Create an account and get 3 free clips per day.
Hepatocellular Carcinoma, Portal & Hepatic Vein Tumour Thrombus | Radioembolization | 72 | Male
Hepatocellular Carcinoma, Portal & Hepatic Vein Tumour Thrombus | Radioembolization | 72 | Male
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
acuteadvanceanteriorcarotidcerebralcollateralsdeliveryintracranialmechanicalneuroprotection agentsneuroprotectiveofferedpatientpatientsPenumbrapotentpreservestrokethrombectomyThromectomytpatreat
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
AngioVac (AngioDynamics) / FlowTriever (Inari) / Penumbra device (Penumbra Inc)Argon MedicalCDTCleaner devicePEpressorsRotational thrombectomy systemtherapeutic
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
Do Re-Interventions Cause EVAR Infections
Do Re-Interventions Cause EVAR Infections
52 mm AAAAAA EndoprothesisanterioraortoentericbacteremiacatheterembolizationendograftendoleakendovascularevarexcluderexplantfluidglutealgoreGore Excluder cuffgraftiliacinfectioninfectionsinguinalInterventionsmedicaremortalityonsetperioperativeprophylacticpurulentreadmissionsriskscansecondaryseedingsteriletherapeuticunderwent
Percutaneous Pharmaco-Mechanical Intervention For PE: Is There A Rationale
Percutaneous Pharmaco-Mechanical Intervention For PE: Is There A Rationale
Angiodynamicsangiovaccannulacircuit for thrombiemboli removalFlowTriever (Infusion aspiration system - Inari) / Penumbra CAT8 (Thromboaspiration system - Penumbra) / AngioJet (Peripheral thrombectomy system - Boston Scientific)therapeutic
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
New Developments In The Management Of Blunt Aortic Injuries Using A Practical Grading System: Why It Matters
New Developments In The Management Of Blunt Aortic Injuries Using A Practical Grading System: Why It Matters
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft

All right so next case, this is a 72 year old man, with HCV cirrhosis, he has a large HCC with portal vein and hepatic vein tumor thrombus. He has good liver function, bilirubin is 0.4, child pugh A but he has very poor functional status,

ECOG is 2. So here's his tumor, here's the HCC, here's the portal vein thrombus, this is enhancing so it's tumor thrombus and here's the hepatic vein tumor thrombus, so when we see an HCC with portal vein thrombus this sort of tends to make

us wanna do Y90. Just because if you are doing a bland embolization and you are shutting down the hepatic artery and the portal vein is also out then that could increase your risk of a liver infarct or liver failure in you are embolizing a large piece of liver.

So, even in the setting of main portal vein thrombosis if the patient is child pugh A. You can still potentially do radioembolization. So the portal vein thrombus pushes us more towards Y90. The other issue for this patient is his poor functional status. So we saw this before, we also get an ECOG on all of our patients,

ECOG zero means that they are active no restrictions. ECOG one they are walking around and doing some stuff but not fully active. ECOG two, they are walking around but not doing much around the house. ECOG three they are mostly in bed or in a chair and ECOG four they're

are completely disabled. So for me, for bland embolization I usually use a cut off ECOG of up to one, and then for Y90, I'll go up to an ECOG of two. And I think its just because the Y90 is a little better tolerated. It's done as an out patient procedure.

There's less post embolization syndrome. So for someone with border line functional status, Y90 might be better tolerated. So in terms of Y90 versus bland embolization the Y90 of course is done as an outpatient,

but you have to do the mapping and order the dose first. So if you have a tumor that's growing quickly and you wanna treat it immediately and it's a tumor that could potentially respond to bland embolization, that might push you towards bland embolization because you'll be able to treat them immediately.

Of course the bland embolization has more post embolization syndrome and they're getting admitted for the most part, Y90 is more expensive and in terms of what we're treating, for the most part bland embolization we're using on hypervascular tumors like HCC,

neuroendocrine tumor, melanoma and then Y90 were using on we're using on hypovascular tumors like colorectal liver metastases. And of course the Y90 we can treat the main portal vein thrombus if they have good liver function. So in this case because of the functional status and the portal vein tumor thrombus we did Y90, treated the right hepatic artery and got a good response. >> So what was the shunt in this case? >> I think it was under 10% I don't remember the exact number. >> Right, you wanna talk a little bit about how you handle higher shunt fractions and people who have vascular invasion? >> Yeah, so the shunt fraction is greater than 20, you could reduce the dose or you could just not treat them and do bland embolization instead. >> You ever put him on sorafenib and redo their shunt study? >> I personally have not done that, have you seen good results with that? >> I've never done it either but other people have, and said if you put on sorafenib for a month and then redo their shunt study that the shunt fraction will go down after the entire androgenic therapy. >> You can also do bland embolization or TACE and then redo a post study and see what the shunt value, it usually goes down as well.

>> I would just add that there's not an absolute cut off for shunts or 20% is high but that doesn't mean you can't treat the patient, you have to do the volumetrics and dosimetry and if the patient doesn't have COPD or something where you're worried about you can go up to the maximum lung dose, and if you're getting a therapeutic

dose into the tumor at the maximal lung dose, you can still treat people with 20 to 25% shunt fractions as long as. I have a lady whose got really bad COPD and has had 22% shunt and I decided not to do Y90 on her cuz she had hepatic vein invasion, and we're trying

other things first and then come back to it, but there is no magic number you have to plug in the numbers and see what you can get and usually we just go up the maximal lung dose and you can still get a therapeutic dose in the tumor. >> I think that I can comment on,

I think you frequently here this philosophy that patients with microvascular invasion sort of get Y90 versus chemoembolization because somehow the smaller reactor microspheres will get into the tumor thrombus better, but that's basically marketing as far as I know, there is no real

data to support that concept. I think if you are doing lipiodol based chemoembolization the liquid emulsion will go right in the tumor, I mean it's an arterialized tumor thrombus and you'll see the lipiodol uptake in the tumor thrombus. You could actually get complete responses in the tumor thrombus to conventional hepatomized chemoembolization.

