Create an account and get 3 free clips per day.
Chapters
Hepatocellular Carcinoma (Non-surgical Candidate), Portal Hypertension | Bland Embolization, Ablation | 77 | Male
Hepatocellular Carcinoma (Non-surgical Candidate), Portal Hypertension | Bland Embolization, Ablation | 77 | Male
2016ablateablationalcoholarterialarteryblandcentimeterchemoembolizationcontrastembolizationembolizeembolizingethanolhepatichepatopulmonaryHypertensionkilllargerlesionlipiodollivermicronparticlespatientplacingportalprobeprobesproceduresretentionsegmentalSIRsolitarysynergisticsyringestherapytransplanttumortumors
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
angiographybluecancerscenterschapterdiseasesdisordersembolizeflowfluidhepaticimagingInterventionsintestineleakingliverlymphlymphaticlymphaticsoncologyPathophysiologypatientsproteinthoraxtreatable
Why Interventional Oncology | Interventional Oncology
Why Interventional Oncology | Interventional Oncology
ablationcenterschapterhccinterventionallivermetastaticoncologypalliationprimaryradiologyresectiontechniquetherapytoleratedtreatmentstumortumors
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
arterybleedcentimeterchapterdatadysfunctionalembolizationfertilityfibroidfibroidsMRImyomectomyNonepatientsretainsurgeryuterineuterus
Impact of Social Media on Cases | Twitter Case Files
Impact of Social Media on Cases | Twitter Case Files
ablationablationschapterembolizationfibroidsuddenurologist
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Radioembolization | Interventional Oncology
Radioembolization | Interventional Oncology
bloodstreambremsstrahlungchapterdoseexistshccimrtlivermetastaticmultifocalneuroendocrineparticlepatientportalradiationsbrttumortumorsvascularvisualization
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Ablative Radioembolization | Interventional Oncology
Ablative Radioembolization | Interventional Oncology
adjacentadministerarterialbladecancerchaptercompletedosedosesentiregreyinvadinglesionliverlobelobectomynecrosispathologicpatientportalremnantresectionresponsesegmentsurgeontinytreattumorvein
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
adjunctiveanesthesiaarteryblockscatheterchapterconceivecontrolembolizationfertilityfibroidfibroidshormoneshydrophilichypogastricimaginginabilitylidocainemultiplenauseanerveNonepainpatchpatientpatientspostpregnantproceduralquestionradialrelaxantsheathshrinksuperior
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Chylous Ascites | Lymphatic Imaging & Interventions
Chylous Ascites | Lymphatic Imaging & Interventions
angiogramcancercentimeterchaptercuredebulkingembolizationembolizeetiologyincidencekidneyleakleakslymphmichiganpatientsperitonealrenalresectionresectionssocietiesstudiestesticulartumorwilms
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
TIPS: Techniques- Stent Grafts | TIPS & DIPS: State of the Art
advantagesarteryaspirateballoonbarebasicallybilecentimeterchaptercontrastcovereddilatedisadvantagedisadvantagesdistalexpandingflowgaugegorehepaticinjectinjectingkitsleaksmultipleneedlepasspassesphysiciansportalportionposteriorproximalpullpushradiologistssalinesheathstentssystemveinvenous
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
The Ablation Concept | Interventional Oncology
The Ablation Concept | Interventional Oncology
ablationablativebifurcationbilebiliarycelsiuschaptercolorectalcontrastcryoablationcurrendegreesductexpirationgeneratesgrayhepatectomyinvolvinglesionmicrowavemodalitiesprobesradiofrequencyrapidstricturestumortumorsureterzone
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
angiogramarteriesaxialchapterclinicalcomplicationscondyleembolicembolizationenhancementhematomaimagekneemedialmicronnervenumbnessocclusivepainparticlespatientsplantarpoplitealsynovialtibialtumorvessel
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Pulmonary Ablation | Interventional Oncology
Pulmonary Ablation | Interventional Oncology
ablationactivitycancercandidatechaptercolorectalcryodiseaselesionslobelungmetastaticnodulepatientpulmonaryrecurrecurredresectionresidualscansurgical
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Complications & Pitfalls | TIPS & DIPS: State of the Art
Complications & Pitfalls | TIPS & DIPS: State of the Art
accessarteryballoonbranchchapterclinicallydeepdefectgramhepaticimagesliverneedleocclusiveperfusionportaportalsegmentalsegmentsstentthrombosestipstracttypicalveinvenous
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
Nodal Lymphangiography | Lymphatic Imaging & Interventions
Nodal Lymphangiography | Lymphatic Imaging & Interventions
angiographycenterscentimeterchapterductembolizationinjectinginjectionluerlymphlymphaticsneedlenodenodespropofolsyringesthoracictubing
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
chapterembolizationfibroidfibroidsgynecologistgynecologyhysterectomyinterventionalNoneobgynPathophysiologypatientpatientsprocedureproceduresprogramsurgicallyworkup
Transcript

he has fibrosis. There's a little bit of ascites

so maybe portal hypertension and a five centimeter solitary HCC. The patient has good functional status, ECOG of zero. Meaning he's active, no activity restrictions and he has good liver function.

Billirubin 0.6 and Child Pugh A. So here's his tumor, five centimeter HCC in the right liver, exophytic hanging off the edge here, and he has possible portal hypertension. So the options to consider,

resection, transplant, embolization and ablation. So for resection, his liver function is normal, and the location of the tumor looks like it's a resectable location. So he's a potential candidate for resection.

For transplant, he has underlying liver disease, NASH, he has HCC, possible portal hypertension and its a solitary five centimeter HCC so he's within the long criteria so potentially a transplant candidate. So it's important to have this patient evaluated by surgery.

So we sent the patient to surgery and they said that because of the patient's comorbidity they didn't wanna operate, so that takes resection and transplant off the list and now we're left with embolization and ablation. So for a five centimeter tumor, that's sort of at the upper limits

of what you can completely ablate, so you could potentially ablate this. If the tumor was much larger than fivr centimeters we wouldn't be ablating it and we would just be embolizing the tumor. This large solitary tumor we could embolize it.

We would wanna do a selective embolization for a solitary tumor. So in this particular case we decided to both embolization and ablation just because the size is at the upper limits of what we can completely ablate so we wanted to do sort of a double kill where we embolize it and also ablate it. So the way we do that is we do it on the same day.

We embolize first and then we ablate. Here you can see we're trying to get selective. We're in a branch of the right hepatic artery it seems like we're covering the whole tumor and in this case we did the bland embolization after we do the bland embolization we get a non contrast CT while they're still on the procedure table to see the contrast retention

within the tumor. So this is important because you can see if you missed part of the tumor maybe you have to go out for a different branch in order to cover the entire tumor. And then we use this contrast retention as a target for placing our ablation probe and this just shows one of our ablation probes post ablation.

So the reason we do the embolization first is for two reasons, one is that the contrast retention gives you a nice target for placing your ablation probe and the other reason is that embolizing the hepatic artery reduces the profusion, takes away some of the heat sync and potentially

gives you a better ablation zone. >> Can you comment on the size particles you would have used for your bland embolization and also the type and number of ablation probes you used in a five centimeter lesion? >> Yeah, okay. So let me go through that.

