center. Is that author- anybody here? Again, they did VMs and AVMs in this series

and then a per patient complication rate is 13.3, in AMVs 9.7 per patient, but I think what also is important is to do things with regards to procedures. And they listed both. So we'll just, it's about time to quit. This is our embolization series.

And neck, upper extremity, all the anatomies. And we're about a 10 to three ratio with regards to VM/LMs to AVMs in numbers. I think everybody's pretty much like that, a third of their practice. Again, our minor complications are that.

Major complications are these. Summary, what we found in the literature is that Ethanol publications state its efficacy rate routinely at 90 to 100%. And all other second tier sclerosants are 60 to 80%. So I think that's the take home message.

Thank you.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- First of all I'd like to thank the organizers for inviting me to give this presentation. These are my disclosures. I'm going to divide this presentation into three main parts. I will initially make the case that at the present time we are providing relatively poor value in ESRD and Vascular Access Care.

I'll then submit to you that one way to address this issue is through Patient Centered Device Innovation and then I'll tell you a little bit about some regulatory initiatives in this area. If you define value as being outcomes over cost

then I would argue that in vascular access we actually provide very poor value in that we have pretty bad outcomes and in order to achieve these bad outcomes we actually spend a huge amount of money at about 1.5 billion dollars per year and these is no talk at all

in the construct before you about quality of life. How can we break this cycle of a lack of innovation resulting in poor quality and outcomes and a high cost burden? I would submit to you that one way that we may be able to break the cycle

is through patient centered innovations. Patient centered innovation, whether it's discovery or process of care innovation, is basically innovation that targets the issues that are important to patients, not necessarily the issues that are important to physicians,

or payors, or regulators, or to industry. The reason that this is important is that the things that are relevant and critical to patients are often very different from the things that are important to the other stakeholder groups that I mention. If you look at hemodialysis for example

the things that are important to a patient on hemodialysis are ability to travel, and dialysis free time, and not feeling washed out post dialysis. On the other hand, if you're an nephrologist as I am, the things that are important to me are survival, and hospitalization, and being a nephrologist

I completely obsess about blood pressure which is really not something that patients are that worried or bother about. The next question is, of course, how do we develop therapies that address the issues that are important to patients? I got this slide from Frank Hurst at the FDA.

It basically makes the point that we need to have patient input at every point in the product development process, from initial ideation, to clinical trial design, to patient preferences, to patient centered outcomes. The FDA actually has a number of programs

in this area, one example is their Patient Focused Drug Development Initiative which allows the FDA to speak with patients and patient groups in different therapeutic areas. Closer to home, the Medical Device Innovation Consortium is extremely interested in Patient Preferences

and in a Risk-Benefit analysis. Within the kidney health initiative, which is a public-private partnership between the American Society of Nephrology and the FDA, we are also very interested in patient preferences for renal devices, and the background for this is

that an individual patient's tolerance for risk actually varies tremendously. Patients on home hemodialysis, for example, may be happy to sacrifice some degree of safety with regard to, say, vascular access, in order for an improved

or a more independent quality of life. But if you're a regulator there needs to be a way that you can get insight in to how patients perceive the risk/benefit ratio so that it can be incorporated into the regulatory pathway, and at least at the present time

the tools for this do not exist. The Kidney Health Initiative hosted an extremely successful patient preference workshop in the Baltimore area a couple of years ago. We asked three main questions: how can patients assist in the development

of a new medical device? How can they ensure the success of future clinical trials? And how can they help with the decision to make a new device available? The proceedings of this workshop have been published, and I'm really not going to go into details there.

I'm going to share with you a video that was made to try and attract patients to this webinar, and I think it really epitomizes the importance of patient centered innovation. - Hello, I'm CeCe, a fellow kidney disease patient. For 33 years I've done dialysis, both hemo and PD.

I had a transplant for 10 years and as you can imagine too many pills, shots, and accesses to mention. As kidney patients you and I both know that a few things in life are not optional. Strength, courage,

persistence, and determination. No matter what life throws at us, we try to stay balanced, maintain our routine, and remain positive. But let's face it, we are often in a holding pattern. Kidney disease treatments have not

changed much over the years. The options for patients like us have largely remained the same for many years. You want to help change that? We need you. Each day we're asked to share our lives with our treatment. But now, let's share our voice, ideas, opinions.

From patients like us, they matter. Key people are realizing our voices matter too. Here's what I found out. The Food and Drug Administration, often known as the FDA, is looking for patients living with kidney disease like you and me, to provide input

on how potential treatments of the future could look. Picture a big table. Around it are dialysis caregivers, researchers, doctors, nurses, and companies providing new products and treatments. They want us and our families to sit beside them

and have a seat at this table. We'll work together to bring potential new treatment options, safe and effective ones, and ones that patients like you and me want and need. Imagine the future of your treatment. What does it look like?

How does it improve your day-to-day life? This future doesn't have to remain just a dream. Join me and other patients to contribute our thoughts and make our ideas a possible reality. - The driving force and also the voice behind that video was the lady on the right, Celeste Lee.