So, you know, there are other factors that might tip you between re-embolization, chemoembolization but I don't think vascular invasion is really one that should play into it. The other comment i'll make is one of the comments you said was in deciding between the two, whether you want a quick response or not might influence your decision but the other person in the room is the patient,

and you should ask the patient what they want cuz maybe what the patient wants as a quick response, as opposed to what you want. And so what I tell patients is for the average patient with no big factors that the medical benefit and

the medical risk of chemoembolization or embolization is the same. You don't know how it will work on that patient, but on average they work similarly well and they're similarly safe assuming that there's no other mitigating factors, I can tell them can be quick and sick or you can be slow and glow.

It's up to you. You can pick your poison. We'll start with whichever you want, I'm happy to do it, and if it works well, we'll stick with it and if it doesn't work well we can still do the other one.

You haven't burned any bridges. I hear a lot of people say, oh I told them to get Y90 cuz I they won't get sick. I said, how do you know that's what they want? Most patient want their cancer dead and frankly if they have a little

pain and nausea and in the hospital overnight, it's worth it to them to know that tomorrow the cancer is dead as opposed to getting Y90 a month from now and waiting three more months to find out it didn't work. So, patient preference does come into play.

It's not only a medical decision, in most patients it's really a patient preference decision in terms of quality of life issues and for some patients the quality of life has improved knowing that cancer has been treated as opposed to knowing they'll be done as an out patient.

>> Yeah, so we also do bland embo in the setting of segmental portal vein thrombus. >> How many people have Y90 programs at their institution? Raise your hands. Okay, so far less than half, and how many people have glass microspheres, and how many people have resin microspheres?

Some people don't have either. >> [LAUGH] >> I don't know what the other option is. >> Maybe we have both but we just follow regulatory guidelines and doing it since we are training program so our HCC patients get TheraSphere

under the HDE and all our meths get stratospheres but we basically just do that cuz we have it and we wanna train the fellows in both, and it's compliant to do it that way so we can do it [INAUDIBLE ] >> Same thing although I'm working on getting an IRB to use TheraSpheres for primary and secondary.

>> So we have both and we have an umbrella IRB that allows us treat any patient with either of the devices and we pick the device based on the tumor, the characteristics of tumor burden and sort of patient characteristics with regard to the capacitance in the blood vessel like a metastatic cholorectal patient who's had tons of chemotherapy and has really beat up blood vessels.

We may have had a hard time getting an adequate dose in with resin so we use glass in that patient, so we don't really pay attention to the label indications so we do it on patient's characteristics. >> You decide after? >> After the shunt study,

yeah, we decide after the shunt study.

- [Nicos] Thanks so much. Good afternoon everybody. I have no disclosures. Getting falsely high velocities because of contralateral tight stenosis or occlusion, our case in one third of the people under this condition, high blood pressure, tumor fed by the carotid, local inflammation, and rarely by arteriovenous fistula or malformation.

Here you see a classic example, the common carotid, on the right side is occluded, also the internal carotid is occluded, and here you're getting really high velocity, it's 340, but if you visually look at the vessel, the vessel is pretty wide open. So it's very easy to see this discordance

between the diameter and the velocity. For occasions like this I'm going to show you with the ultrasound or other techniques, planimetric evaluation and if I don't go in trials, hopefully we can present next year. Another condition is to do the stenosis on the stent.

Typically the error here is if you measure the velocity outside the stent, inside the stent, basically it's different material with elastic vessel, and this can basically bring your ratio higher up. Ideally, when possible, you use the intra-stent ratio and this will give you a more accurate result.

Another mistake that is being done is that you can confuse the external with the internal, particularly also we found out that only one-third of the people internalized the external carotid, but here you should not make this mistake because you can see the branches obviously, but really, statistically speaking, if you take 100

consecutively occluded carotids, by statistical chance 99% of the time or more it will be not be an issue, that's common sense. And of course here I have internalization of the external, let's not confuse there too, but here we don't have any

stenosis, really we have increased velocity of the external because a type three carotid body tumor, let's not confuse this from this issue. Another thing which is a common mistake people say, because the velocity is above the levels we put, you see it's 148 and 47, this will make you with a grand criteria

having a 50% stenosis, but it's also the thing here is just tortuosity, and usually on the outer curve of a vessel or in a tube the velocity is higher. Then it can have also a kink, which can produce the a mild kink like this

on here, it can make the stenosis appear more than 50% when actually the vessel does have a major issue. This he point I want to make with the FMD is consistently chemical gradual shift, because the endostatin velocity is higher

than people having a similar degree of stenosis. Fistula is very rare, some of our over-diligent residents sometimes they can connect the jugular vein with roke last year because of this. Now, falsely low velocities because of proximal stenosis of

the Common Carotid or Brachiocephalic Artery, low blood pressure, low cardiac output, valve stenosis efficiency, stroke, and distal ICA stenosis or occlusion, and ICA recanalization. Here you see in a person with a real tight stenosis, basically the velocity is very low,