So I have a couple of slides here on bland embolization. So Karen Brown did a randomized trial of bland embolization versus DEB-TACE for HCC and she saw that there was no difference in response or survival. So I think what this means is that the main mechanism for these procedures is tumor ischemia since adding the chemotherapy didn't

seem to make any difference. Now, there are some potential advantages of bland embolization which is you can embolize multiple times and the hepatic atrial tree stays the same. So Joe Erinjeri looked at patients who had at least five bland embolization procedures and found that 84% of them, there

was no change in the hepatic arterial tree. In the remaining 16% there was occlusion of fourth or fifth order branches. So I think if you did five conventional TAE procedures you might start to see some pruning of the arterial tree. Now in terms of our technique for bland embolization we start with 40 to 120 micron embospheres and the reason we start with these small particles is we think

that it gives better penetration of the tumor, more tumor necrosis to use smaller particles. But if we've used five syringes and we've still haven't gotten to stasis then we start to go to larger particles 100 to 300 micron embospheres.

And the reason is that when we first started dealing bland embolization, and we were just using the 40 to 120 micron, we actually had few patient deaths and on autopsy it turns out the particles were in the lungs, and in those cases , they receive

many, many syringes of the 40 to 120. So we tried to limit the amount of small particles that were use and of course if you're seeing hepatopulmonary shunting, or if you're embolizing a large dome lesion where there might be hepatopulmonary shunting or you're embolizing the phrenic artery,

then you might wanna just start with some larger particles 100 to 300. And in terms of the embolization end point, for a bland embolization we embolized stasis. So in this case we used two probes,

we probably could have used more but I think we got a pretty good response in this case. >> Can you comment on that probe you have in that picture is going to ablate some of the chest walls- >> Yeah. >> And muscles there. >> Exactly.

>> Do you not worry about that or what do you do? >> Yeah so sometimes we'll, it's not great we probably could have done hydrodissection, the other thing that we do sometimes is we'll use bupivacaine at the liver capsule for post procedure pain when we're abating things that are near the surface.

I mean, ideally if you can go through normal liver on your way to the lesion, that's preferable. But sometimes if you can't, we do end up going directly into the

lesion. >> And what type of microwave system were you using? Do you remember? >> This one I think was imprint, but I normally use the new wave system. >> Can we see a show of hands how many people in the audience

do bland embolization for HCC? How many, okay so nobody. How many people can still get your hands on and do a conventional TACE right now? So only a few so and so is everybody else doing drug-eluting beads then?

Raise your hands if your doing drug-eluting beads. Okay. >> [LAUGH] >> There's a bunch of people that I [INAUDIBLE] >> There's also Y90

[LAUGH] >> Assuming that you have Y90 you also do chemoembolization. All right. >> Okay. All right so- >> Can I make one comment on that one?

>> Sure yeah. >> So that lesion there's so many different options you can do for treatment and there's no evidence, great evidence, saying one is better than the other. So in my institution that would be specially given your ateriogram,

an excellent case for segmentectomy. A radiation segmentectomy. You can get a really good treatment there. >> You can also do a chemoembolization segmentectomy for about one third the price. >> [LAUGH]

>> And it works just as well. A couple of comments. I mean I love doing commission therapy so you were saying you might ablate up to five centimeters. I think that is generous. I mean I wouldn't really try ablation alone for a lesion over three

centimeters unless I had some contra indication of embolotherapy cuz really your failure rate goes up pretty dramatically for a tumors above three centimeters in size. So I think above three, there was a solitary lesion like this I would do exactly what I did which is combination therapy.

In our series for a combination therapy what we do chemoembolization with lipiodol and drugs. Day one, we mint them all overnight and bring them back the next day and use the lipiodol contrast which is retained the next day to help with the try and the CT works great, and then basically just lay a series of ablation probes and

you're not gonna ablate the whole thing thermally. But the idea is that you're gonna have an area that's thermally ablated then you're gonna have a large hyperthermic zone around your probes and the hyperthermia sort of just stick with the doxorubicins you get very intense doxorubicin binding to the tumor DNA, and get very very large kill zone.

And what we found is in solitary HCC is up to eight centimeters in size, we had 80% complete kill, by combining chemoembolization with mostly RFA in that era and that for metastatic disease, we would do tumors up to six centimeters in size of the combined therapy and

we have 70% complete kill for mets up to six centimeters in size, so I think it's a very great strategy for solitary tumors that are too big to ablate alone. Question in the back. >> Do you ever take longer or do you find the synergistic effect works better or sooner I mean so do you wait a month or two for the lesion

to shrink to make it more [INAUDIBLE] >> I don't, I mean there are people who do wait a week or two after their chemoembolization before they ablate. I don't cuz A, I want to get advantage of the high drug levels, they're still there to get the synergistic effect with the hyperthemia and also it's just practical since I'm admitting my patients

anyway so I just bring them down, first case the next morning do the ablation and they can still go home the next day. That way they don't have to come back to the hospital for a secondary outpatient procedure. But there are some people who do delay, whereas there are some

people who do it the other way around, they ablate first, and then chemoembolize, for whatever is left and there is a different rationale for doing it that way. And in general that also works fairly well. Logistically it doesn't make sense in my practice since I may meet them for

the chemoembolizations. Also if you look at animal studies where they've looked at sequencing, you get a higher volume of kill if you chemoembolize first and ablate second. So that's why I do what I do. Question?

>> Do you use alcohol? >> We do use alcohol sometimes, it's a little big for alcohol, usually we're using alcohol in smaller lesions like a couple of centimeters. You could try it, I think you're gonna get a better ablation for

a big lesion with some sort of thermal ablation. >> Again sort of the same thing the efficacy of picking as ethanol injection, on average it's similar to heat ablation but you have to do multiple procedures to get the entire tumor cuz it just doesn't diffuse well enough whereas heat will get everything. I actually had a very interesting conversation with someone this

week who said I don't know why you guys bought all the expensive stuff, I just do my chemoembolizations with alcohol and lepiodol. For segmental or sub-segmental especially doing alcohol ablation transarteriorly works great, there is actually a pretty substantial Asian literature on this, I don't know we never do it, and it gets rid of the whole

drug particle issue. You're basically doing an embolization segmentectomy with ethanol which if you're again segmental or less, works great, it's very cheap.

