Create an account and get 3 free clips per day.
Chapters
Hepatocellular Carcinoma, Colorectal Metastases | TACE, Thermoablation/Radiofrequency Ablation | 69 | Male
Hepatocellular Carcinoma, Colorectal Metastases | TACE, Thermoablation/Radiofrequency Ablation | 69 | Male
2016advocateangiogramangiogramsarterialarterybevacizumabchemotherapydissectionflowhepaticmappingmicrocatheterpatientpatientsselectiveSIRvesselsweeks
Educating Your Patients To Advocate For Themselves In The Dialysis Clinic
Educating Your Patients To Advocate For Themselves In The Dialysis Clinic
accessadvocateAVFcannulationcentercenterscheapereducatefrequentlyhemodialysislarrymappingnephrologistspatientpatientsprotectingprovidesurgeonstold
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Percutaneous Pharmaco-Mechanical Intervention For PE: Is There A Rationale
Percutaneous Pharmaco-Mechanical Intervention For PE: Is There A Rationale
Angiodynamicsangiovaccannulacircuit for thrombiemboli removalFlowTriever (Infusion aspiration system - Inari) / Penumbra CAT8 (Thromboaspiration system - Penumbra) / AngioJet (Peripheral thrombectomy system - Boston Scientific)therapeutic
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
abdominalacuteaneurysmsaorticbasicallycenterscomorbiditycreatininedissectionsevarevarsfactorsinpatientinstitutionlowermortalitypatientsphysiologicpreoperativerapidrenalrupturedstudysyndromestransfertransferredtransferstransportunivariatevascularVeith
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
ablationanticoagulatedanticoagulationantiplateletatrialClosureFastcontralateralcontrolCovidein Cf 7-7-60 2nd generationdatademonstratedduplexdurabilitydurableDVTdvtseffectivenessendothermalendovenousevlafiberlargestlaserMedtronicmodalitiesocclusionpatientspersistentpoplitealproceduresRadiofrequency deviceRe-canalizationrecanalizationrefluxstatisticallystudysystemictherapythermaltreatedtreatmenttumescentundergoingveinvenousvesselswarfarin
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Aspiration SystemAspiration ThrombectomyCovered stentInjured infa-renal aorta with embolegenic thrombusPenumbraPenumbra’s Indigotherapeutic
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
algorithmamputationarterialautogenouscomponentcompressiondataDVTendovascularEVLTextremityhealhealingincisionsisolatedmichiganmixedmoderatepatientspercutaneousperforatorsrefluxrevascularizationrevascularizesummasuperficialtreatmentulcersvenouswoundwounds
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
cessationcounselingevaluatesintermedmedicarepatientpatientspharmacotherapyreducesrestenosissessionssmokingtobaccovascularwebsitewithdrawal
Non-Fasting Lipid Profiles Are A Simplification With No Negative Consequences For Diagnosis, Risk Evaluation And Treatment
Non-Fasting Lipid Profiles Are A Simplification With No Negative Consequences For Diagnosis, Risk Evaluation And Treatment
biliarycalculatedcardiovascularcholesterolfastedfastinghyperlipidemiaischemiclipidmeasuredoverlappatientsprofilerisktriglycerides
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
AngioVac (AngioDynamics) / FlowTriever (Inari) / Penumbra device (Penumbra Inc)Argon MedicalCDTCleaner devicePEpressorsRotational thrombectomy systemtherapeutic
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
abdominalanatomicaneurysmaorticdecisiondegenerativeendovascularenrollenrollmentinfluencedmedicaloptionspatientsphysiologicpittsburghrepairstudysurgicaltreatmentvascularVeithversus
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
acuteadvanceanteriorcarotidcerebralcollateralsdeliveryintracranialmechanicalneuroprotection agentsneuroprotectiveofferedpatientpatientsPenumbrapotentpreservestrokethrombectomyThromectomytpatreat
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Step-By-Step Technical Tips For Pharmaco-Mechanical Intervention For PE
Step-By-Step Technical Tips For Pharmaco-Mechanical Intervention For PE
EKOS EkoSonic Mach 4eEkoSonicEndovascular system for ultrasound accelerated thrombolysisPETenectaplasetherapeutic
Transcript

presented for liver directed therapy, patient has systemic chemotherapy as part of the treatment so this is what you see on imaging, we just took a static image but there's contrasting out there and

they're not going anywhere, so this will be a dissection. So same question, what would you do at this point? >> Just to take a step back. Was this manipulating a microcatheter or is this from a glide wire, or were you trying to get a four French catheter out into the hepatic artery,

what was the. >> This is just a microcatheter trying to get out distally and then so the fellow saw that this contrast stasis and then he just pulled everything out and he called me. >> So certainly this is the same person that Ryan had early today, cross trained in Chicago.

>> Yeah I think he's been making the rounds. >> This is not uncommon, you don't see this usually with HCC patients though in my case it was HCC, wasn't a dissection but you mentioned chemotherapy, what chemotherapy is in, and what was the time place here?

>> I don't remember but this patient had [UNKNOWN] and usually when the patient is on chemotherapy for us to do any kind of local treatment we'd like to take the patient off chemotherapy for at least two or four weeks or so. So this patient is fighting off whatever chemo he had for like about four weeks before we do this local regional arterial therapy.

>> What I'm driving at a little bit here is bevacizumab which maybe what these patients are on and sometimes four weeks and many times is not enough, many people advocate six weeks but I've seen even at six weeks there would have been very bad antegrate flow, cranky vessels you try to do anything, there is another one where

I may do an angiogram, now to do a good ciliac angiogram, I usually use reverse curve catheters, I try not to get them out there and if there is preferential flow to the spleen, the antegrade flow in the liver looks bad it doesn't stop me from doing my angiogram and we are probably doing different procedures here but in terms of mapping for radio embolization,

I don't even catheterize the left hepatic artery because I feel like I'm gonna get myself into trouble so I'm just mapping them, I'll just get to a right hepatic angiogram put the MA and give them a month or more off of chemotherapy or they can go back on a chemotherapy. Maintenance chemotherapy, without the bevacizumab and bringing them

back to treat, but I think the key here I think is really before trying to get too selective or even selective of left and right hepatic arteries is to really analyse your ciliac angiogram. Because these vessels can be very difficult to navigate and you end up with problems like this that are very difficult to deal with.

>> Yeah. So the question now is- >> I think there is a question from the group over here. >> Okay, right. >> [INAUDIBLE] >> That's a little bit rogue and a little bit outside

of almost any intervention oncology guideline or practice pattern. I think last year we had a workshop and we had created a workbook from it and almost everybody suggests around six weeks off, I don't always adhere to that. I will do angiograms, the patient's honor or not and I say that.

But again I have a lot of angiograms number one and number two. I do a ciliac angiogram, and if the flow does not look good, I hold it. Many times you can predict something like this. In the cases that I've seen we don't see all the other images but,

the hepatic arterial tree is very diminutive. The flow is preferential into the spleen. You do an angiogram one foot five in the counter hepatic artery it all reflects back to the spleen that's a problem. So in general most

advocate and you may find one or two people that don't, but most advocate holding the bevacizumab if you are going to do angiograms with people on bevacizumab you will see some problems and if you try to be, you are not even aggressive with your catheterizations, Dan Brown who's very highly regarded in my opinion and he's got a I would say a great case but it's a horrific case of something

like this, that went from a dissection to a pseudo aneurysm to include the whole nine yards and I think he's very experienced. So and [INAUDIBLE] I believe has a very similar case, Charlie nodding, I've seen case after case, meetings where this is the norm when people are on bevacizumab. So if people are saying that they got to be careful of the message that people leave in this meeting is that

yeah, don't worry about bevacizumab, I think that is the wrong message. So anyway you know we do quite a few [INAUDIBLE] with the patient beyond different agents before, and I will have to say our dissection rate is not as high as I would expect but

you run to a patient whose vessels look diminutive and kind of fragile, you just know you gonna be in trouble, so I think it's also a patient dependent as well. So in this case what we did was we went across and we put up a balloon lightly hopefully to get some flow and then we went ahead and did the chemoembolization. So at follow up,

this is the angiogram after the chemoembo and we did a follow up CT angiogram couple of weeks later just see where the things were going and this is [INAUDIBLE] at the area of dissection but that flow was to be established very well and you know for every case that looks like this, I can remember a case that the vessel is just thrombozed

completely. And then you get recarnalization via collaterals. >> Let me ask you why, I think there's evidence and you showed a lot of evidence for combination treatments in HCC but what about metastatic diseases.