you don't have a super high velocity. Here's a person with an occlusion of the Common Carotid, but then the Internal Carotid is open, it flooded vessels from the external to the internal, and that presses a really tight stenosis of the external or the internal, but the velocities are low just because

the Common Carotid is occluded. Here is a phenomenon we did with a university partner in 2011, you see a recanalized Carotid has this kind of diameter, which goes all the way to the brain and a velocity really low but a stenosis really tight. In a person with a Distal dissection, you have low velocity

because basically you have high resistance to outflow and that's why the velocities are low. Here is an occlusion of the Brachiocephalic artery and you see all the phenomena, so earlier like the Common Carotid, same thing with the Takayasu's Arteritis, and one way I want to finish

this slide is what you should do basically when the velocity must reduce: planimetric evaluation. I'll give you the preview of this idea, which is supported by intracarotid triplanar arteriography. If the diameter of the internal isn't two millimeters, then it's 95% possible the value for stenosis,

regardless of the size of the Internal Carotid. So you either use the ICAs, right, then you're for sure a good value, it's a simple measurement independent of everything. Thank you very much.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- Well, thank you Frank and Enrico for the privilege of the podium and it's the diehards here right now. (laughs) So my only disclosure, this is based on start up biotech company that we have formed and novel technology really it's just a year old

but I'm going to take you very briefly through history very quickly. Hippocrates in 420 B.C. described stroke for the first time as apoplexy, someone be struck down by violence. And if you look at the history of stroke,

and trying to advance here. Let me see if there's a keyboard. - [Woman] Wait, wait, wait, wait. - [Man] No, there's no keyboard. - [Woman] It has to be opposite you. - [Man] Left, left now.

- Yeah, thank you. Are we good? (laughs) So it's not until the 80s that really risk factors for stroke therapy were identified, particularly hypertension, blood pressure control,

and so on and so forth. And as we go, could you advance for me please? Thank you, it's not until the 90s that we know about the randomized carotid trials, and advance next slide please, really '96 the era of tPA that was

revolutionary for acute stroke therapy. In the early 2000s, stroke centers, like the one that we have in the South East Louisiana and New Orleans really help to coordinate specialists treating stroke. Next slide please.

In 2015, the very famous HERMES trial, the compilation of five trials for mechanical thrombectomy of intracranial middle and anterior cerebral described the patients that could benefit and we will go on into details, but the great benefit, the number needed to treat

was really five to get an effect. Next slide. This year, "wake up" strokes, the extension of the timeline was extended to 24 hours, increase in potentially the number of patients that could be treated with this technology.

Next please. And the question is really how can one preserve the penumbra further to treat the many many patients that are still not offered mechanical thrombectomy and even the ones that are, to get a much better outcome because not everyone

returns to a normal function. Next, so the future I think is going to be delivery of a potent neuroprotection strategy to the penumbra through the stroke to be able to preserve function and recover the penumbra from ongoing death.

Next slide. So that's really the history of stroke. Advance to the next please. Here what you can see, this is a patient of mine that came in with an acute carotid occlusion that we did an emergency carotid endarterectomy

with an neuro interventionalist after passage of aspiration catheter, you can see opening of the middle cerebral M1 and M2 branches. The difference now compared to five, eight, 10 years ago is that now we have catheters in the middle cerebral artery,

the anterior cerebral artery. After tPA and thrombectomy for the super-selective, delivery of a potent neuroprotective agent and by being able to deliver it super-selectively, bioavailability issues can be resolved, systemic side effects could be minimized.

Of course, it's important to remember that penumbra is really tissue at risk, that's progression towards infarction. And everybody is really different as to when this occurs. And it's truly all based on collaterals.

So "Time is brain" that we hear over and over again, at this meeting there were a lot of talks about "Time is brain" is really incorrect. It's really "Collaterals are brain" and the penumbra is really completely based on what God gives us when we're born, which is really

how good are the collaterals. So the question is how can the penumbra be preserved after further mechanical thrombectomy? And I think that the solution is going to be with potent neuroprotection delivery to the penumbra. These are two papers that we published in late 2017

in Nature, in science journals Scientific Reports and Science Advances by our group demonstrating a novel class of molecules that are potent neuroprotective molecules, and we will go into details, but we can discuss it if there's interest, but that's just one candidate.

Because after all, when we imaged the penumbra in acute stroke centers, again, it's all about collaterals and I'll give you an example. The top panel is a patient that comes in with a good collaterals, this is a M1 branch occlusion. In these three phases which are taken at

five second intervals, this patient is probably going to be offered therapy. The patients that come in with intermediate or poor collaterals may or may not receive therapy, or this patient may be a no-go. And you could think that if neuroprotection delivery

to the penumbra is able to be done, that these patients may be offered therapy which they currently are not. And even this patient that's offered therapy, might then leave with a moderate disability, may have a much better functional

independence upon discharge. When one queries active clinical trials, there's nothing on intra arterial delivery of a potent neuroprotection following thrombectomy. These are two trials, an IV infusion, peripheral infusion, and one on just verapamil to prevent vasospasm.