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

interrupting something else getting back

to a paddock with angiography something that we're starting to look at the group at University of Pennsylvania has a publication out on this as well I looked at the liver lymphatics certainly the livers where we produce a

lot of protein it goes through the lymphatics to be returned to the circulation in patients who have heart failure they tend to have increased lymphatic flow in the liver and they think that protein lost in enteropathy

protein losing a property happens when the liver lymphatic leaks into the intestines just some images from their article you see them looking at the hepatic lymphatics there and once they had a needle in the hepatic lymphatics

they actually put her scope in and they injected blue dye and as a proof-of-concept they saw the blue dye leaking into the intestine so now that they see that the blue dye leaking the intestine they say well we can embolize

that they embolize it with some glue and that's what it looked like at the end and then the algorithm levels and all these patients return to near normal so a new a new frontier and lymphatic intervention so just to summarize

lymphatic imaging the current status you know we have very effective non-invasive as well as in vases imaging in the peripheral and central lymphatics we certainly need to this allows for improved diagnosis and once we have

these diagnostic capabilities we were able to come up with these novel treatments for these diseases that were previously untreatable we still don't have good ways to consistently visualize the paddocks invasively and then and

non-invasively it would be great to be able to see that hepatic and intestine lymphatics cuz that's 80% of lymphatic flow so if we can find a way to image these under mr it could be a game-changer for a lot of diseases in

terms of lymphatic interventions Calla thorax interventions greater than 90% effective technical knowledge you know when I was a trainee was really centered to just a few major medical centers now it's defusing out to more places we've

certainly shown as a proof of concept the plastic bronchitis lymphatic flow disorders cattle societies and protein losing enteropathy are all treatable and we're getting emerging experience so don't be surprised if you start to see

more requests for this more patients at your centers these are uncommon disorders that's not to say that you still won't see them every once in a while the role of lymphatics in pathophysiology is still being studied

particularly in terms of heart failure transplant as well as in different cancers in the spread one of the cool stuff that we're looking at right now is actually sampling different lymphatic fluid in different areas of the body

trying to see how the different cancers may spread and/or possibilities in immunology immuno oncology thank you guys and just something I noticed a couple weeks ago in jeopardy clear body lymph continuing white blood cells body

fluid and you guys know what is limp that's your answer so thank you saying thank you to the avir committee and it's been a pleasure [Applause]

the traditional three pillars are

surgical medical and rad honk which actually was once part of radiology and separated just like interventional radiology has and where is the role for this last column so many patients are not medically operable so if you set the

gold standard you know that the cure for someone has a primary liver mass well about 20 percent of patients who present can undergo resection what you do for the remaining portion so Salvage is what we offer when someone has undergone

standard of care and it didn't work how do we hop back in and try to see how much these folks it's low-risk it's not very expensive at all as compared to things like surgery and the recovery is usually the same date so

this concept here of tests of time is kind of interesting a lot of times when we look at a tumor let's say it's 2 centimeters it's not really the size of the tumor but it's how nasty of a player it is and it's

difficult to find out sometimes so what we do is we'll treat it using an IR technique and watch the patient and if they do well then we can subject them then to the more aggressive therapy and it's more worthwhile because we've found

that that person is going to be someone who's likely going to benefit you can use this in conjunction with other treatments and repeat therapy is well tolerated and finally obviously palliation is very important as we try

to focus on folks quality of life and again this can be done in the outpatient setting so here's a busy slide but if you just look at all the non-surgical options that you have here for liver dominant primary metastatic liver

disease everything that's highlighted in blue is considered an interventional oncology technique this is these the main document that a lot of international centers use to allocate people to treatments when they have

primary liver cancer HCC and if you see if you see at the very bottom corner there in very early-stage HCC actually ablation is a first-line therapy and they made this switch in 2016 but it's the first time that an

intervention illogic therapy was actually recommended in lieu of something like surgery why because it's lesions are very small its tolerated very well and it's the exact same reason why your dermatologists can freeze a

lesion as opposed to having to cut everything off all the time at a certain point certain tumors respond well and it's worth the decrease in morbidity so

new data of the Emmy trial that came out last year our ten-year results saying

that after ten years after ten years women who wanted to retain their uterus they looked at them in ten years three-quarters of those women were still very very satisfied and also were still able to retain their uterus so ten-year

data came out randomizing people for uterine artery embolization versus hysterectomy of the women who chose you to an artery embolization ten years later they were still very happy so I tell my patients that this is what you

should expect that you will have symptomatic improvement in 12 months around 85 to 95 percent of the patients are pretty happy there is a entry intervention rate it is not zero and it can be higher than ten

depending on what kind of Imogen is seen ahead of time and that we know that dysfunctional uterine bleed tend to do a little bit better than bulk type symptoms and that's partly because of subjective nature of that so this is one

of the patients that I treated when I was in in Virginia and Riverside and she's a former miss Brazil and she came to see us with what she also called reversed cycles like she would bleed more than she would not and she was

wearing depends and it took everything to just coach her out of the car to come inside to do a consultation because she was so afraid that if she got out she would be sitting in a pool of blood and she had an MRI showing what looked like

a eleven point seven centimeter fibroid she had embolization and that was her six month follow-up MRI to the right which looks like a very impressive result they don't all look this way which is why I save this image something

that looks like a normal uterus now I for the persons that I told to hold your high horse here is the time okay so what happens if I want to have a baby because these are the things you remember we're being ambassadors for this procedure we

need to be having the answers for the things that are our friends and family members are going to be asking us so if you want to have a baby I would say that the data that informs us as to what to do with you is still very weak but the

only randomized prospective trial that we have out there says that you should actually have myomectomy and a Cochrane review was also done and it still says that there's very low level evidence suggesting that myomectomy may be

associated with better fertility outcomes as opposed to UAE but more research is needed and we still require more research so at the very least what I have to do and now you feel compelled to do is to send my patients to see

someone who is a fertility specialist in consultation so we can make this decision together so if your poor surgical candidate if you have the gazillion fibroids and if you've had surgery before a hostile

abdomen and the patient says you know what dr. Newsome there's nothing that you can tell me ever to say that I'm going to have surgery then we're going to be doing something else that is not surgery okay the other thing that your

are just a couple examples you know this is a little bit of older data but our uterine fibroid embolization have gone up by 60 percent from when we started to where we are now or filter retrieval

program gone up by 400 percent you know our ablations have gone up by over 50% you know and that's it's not saying that's all because of social media but it's partially because of that because we do get patients that come into our

clinic because of that and then on top of that I'll tag when I'm doing an ablation I'll tag my urologist or I'll tag de aslv you know and then all of a sudden sometimes they like it which pushes it to their followers or they'll

retweet it which directly pushes it to their followers and then in which case you're putting yourself in the consciousness of people that can refer you cases and all of a sudden now you become indispensable in the realm of

ablation at least in my case because everybody sees me posting about it right so everybody in our institution is sending me ablation cases and that's a really great thing for us so you know I

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

patient like this you have a very large left lateral HCC that's invading the left the patek vein and extending into the heart since when we get into things like radioembolisation if you have

multifocal liver disease if you want to apply radiation therapy to that's very difficult to do that because it actually requires more radiation dose to kill HCC than it does the adjacent normal liver the liver is actually that ready

sensitive so you can do things like SBRT and pick an individual lesion you can do things like a imrt which is you know survey 8 non focus generalize low dose but what's interesting Malaysian is that if you administer

particles they only shoot about two millimeters worth of the raishin field around it so of what used is that with one not much but if you put eight to forty million of them within the bloodstream they Auto sort themselves

based off of the vascular flow preferential that exists with tumors tumors actually emit hormones pull in blood supply that you weren't born with and that actually tends to pull beads from the bloodstream preferentially

towards it so this is an example where you stain a tumor with two types of wax one the portal that's blue one the artery that's red and you can see how much that preferential exists so what ends up happening is these spheres

cluster within the tumor and then provide local dose radiation that's very hot where the tumor is and low elsewhere so here's an example of that this is a patient with metastatic neuroendocrine disease multifocal liver lesions you can

see that vascular flow preferential this is what it looks like on the maa when we jecht a protein particle surrogate that has a technician I should have assigned to it just as a visualization of how the particle is

going to sort out and the post y9t bremsstrahlung CT is over there and you can see how intense the necrosis is within the tumor and how much it's spared the normal liver however you do get some radiation damage they don't

live a regardless that's why choosing the timing of when you're gonna do this is important this is a patient that was treated with tastes above and one session of y9u beneath so you can see that they do have different types of

therapeutic mechanisms they're not the same even though they look very similar in terms of when we're administering