I haven't seen a lot of evidence for that. >> You're right, you're absolutely right. As a matter of fact we do use 190 for [INAUDIBLE] most of the time. I don't remember why in this case we get the combination therapy but [INAUDIBLE] methods and a different beast and HCC for sure, all

the data that I've shown you pertains to HCC not in [INAUDIBLE] but I chose this case because of the dissection which you will see a lot in HCC. So here is a paper that many years ago our aligning issue with dissection in such patients who gotten chemotherapy.

- Thank you, Larry and Tony, for the invitation. Larry told me I should be provocative so here we go. (chuckles) Those are my disclosures, mostly in the aortic space, although I was a PI for the Humanity Phase II trial. So this is a quote that interventional nephrologists in Arizona told me one day when we were trying

to have a educational, meaningful discussion, so we provide care that is better, faster, and cheaper than what you can provide in the hospital. And we'll address this a little later. What's the roles of the access surgeon, when it comes to advocating or educating

your dialysis patients? Well, when you google advocating for anything, you're going to find mostly political references. And I think there are a number of excellent patient related groups to advocate for policies and principles. But as the surgeon, I think we have

a couple of important roles. One, we need to create the most durable, successful access possible, and as Ted just said, that needs to be individualized for the patient. We need to try and protect and maintain the access and we also have a role in protecting the patient.

We can't underestimate or underemphasize the importance of vessel mapping, both arterial and venous. We frequently get patients referred who have already had their mapping somewhere else but as the surgeon is going to be doing the procedure, we tend to repeat that in the office,

so that we can see it ourselves, because mapping can be variable, can depend on environmental conditions, how cold the patient's room is, their hydration status, so we really try and nail that down. And frequently we find a high bifurcation

of the brachial artery, that's not noted on other mapping. And, again, I think to emphasize what Ted just said, we really need to champion communication between the patient, the nephrologist, and the surgeon, just because you don't receive communication, doesn't mean you can't be the person who provokes

and stimulates communication back to the nephrologist to try and really develop a clear plan. The timing of the hemodialysis is imperative and I think we should consider early cannulation grafts in appropriate patients. What about protecting and maintaining the access,

well these slides were provided to me by Dori Schatell, who's given this talk, you need to arm your patients with information to advocate for themselves and that's really, kind of the theme of what I want to talk about later. Give them pictures of their access,

write them very clear postop instructions, teach patients about cannulation patterns, teach them how to use topical anesthetics for cannulation. Make sure they know what to do in the case of an infiltration or prolonged bleeding, or loss of the thrill.

Make sure they have your contact information, and encourage patients to learn how to self-cannulate. What about protecting the patient? Well, I think it's our, it's the team's obligation but seems to fall on us a lot to educate the patient and their family about their right to choose.

Educate the patient and their family about available providers and facilities in their area. And educate the patient and their family about what services are available at different facilities, and nephrologists , radiologists, surgeons and anesthesiologists.

- Okay, I went to my nephrologist. He told me I needed to get this fistula put in, and then I was directed to the access center, because the way he said it, that's where I had to go to get it done, after I'd already talked to another doctor about doing it,

I was told I had to go to the access center. Okay-- - Oop, let's see. - Um, what she didn't say is that, she didn't like the center in the first place, because originally the doctor that saw her there for the fistula, didn't give us any help.

So he said, I can't do it for you, I don't know what's going to happen, and every time we would ask him, well, is there any solution for her to get a fistula, he wouldn't answer our question and he's like, well, I can't, I can't help you, I'm not going to take it.

So, when they told her told to go to that center, she had told him, can I go somewhere else, somewhere where they're a little bit more professional? And they said, no, you have to go there, they're the specialists. - So, going back to the original comment.

We provide care that is better, faster, and cheaper than what you can provide in the hospital. Well, when you're talking about better, that's really measured only by safety and durability of the interventions, not opinions. And faster, unfortunately, in our area,

some of our access centers are closed on Wednesdays, some of them are closed on Fridays and the weekend. And it's interesting, we often, the surgeons in town often get pummeled on Friday because the access center is closed. And I can tell you that my weekend on call,

I spent about half my day Saturday doing access interventions. And cheaper, cheaper's really only a function of how payers have decided to reimburse. You pay the same amount for staff, electricity, and supplies, whether you're at a hospital,

a surgery center, or an OBL. Unfortunately, some access centers frequently choose therapies that are less effective but cheaper to protect their margins. And perfect examples of these are stent grafts, and drug-coated balloons.

I think hemodialysis patients really want care that is safe, effective and durable. And really, where that's going to be best achieved will depend on what's available in a particular community or region. And most importantly, and I think,

as Ted highlighted, they're really the commitment to providing excellence in access care. And I'll finish with one more little vignette from one of my patients, and these patients, actually this was unsolicited, they just happened to be going off in the office one day

and I had gotten this assignment, I said, you mind if I video this and use it in my presentation? - Basically, in my opinion, what it is, it needs to be patient education. The ones that do talk to me, 'cause I do take control

of my treatments completely. That's why my fistula's in such good shape, 'cause I'll only run 16 gauge needles, which slows down my treatment, which keeps my heart in better shape. That's why I'm still up, walking, doing what I do.

- Thank you very much.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- So, I'm going to probably echo many of the themes that Gary just touched upon here. These are my disclosures. So, if we look at the CHEST guidelines on who should get pharmacomechanical techniques, it is very very very sobering, and I apologize if the previous speakers have shown this slide,

but essentially, what's right now being disseminated to the American College of CHEST Physicians is that nobody should get catheter-directed thrombolysis, the concept of pharmacomechanical technique should really only reserved as a last-ditch effort if nothing else works, if you happen to have somebody

with extraordinary expertise in your institution, it could not be more of a damning recommendation for what I'm about to talk to you about for the next eight or nine minutes or so. So, then the question is, what is the rationale? What are we talking about here?

And again, I'm going to say that Gary and I, I think are sort of kindred spirits in recognizing that we really do need to mature this concept of the catheter-based technique for pulmonary embolism. So, I'm going to put out a hypothetical question, what if there was a single session/single device therapy

for acute PE, Gary showed one, that could avoid high dose lytics, avoid an overnight infusion, acutely on the table lower the PA pressure, acutely improve the function of the right ventricle, rapidly remove, you know, by angiography,

thrombus and clot from the pulmonary artery, and it was extremely safe, what if we had that? Would that change practice? And I would respectfully say, yes it would. And then what if this concept has already been realized, and we're actually using this across the world

for STEMI, for stroke, for acute DVT, and so why not acute pulmonary embolism? What is limiting our ability to perform single session, rapid thrombus removal and

patient stabilization on the table? Gary showed this slide, there's this whole litany of different devices, and I would argue none of them is exactly perfect yet, but I'm going to try and sort of walk you through what has been developed in an attempt

to reach the concept of single session therapy. When we talk about pharmacomechanical thrombectomy or thrombo-aspiration, it really is just one line item on the menu of all the different things that we can offer patients that present with acutely symptomatic PE, but it is important to recognize

what the potential benefits of this technology are and, of course, what the limitations are. When we look at this in distinction to stroke or STEMI or certainly DVT, it's important to recognize that during a surgical pulmonary embolectomy case, the clot that's able to be extracted is quite impressive,

and this is a very very very sobering amount of material that is typically removed from the patient's right heart and their pulmonary circulation, so, in order to innovate and iterate a percutaneous technology based on existing concepts,

it really does demand significant disruption to achieve the goals, we have not tackled this yet in terms of our endovascular tool kit. So, what is the role? Well, it's potentially able to debulk in acute PE, in an intermediate risk patient which would

ideally eliminate the need for overnight lysis, as Gary alluded to, but what if it could actually replace surgical embolectomy in high risk patients? I think many of us have had the conversation where we, we sort of don't know that's there a

experienced, comfortable surgeon to do an embolectomy within the building or within immediate access to the patient that we see crashing in front of our eyes. I'm very very lucky here in New York that I've incredible cardiovascular surgeons that are able to perform this procedure very very safely 24/7,