So there's a large large need for delivery of a potent neuroprotection following thrombectomy. In conclusion, we're in the door now where we can do mechanical thrombectomy for intracranial thrombus, obviously concomitant to what we do in the carotid bifurcation is rare,

but those patients do present. There's still a large number of patients that are still not actively treated, some estimate 50 to 60% with typical mechanical thrombectomy. And one can speculate how ideally delivery of a potent neuroprotection to this area could

help treat 50, 60% of patients that are being denied currently, and even those that are being treated could have a much better recovery. I'd like to thank you, Frank for the meeting, and to Jackie for the great organization.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- I'll address a recipe for functional and financial success with smoking cessation for our tobacco addicted patients. We're all very acutely aware of the financial, physical and psychological devastation of tobacco. For our vascular patients it's the most important modifiable risk factor.

Most vascular patients have a high level of initial smoking, it's characterized by failed efforts, and there really are very rare evidence-based cessation programs in place. This was confirmed recently by a publication, American Heart or the PORTRAIT Trial.

I said to myself, "well if I wanted to do counseling "I should have been a psychologist "but I want to be a surgeon, I like to operate." And operating vascular surgery we do, at the middle point of my career

it felt like a revolving door. The right carotid, the left carotid, the left fem-pop, the right fem-pop. And a little more senior in my career as I started the restenosis I felt like I was doomed to the myth of Sisyphus where I just

have to keep pushing that rock up to the top of the hill, only to have it roll down again. I submit to you that if all we do is operate for our patients, our field will be disrupted the same way our cardiac surgical colleagues

have been disrupted. A few years ago, Medicare and many private insurances assigned a payment to smoking cessation counseling, that a ICD10 diagnosis needs to be linked to a tobacco disorder, like vascular disease. Their time based codes for intermed and extensive--

the 99406 is 3-10 minutes, the 99407 is greater than 10 minutes. Now, if you link that to Medicare dollars, it's pretty meager, at $38 per RVU, that's $9 and $19 at additional, respectively. Say your hospital employ at $50 an RVU,

that ups a bit to $12 and $25, respectively. And that's how before you read the Medicare guidelines they say that you have to document that a patient is mentally competent, it needs to be done by a physician or Advanced Care Provider.

You get two attempts per year, four sessions per attempt, or eight sessions per year. About this point I felt like I was reading out of this book instead of the Medicare guidelines. But there is a recipe, and I think it's an important recipe. What we do is put take-away literature

printed ahead of time, in all the patients' rooms, including our online resources, we have the prescriptions and pads pre-printed, and then we have the templates of electronic documentation so we're able to claim the payment for the work that we do do.

We point out to our patients the benefit of smoking cessation, we rely heavily on the CDC website for resources, and the pharmacotherapy really boils down to three:

you need to be careful that you don't double up on your patients who are smoking. Zyban is mor it's basically an extended-release antidepressant and it works on the craving related chemicals in the brain.

It reduces withdrawal symptoms and cravings. You need to start it a couple weeks in advance. You have to be careful with drinkers or cirrhotics, people who have seizures or prior head injuries, and anyone with a psychiatric history. Chantix is the most successful,

it interferes with the nicotine receptors, it lessens the pleasure, and reduces withdrawal symptoms. You also need to start this in advance of cessation efforts. It has GI, headache, sleep disorders, seizures, mood changes, and it got a black-box warning for

suicidal ideations and suicide. Now, at the Harvard School of Business, professor Christensen pointed out that if all we do is operate, we'll be at risk to be disrupted, and he's done business analysis, so he's successful and he's got collabs, such as

Borders, Detroit Auto, stock brokers, and travel agents, and I submit vascular surgeries on that list. He points out that high achievers are the most vulnerable that's because all we do is focus on the highest ROI, that would be that all we do is operate. So how can we avoid being devoured by the next disruptor,

whether it's a cardiologist, new technology, or an overbearing hospital administrator? And he describes this as he evaluates healthcare by saying "What we need to do is focus on the job to be done." We need to say "What does a patient need from us?", not frame them with our attributes.

So we should say they hire us to fix their broken blood vessels, and we should do this whether it's a scalpel, prolene, a stent, a statin, or Chantix. I have (mumbles), but I submit that if we answer what the patient needs, and not what we do for them

that will leave us in a position of leadership where we can make important contributions for our patients.

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

- So this is what I've been assigned to do, I think this is a rich topic so I'll just get into it. Here are my disclosures. So I hope to convince you at the end of this talk that what we need for massive PE when we're talking about catheter based therapy is a prospective registry. And what we need for catheter based therapy for

submassive PE is a randomized controlled trial. So we'll start with massive PE and my rational for this. So you know, really as you've heard, the goal of massive PE treatment is to rescue these patients from death. They have a 25 to 65% chance of dying

so our role, whatever type of physician we are, is to rescue that patient. So what are our tools to rescue that patient? You've heard about some of them already, intravenous thrombolysis, surgical embolectomy, and catheter directed therapy.

The focus of my talk will be catheter directed therapy but let's remember that the fastest and easiest thing to do for these patients is to give them intravenous thrombolysis. And I think we under utilize this therapy and we need to think about this as a first line therapy for massive PE.