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

them so my particular area of interest is a blade of radium ization and what we'd like to do is to break the liver

down into a bunch of little tiny perfused volumes off of a single vascular pedicle or what we call angio zones and those are those allow us to segment out if you only have small volume disease for example like here in

segment three why do I have to treat the entire left to paddock low I can actually treat just that small portion just like it what it tastes only now I'm administering y9t but since it's expendable liver I

can administer doses that are way higher orders of magnitudes higher than what I could if our infusing into the liver just on its own so here's an example of that if you look at this lesion in the right of panic lobe you'll see these

little lines over them what we want to achieve is around a 205 GRA threshold for these lesions that's the red line everything that's south of red in terms of color orange Holly to blue is not cold enough to kill tumor so if we

administer a dose of a tea grade to the lobe we get this coverage which is to be a partial response if I administer 150 grey suddenly that red line gets larger what happens when you administer 400 grey now you've officially covered the

entire lesion and so you're going to lose the adjacent liver at those kind of doses and as well - what what the real question then is not sort of how much dose you give it's you give what you need to to ablate the tumor in its

entirety and you see what the patient's left with if someone's left with anatomically a lot of remnant liver because of how you've segmented out that lesion then go ahead and dose extremely high and that's essentially what we've

seen in pathologic results it's one of the highest things of high school pathological crosa rates you can achieve with a trans arterial therapy it's highly competitive with thermal ablation in the correctly selected bleezin

so this is an example of what it looks like when you segment out a little lesion like this and this patient ultimately went to resection and this was a complete pathologic necrosis but as you can see even it was a cirrhotic

patient we chose a very small volume of liver that we felt the patient would tolerate so that's a blade of vernalization let's take a look at what looks like in real time so we have a little capsular lesion we felt that

ablating this patient who was a potential transplant candidate we felt we can probably with a blade of radium realization so you go in and this is the comb beam CT that looks at a complete enhancement of the lesion within the NGO

zone this is what the MAA looks like when we administer it you can see how it tends to cluster within the tumor but you can see what the adverse territory is the liver adjacent to it this is what the engine room looks like how highly

selective it is the day of and this is what the wine ID actually looks like is the wine 90 doing its job and you can see how conformal it is there's no risk whatsoever to the liver that's adjacent outside of that field of

a maximum of around 11 millimeters and this is a patient at one month with a complete imaging response and this patient never developed a recurrent to the site and what's actually sole mode of treatment for this person's liver

cancer this is how you get complete pathologic response if you look at those little tiny grey dots in there those are actually the spheres within tiny little vessels within the tumor sometimes they go even to the portal branch but you can

see how they're not clustered uniformly but when you make them super hot that allows them to give range where otherwise they would be fine a little bit short so this also applies to the whole lobe this was a patient that had a

very unusual presentation of colon cancer that was invading the portal II we weren't sure what to do with this patient no one was because a very rare occurrence so we said well we would like

to resect him but there's not enough liver and we're not sure if this person's gonna survive because we've never seen portal cancer invading the portal vein so we said let's treat it with the radiation lobectomy and what's

cool here is if you look at the the arteries even though the tumor is invading the portal vein it's bringing arterial supply along with it like a vagabond and that's the conduit that allows us to treat these patients so

when we saw that we felt this patient we good candidate for irradiation lobectomy which is applying an ablative dose of y9t to the entire low not just a small segment in patients where otherwise cannot because of the anatomy the tumor

or if you're trying to shrink that lobe to get that person ready for surgery why because if you look at the size of the lobe on the left from this first image and compare it here you can see how much larger it got what happens is that part

that the surgeon ultimately tens on resecting in volutes over time and becomes completely vitalized and turns into scar tissue so we know that if a surgeon goes in afterwards to cut it out it's going to not result in liver

failure and that level of security allows people to have sir who otherwise wouldn't this patient is not going to have metastatic disease because we followed their blood level markers let me see how low they are and

is going to have enough liver remnant so the patient went to resection and this is the pathologic specimen and this was also a complete pathologic necrosis so I

questions comments and accusations please hello this topic is very personal to me I've had it actually had a UFE so this is like one of my big things I work in the outpatient center as well as a

hospital where we perform you Effy's and frequently the radiologist will have me go in and talk to the patient it's from a personal perspective one of the issues which it may just have been from my situation was pain control post UFE

whether you normally tell your patients about pain control after the UFE someone say we are all struggling with this yeah oh it's not what's your question is going to be okay good I'm gonna get doctor Dora to answer Shawn the question

is what do you what do we do with this pain issue you know what are you doing for the home there at Emory there you know and a lot of practices we we don't rely on one magic bullet for pain control recently we've been doing

alternate procedures for two adjunctive procedures to help with pain control for example there are nerve blocks that you can do like a superior hypogastric nerve block there's there's Tylenol that can be given intravenously which is seems to

be a little more effective than by mouth there's there's a you know it and a lot of times it's it's a delicate balance right between pain post procedural pain because you can often get the pain well controlled with with narcotics opioid

with a pain pump but the problem is 12 hours later the patients is extremely nauseous and that's what keeps her in the hospital so it's a it's a balance between pain control and nausea you can you can hit the nausea

beforehand using a pain and scopolamine patch that that'll get built up in the system during the procedure and that kind of obviates the nausea issues like I said that the the nerve blocks the the tile and also there are some other

medicines that can can be used adjunctive leaf or for pain control in addition to to the to the opioids so the answer the question is there are multiple there multiple answers to the question there's not one magic bullet so

that helped it did one of the things that I tell the patients is that you know everyone is different and yet some people I've seen patients come out and they have no pain they're like perfect and then some come out and they are

writhing in the bed and they're hurting and they're rolling all around what and I always ask the acid docs are you telling them they could possibly have you know pain after the procedure because some have the expectation that