She was a dialysis patient for over 30 years, she was a member of the KHI board of directors, and Celeste died a year and a half ago, she basically withdrew from dialysis because of bone disease from the 30 years of dialysis. I really think that her death

should be a charge for all of us really to try and develop therapies that target the things that are important to patients. Thank you very much for your attention.

- I'd like to share with you our experience using tools to improve outcomes. These are my disclosures. So first of all we need to define the anatomy well using CTA and MRA and with using multiple reformats and 3D reconstructions. So then we can use 3D fusion with a DSA or with a flouro

or in this case as I showed in my presentation before you can use a DSA fused with a CT phase, they were required before. And also you can use the Integrated Registration like this, when you can use very helpful for the RF wire

because you can see where the RF wire starts and the snare ends. We can also use this for the arterial system. I can see a high grade stenosis in the Common iliac and you can use the 3D to define for your 3D roadmapping you can use on the table,

or you can use two methods to define the artery. Usually you can use the yellow outline to define the anatomy or the green to define the center. And then it's a simple case, 50 minutes, 50 minutes of ccs of contrast,

very simple, straightforward. Another everybody knows about the you know we can use a small amount of contrast to define the whole anatomy of one leg. However one thing that is relatively new is to use a 3D

in order to map, to show you the way out so you can do in this case here multiple segmental synosis, the drug-eluting-balloon angioplasty using the 3D roadmap as a reference. Also about this case using radial fre--

radial access to peripheral. Using a fusion of image you can see the outline of the artery. You can see where the high grade stenosis is with a minimum amount of contrast. You only use contrast when you are about

to do your angiogram or your angioplasty and after. And that but all everything else you use only the guide wires and cathers are advanced only used in image guidance without any contrast at all. We also been doing as I showed before the simultaneous injection.

So here I have two catheters, one coming from above, one coming from below to define this intravenous occlusion. Very helpful during through the and after the 3D it can be helpful. Like in this case when you can see this orange line is where

the RF wire is going to be advanced. As you can see the breathing, during the breathing cycle the pleura is on the way of the RF wire track. Pretty dangerous stuff. So this case what we did we asked the anesthesiologist

to have the patient in respiratory breath holding inspiration. We're able to hyperextend the lungs, cross with the RF wire without any complication. So very useful. And also you can use this outline yellow lines here

to define anatomy can help you to define where you need to put the stents. Make sure you're covering everything and having better outcomes at the end of the case without overexposure of radiation. And also at the end you can use the same volt of metric

reconstruction to check where you are, to placement of the stent and if you'd covered all the lesion that you had. The Cone beam CT can be used for also for the 3D model fusion. As you can see that you can use in it with fluoro as I

mentioned before you can do the three views in order to make sure that the vessels are aligned. And those are they follow when you rotate the table. And then you can have a pretty good outcome at the end of the day at of the case. In that case that potentially could be very catastrophic

close to the Supra aortic vessels. What about this case of a very dramatic, symptomatic varicose veins. We didn't know and didn't even know where to start in this case. We're trying to find our way through here trying to

understand what we needed to do. I thought we need to recanalize this with this. Did a 3D recan-- a spin and we saw ours totally off. This is the RFY totally interior and the snare as a target was posterior in the ASGUS.

Totally different, different plans. Eventually we found where we needed to be. We fused with the CAT scan, CT phase before, found the right spot and then were able to use

Integrated registration for the careful recanalization above the strip-- interiorly from the Supraaortic vessels. As you can see that's the beginning, that's the end. And also these was important to show us where we working.

We working a very small space between the sternal and the Supraaortic vessels using the RF wire. And this the only technology would allowed us to do this type of thing. Basically we created a percutaneous in the vascular stent bypass graft.

You can you see you use a curved RF wire to be able to go back to the snare. And that once we snare out is just conventional angioplasty recanalized with covered stents and pretty good outcome. On a year and a half follow-up remarkable improvement in this patient's symptoms.

Another patient with a large graft in the large swelling thigh, maybe graft on the right thigh with associated occlusion of the iliac veins and inclusion of the IVC and occlusion of the filter. So we did here is that we fused the maps of the arterial

phase and the venous phase and then we reconstruct in a 3D model. And doing that we're able to really understand the beginning of the problem and the end of the problem above the filter and the correlation with the arteries. So as you can see,

the these was very tortuous segments. We need to cross with the RF wire close to the iliac veins and then to the External iliac artery close to the Common iliac artery. But eventually we were able to help find a track. Very successfully,

very safe and then it's just convention technique. We reconstructed with covered stents. This is predisposed, pretty good outcome. As you can see this is the CT before, that's the CT after the swelling's totally gone

and the stents are widely open. So in conclusion these techniques can help a reduction of radiation exposure, volume of contrast media, lower complication, lower procedure time.

In other words can offer higher value in patient care. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.

×
Create a free account to watch 3 clips every day. Upgrade for unlimited access.