However, there's some patients in whom thrombolytics are contraindicated or in whom they fail and then we have to look at some other options. And that's where catheter directed therapy may play a role. So I want to show you a pretty dramatic case and this was an eye-opening case for me

and sort of what launched our PERT when I was at Cornell. It's a 30 year old man, transcranial resection of a pituitary tumor post-op seizures and of course he had a frontal lobe hemorrhage at that time. Sure enough, four or five days after this discovery

he developed hypertension and hypoxia. And then is he CT of the chest, which I still remember to this day because it was so dramatic. You see this caval thrombosis right, basically a clot in transit

and this enormous clot in the right main pulmonary artery. And of course he was starting to get altered, tachycardiac and a little bit hypotensive. So the question is, what to do with this patient with an intracranial hemorrhage? Obviously, systemic thrombolytics are

contraindicated in him. His systolics were in the 90 millimeter of mercury ranged, getting more altered and tachycardiac. He was referred for a CDT and he was brought to the IR suite. And really, at this point,

you could see the multidisciplinary nature of PE. The ICU attending was actively managing him while I was getting access and trying to do my work. So this was the initial pulmonary angiogram you can see there's absolutely no flow to the right lung even with a directed injection

you see this cast of thrombus there. Tried a little bit of aspiration, did a little bit of maceration, even injected a little TPA, wasn't getting anywhere. I was getting a little bit more panicked as he was getting more panicked

and I remembered this device that I had used in AV fistula work called the Cleaner. Totally off label use here, I should disclose that and I have no interest in the company, no financial interest in the company. And so we deployed this thing, activate it a few times,

it spins at 3,000 rpm's, he coughed a little bit, and that freaked us all out also. But low and behold we actually started seeing some profusion. And you can see it in the aortogram actually in this and that's the whole point of massive PE treatment with CDT,

is try to get forward flow into the left ventricle so that you have a systemic blood pressure. Now, you know, when we talk about catheter based therapies we have all sorts of things at our disposal. And my point to you is that you know really, thank you...

You guys can see that, great. So really, the point of these catheter therapies is that you can throw the kitchen sink at massive PE because basically your role is to try to help this patient live. So, if I can get this thing to show up again.

There we go. It's not working very well, sorry. So, from clockwise we have the AngioVac circuit, you have, let's see if this will work again, okay. Nope, it's got a delay. So then you have your infusion catheter,

then you have the Inari FlowTriever, you saw the Cleaner in the previous cast, and you have the Penumbra aspiration device the CAT 8. And some of these will be spoken about in more detail in subsequent talks. But really, you can throw the kitchen sink at massive PE

just to do whatever it takes to get profusion to the left side. So, the best analysis that has been done so far was Will Kuo in 2009. He conducted a meta-analysis of about 594 patients and he found this clinical success rate of 86.5%.

This basically meant these patients survived to 30 days. Well, if that we're the case, that's a much lower mortality than we've seen historically we should basically be doing catheter directed therapy for every single massive PE that comes into the hospital. But I think we have to remember with this meta-analysis

that only 94 of these patients came from prospective studies, 500 came from retrospective, single center studies. So even though it was a very well conducted meta-analysis, the substrate for this meta-analysis wasn't great. And I think my point to you is that

we really are going to have a hard time studying this in a prospective fashion. So what is the data, as far as massive PE tell us and not tell us? Techniques are available to remove thrombus, it can be used if systemic lysis is contraindicated,

but it doesn't tell us whether catheter based therapies are better than the other therapies. Whether they should be used in combination with them and which patients should get catheter based therapy, which should get surgery and which techniques are most effective and safe.

Now, I think something we have to remember is that massive PE has a 5% incidence which is probably a good thing, if this was even higher than that we would have even more of an epidemic on our hand. But this is what makes massive PE very difficult to study.

So, if you looked at a back of the envelope calculation an RCT is just not feasible. So in an 800 bed hospital, you have 200 PE's per year, 5% are massive which means you get 10 per year in that hospital, assume 40% enroll which is actually generous,

that means that 4 massive PE's per year per institution. And then what are you going to do? Are you going to randomize them to IV lytics versus surgery versus interventional therapy, a three arm study, what is the effect size, what difference do you expect between these therapies

and how would you power it? It's really an impossible question. So I do want to make the plug for a Massive PE Prospective Registry. I think something like the PERT consortium is very well-suited to run something like this

especially with this registry endeavors. Detailed baseline characteristics including all these patients, detailing the intervention and looking at both short and long-term outcomes. Moving on to submassive PE. As you've heard much more controversial,

a much more difficult question. ICOPER as you already heard from the previous talk, alerted the world to RV dysfunction which this right ventricular hypokinesis conferring a higher mortality at 90 days than no RV dysfunction. And that's where PEITHO came in as you heard.

This showed that the placebo group met the primary endpoint of hemodynamic decompensation more commonly than the Tenecteplase group. Of course, coming at the risk of higher rate of major bleeding and intracranial hemorrhage. So I just want to reiterate what was just said

which is that systemic thrombolysis has a questionable risk benefit profile and most patients with submassive PE, as seen in the guideline documents as well. So that sort of opens a sort of door for catheter directed therapy.

Is this the next therapy to overcome some of the shortcomings of systemic thrombolysis? Well what we have in terms of CDT is these four trials, Ultima, Seattle II, Optalyse, and Perfect. Three of these trails were the ultrasound assisted catheter, the Ekos catheter.

And only one of them is randomized and that's the Ultima trial. I'm going to show you just one slide from each one of them. The Ultima trial is basically the only randomized trial and it showed that if you put catheters in these patients 24 hours later their RV to LV ratio will be lower

than if you just treat them with Heparin. Seattle II is a single arm study and there was an association with the reduction in the RV to LV ratio at 48 hours by CTA. PERFECT, I found this to be the most interesting figure from PERFECT which is that you're going to start it at

systolic pulmonary artery pressure of 51 and you're going to come down to about 37. Optalyse, a brand new study that was just published, four arms each arm has increasing dose associated with it and at 48 hours it didn't matter, all of these groups had a reduction in the RV to LV ratio.