but I know that's not the case across the country. So, one of our surgeons who actually came from the Brigham and Women's Hospital in Boston developed this concept, which was the sort of first bridge between surgical embolectomy and percutaneous therapy, which is a large bore aspiration catheter,

it's a 22 French cannula that was originally designed to be placed through a cutdown but can now be placed percutaneously, and I think many of us in the room are familiar with this technology, but essentially you advance this under fluoroscopy into the right heart,

place the patient on venous-venous bypass, and a trap, which is outside the patient, is demonstrated in the lower left portion of the screen here, is able to capture any thrombotic material and then restore the circulation via the contralateral femoral vein,

any blood that is aspirated. Very very scant data on this, here's the experience from Michael and Kenny up in Boston where they tried this technology in just a handful of cases, this was followed by John Moriarty's experience from UCLA, where he actually argued a little bit of caution

using this technology, largely related to its inability to safely and reliably deliver it to the pulmonary circulation. To that end, AngieDynamics is funding a prospective registry really looking at safety and efficacy at delivering this device to the pulmonary circulation

and its ability to treat acute pulmonary embolism as well as any right heart clot, but that data's not commercially available yet. This is just one case that we did recently of a clot in transit, which I would argue could not be treated with any other technology

and the patient was able to be discharged the same day, I personally think this is a wonderful application of this technology and is our default strategy right now for a very large clot in transit. The second entrance to the space is the Inari FlowTriever device, which is a 20 French cannula,

it does not require a perfusion team in vein-vein bypass, the concept is simple, a 20 French guide catheter is advanced into the pulmonary circulation and these trilobed disks, which function like a stentriever for stroke are deployed in the pulmonary circulation, retracted to allow the clot to be delivered to the guide cath,

and then using manual aspiration, the clot is retrieved from the patient. Just a few case reports in small series describing this, this one in JACC two years ago, showing quite robust ability to extract a clot, this company which is a relatively small company funded a

single-arm prospective trial enrolling 168 patients, and not only did they complete enrollment last year, but they actually received FDA approval, now there is no peer-reviewed literature on this, it has undergone public presentation, but we, we really don't know exactly which patients were treated,

and so we really can't dissect this, I think there is a learning curve to this technology, and it's not, certainly, ready for broad dissemination yet, we just don't know which patients are ideal for it currently. Another technology, the Penumbra CAT8 system,

a market reduction in the size, an 8 French catheter based technology, this is exact same technology that's used for thrombo-aspiration for acute ischemic stroke, currently just in a slightly different size, and then a number of cases demonstrating its efficacy at

alleviating the acute nonperfusion of an entire lobe, as Gary was referring to previously, and this is one of our cases from our own lab, where you see there's no perfusion of the right, middle and lower lobe, I'm not sure if I can get these movies to play here, oh here it goes,

and so using sort of a handmade separator, we were able to restore perfusion again to the right, middle and lower lobe here, so just one example where, I think there is a potential benefit of thrombo-aspiration in a completely occluded segment.

There has been a wealth of literature about this technology, mostly demonstrating safety and efficacy, the most recent one on the bottom right in CVIR demonstrates the ability to acutely reduce the PA pressures on the table with the use of this technology, and to that end,

Akhi Sista, our faculty here this morning, is the national principal investigator of a US multicenter prospective study looking at exactly that, to try and prove that this technology is safe and effective in the treatment of submassive pulmonary embolism, so more to come on that.

Lastly, the AngioJet System, probably the most reported and studied technology, this is a 6 French technology by default, a wealth of literature here showing safety and efficacy, however, due to adverse event reporting, this technology currently has black box label warnings

in the treatment of acute pulmonary embolism, so clearly this technology should not be used by the novice, and there are significant safety concerns largely related to bradyarrhythmias and hypotension, that being said, again, it is a quite experienced technology for this. So where do we currently stand?

I think we clearly see there are several attributes for thrombo-aspiration including just suction aspiration, a mechanical stent-triever technology, and the ability to not just insanguinate the patient but actually restore circulation and not make the patient anemic, here,

you can see where these technologies are going in terms of very very large bore and very small bore, I placed the question marked right in the center which is where I think this technology needs to converge in order to lead to the disruption for the broad adoption of a single session technology.

So, numerous devices exist, all the devices have been used clinically and have demonstrated the ability to be delivered in aspirary pulmonary embolus, at present, unfortunately there is no consensus regarding which device should be used for which patients and in which clinical presentations,

we need many prospective studies to demonstrate the safety and clinical benefit for our patients, we desperately do need a single session therapy, again, I completely agree with Gary on this, but there is a lot of work yet to do. Thank you for your attention.

- Thank you, and thank you Dr. Veith for the opportunity to present. So, acute aortic syndromes are difficult to treat and a challenge for any surgeon. In regionalization of care of acute aortic syndromes is now a topic of significant conversation. The thoughts are that you can move these patients

to an appropriate hospital infrastructure with surgical expertise and a team that's familiar with treating them. Higher volumes, better outcomes. It's a proven concept in trauma care. Logistics of time, distance, transfer mortality,

and cost are issues of concern. This is a study from the Nationwide Inpatient Sample which basically demonstrates the more volume, the lower mortality for ruptured abdominal aortic aneurysms. And this is a study from Clem Darling

and his Albany Group demonstrating that with their large practice, that if they could get patients transferred to their central hospital, that they had a higher incidence of EVAR with lower mortality. Basically, transfer equaled more EVARs and a

lower mortality for ruptured abdominal aortic aneurysms. Matt Mell looked at interfacility transfer mortality in patients with ruptured abdominal aortic aneurysms to try to see if actually, transfer improved mortality. The take home message was, operative transferred patients

did do better once they reached the institution of destination, however they had a significant mortality during transfer that basically negated that benefit. And transport time, interestingly did not affect mortality. So, regional aortic management, I think,

is something that is quite valuable. As mentioned, access to specialized centers decrease overall mortality and morbidity potentially. In transfer mortality a factor, transport time does not appear to be. So, we set up a rapid transport system

at Keck Medical Center. Basically predicated on 24/7 coverage, and we would transfer any patient within two hours to our institution that called our hotline. This is the number of transfers that we've had over the past three years.

About 250 acute aortic transfers at any given... On a year, about 20 to 30 a month. This is a study that we looked at, that transport process. 183 patients, this is early on in our experience. We did have two that expired en route. There's a listing of the various

pathologies that we treated. These patients were transferred from all over Southern California, including up to Central California, and we had one patient that came from Nevada. The overall mortality is listed here. Ruptured aortic aneurysms had the highest mortality.

We had a very, very good mortality with acute aortic dissections as you can see. We did a univariate and multivariate analysis to look at factors that might have affected transfer mortality and what we found was the SVS score greater than eight

had a very, very significant impact on overall mortality for patients that were transferred. What is a society for vascular surgery comorbidity score? It's basically an equation using cardiac pulmonary renal hypertension and age. The asterisks, cardiac, renal, and age

are important as I will show subsequently. So, Ben Starnes did a very elegant study that was just reported in the Journal of Vascular Surgery where he tried to create a preoperative risk score for prediction of mortality after ruptured abdominal aortic aneurysms.

He found four factors and did an ROC curve. Basically, age greater than 76, creatinine greater than two, blood pressure less than 70, or PH less than 7.2. As you can see, as those factors accumulated there was step-wise increased mortality up to 100% with four factors.

So, rapid transport to regional aortic centers does facilitate the care of acute aortic syndromes. Transfer mortality is a factor, however. Transport mode, time, distance are not associated with mortality. Decision making to deny and accept transfer is evolving

but I think renal status, age, physiologic insult are important factors that have been identified to determine whether transfer should be performed or not. Thank you very much.

Thanks very much, Tom. I'll be talking about thermal ablation on anticoagula is it safe and effective? I have no disclosures. As we know, extensive review of both RF and laser

ablation procedures have demonstrated excellent treatment effectiveness and durability in each modality, but there is less data regarding treatment effectiveness and durability for those procedures in patients who are also on systemic anticoagulation. As we know, there's multiple studies have been done

over the past 10 years, with which we're all most familiar showing a percent of the durable ablation, both modalities from 87% to 95% at two to five years. There's less data on those on the anticoagulation undergoing thermal ablation.