I'm going to be pain-free and that's not always the case so they have an unrealistic expectation that I'm gonna have the UFE but not have pain what I also tell them is that the pain it's kind of like an investment right and

this is easy for a guy to say that right but but it's it's an investment the worst part the worst pain you should be feeling is the first 12 12 hours or so every day I tell my patient you're gonna be getting better and better and better

with far as the pain as long as you is you follow our little cookbook of medicines that we give you on the way home and I want you to make sure that you fill these prescriptions on the way home or you have someone fill those

prescriptions for you before he or she picked you up in the hospital and lately we have been and I see that you're there as well lots of other little tricks that are out there right and again there are all

little tricks so ensure arterial lidocaine doctor there is near alluded to and if you're on si R Connect you may it may spill over on some of your chat rooms here people have been using like muscle relaxant like flexural or

robertson with some success but just know that we don't have any studies that tell us how that's supposed to do so when i have someone that is like writhing in pain i just use everything so i do it superior hypogastric nerve

vlog and i actually will do some intra-arterial lidocaine although not so much lately i have been using the muscle relaxant but i will warn you that i've had two patients with extreme anticholinergic effects where they are

now not able to pee from that so you know where we're doing that balance act I see that you're there can I take that question here first just so we're we're doing the same thing we're using the multimodal just throwing all these

things at people and we're trying the superior hypogastric blocks but we're collaborating with anesthesia to do that right now do you all do your own blocks or do you collaborate with anesthesia we do our own blocks okay it isn't it is

not that difficult I would tell you that but again it's kind of like you know you got to do if you start feeling better and then you're like we don't really need them we'll just do it on our own okay thank you again yes what's the

acceptable interval between UFE and for IBF oh that's a your question what is the interval between UFE and IVF so if you wanted to get pregnant yeah and can you have a you Fe and then have an IVF like how long would you have to wait

wait and tell you before you can have that the IBF it I guess it really depends on the age of the patient because we know that that the threshold for which patient tend to have that inability to conceive

is around 45 years old so you know it did below the you know below the age of 45 the risk of causing ovarian failure or or the inability to conceive is significantly less it's zero zero to three percent so I would say that you

know you probably want the effects of the fibroid embolization to two to take effect it takes around 12 months for these fibroids to shrink down to their most weight that they're gonna they're going to shrink down the most I wouldn't

say you need to wait 12 months to put our nine vitro fertilization there's no good there's no good literature out there I don't believe that's your next and so I would say just remember that if you came to my practice and you said you

wanted to get pregnant I will be sending you to talk to fertility specialists beforehand we do not perform embolization procedures as a way to become pregnant there's no data to support that but if you saw your

gynecologist and they said let's do this then I'm sure they'll be doing lots of adjunct things to figure out what would be an ideal time then to for you to have IVF and if I dove not having any data to inform me I would ask you to wait a year

and what will be the effect of those hormones that they gave you if for example a patient has existing fibroids what would be the effect of those hormones that IVF doctors prescribed their patients yeah so fibroids actually

can grow during pregnancy so I would say that most of those hormones are pro fertility hormones so I would expect that maybe you can see some of that effect as well yeah alright if you have any other questions you can grab me oh

you're I'm sorry go with it okay yes we we have time I don't want to keep anybody here for that so I have a two-fold question the first one is post-procedure can you use a diclofenac patch or a 12-hour pain

patch that is a an NSAID have you have any experience with that and your next question my second part of the question is there a patient profile or a psychological profile that tips you that the patient is not going to be able to

candidate because of their issues around pain so they're two separate but we have in success sending people home that first day so I'm looking to just make it better I haven't had experience with the Clos

phonetic patch it's in theory it seems ok you know these are all the these are they're all these are non-steroidal anti-inflammatory drugs so there are different potency levels for all of them they you know they range from very low

with with naproxen to to a little bit higher with toradol like that clover neck I think is somewhere in between so we found that at least I found that that q6 our our tour at all it tends to help a lot so with that said I I don't have

much experience with it with the patch in answer to your second question the only thing I can say is there there is a strong correlation between size of fibroids and the the amount of a post procedural pain and post embolization

syndrome so there really you know we often say we don't really care too much about the number of fibroids but the size of the fibroid is is is should be you know you should you should look at that on pre procedural imaging because

if it gets too big it may not be worth it for the patient because they may be in severe pain the more embolic you put into the blood supply's applying the the fibroid the the greater the pain post procedural pain

are there multiple other factors that would contribute to pain but that's that's one aspect you can you can look at post procedurally on imaging okay thank you very much yes ma'am hi what what kind of catheter do you use

to catheterize the fibroid artery when you pass by radio access yeah so over the last three years the companies have been really very good about that so there are a few things that I without endorsing one company or the other that

you need to make sure that the sheath that you're using is one of those radial sheets a company that makes a radio sheath you should not use a femoral sheath for radial access so no cheating where that's concern you may get away

with it once or twice but it will catch up to you and you need a catheter that is long enough to go from the radio to the to the groin so I'm looking for like a 120 or 125 centimeter kind of angled catheter whether it's hydrophilic the

whole way or just a hydrophilic tip or not at all you can you can choose which one in our practice most of us still tend to use a micro catheter through that catheter although if I'm using a for French and good glide calf and it

just flips into like a nice big juicy uterine artery then I may just go ahead and take that and do the embolization if the fellow is not scrubbed in as well so thanks a lot but they make they make many different kinds like that and more

of those are to come all right I'm you can please please please send us any other questions that you have thanks for your time and attention and enjoy the rest of the living

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

well switch gears and start talking about Kyllo societies histology the

etiology of Callao societies historically used to be malignancy in tuberculosis first described in the 1600s in a two-year-old who had a tuberculous peritoneal disease more recently now we see it due to aggressive

surgery whether it's renal resections for kidney cancer lymph node resections etc it can also be due to cancer the incidence is climbing rapidly this is just a graph of the incidence at different hospitals from 1930s and 1980s

I can I don't have the data for the 2000s this was a graph that I actually generated from based on several studies just to show you how profound the leak can be in these patients well looking at what we do with

maduk college societies fairly similar to what we do elsewhere we map it out we have three major Studies on that right now and a lot of smaller studies so the total nineteen manuscripts ninety six patients and in those eighty two

patients had to report whether or not they saw a leak they saw a leak in 60 of those eighty two patients and when we saw a leak we were able to cure 70 of them just by doing than paying geography and eighty eight percent when we were

able to actually embolize it so again going from in ninety percent mortality at one year if you have caused societies due to cancer or forty percent for any other cause to cure with the simple procedures is pretty amazing just to

kind of show you an example this was 55 year old gentleman who had removal of his left kidney they found a seven centimeter renal cell carcinoma incidentally while he was being worked up for a kidney stone it had been six

months of constant Kyllo societies and loss of 63 pounds before he saw me here's a lymph angiogram showing fairly typical anatomy until you see this little leak and you see the surgical clips there where his kidney was and all

of the hollow pile spilling around and surrounding his spleen I'm doing this and then we did an embolization right around that area he sent me an email two months ago just before I left the University of Michigan thanking me for

changing his life and saving his life another example this gentleman had had major debulking surgery for for testicular cancer he also has had prior bone metastasis with a hip replacement there and you see a bilateral leaks he

see multiple drains they couldn't control his fluid and we embolize all of these small leaks around his pelvis and also fixed him as well and just she see all the focal areas of leak throughout this was a three year old who'd had a