And there was no control group here as well. What is interesting is that the more thrombolytics you used the more thrombus you cleared at 48 hours. What that means clinically is uncertain at this point. There is bleeding with CDT. 11% major bleeding rate in Seattle II,

no intracranial hemorrhages. Optalyse did have five major bleeds, most of the major bleeds happened in the highest dosed arms. So we know that thrombolytics cause bleeding that's still an issue. Now, clot extraction minus fibrinolytic,

this is an interesting question. We do have devices, you're going to hear about the FLARE trial later in this session. EXTRACT-PE is ongoing which we have enrolled about 75 patients into. What the data does and does not tell us

when it comes to CDT for submassive PE it probably reduces the RV to LV ratio at 24 hours, it's associated with a reduction at 48 hours, major bleeding is seen, we do not know what the short and long-term clinical outcomes are

following CDT for submassive PE. Whether it should be routinely used in submassive PE and in spite of the results of Optalyse this is a preliminary trial, we don't know the optimal dose and duration of thrombolytic drug. And even is spite of these early trials

on these non-lytic techniques, we don't know their true role yet. I'd liked to point out that greater than 1,600 patients have been randomized in systemic lytic trails yet only 59 have been randomized in a single, non-U.S. CDT trial.

So this means that you can randomize patients with submassive PE to one treatment or the other. And we want to get away from this PERT CDT roller coaster where you get enthusiasm, you do more cases, then you have a complication, then the number of cases drops.

You want that to be consistent because you're basing it on data. And that's where we're trying to come up with a way of answering that with this PE-TRACT trial. Which is a RCT of CDT versus no-CDT. We're looking at clinical endpoints

rather than radiographic ones greater than 400 patients, 30 to 50 sites across the country. So in summary I hope I've convinced you that we need a Prospective Registry for massive PE and a Randomized Controlled Trail for submassive PE. Thank you.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- Good morning. I'd like to thank everybody who's in attendance for the 7 A.M. session. So let's talk about a case. 63 year old male, standard risk factors for aneurismal disease. November 2008, he had a 52 mm aneurism,

underwent Gore Excluder, endovascular pair. Follow up over the next five, relatively unremarkable. Sac regression 47 mm no leak. June 2017, he was lost for follow up, but came back to see us. Duplex imaging CTA was done to show the sac had increased

from 47 to 62 in a type 2 endoleak was present. In August of that year, he underwent right common iliac cuff placement for what appeared to be a type 1b endoleak. September, CT scan showed the sac was stable at 66 and no leak was present. In March, six months after that, scan once again

showed the sac was there but a little bit larger, and a type two endoleak was once again present. He underwent intervention. This side access on the left embolization of the internal iliac, and a left iliac limb extension. Shortly thereafter,

contacted his PCP at three weeks of weakness, fatigue, some lethargy. September, he had some gluteal inguinal pain, chills, weakness, and fatigue. And then October, came back to see us. Similar symptoms, white count of 12, and a CT scan

was done and here where you can appreciate is, clearly there's air within the sac and a large anterior cell with fluid collections, blood cultures are negative at that time. He shortly thereafter went a 2 stage procedure, Extra-anatomic bypass, explant of the EVAR,

there purulent fluid within the sac, not surprising. Gram positive rods, and the culture came out Cutibacterium Acnes. So what is it we know about this case? Well, EVAR clearly is preferred treatment for aneurism repair, indications for use h

however, mid-term reports still show a significant need for secondary interventions for leaks, migrations, and rupture. Giles looked at a Medicare beneficiaries and clearly noted, or at least evaluated the effect of re-interventions

and readmissions after EVAR and open and noted that survival was negatively impacted by readmissions and re-interventions, and I think this was one of those situations that we're dealing with today. EVAR infections and secondary interventions.

Fortunately infections relatively infrequent. Isolated case reports have been pooled into multi-institutional cohorts. We know about a third of these infections are related to aortoenteric fistula, Bacteremia and direct seeding are more often not the underlying source.

And what we can roughly appreciate is that at somewhere between 14 and 38% of these may be related to secondary catheter based interventions. There's some data out there, Matt Smeed's published 2016, 180 EVARs, multi-center study, the timing of the infection presumably or symptomatic onset

was 22 months and 14% or greater had secondary endointerventions with a relatively high mortality. Similarly, the study coming out of Italy, 26 cases, meantime of diagnosis of the infection is 20 months, and that 34.6% of these cases underwent secondary endovascular intervention.

Once again, a relatively high mortality at 38.4%. Study out of France, 11 institutions, 33 infective endographs, time of onset of symptoms 414 days, 30% of these individuals had undergone secondary interventions. In our own clinical experience of Pittsburgh,

we looked at our explants. There were 13 down for infection, and of those nine had multiple secondary interventions which was 69%, a little bit of an outlier compared to the other studies. Once again, a relatively high mortality at one year. There's now a plethora of information in the literature

stating that secondary interventions may be a source for Bacteremia in seeding of your endovascular graft. And I think beyond just a secondary interventions, we know there's a wide range of risk factors. Perioperative contamination, break down in your sterile technique,

working in the radiology suite as opposed to the operating room. Wound complications to the access site. Hematogenous seeding, whether it's from UTIs, catheter related, or secondary interventions are possible.

Graft erosion, and then impaired immunity as well. So what I can tell you today, I think there is an association without question from secondary interventions and aortic endograft infection. Certainly the case I presented appears to show causation but there's not enough evidence to fully correlate the two.