The largest study with any long-term follow up was by Sharifi in 2011, and that was 88 patients and follow-up at one year. Both RF and the EVLA had 100% durable ablation with minimal bleeding complications. The other studies were all smaller groups

or for very much shorter follow-up. In 2017, a very large study came out, looking at the EVLA and RF using 375 subjects undergoing with anticoagulation. But it was only a 30-day follow-up, but it did show a 30% durable ablation

at that short time interval. Our objective was to evaluate efficacy, durability, and safety of RF and EVLA, the GSV and the SSV to treat symptomatic reflux in patients on therapeutic anticoagulation, and this group is with warfarin.

The data was collected from NYU, single-center. Patients who had undergone RF or laser ablation between 2011 and 2013. Ninety-two vessels of patients on warfarin at the time of endothermal ablation were selected for study. That's the largest to date with some long-term follow-up.

And this group was compared to a matched group of 124 control patients. Devices used were the ClosureFast catheter and the NeverTouch kits by Angiodynamics. Technical details, standard IFU for the catheters. Tumescent anesthetic.

And fiber tips were kept about 2.5 centimeters from the SFJ or the SPJ. Vein occlusion was defined as the absence of blood flow by duplex scan along the length of the treated vein. You're all familiar with the devices, so the methods included follow-up, duplex ultrasound

at one week post-procedure, and then six months, and then also at a year. And then annually. Outcomes were analyzed with Kaplan-Meier plots and log rank tests. The results of the anticoagulation patients, 92,

control, 124, the mean follow-up was 470 days. And you can see that the demographics were rather similar between the two groups. There was some more coronary disease and hypertension in the anticoagulated groups, and that's really not much of a surprise

and some more male patients. Vessels treated, primarily GSV. A smaller amount of SSV in both the anticoagulated and the control groups. Indications for anticoagulation.

About half of the patients were in atrial fibrillation. Another 30% had a remote DVT in the contralateral limb. About 8% had mechanical valves, and 11% were for other reasons. And the results. The persistent vein ablation at 12 months,

the anticoagulation patients was 97%, and the controls was 99%. Persistent vein ablation by treated vessel, on anticoagulation. Didn't matter if it was GSV or SSV. Both had persistent ablation,

and by treatment modality, also did not matter whether it was laser or RF. Both equivalent. If there was antiplatelet therapy in addition to the anticoagulation, again if you added aspirin or Clopidogrel,

also no change. And that was at 12 months. We looked then at persistent vein ablation out at 18 months. It was still at 95% for the controls, and 91% for the anticoagulated patients. Still not statistically significantly different.

At 24 months, 89% in both groups. Although the numbers were smaller at 36 months, there was actually still no statistically significant difference. Interestingly, the anticoagulated group actually had a better persistent closure rate

than the control group. That may just be because the patients that come back at 36 months who didn't have anticoagulation may have been skewed. The ones we actually saw were ones that had a problem. It gets harder to have patients

come back at three months who haven't had an uneventful venous ablation procedure. Complication, no significant hematomas. Three patients had DVTs within 30 days. One anticoagulation patient had a popliteal DVT, and one control patient.

And one control patient had a calf vein DVT. Two EHITs. One GSV treated with laser on anticoagulation noted at six days, and one not on anticoagulation at seven days. Endovenous RF and EVLA can be safely performed

in patients undergoing long-term warfarin therapy. Our experience has demonstrated a similar short- and mid-term durability for RF ablation and laser, and platelet therapy does not appear to impact the closer rates,

which is consistent with the prior studies. And the frequency of vein recanalization following venous ablation procedures while on ACs is not worse compared to controls, and to the expected incidence as described in the literature.

This is the largest study to date with follow-up beyond 30 days with thermal ablation procedures on anticoagulation patients. We continue to look at these patients for even longer term durability. Thanks very much for your attention.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Thank you, it's a pleasure to be here. I'll address how the Indigo Thrombectomy technology can expand the reach of what you can do for your patients. It will preserve treatment options, improve patient outcomes, conserve hospital resources,

and perhaps most importantly, improve your day. The old treatment strategy, every time I had someone with acute limb ischemia I felt like I was shopping at this store. When I went to surgery, I wished I could put a drip catheter in, it lasts a little longer,

to mop up some di when I went to the angio suite, I wished I could cut down and remove some more macroscopic debris. I submit that the new Indigo technology

will provide a new strategy for treating acute arterial ischemia. On the same concepts are predicated STEMI, code stroke, Level I trauma alerts, we've instituted acute aorta, and piggybacked on that, an acute arterial ischemia protocol.

So that means when a patient like this presents with acute arterial ischemia, they get an algorithmic, systemic, trained, metered approach. They go past the holding room directly to the endovascular suite,

and all the processes happen in parallel, not in series. The call team is trained and dedicated, and while anesthesia is working up top with labs and lines, we use the duplex ultrasound to pick carefully our access sites. A faster time to reperfusion allows us to

do it and avoid general anesthesia, incision in hostile groins, and the exposure of lytic therapy, resulting in a decreased morbidity and mortality. Being able to treat the full spectrum of the arterial tree allows us to run options.

We preserve options by first mopping up more proximal clot, and then dripping distally when we need to, or, dripping distally to open up distal targets for surgical bypasses. As an example, this was a recent case

on a trauma CT scan, injured inthrelane aorta with emblogenic thrombus confirmed on intravascular ultrasound. We went in with a large bore system, a cath to aspirate the clot, and then used a cover stent to repair the aorta.

We shot an arteriogram the lower extremities, noticed that it embolized distally, and we used a Cat 6 to pluck out this clot and restore flow. Able to work up and down the full arterial tree. A learning curve for me was to understand that debris has to be corked to removal, which means no flow.

And most other worlds in vascular surgery, flow is good. No flow is bad. Also, you have to vacuum the clot out. Which means you have to uncross the lesion, which is counter intuitive for most of the precepts I've learned.

I've learned to use long sheaths to approach the lesion and to use larger catheters to remove more macroscopic debris. I rarely use the separator, I engage it and cork it for 90 seconds. That allows it to get a firm grip and purchase on it.

And I have to remember that no flow is good. This demonstrates how you approach the catheter with a large sheath. Under roadmap guidance you turn the aspiration vacuum on immediately before you cork it to minimize blood loss. And you use it like a vacuum by uncrossing the lesion

and let it slowly engage and aspirate the catheter. Ninety seconds allows it to get a firm grip and purchase so you can extract it without breaking it loose. I rarely use a separator, I use it only for large thrombus burdens, sub-acute clot, adherent debris,

or when the Indigo catheter is clogged. I strip out the catheter with the separator like a pipe cleaner, and then, every once in a while, on a subacute clot, I'll peck and morcellate it with a separator. Typically, in my lab, when I have new technology

I never have the team trained when I have just the right case, so I've learned over time, to train the team first. And with a trained team, they've taught me a lot. I've found with the Indigo catheter it's hard for me to watch the monitor,

work the catheter, handle the on-off switch, and watch the flow in the canister. So, what we do is we have a spotter who's not scrubbed. They taught me to take the on-off switch out, and then mechanically kink the tubing to make and on-off switch.

And they provide me feedback and just say fast, slow, or corked, so I can run the catheter and watch the monitor. I've learned to beware of the Cook Flexor sheaths, because they scuff up the tip. Use a check flow valve that unscrews from the

catheter if possible. I use coaxial catheters whenever possible, and I telescope them. You can telescope large catheters over small catheters. I use large sheaths and catheters whenever possible, using the preclose technique,

and then you can preserve options if you want to press more distally, you can cinch down, remove the large sheath, put in a 4 5 French, and then press ahead. I also, after I use a pulse technique, will occasionally use the Jungle Juice.

The team taught me the Jungle Juice is half strength contrast, some TPA and some nitroglycerine. When I lace the clot with Jungle Juice, I can observe fluoroscopically, the progress I'm making as I'm aspirating the clot. Thank you.

- Thank you, thanks for the opportunity to present. I have no disclosures. So, we all know that wounds are becoming more prevalent in our population, about 5% of the patient population has these non-healing wounds at a very significant economic cost, and it's a really high chance of lower extremity amputation

in these patients compared to other populations. The five-year survival following amputation from a foot ulcer is about 50%, which is actually a rate that's worse than most cancer, so this is a really significant problem. Now, even more significant than just a non-healing wound

is a wound that has both a venous and an arterial component to it. These patients are about at five to seven times the risk of getting an amputation, the end patients with either isolated venous disease or isolated PAD. It's important because the venous insufficiency component

brings about a lot more inflammation, and as we know, this is associated with either superficial or deep reflux, a history of DVT or incompetent perforators, but this adds an increasing complexity to these ulcers that refuse to heal.