Wilms tumor resection we're mapping them out and you see the area of leak in the center there and was able to fix this child as well discharged and continued on his merry way cured protein losing

craft is basically the only FDA approved stain crafts and I'll show you a

different way of doing it as well besides the Viator especially in countries where the Viator does not does not exist okay the Viator stand sits in the liver just like just like in my hand here the bare

portion is on the portal venous circulation the covered portion is basically on the hepatic vein part of the circulation okay the bare portion is chain-linked and is very flexible that's why kind of cut can crimp like that okay

they're both self expanding the bare portion is self expanding held by the sheath only the covered portion is held by a court okay so they're both self expanding but they're constraints by two different two different two different

methods one's a sheath constraint and one is a is a cord constraint okay these are the measurements the bare portion theoretically allows portal flow to pass if you're in a branch so it doesn't cost from boses of the portal vein branch in

the covered portion is important to cover the parental tract the youth that you've created in the past you had a lot of billary leaks into the tips if it's a bear stance bile is from by genic so it causes thromboses bile also instigates a

lot of reactionary tissue such as pseudo intimal hyperplasia that actually causes the narrowings of the of these tips if you causing bear stance the coverage stance prevents the bile leaks from actually leaking into into the shunt

itself okay and that's why it has a higher patency rate okay ideally this is how it's it's a portal vein and hepatic vein you'll hear people say proximal and distal you'll he'll hear radiologists especially diagnostic

radiologist referring to proximal and distal proximal and distal some people refer to the portal venous and is proximal some people refer to the paddock venous and is proximal and vice versa okay and it

gets confusing nobody knows well what's proximal okay the people that say portal venous and is proximal there they're talking about its proximal to flow so it's basically the first thing that flow hits people that

call the paddock venous and proximal they're talking relatives of the body more central is proximal more peripheral is distal okay so they're using these the same terminology is very confusing so the best thing to use and I we tell

that to radiologists who tell that to IRS is to talk a portal venous and hepatic venous end you don't talk proximal distal everybody knows where the portal venous end is and where everybody knows where the peregrinus end

is and there's no confusion strictly speaking which is the correct one which is proximal for us as IRS tax nurses proximal is always to flow proximal is always anticipate to flow so the correct thing is actually proximal

is the portal venous ends remember P proximal P portal okay proximal is where the expected flow is coming in that's actually the correct one but just to leave e8 the confusion portal venous and hepatic venous end okay there's a new

stents which is the controlled expansion stents it's in my opinion it feels exactly like the old stance the only difference between it is that it's constrained still has the same twenty to twenty millimeter or two centimeter bare

portion chain-linked it still has that four to eight centimeter covered portion but it's constrained in the middle okay and has the same gold ring to actually market the to the to a bare portion and the cover portion self expanding portion

and is constrained down to eight millimeters you can dilate it to eight and nine and ten initially there was a constant there was a misconception that it was like a string like a purse string that you break and jumps from eight

and no this is actually truly a controlled where if you put a nine-millimeter balloon it will dilate to nine only eight balloon little dialect to eight only the only the only key thing is that the atmospheres has to

be ten millimeters at least okay so it has to be a high pressure balloon has to be at least 10 min 10 10 atmospheres okay so when you're passing that that balloon over make sure that it's that that it that at least it's burst is 10

millimeters or or EXA or more on a 10 mil on on 10 atmospheres okay next thing is when you're making a needle pass you got your target now with a co2 you got the portal vein you've got your stank craft and you know how it works okay how

do you make your needle pass okay and how do you know if your needle has hit the portal vein or not there are two schools to do this okay one school is to make a needle pass and aspirate as you pull back and when you get blood back

you basically inject contrast okay before you do all that when you make your needle pass you push saline and especially if you do if you're using a large system so there are several kits out there there is the cook kits that's

a color pinto needle that's a large gauge 14 gauge needle there is the new gore kits which is also 14 gauge needle it's a big system these large systems you need to push out that poor plug that's kind of like a biopsy you have to

push it out with saline first and then as you pull back aspirate okay the other system is a ratio cheetah or a Rocha cheetah it's actually pronounced rasa schita and that's a very small system that there won't be a core that you have

to push out okay so anyway if you're using a large system like a coop into a needle which is the cook system or the gore system you push that plug out and then there are two schools school two aspirates you get blood back you inject

contrast if you're in the hepatic in in the portal vein you basically access it with a wire the other school is to do a ptc style you actually puff contrasts as you pull back you do not ask for H saline you actually puff

contrasts as you pull back okay the latter puffing contrasts as you pull back is the minority I would say less than two percent of operators are gonna puff okay ninety-eight percent of operators at

least are gonna actually aspirate and not puff okay I'm actually in the minority I'm in the 2% and there are advantages and disadvantages like I promised you two different ways and advantages and disadvantage to each to

each one the advantages of puffing contrasts even if you missed the portal vein after a while you actually get contrast around the portal vein and you actually have a visual of the portal vein that's the advantage so when you're

actually injecting contrast and you're missing it you get contrast around the portal vein it actually goes around the portal and you actually see the portal vein and it takes training sometimes this one's easy

okay I'll show you some more difficult ones but this is a beautiful pussy typical portal vein okay in addition to that oh go back in do you see that you see that hole in the middle there see that signal signal you watch that

because you're gonna see it again and again that's usually a posterior portal vein posterior right portal vein heading heading away from you okay that's usually a good target and I'll show you that again here's a little

little bit less obvious to the untrained eye but this is actually where the portal vein sits right there okay so sometimes it needs training right just actually see where the portal vein is and once you've stained the portal vein

then you have a real-time image of where the portal vein is you can actually go go after it and it reduces your needle passes disadvantages of using contrast and puffing away is that it creates a mess okay if you make multiple passes

you and you miss on the multiple passes then you start creating a mess and even with your DSA you can't even see the portal you can't see the portal vein because you've got this great mess another disadvantage of using contrast

is that you have to stomach what you're gonna see okay you make a needle pass and you don't inject contrast you have no proof of where you've been but if you're making a needle pass and you're

injecting contrast you and everybody else is gonna see where you've been that's usually not a good thing sometimes you will see bowel you see gold bladder you'll see arteries you'll see veins you'll see all sorts of stuff

that nobody wants to see and you don't want to document okay so that's another disadvantage so I recommend especially young physicians especially young physicians in places that are not used to this especially young physicians that

are new to hospitals and they're gonna they're gonna make multiple passes not to do this was they're gonna be very they'll be criticized a lot by their texts and by the institution by their colleagues as to what have you done you

know big mass artery you've hit artery but the guys and gals that are just aspirating and not injecting they're actually not documenting what they're going through but they're going through the same stuff okay

okay next up this I think this video yep

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

the ablation concept in general is to provide an environment that is

completely hostile to tumor minus 40 degrees Celsius 150 degrees Celsius 500 gray which is a radiation dose we say it's very hard for it's about anything to survive but so why is it that it doesn't always work well that's a

function of all those parameters that you see there we got to make sure we pick the right patients we got to make sure that we treat tumor where we think it is and avoid trading things that don't need treatment avoid causing

damage to collateral structures and getting a reasonable margin where we actually get some of the tumor that's microscopic there are a lot of ablation modalities radiofrequency alternates electrical current very rapidly so that