So in summary, endograft infections are rare fortunately. However, the incidence does appear to be subtly rising. Secondary interventions following EVAR appear to be a risk factor for graft infection. Graft infections are associated without question

a high morbidity and mortality. I think it's of the utmost importance to maintain sterile technique, administer prophylactic antibiotics for all secondary endovascular catheter based interventions. Thank you.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- So, I'm going to probably echo many of the themes that Gary just touched upon here. These are my disclosures. So, if we look at the CHEST guidelines on who should get pharmacomechanical techniques, it is very very very sobering, and I apologize if the previous speakers have shown this slide,

but essentially, what's right now being disseminated to the American College of CHEST Physicians is that nobody should get catheter-directed thrombolysis, the concept of pharmacomechanical technique should really only reserved as a last-ditch effort if nothing else works, if you happen to have somebody

with extraordinary expertise in your institution, it could not be more of a damning recommendation for what I'm about to talk to you about for the next eight or nine minutes or so. So, then the question is, what is the rationale? What are we talking about here?

And again, I'm going to say that Gary and I, I think are sort of kindred spirits in recognizing that we really do need to mature this concept of the catheter-based technique for pulmonary embolism. So, I'm going to put out a hypothetical question, what if there was a single session/single device therapy

for acute PE, Gary showed one, that could avoid high dose lytics, avoid an overnight infusion, acutely on the table lower the PA pressure, acutely improve the function of the right ventricle, rapidly remove, you know, by angiography,

thrombus and clot from the pulmonary artery, and it was extremely safe, what if we had that? Would that change practice? And I would respectfully say, yes it would. And then what if this concept has already been realized, and we're actually using this across the world

for STEMI, for stroke, for acute DVT, and so why not acute pulmonary embolism? What is limiting our ability to perform single session, rapid thrombus removal and

patient stabilization on the table? Gary showed this slide, there's this whole litany of different devices, and I would argue none of them is exactly perfect yet, but I'm going to try and sort of walk you through what has been developed in an attempt

to reach the concept of single session therapy. When we talk about pharmacomechanical thrombectomy or thrombo-aspiration, it really is just one line item on the menu of all the different things that we can offer patients that present with acutely symptomatic PE, but it is important to recognize

what the potential benefits of this technology are and, of course, what the limitations are. When we look at this in distinction to stroke or STEMI or certainly DVT, it's important to recognize that during a surgical pulmonary embolectomy case, the clot that's able to be extracted is quite impressive,

and this is a very very very sobering amount of material that is typically removed from the patient's right heart and their pulmonary circulation, so, in order to innovate and iterate a percutaneous technology based on existing concepts,

it really does demand significant disruption to achieve the goals, we have not tackled this yet in terms of our endovascular tool kit. So, what is the role? Well, it's potentially able to debulk in acute PE, in an intermediate risk patient which would

ideally eliminate the need for overnight lysis, as Gary alluded to, but what if it could actually replace surgical embolectomy in high risk patients? I think many of us have had the conversation where we, we sort of don't know that's there a

experienced, comfortable surgeon to do an embolectomy within the building or within immediate access to the patient that we see crashing in front of our eyes. I'm very very lucky here in New York that I've incredible cardiovascular surgeons that are able to perform this procedure very very safely 24/7,

but I know that's not the case across the country. So, one of our surgeons who actually came from the Brigham and Women's Hospital in Boston developed this concept, which was the sort of first bridge between surgical embolectomy and percutaneous therapy, which is a large bore aspiration catheter,

it's a 22 French cannula that was originally designed to be placed through a cutdown but can now be placed percutaneously, and I think many of us in the room are familiar with this technology, but essentially you advance this under fluoroscopy into the right heart,

place the patient on venous-venous bypass, and a trap, which is outside the patient, is demonstrated in the lower left portion of the screen here, is able to capture any thrombotic material and then restore the circulation via the contralateral femoral vein,

any blood that is aspirated. Very very scant data on this, here's the experience from Michael and Kenny up in Boston where they tried this technology in just a handful of cases, this was followed by John Moriarty's experience from UCLA, where he actually argued a little bit of caution

using this technology, largely related to its inability to safely and reliably deliver it to the pulmonary circulation. To that end, AngieDynamics is funding a prospective registry really looking at safety and efficacy at delivering this device to the pulmonary circulation

and its ability to treat acute pulmonary embolism as well as any right heart clot, but that data's not commercially available yet. This is just one case that we did recently of a clot in transit, which I would argue could not be treated with any other technology

and the patient was able to be discharged the same day, I personally think this is a wonderful application of this technology and is our default strategy right now for a very large clot in transit. The second entrance to the space is the Inari FlowTriever device, which is a 20 French cannula,

it does not require a perfusion team in vein-vein bypass, the concept is simple, a 20 French guide catheter is advanced into the pulmonary circulation and these trilobed disks, which function like a stentriever for stroke are deployed in the pulmonary circulation, retracted to allow the clot to be delivered to the guide cath,

and then using manual aspiration, the clot is retrieved from the patient. Just a few case reports in small series describing this, this one in JACC two years ago, showing quite robust ability to extract a clot, this company which is a relatively small company funded a

single-arm prospective trial enrolling 168 patients, and not only did they complete enrollment last year, but they actually received FDA approval, now there is no peer-reviewed literature on this, it has undergone public presentation, but we, we really don't know exactly which patients were treated,

and so we really can't dissect this, I think there is a learning curve to this technology, and it's not, certainly, ready for broad dissemination yet, we just don't know which patients are ideal for it currently. Another technology, the Penumbra CAT8 system,

a market reduction in the size, an 8 French catheter based technology, this is exact same technology that's used for thrombo-aspiration for acute ischemic stroke, currently just in a slightly different size, and then a number of cases demonstrating its efficacy at

alleviating the acute nonperfusion of an entire lobe, as Gary was referring to previously, and this is one of our cases from our own lab, where you see there's no perfusion of the right, middle and lower lobe, I'm not sure if I can get these movies to play here, oh here it goes,

and so using sort of a handmade separator, we were able to restore perfusion again to the right, middle and lower lobe here, so just one example where, I think there is a potential benefit of thrombo-aspiration in a completely occluded segment.