So, it's estimated now about 15% of these ulcers are more of a mixed etiology, we define these as anyone who has some component of PAD, meaning an ABI of under point nine, and either superficial or deep reflux or a DVT on duplex ultrasound.

So we're going to talk for just a second about how do we treat these. Do we revascularize them first, do we do compression therapy? It has been shown in many, many studies, as with most things, that a multi-disciplinary approach

will improve the outcome of these patients, and the first step in any algorithm for these patients involves removing necrotic and infected tissue, dressings, if compression is feasible, based on the PAD level, you want to go ahead and do this secondary, if it's not, then you need to revascularize first,

and I'm going to show you our algorithm at Michigan that's based on summa the data. But remember that if the wounds fail to heal despite all of this, revascularization is a good option. So, based on the data, the algorithm that we typically use is if an ABI is less than point five

or a toe pressure is under 50, you want to revascularize first, I'll talk for a minute about the data of percutaneous versus open in these patients, but these are the patients you want to avoid compression in as a first line therapy.

If you have more moderate PAD, like in the point five to point eight range, you want to consider compression at the normal 40 millimeters of mercury, but you may need to modify it. It's actually been shown that that 40 millimeter of mercury

compression actually will increase flow to those wounds, so, contrary to what had previously been thought. So, revascularization, the data's pretty much equivocal right now, for these patients with these mixed ulcers, of whether you want to do endovascular or open. In diabetics, I think the data strongly favors

doing an open bypass if they have a good autogenous conduit and a good target, but you have to remember, in these patients, they have so much inflammation in the leg that wound healing from the surgical incisions is going to be significantly more difficult

than in a standard PAD patient, but the data has shown that about 60% of these ulcers heal at one year following revascularization. So, compression therapy, which is the mainstay either after revascularization in the severe PAD group or as a first line in the moderate group,

is really important 'cause it, again, increases blood flow to the wound. They've shown that that 40 millimeters of mercury compression is associated with a significant healing rate if you can do that, you additionally have to be careful, though,

about padding your bony areas, also, as we know, most patients don't actually keep their compression level at that 40, so there are sensors and other wearable technologies that are coming about that help patients with that, keeping in mind too, that the venous disease component

in these patients is really important, it's really important to treat the superficial venous reflux, EVLT is kind of the standard for that, treatment of perforators greater than five, all of that will help.

And I'm not going to go into any details of wound dressings, but there are plenty of new dressings that are available that can be used in conjunction with compression therapy. So, our final algorithm is we have a patient with these mixed arterial venous ulcers, we do woundcare debridement, determine the degree of PAD,

if it's severe, they go down the revascularization pathway, followed by compression, if it's moderate, then they get compression therapy first, possible treatment of venous disease, if it still doesn't heal at about 35 weeks, then you have to consider other things,

like biopsy for cancer, and then also consider revacularization. So, these ulcers are on a rise, they're a common problem, probably we need randomized control trials to figure out the optimal treatment strategies.

Thank you.

- I'll address a recipe for functional and financial success with smoking cessation for our tobacco addicted patients. We're all very acutely aware of the financial, physical and psychological devastation of tobacco. For our vascular patients it's the most important modifiable risk factor.

Most vascular patients have a high level of initial smoking, it's characterized by failed efforts, and there really are very rare evidence-based cessation programs in place. This was confirmed recently by a publication, American Heart or the PORTRAIT Trial.

I said to myself, "well if I wanted to do counseling "I should have been a psychologist "but I want to be a surgeon, I like to operate." And operating vascular surgery we do, at the middle point of my career

it felt like a revolving door. The right carotid, the left carotid, the left fem-pop, the right fem-pop. And a little more senior in my career as I started the restenosis I felt like I was doomed to the myth of Sisyphus where I just

have to keep pushing that rock up to the top of the hill, only to have it roll down again. I submit to you that if all we do is operate for our patients, our field will be disrupted the same way our cardiac surgical colleagues

have been disrupted. A few years ago, Medicare and many private insurances assigned a payment to smoking cessation counseling, that a ICD10 diagnosis needs to be linked to a tobacco disorder, like vascular disease. Their time based codes for intermed and extensive--

the 99406 is 3-10 minutes, the 99407 is greater than 10 minutes. Now, if you link that to Medicare dollars, it's pretty meager, at $38 per RVU, that's $9 and $19 at additional, respectively. Say your hospital employ at $50 an RVU,

that ups a bit to $12 and $25, respectively. And that's how before you read the Medicare guidelines they say that you have to document that a patient is mentally competent, it needs to be done by a physician or Advanced Care Provider.

You get two attempts per year, four sessions per attempt, or eight sessions per year. About this point I felt like I was reading out of this book instead of the Medicare guidelines. But there is a recipe, and I think it's an important recipe. What we do is put take-away literature

printed ahead of time, in all the patients' rooms, including our online resources, we have the prescriptions and pads pre-printed, and then we have the templates of electronic documentation so we're able to claim the payment for the work that we do do.

We point out to our patients the benefit of smoking cessation, we rely heavily on the CDC website for resources, and the pharmacotherapy really boils down to three:

you need to be careful that you don't double up on your patients who are smoking. Zyban is mor it's basically an extended-release antidepressant and it works on the craving related chemicals in the brain.

It reduces withdrawal symptoms and cravings. You need to start it a couple weeks in advance. You have to be careful with drinkers or cirrhotics, people who have seizures or prior head injuries, and anyone with a psychiatric history. Chantix is the most successful,

it interferes with the nicotine receptors, it lessens the pleasure, and reduces withdrawal symptoms. You also need to start this in advance of cessation efforts. It has GI, headache, sleep disorders, seizures, mood changes, and it got a black-box warning for

suicidal ideations and suicide. Now, at the Harvard School of Business, professor Christensen pointed out that if all we do is operate, we'll be at risk to be disrupted, and he's done business analysis, so he's successful and he's got collabs, such as

Borders, Detroit Auto, stock brokers, and travel agents, and I submit vascular surgeries on that list. He points out that high achievers are the most vulnerable that's because all we do is focus on the highest ROI, that would be that all we do is operate. So how can we avoid being devoured by the next disruptor,

whether it's a cardiologist, new technology, or an overbearing hospital administrator? And he describes this as he evaluates healthcare by saying "What we need to do is focus on the job to be done." We need to say "What does a patient need from us?", not frame them with our attributes.

So we should say they hire us to fix their broken blood vessels, and we should do this whether it's a scalpel, prolene, a stent, a statin, or Chantix. I have (mumbles), but I submit that if we answer what the patient needs, and not what we do for them

that will leave us in a position of leadership where we can make important contributions for our patients.

- Thank you very much. So, this audience certainly knows that the higher the triglyceride, the greater the cardiovascular morbidity mortality, similarly if you have a low HDL that same relation holds, and certainly for the non-HDL-C or LDL-C calculated the higher the worse outcome and there's

multiple drugs related to this. Similarly with stroke, triglyceride the same relationship. Ischemic stroke increased with low HDL and again LDL-C correlates. So the historical precedent has been that you should get a fasting lipid level

when you first encounter the patient, but to make this simple that's really probably not true. So there's various things that are measured and that are calculated, but LDL is generally calculated, HDL is measured and then the triglycerides are calculated as remnant cholesterol.

So if you compare just the measured LDL compared to calculated LDL in a non-fasting state, it's a little bit of a wider linear relationship here as compared with the fasting, it's a little bit tighter. But when you look at this in more depth, and this reference here really nicely puts it all together

but the total cholesterol really doesn't vary if you've fasted one hour or 16 hours, similarly between men and women. The only thing that varies a little bit is triglycerides and we'll go on to that in just a little bit of depth.

But again that's variable, triglycerides go up if you eat really not much difference with the other lipid levels. And if you look just in terms of triglycerides, they overlap between non-fasting and fasting, really at almost all levels

so there's not really discrepancy. Similarly with LDL, same amount of overlap here whether or not you have diabetes it doesn't seem to make a difference. So for lipid panels, profile testing, in most patients you can get a non-fasting

initial lipid profile in any patient for cardiovascular risk assessment, I'd say that's where it's most commonly done in most of our practices. Similarly with acute coronary syndrome, if preferred by the patients et cetera.