generates friction within the lesion and causes heat it looks like this a lot of times you see these little times that stick out so that you can increase the size of your blasian zone and here's a one of those deployed in a patient who

had a colorectal Curren after hepatectomy cryoablation freezes things and it pushes a gas that once it goes through a pin hole tends to expand and cause rapid freezing he can also push another gas right through it and cause

rapid heating but this is just bringing tumors to that minus 20 degree minus 40 degree threshold the nice part about cryoablation is that you can visualize your ablation zone so we're right up against the bile duct here and it tends

to be a little more respectful of tissues so that's why cryoablation is chosen every once in a while we're do frequency ablation is an excellent tool we have lots of data for it but likes it sometimes it's difficult determine where

the ablation zone is interprocedural e microwave ablation there was just a randomized study that came out that compared microwave ablation to radiofrequency ablation and the results are very similar

it was a very very experienced institution doing it but the whole point here is that a lot of these tools work pretty well there's no clear superiority on them but one thing that microwave offers it's very fast so generates

temperatures to boiling within the tumor in about five minutes and so it's certainly very fast as compared to radiofrequency and you can see boiling happening within this tumor that's been accessed eventually there that gas is

actually literally fluid that is boiling away from the tumor couple of cool ones this one's reversal expiration what we do here is we place probes throughout the lesion and we pulse it to confuse the membrane on the cell to think that

it's a it has holes in it that it cannot close and so what is happening is the contents inside the cell leave and that's pretty much consistent with not being able to survive the nice part is we can accomplish all that without

thermal ablation what do we mean that we don't go over about 40 degrees Celsius so if something is involving a bile duct or involving a critical structure like the ureter it's not actually going to damage it it just basically tells all

the the cells within there to stop stop undergoing the cellular mechanisms responsible for life it's a little more finicky to place you have to place these little parallel probes here's one we did that was directly write on the

bifurcation of the main bile ducts and you can see here afterwards is an immediate post contrast scan how that whole area is ablative it does not take up contrast and this patient never developed biliary strictures that side

and you can see on this t1-weighted image that increased area of enhancement which is the area of synovial thickening you actually see this on MRI beforehand and there it is located over the lateral aspect of the knee on the axial image

and so what we're doing sorry in the medial aspect of the knee so what we're doing here on the angiogram is and you solve these leg angiograms where everyone doesn't really care about these Janicki lit arteries they're really

important when you have sfa or popliteal occlusive disease because they serve as a collateral source but otherwise and people have arthritis they can be a real pain and pain in the knee if you will so this is a this is the superior medial

genicular artery it always drapes over the femoral condyle and you'll see here on this image you don't really see very much once we get into the vessel look at this it almost looks like a small about a cellular carcinoma like when you're in

the liver you get this tumor type blush vascularity that's what we're looking for that corresponds to the patient's area of pain and then after embolization this is what it looks like takes a very small amount

of embolic we're using maybe 0.4 2.6 sometimes 1 CC at most of dilute embolic that we're injecting this is another case again before and after if you look here on the right and then on the left you don't really see much until you

select the vessel out once you get into that super medial vessel you can see how much enhancement there is so in our clinical study of 20 patients this is what we did you'll see on the bottom here we used embassy and 75 micron in 9

patients and 1111 patients got a 100 micron and I'll explain why we upsized our particles so initially we wanted to go very small because that's what dr. o Cano had done in Japan but then we wanted to actually up size our particles

and I'll explain this here in our complications so like all clinical studies the purpose of doing really good clinical research is because this is early and we don't know if they're going to be complications and it's always fun

when you're the first one to figure it out and you tell patients I don't really know what's gonna happen and this is what happens so 13 patients had this kind of skin discoloration over their knee now we knew this because we've been

doing knee embolization for about 10 years in bleeding patients not necessarily arthritic patients so we had seen this before but none of these patients in this clinical study went on to have any alteration of the skin and

it resolved in all patients there was some minor side effects from basically medications and one small groin hematoma but there were two patients who developed plantar numbness over their great toe so under their great toe

basically in the medial distribution of their tibial nerve they ended up getting plantar numbness and this is believed at least in our experience to probably be related to non-target embolization to the tibial nerve the tibial nerve

probably gets its blood supply from many of these generic arteries so we decided

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

blasian it's well tolerated and folks with advanced pulmonary disease there's a prospective trial that showed that

there are pulmonary function does not really change after an ablation but the important part here is a lot of these folks who are not candidates for surgical resection have bad hearts a bad coronary disease and bad lungs to where

a lot of times that's actually their biggest risk not their small little lung cancer and you can see these two lines here the this is someone who dr. du Puy studied ablation and what happens if you recur and how your survival matches that

and turns out that if you recur and in if you don't actually a lot of times this file is very similar because these folks are such high risk for mortality outside or even their cancer so patient selection is really important for this

where do we use it primary metastatic lesions essentially once we feel that someone is not a good surgical candidate and they have maintained pulmonary function they have a reasonable chance for surviving a long

time we'll convert them to being an ablation candidate here's an example of a young woman who had a metastatic colorectal met that was treated with SPRT and it continued to grow and was avid so you can see the little nodule

and then the lower lobe and we paste the placement prone and we'd Vance a cryo plugs in this case of microwave probe into it and you turn off about three to five minutes and it's usually sufficient to burn it it cavitate s-- afterwards

which is expected but if you follow it over time the lesion looks like this and you say okay fine did it even work but if you do a PET scan you'll see that there's no actually activity in there and that's usually pretty definitive for

those small lesions like that about three centimeters is the most that will treat in a lot of the most attic patients but you can certainly go a little bit larger here's her follow-up actually two years

that had no recurrence so what do you do when you have something like this so this is encasing the entire left upper lobe this patient underwent radiation therapy had a low area of residual activity we followed it and it turns out

that ended up being positive on a biopsy for additional cancer so now we're playing cleanup which is that Salvage I mentioned earlier we actually fuse the PET scan with the on table procedural CT so we know which part of all that

consolidated lung to target we place our probes and this is what looks like afterwards it's a big hole this is what happens when you microwave a blade previously radiated tissue having said that this

was a young patient who had no other options and this is the only side of disease this is probably an okay complication for that patient to undergo so if you follow up with a PET scan three months later there's no residual

activity and that patient actually never recurred at that site so what about

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

people were thinking about the covered

portion actually actually would be occlusive in that paddock veins a lot of people are concerned about that this could be kind of like a but carry you're gonna actually occlude flow in the paddy vein caused thromboses that didn't pan

out at least clinically okay it didn't pan out and that's another advantage of actually accessing very close to the paddock vein IVC junction that's where the biggest vein is so you don't get a lot of occlusive problems okay but

usually clinically it does not pan out so the bigger the hepatic vein the more likely you have a lot of room around your your graft you won't be occlusive to the paddock vein that's more important for for transplants than other

than others I told you it's rare this is actually a very rare case of such that where you actually have a segmental segmental kind of but carry after a tips okay and you know this is actually from a form of venous outflow from the ematic

vein this is a perfusion defect typical it's a wedge right typical perfusion defect in the liver that's how you death so you know this is vascular this is a perfusion problem but you've got hepatic artery readout artery the red arrows

running into the segments and you have portal vein running into the segments so what's the problem it's actually a paddock vein occlusion okay by the stents subclinical no no clinical complaints you let it be

in the patients usually recover okay treat the patients and not the images okay on the other side if you put their tips too deep sometimes you actually get thromboses of the portal vein branch

again you get a call from hepatology you've got portal vein thrombosis is the patient doing okay yes treat the patient and not the images they usually resolve this it's not not a big problem another technical problem