There has been a wealth of literature about this technology, mostly demonstrating safety and efficacy, the most recent one on the bottom right in CVIR demonstrates the ability to acutely reduce the PA pressures on the table with the use of this technology, and to that end,

Akhi Sista, our faculty here this morning, is the national principal investigator of a US multicenter prospective study looking at exactly that, to try and prove that this technology is safe and effective in the treatment of submassive pulmonary embolism, so more to come on that.

Lastly, the AngioJet System, probably the most reported and studied technology, this is a 6 French technology by default, a wealth of literature here showing safety and efficacy, however, due to adverse event reporting, this technology currently has black box label warnings

in the treatment of acute pulmonary embolism, so clearly this technology should not be used by the novice, and there are significant safety concerns largely related to bradyarrhythmias and hypotension, that being said, again, it is a quite experienced technology for this. So where do we currently stand?

I think we clearly see there are several attributes for thrombo-aspiration including just suction aspiration, a mechanical stent-triever technology, and the ability to not just insanguinate the patient but actually restore circulation and not make the patient anemic, here,

you can see where these technologies are going in terms of very very large bore and very small bore, I placed the question marked right in the center which is where I think this technology needs to converge in order to lead to the disruption for the broad adoption of a single session technology.

So, numerous devices exist, all the devices have been used clinically and have demonstrated the ability to be delivered in aspirary pulmonary embolus, at present, unfortunately there is no consensus regarding which device should be used for which patients and in which clinical presentations,

we need many prospective studies to demonstrate the safety and clinical benefit for our patients, we desperately do need a single session therapy, again, I completely agree with Gary on this, but there is a lot of work yet to do. Thank you for your attention.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you so much for the opportunity to present our experience. You are all familiar in this place with the SVS classification for blunt aortic injury, and you all know that it doesn't tell you what to do with each patient,

it doesn't guide treatment. A few years ago we presented a simple, practical grading system based on CAT scan findings for the management of these patients. When a patient has a minimal aortic injury, it's a patient with no aortic contour abnormality,

they have either an intimal flap or a small thrombus less than 10 mm. These patients we don't do any interventions. Patient's that present with an aortic contour abnormality or a large intimal flap or large thrombus have a moderate injury.

These patients get repair in a semi-elective manner once they have stabilized further injuries. One the other hand, persons that present with a severe injury, persons with active extravasation, this patient need to go to the OR because he's dying

and this takes precedence above any other injuries. So, since we implemented this system we took a three years look from 2014 to 2017 to see how are our results. We have 87 patients, 63 percent were moderate, 28 percent minimal, and nine percent severe.

None of the patients underwent open repair, and none of the patients with a minimal got fix. All but three of the patients with a moderate, and all but one of the patients with a severe have TEVAR as a repair method. These are very sick patients, high in the severity scores,

with high rates of intracranial hemorrhages and associated injuries. When we look at the anatomy, the patient with a severe injury are more likely to have a bovine arch anatomy. These are young patients with small aortas,

with a median aortic diameter of 23. The operative timing is the time since the patient hit the door of the emergency room to the patient getting to the OR, was 53 hours for a patient with a moderate injury, and three hours for a patient with a severe.

These are short procedures that can be done in less than 90 minutes with minimal contrast used, and around five minutes of fluoro time. We used intravascular ultrasound very widely. We have covered the subclavian artery

in around 40 percent of the patients. We do all this percutaneously. We are successful in around 86 percent of the cases. We have not had to revascularize any subclavian artery. We had one patient that required a plaque during the index case of the subclavian,

one patient that had a femoral pseudoaneurysm that we treated with thrombin, one patient that was already on a heparin drip for a PE. We took her to the OR more than 24 hours after the heparin drip was started, fixed the TEVAR.

After that the patient had a complete normal CAT scan. More than 12 hours after the heparin drip being restarted for the PE she had a worsening intracranial bleed. We don't know that was related to our procedure. We have no patient with new stroke

or worsening spinal cord injury for the procedure. 30-day followup CT scan had excellent remodeling in every single patient. We have not performed any delay interventions. Our 30-day mortality is very low. There is only one patient with an aortic-related mortality.

This is a patient that presented with a severe injury. She was more than 90 years old and the family elected to don't proceed with any treatment. So in conclusions, we consider the patients with minimal aortic injury do not require surgical treatment or followup imaging.

Patient with a moderate can be safely undergo TEVAR in a semi-elective manner once they are stable from other injuries, but the patient with a severe aortic injury require emergent repair. These procedures are very fast

and can be successfully performed percutaneously. Complications are rare, and the followup reveal excellent remodeling of the aorta that will likely result in longer interval surveillance requirements. Thank you.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.