But really it's where the non-fasting triglycerides are highly elevated that you want to get a fasting lipid panel. So what causes secondary hyperlipidemia related particularly to hypertriglyceridemia? Certainly certain diet factors, certain drugs,

cyclosporins for example, biliary obstruction and hypothyroidism. And so, one algorithm is that in terms of screening with non-fasting, and if it's less than 200 you're good to go, you really don't need to do anything further,

and if it's greater than 200 then probably a fasting lipid profile, lipoprotein panel is indicated. So reasons that non-fasting lipid measurement is fine most of the time is that again most trials have used non-fasting levels for determination of effectiveness of various medications.

This Friedewald formula actually uses total cholesterol, HDL, and triglycerides to calculate LDL-C, and LDL really is not directly measured, it's not standardized by the CDC such as these other cholesterol moieties are. And again most CV risk factor calculators don't use LDL-C.

So again, non-fasting is acceptable for the initial risk estimation in untreated and primary prevention screening. For patients with genetic hyperlipidemia probably fasting is required. Diagnosis of metabolic syndrome, non-fasting is fine.

And again some other more highly specialized scenarios you may want a fasting profile. Thank you.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- So this is what I've been assigned to do, I think this is a rich topic so I'll just get into it. Here are my disclosures. So I hope to convince you at the end of this talk that what we need for massive PE when we're talking about catheter based therapy is a prospective registry. And what we need for catheter based therapy for

submassive PE is a randomized controlled trial. So we'll start with massive PE and my rational for this. So you know, really as you've heard, the goal of massive PE treatment is to rescue these patients from death. They have a 25 to 65% chance of dying

so our role, whatever type of physician we are, is to rescue that patient. So what are our tools to rescue that patient? You've heard about some of them already, intravenous thrombolysis, surgical embolectomy, and catheter directed therapy.

The focus of my talk will be catheter directed therapy but let's remember that the fastest and easiest thing to do for these patients is to give them intravenous thrombolysis. And I think we under utilize this therapy and we need to think about this as a first line therapy for massive PE.

However, there's some patients in whom thrombolytics are contraindicated or in whom they fail and then we have to look at some other options. And that's where catheter directed therapy may play a role. So I want to show you a pretty dramatic case and this was an eye-opening case for me

and sort of what launched our PERT when I was at Cornell. It's a 30 year old man, transcranial resection of a pituitary tumor post-op seizures and of course he had a frontal lobe hemorrhage at that time. Sure enough, four or five days after this discovery

he developed hypertension and hypoxia. And then is he CT of the chest, which I still remember to this day because it was so dramatic. You see this caval thrombosis right, basically a clot in transit

and this enormous clot in the right main pulmonary artery. And of course he was starting to get altered, tachycardiac and a little bit hypotensive. So the question is, what to do with this patient with an intracranial hemorrhage? Obviously, systemic thrombolytics are

contraindicated in him. His systolics were in the 90 millimeter of mercury ranged, getting more altered and tachycardiac. He was referred for a CDT and he was brought to the IR suite. And really, at this point,

you could see the multidisciplinary nature of PE. The ICU attending was actively managing him while I was getting access and trying to do my work. So this was the initial pulmonary angiogram you can see there's absolutely no flow to the right lung even with a directed injection

you see this cast of thrombus there. Tried a little bit of aspiration, did a little bit of maceration, even injected a little TPA, wasn't getting anywhere. I was getting a little bit more panicked as he was getting more panicked

and I remembered this device that I had used in AV fistula work called the Cleaner. Totally off label use here, I should disclose that and I have no interest in the company, no financial interest in the company. And so we deployed this thing, activate it a few times,

it spins at 3,000 rpm's, he coughed a little bit, and that freaked us all out also. But low and behold we actually started seeing some profusion. And you can see it in the aortogram actually in this and that's the whole point of massive PE treatment with CDT,

is try to get forward flow into the left ventricle so that you have a systemic blood pressure. Now, you know, when we talk about catheter based therapies we have all sorts of things at our disposal. And my point to you is that you know really, thank you...

You guys can see that, great. So really, the point of these catheter therapies is that you can throw the kitchen sink at massive PE because basically your role is to try to help this patient live. So, if I can get this thing to show up again.

There we go. It's not working very well, sorry. So, from clockwise we have the AngioVac circuit, you have, let's see if this will work again, okay. Nope, it's got a delay. So then you have your infusion catheter,

then you have the Inari FlowTriever, you saw the Cleaner in the previous cast, and you have the Penumbra aspiration device the CAT 8. And some of these will be spoken about in more detail in subsequent talks. But really, you can throw the kitchen sink at massive PE

just to do whatever it takes to get profusion to the left side. So, the best analysis that has been done so far was Will Kuo in 2009. He conducted a meta-analysis of about 594 patients and he found this clinical success rate of 86.5%.

This basically meant these patients survived to 30 days. Well, if that we're the case, that's a much lower mortality than we've seen historically we should basically be doing catheter directed therapy for every single massive PE that comes into the hospital. But I think we have to remember with this meta-analysis

that only 94 of these patients came from prospective studies, 500 came from retrospective, single center studies. So even though it was a very well conducted meta-analysis, the substrate for this meta-analysis wasn't great. And I think my point to you is that

we really are going to have a hard time studying this in a prospective fashion. So what is the data, as far as massive PE tell us and not tell us? Techniques are available to remove thrombus, it can be used if systemic lysis is contraindicated,

but it doesn't tell us whether catheter based therapies are better than the other therapies. Whether they should be used in combination with them and which patients should get catheter based therapy, which should get surgery and which techniques are most effective and safe.

Now, I think something we have to remember is that massive PE has a 5% incidence which is probably a good thing, if this was even higher than that we would have even more of an epidemic on our hand. But this is what makes massive PE very difficult to study.

So, if you looked at a back of the envelope calculation an RCT is just not feasible. So in an 800 bed hospital, you have 200 PE's per year, 5% are massive which means you get 10 per year in that hospital, assume 40% enroll which is actually generous,

that means that 4 massive PE's per year per institution. And then what are you going to do? Are you going to randomize them to IV lytics versus surgery versus interventional therapy, a three arm study, what is the effect size, what difference do you expect between these therapies

and how would you power it? It's really an impossible question. So I do want to make the plug for a Massive PE Prospective Registry. I think something like the PERT consortium is very well-suited to run something like this

especially with this registry endeavors. Detailed baseline characteristics including all these patients, detailing the intervention and looking at both short and long-term outcomes. Moving on to submassive PE. As you've heard much more controversial,

a much more difficult question. ICOPER as you already heard from the previous talk, alerted the world to RV dysfunction which this right ventricular hypokinesis conferring a higher mortality at 90 days than no RV dysfunction. And that's where PEITHO came in as you heard.

This showed that the placebo group met the primary endpoint of hemodynamic decompensation more commonly than the Tenecteplase group. Of course, coming at the risk of higher rate of major bleeding and intracranial hemorrhage. So I just want to reiterate what was just said

which is that systemic thrombolysis has a questionable risk benefit profile and most patients with submassive PE, as seen in the guideline documents as well. So that sort of opens a sort of door for catheter directed therapy.

Is this the next therapy to overcome some of the shortcomings of systemic thrombolysis? Well what we have in terms of CDT is these four trials, Ultima, Seattle II, Optalyse, and Perfect. Three of these trails were the ultrasound assisted catheter, the Ekos catheter.

And only one of them is randomized and that's the Ultima trial. I'm going to show you just one slide from each one of them. The Ultima trial is basically the only randomized trial and it showed that if you put catheters in these patients 24 hours later their RV to LV ratio will be lower

than if you just treat them with Heparin. Seattle II is a single arm study and there was an association with the reduction in the RV to LV ratio at 48 hours by CTA. PERFECT, I found this to be the most interesting figure from PERFECT which is that you're going to start it at

systolic pulmonary artery pressure of 51 and you're going to come down to about 37. Optalyse, a brand new study that was just published, four arms each arm has increasing dose associated with it and at 48 hours it didn't matter, all of these groups had a reduction in the RV to LV ratio.