I'm gonna focus mostly on technical for you guys this is a but key area okay and the but carry especially in the acute stage the liver is not like a cirrhotic liver is big liver is actually engorged okay so it's very large usually

your needle is too short to even reach the portal vein okay that's a big problem okay because your access needle is too short for a very large engorged the portal vein so this is as deep as it

goes do I have a see that that do you see that needle tip that's as deep as the needle tip goes okay the portal vein is a good distance away okay luckily this is a co2 porta gram luckily I'm actually in a small branch right

there I just hit it on you know and on this is not the there's not a needle tract this is just luckily hitting it a little branch and on so I'm actually accessing the portal vein and I can do a co2 porta gram here okay

typical inexperienced person would say you know this looks good I'm lucky I'm in a branch but it's a nice smooth curve I'll just pass a wire down and I'll balloon it and I'll put a stent in it's a nice curve and you know so it's my

lucky day I don't need to extend my needle or get a bigger longer needle to reach the portal vein here's the problem with this and this is exactly what this is exactly what this is they pass a wire and it looks beautiful just put a stent

and go home okay here's the problem this is actually the small branch access sites this is actually where you really need to access world vane but your needle is not long enough okay

what we found out is that if you are in a small in a small portal vein no matter how much you balloon it it will come down again and it will be narrow so believe it or not if you go sideways in a portal vein and rip it open with a

balloon it will stay open but if you go down of small portal vein and balloon it open it will always contract down okay so you cannot do a tips simply by ballooning and putting a stent in in this case okay what we do is we actually

denude the vein itself we actually rip it off okay and make it a raw parenchyma and we do that with a Tortola device we literally rip off the paddock the paddock portal sorry the portal vein endothelium and media and adventitia rip

it off make it completely raw as if it's an access as if it's a liver brain coma which is which it is now and then we then we balloon dilates okay rip it off denude it angioplasty it's okay and then put the stent and see that aggression

despite all that aggression of ripping it off it still has an hour kind of an hourglass shape to the to the tips okay that little constraint there that's the hepatic venous access sites this is the parenchymal tract to see nice and open

with a balloon but the but the actual vein that we've been through despite our aggression in actually ripping it off it's still narrowed down but this is as good as it gets okay

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

angiography came along towards the tail end of my fellowship so around 2011-2012

actually a children's Boston initially and then subsequently done in Penn in adults and this really became as simple as doing a lymph node biopsy basically sticking it on a lymph node while it seems novel it's really

interesting because if you go back to 1931 that's actually when they started doing some of this work when they were actually injecting the lymph nodes with these different tracers and they could see so it's a combination of a little

bit of ingenuity and looking back at our history and we the way that made it a lot easier for everybody this is basically my little setup here and I used some Italian syringes a plastic opaque three way so

that the lapa doll doesn't dissolve through it the medallion syringes hold up a lot better than the typical day we used luer lock stuff I use long propofol type thin bore tubing I attached it to a nine

centimeter long 25 to 27 gauge spinal needle I take the inner styler out of that cheeba so that because it's such a skinny needle that it bends a lot and this way I can put it right into the lymph node without having to connect it

to the tubing and then I can start my injection right away the 2115 cheeba there and that scalpel are really the only other things that I need to get started to do a successful thoracic duct embolization other thing that's really

critical is I always ask my texts and nurses to slap SC D's on the patients and if once we have the SC DS it really speeds up the procedure by an hour to two because you have this constant compression of the Venus and the

lymphatics and the legs forcing more fluid to make your thing to make your case I move along more quickly so something that was more recently adopted at many medical centers and these are the type of images that you get so I

stick my needle into the lymph node and I start this injection you give this beautiful arborization of the lap I doll contrast as it continues to spread and move from one lymph node to another you see there's a central area there that

isn't filling that's actually the lymph node that's already transmitted the lap idol and this was the image that I showed you initially so same image injection injecting of different lymph nodes you can see the transit from one

area to the rest of the chain in the pelvis hepatic lymph angiography is not

patient who did not come from the street so if you've been here for a few years

you've heard me talk about you know some of my friends this is also one of my other friends who has large fibroids but her fibroids were so big and they were not all very vascular and so I sent her to have surgery and she ended up having

a hysterectomy with removal of her cervix because of abnormal pap smears but her ovaries were left in place so our path forward after doing this procedure from 1995 a procedure that is not experimental a procedure that has

had a lot a lot of research done on it more research than most procedures that are done surgically or by interventional radiologists I'd say that it would require a partnership it is true that we can see patients on our own and we can

manage mostly everything but at the end of the day uterine artery embolization is still a palliative procedure because we don't know what causes fibroids to begin with and as long as the uterus is still there there's always a chance that

new fibroids will come back so in your practice and in mind I believe that a path forward is a sustaining program embolization program which is built on a relationship with the gynecologist that yes

I am as aggressive as any other interventionist that is out there but if this were my mom and that is my usual test for things I would say that where we would like to position ourselves is in the business of informing the

patient's as much as possible so that they can make an informed decision and that we're asking our gynecology partners to do the same is that if you're going to have a hysterectomy for a benign disease that you should demand

and we as a society and you as your sisters keeper should be asking for why am I not eligible for an embolization so si R is actually embarking on a major campaign in the next year or so it's called the vision to heal campaign and

it's all around providing education for this disease stage what I like to tell our patients and I'm almost finished here is when I talk to our gynecologist and to techs and nurses as well I said woody woody what should I expect right

that's what they want to know when I send my patient to you what should I expect and I say that what you should expect that Shawn and myself we're gonna tell the patient everything about fibroids we're gonna talk to them about

what the fibroids are the pathophysiology of it the same things I told you we're gonna tell them about the procedures that treat it we tell them about the options to do nothing we talk about all of the risk and the benefits

of the procedures especially of fibroid embolization and we start the workup to see if they're an appropriate candidate when they're an appropriate candidate we communicate with them and their OBGYN and then we schedule them for their

procedure in our practice there are a few of us who send our patients home on the same day and we let our patients know no one is kicking you out of the hospital if you can't go home that day then you'll get to stay but

most of our patients are able to go home that day and then we see our patients back in clinic somewhere between two and four months three months and six months and we own that patient follow-up their visits and after their year we have them

follow back up with their gynecologist and so that we're managing all of these sites and it comes back to that new again may not be so new for some of the people that have been doing clinical IR four years that shift that we own these

patients if you're a nurse in this room these are our patients these questions need to be answered by us in our department we do not believe that these patients should be calling their gynecologist for the answers to that

like what should I be doing right now should I be taking I haven't had a bowel movement and like that is something that we answer we're the ones that are given them the discharge instructions and we set them back up for their follow-up so

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.