And there was no control group here as well. What is interesting is that the more thrombolytics you used the more thrombus you cleared at 48 hours. What that means clinically is uncertain at this point. There is bleeding with CDT. 11% major bleeding rate in Seattle II,

no intracranial hemorrhages. Optalyse did have five major bleeds, most of the major bleeds happened in the highest dosed arms. So we know that thrombolytics cause bleeding that's still an issue. Now, clot extraction minus fibrinolytic,

this is an interesting question. We do have devices, you're going to hear about the FLARE trial later in this session. EXTRACT-PE is ongoing which we have enrolled about 75 patients into. What the data does and does not tell us

when it comes to CDT for submassive PE it probably reduces the RV to LV ratio at 24 hours, it's associated with a reduction at 48 hours, major bleeding is seen, we do not know what the short and long-term clinical outcomes are

following CDT for submassive PE. Whether it should be routinely used in submassive PE and in spite of the results of Optalyse this is a preliminary trial, we don't know the optimal dose and duration of thrombolytic drug. And even is spite of these early trials

on these non-lytic techniques, we don't know their true role yet. I'd liked to point out that greater than 1,600 patients have been randomized in systemic lytic trails yet only 59 have been randomized in a single, non-U.S. CDT trial.

So this means that you can randomize patients with submassive PE to one treatment or the other. And we want to get away from this PERT CDT roller coaster where you get enthusiasm, you do more cases, then you have a complication, then the number of cases drops.

You want that to be consistent because you're basing it on data. And that's where we're trying to come up with a way of answering that with this PE-TRACT trial. Which is a RCT of CDT versus no-CDT. We're looking at clinical endpoints

rather than radiographic ones greater than 400 patients, 30 to 50 sites across the country. So in summary I hope I've convinced you that we need a Prospective Registry for massive PE and a Randomized Controlled Trail for submassive PE. Thank you.

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Thank you Dr. Veith for an invitation to be here. These are our disclosures. We're fortunate to have funding from VA HSR&D for this work. Decision aids help patients make decisions about medical treatment, such as steroids versus biologics for things like arthritis.

Or medical versus surgical treatments for things like degenerative joint disease. Decision aids are uncommonly used for decisions about surgical treatment. Such as the options that face patients facing abdominal aortic aneurysm repair,

which as well all know are options like open surgery, which is invasive, but has a long recovery, but is likely durable over time. Or endovascular repair, which is, of course, less invasive with a shorter recovery, but may have problems with durability.

We design the preferences for open versus endovascular repair or prove AAA trial and this study has two objectives. First was to implement a decision aid, which is designed to help Veterans choose between an open and endovascular repair for their abdominal aortic aneurysm.

Of course, taking place in Veterans Hospitals across the US. And then second, to test if the decision aid makes it more likely for Veterans to receive the type of aneurysm repair that is aligned with their treatment preferences.

We are going to achieve these objectives, we hope, via a randomized clinical trial. I'll tell you briefly about that. We're going to study Veterans who have an existing abdominal aortic aneurysm that measures at least 5.0 cm in diameter that are anatomic and physiologic candidates

for open and endovascular repair. At ten control sites, the Veterans will take a simple survey and have their vascular surgery consultation. And simple surveys for their surgeons will follow thereafter. At 10 intervention sites, the process is identical

with the exception of an introduction of a decision aid. This decision aid was designed in England by Roger Greenhall, Jana Paul and others as part of the Picker Institute and provides a balanced view of the advantages and disadvantages of

both open and endovascular repair. We then followed the Veterans for two years to see what happens when the repair ultimately occurs and our main outcome measure was whether or not they preferred aneurysm repair type turned out to be their actual repair type.

We had performed this study, and I'm very grateful to my colleagues across the country at the 20 sites who are going to perform this trial. We began enrollment a little over a year ago. We're going to enroll 240 patients, I hope. We've enrolled 181 patients thus far,

so we're about 3/4 of the way there. And many of our sites, especially those in Gainesville, Ann Arbor, Buffalo, Salt Lake City, Tampa, Tucson, Pittsburgh and others have either completed their enrollments or are close to doing them. And while our objectives are to answer

these two study questions, I can't do that quite just yet. But we can examine the information sources that Veterans have used thus far when facing this decision. We asked Veterans questions like who have you talked to about if the surgical treatment options available to you if you needed an operation?

52% of our study participants thus far said they didn't talk to anybody. They didn't talk to their PCP at all about their AAA repair options. We asked them who their main source of information was about open surgical repair and again 41% of patients

reported having no information at all about open surgical repair of AAA and while only one in five cited a primary care physician as their main source of information. We asked the Veterans the same question about endovascular repair.

Again, 40% of patients received no information about EVAR, 17% got information from their primary care physician, about 10% of patients, a number lower than we expected, used the internet. Finally, we asked patients, has your view of the different surgical treatment options available been influenced

by anybody in your, among your medical advisors. 50% of patients reported that their view had not been influenced by anyone. We felt this led us be safe to conclude that while our future work will report the actual preferences for repair types

and the effects of this decision support, we found that half the patients with abdominal aortic aneurysm meeting criteria for repair had not yet discussed their treatment methods with anyone prior to meeting with a vascular surgeon. I believe this shows that the burden of explanation

for patients facing abdominal aortic aneurysm repair rests squarely on the shoulders of those of us in the vascular community. Thank you.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- Well, thank you Frank and Enrico for the privilege of the podium and it's the diehards here right now. (laughs) So my only disclosure, this is based on start up biotech company that we have formed and novel technology really it's just a year old

but I'm going to take you very briefly through history very quickly. Hippocrates in 420 B.C. described stroke for the first time as apoplexy, someone be struck down by violence. And if you look at the history of stroke,

and trying to advance here. Let me see if there's a keyboard. - [Woman] Wait, wait, wait, wait. - [Man] No, there's no keyboard. - [Woman] It has to be opposite you. - [Man] Left, left now.

- Yeah, thank you. Are we good? (laughs) So it's not until the 80s that really risk factors for stroke therapy were identified, particularly hypertension, blood pressure control,

and so on and so forth. And as we go, could you advance for me please? Thank you, it's not until the 90s that we know about the randomized carotid trials, and advance next slide please, really '96 the era of tPA that was

revolutionary for acute stroke therapy. In the early 2000s, stroke centers, like the one that we have in the South East Louisiana and New Orleans really help to coordinate specialists treating stroke. Next slide please.

In 2015, the very famous HERMES trial, the compilation of five trials for mechanical thrombectomy of intracranial middle and anterior cerebral described the patients that could benefit and we will go on into details, but the great benefit, the number needed to treat

was really five to get an effect. Next slide. This year, "wake up" strokes, the extension of the timeline was extended to 24 hours, increase in potentially the number of patients that could be treated with this technology.

Next please. And the question is really how can one preserve the penumbra further to treat the many many patients that are still not offered mechanical thrombectomy and even the ones that are, to get a much better outcome because not everyone

returns to a normal function. Next, so the future I think is going to be delivery of a potent neuroprotection strategy to the penumbra through the stroke to be able to preserve function and recover the penumbra from ongoing death.

Next slide. So that's really the history of stroke. Advance to the next please. Here what you can see, this is a patient of mine that came in with an acute carotid occlusion that we did an emergency carotid endarterectomy

with an neuro interventionalist after passage of aspiration catheter, you can see opening of the middle cerebral M1 and M2 branches. The difference now compared to five, eight, 10 years ago is that now we have catheters in the middle cerebral artery,

the anterior cerebral artery. After tPA and thrombectomy for the super-selective, delivery of a potent neuroprotective agent and by being able to deliver it super-selectively, bioavailability issues can be resolved, systemic side effects could be minimized.

Of course, it's important to remember that penumbra is really tissue at risk, that's progression towards infarction. And everybody is really different as to when this occurs. And it's truly all based on collaterals.

So "Time is brain" that we hear over and over again, at this meeting there were a lot of talks about "Time is brain" is really incorrect. It's really "Collaterals are brain" and the penumbra is really completely based on what God gives us when we're born, which is really

how good are the collaterals. So the question is how can the penumbra be preserved after further mechanical thrombectomy? And I think that the solution is going to be with potent neuroprotection delivery to the penumbra. These are two papers that we published in late 2017

in Nature, in science journals Scientific Reports and Science Advances by our group demonstrating a novel class of molecules that are potent neuroprotective molecules, and we will go into details, but we can discuss it if there's interest, but that's just one candidate.

Because after all, when we imaged the penumbra in acute stroke centers, again, it's all about collaterals and I'll give you an example. The top panel is a patient that comes in with a good collaterals, this is a M1 branch occlusion. In these three phases which are taken at

five second intervals, this patient is probably going to be offered therapy. The patients that come in with intermediate or poor collaterals may or may not receive therapy, or this patient may be a no-go. And you could think that if neuroprotection delivery

to the penumbra is able to be done, that these patients may be offered therapy which they currently are not. And even this patient that's offered therapy, might then leave with a moderate disability, may have a much better functional

independence upon discharge. When one queries active clinical trials, there's nothing on intra arterial delivery of a potent neuroprotection following thrombectomy. These are two trials, an IV infusion, peripheral infusion, and one on just verapamil to prevent vasospasm.

So there's a large large need for delivery of a potent neuroprotection following thrombectomy. In conclusion, we're in the door now where we can do mechanical thrombectomy for intracranial thrombus, obviously concomitant to what we do in the carotid bifurcation is rare,

but those patients do present. There's still a large number of patients that are still not actively treated, some estimate 50 to 60% with typical mechanical thrombectomy. And one can speculate how ideally delivery of a potent neuroprotection to this area could

help treat 50, 60% of patients that are being denied currently, and even those that are being treated could have a much better recovery. I'd like to thank you, Frank for the meeting, and to Jackie for the great organization.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- So I don't have to give you any data. I just have to tell you how we do it. So this is the easiest talk of this session. Step-by-step technical tips. Now our definition of pharmaco-mechanical may vary between us so I'll give that as we go along. These are my conflicts.

When to use it. Well certainly as you already heard, Massive PE has contraindication to full dose lytic is one area. Submassive elevated risk may be another. We've already seen multiple people put up

these guidelines so what we're really talking about at this point in time is those patients that we just talked, that those two groups that they just talked about because those are the ones that we're trying to treat. The biggest thing is don't be frozen by indecision.

Majority of patients eligible for thrombolysis do not receive it. It's amazing to me as a referral center to get the call from an outside community hospital or the patient with hypotension, abnormal RV or biomarkers and they've barely given the patient

Heparin and they just want to transfer the patient out of there and you tell them that's a massive PE. Please give them systemic thrombolysis and they go what? And I go you now have 10 times the death rate of an acute myocardial infarction. Would you give this patient lytics for acute MI?

Yes. Then give them the freaking lytics. Save their life. It's amazing what's going on in this country. So the PERT Consortium and everything, we really need to educate the community

because it's ridiculous. If you look at the utilization of thrombolysis, it's going down. Unbelievable and if you look at the in-hospital mortality for these patients that have significant PE, the in-hospital mortality is much higher

if you don't give thrombolysis. You've already seen this indirectly in a bunch of different lectures, but I just wanted to show you very quickly how to do this on an echo or CT. You want to get the center line, get it at the valve and then measure it one centimeter

below that valvular plane. This is something you don't have to depend on radiology just to do. You can just look at the transfer CT. You can look at the echo. You don't have to fight with your echo guy to give you that.

It's also very evident and often times just looking at the images. Why treat submassive elevated risk PE? You know what? I've heard all the mortality stuff. I get it.

It doesn't change mortality that much. It does and we should measure it as a primary endpoint in our trials. Change your discharge time and in this day and age, medicine is so expensive. Time in the hospital, repeat procedures,

elevated your amount of treatment for that patient really has to be looked at as part of that, not just mortality. But there's eight times more recurrent PE and four times a mortality rate if you have a PE and unresolved RV dysfunction at discharge

and that should be looked at prior to discharge, not just say well they look like they're doing okay. Treatment of IVC, higher risk PE. Certainly the other thing we have to look at is there's other things to do. You've already heard a little bit

that there's IVC filters out there. We take out 90 some percent of our IVC filters in our section. We actually as a system now are up to 60% at seven months and it only takes effort. The patients that I see die in our hospital

in the last year that shouldn't have died are patients that should've gotten an IVC filter because they got heroic things to take out their PE and nobody put a filter in even though they had significant DVT left over because they were afraid of the TV commercials?

Oh my gosh. If you look at the 27 extra deaths that we've had from IVC filters that were removable in the United States, and you take our experience and multiply it by the number of tertiary care hospitals in the United States, use them when they're appropriate.

Take them out so the risk is low, but don't go away from them. They've already been shown to be beneficial for the right patient population. But you also have embolectomy and surgery should also be considered.

Step by step. Make the decision and clinically be consistent. PERT team or other consistent mechanisms. We have an app that we use. This is throughout our entire healthcare system so all the vascular specialists have this.

It's an algorithm that's supposed to be used both in the ER and for the different vascular specialties so everybody's being treated very similarly. We have all the different definitions. We have the PESI calculator. All this is in an app

that's readily available to our constituents. Special consideration certainly is the tolerance of thrombolysis, underlying tolerance of pulmonary hypertension. Again, we need to evaluate the patient, not just label them as a PE.

And I also think there's a special population we need to study and that's the socked in pulmonary artery with no perfusion on a CT scan. I think this is a different population long term and we need to study that a little bit more. We got to get the patient back from the edge.

I think I'm opposite of Jeff. I don't want to see them get worse and then treat 'em. I want to prevent them from getting worse as long as I'm selecting that population in a thoughtful matter. We primarily use low dose TNK.

This is nothing I'm going to give you data on. This is an institutional, what do you want to call it, anecdotal experience and we lost our contracts except for TNK so we had to go to this and so we do a lot of catheter-directed. You've already seen all these trials.

There's a ton of different devices out there. The one I want to talk to you about is using a really fancy one called a pigtail catheter and another one called an ethos catheter. This is a patient that had a significant PE. You can see that they've got bilateral main PE.

This is on table. This is what we do for the vast majority of our patients. We sit there, we use ultrasound guided access to the vein so that we cut down our venous complications for access site. The patient is given 20 and 30% of a loading dose

of TNK and then we watch them. If you look at thrombus in a test tube and you give a thrombolytic therapy, it takes about 20 minutes for fibrinolysis. So this is what we do. As you're going to see, this is over 25 minutes

and we see the patient went from a pulmonary pressure of 65 and a heart rate of 115 down to 25 minutes, the patient's pulmonary pressure is about 44 and their heart rate is in the 90's. This patient then has all the catheters removed on the table even though they got lytic

and they're heparinized. This is a venipuncture, so big IV. We send them up to the unit and we typically discharge them the next day. We have an echo B4 discharge to make sure there's been a significant recovery of RV.

If not we'll watch them an extra day and then all these patients get a CT again. I'm sorry an echo again at 30 days to make sure that we're getting good resolution from that. On table results, decrease your complications. Thrombolysis has always been associated with the

duration of thrombolytic therapy and intracranial bleed. Now you can either use a pigtail catheter which is what we use for most of these people because we can measure pressure in it. We spin it around a little bit in the pulmonary arteries and give the dosage.

Again, we give 20-30% of the dose. There is no data for that. If significant improvement does not occur, they'll get dripped overnight in the ICU at usually .5 to 1 milligram per hour. You've already seen the data for EKOS.

We use this if we think we need a little bit quicker Thrombolysis such as in a socked in pulmonary artery 'cause we have no flow. We do think that may help, but we don't have any data for that. It makes us feel good.

We spend a lot more money and so we think that may be reasonable at that point in time. This is just what it looks like when you put in bilateral EKOS catheters. Certainly the patient can be put in the ICU for this. I do think that we should do a trial looking at EKOS

with a little higher dose, do it for 30 minutes, look at those pulmonary pressures right on the table. I think, again, my own opinion is after 25 years, the closer we get to being done on table, catheters out, patients doing well, the better, safer procedure we have,

the less chance of mortality, the less chance of complication and as you decrease complications, your benefit improves. We've already seen the results and you'll see more of these from non-randomized trials such as Seattle 2 which looked at 150 patients,

but they saw very quick recovery of the RV which was very important. If you look at technical success, it was very high. The dosage of thrombolytic exceedingly lower, lower than what we're giving in a PTO catheter, that's for sure.

And if you look at the RV from Ultima Trial which was randomized. There was faster RV recovery utilizing this device. Thank you very much.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.