Create an account and get 3 free clips per day.
Chapters
Hepatocellular Carcinoma, Post-embolization Syndrome (Post-TACE), Liver Infarction|TACE (DEB)|61|Female
Hepatocellular Carcinoma, Post-embolization Syndrome (Post-TACE), Liver Infarction|TACE (DEB)|61|Female
2016ablateablationaggressiveangiographicarteryballoonbeadscatheterconventionalendpointflowhepaticincidenceinfarctionleftlobepatientportalrisksegmentSIRsystemictacetherapytransarterialtumorveinvenous
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
anticoagulantsantiphospholipidantiplateletDVTendovascularfactorsfamilyhistoryincidenceinfrainguinalinpatientintraoperativepatientsperioperativepreoperativeriskscreeningsurgicalthoracicthrombosisvascularvenous
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
alcoholaneurysmalarterialarteryavmsclassificationcoilcoilscombinationcureddirectethanolfillinglesionlesionsmultipleneedlenidusoutflowpredominantpunctureretrogradesingletransvenousveinvenousyakes
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
ablationanticoagulatedanticoagulationantiplateletatrialClosureFastcontralateralcontrolCovidein Cf 7-7-60 2nd generationdatademonstratedduplexdurabilitydurableDVTdvtseffectivenessendothermalendovenousevlafiberlargestlaserMedtronicmodalitiesocclusionpatientspersistentpoplitealproceduresRadiofrequency deviceRe-canalizationrecanalizationrefluxstatisticallystudysystemictherapythermaltreatedtreatmenttumescentundergoingveinvenousvesselswarfarin
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
answeranticoagulationattractendpointevidenceexcisionhemostasislimbocclusionpatientsthoracicthrombolysistpaulceruppervcssvenousvillalta
How To Tailor Activity Recommendations To Patients After Cervical Artery Dissection
How To Tailor Activity Recommendations To Patients After Cervical Artery Dissection
adventitiaaneurysmalarteryatheroscleroticavoidaxialcarotidcervicalcoronaldissectiondissectionsexerciseextracranialextravasationextremeheartincludingintimalmaximumneckPathophysiologypatientspredictedpseudoaneurysmrecurrentrisksystemicsystolictemporaltraumavalsalvavertebral
Use Of Indirect Access Sites For AV Intervention
Use Of Indirect Access Sites For AV Intervention
accessapproacharterialcathetercephalicconvertdiagnosticdirectexposurefemoralferralFistulafistulasimmaturejugularoutflowPartially occluded immature lt upper arm AVFperformedpunctureradiationreportedretrospectiverupturedsnareStaged Trans-jugular approachstenosisstudyTrans-jugular approachtransjugularveinvenous
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
abdominalangiographyanterioraortaaorticarteriogrambasicallybleedingcarboncatheterceliaccoilcontrastdiaphragmdioxideembolizationholeimaginginjectinjectioninjectionsiodinatedliverlowmultiplepatientpelvicrenalruptureselectivesolublesplenictraumavascularizationveinvesselvesselsvolumes
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
accessaneurysmalbypassclinicalDialysisdiameterduplexdynamicflowflowsgraftluminalmeasurepatientsrenalsensitivityultrasoundveinvelocityversusvolume
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
acuteanterioraortaarterycementchroniccommonlycompresseddelayedfractureiliacimaginginflammatoryinjuriesinjuryinstrumentationpatientpositioningposteriorprivilegepronereplacementRt Iliac Massthermalthoracicvascularveinveinsvertebral
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
Surgical Creation Of A Moncusp Valve
Surgical Creation Of A Moncusp Valve
applycompetingcontralateraldeependovascularfibroticflapflowhemodynamicmalfunctioningmobilemodelingMono-cuspid neovalveMono-cuspid Stent PrototypeparietalreconstructionrefluxstentthrombosisvalveValvuloplastyveinvenouswall
Transcript

>> All right I'm gonna move on to case three,

this is an elderly woman with cirrhosis in her left hepatic lobe HTC. She's had prior therapy. She's status post TACE times three to other tumors. This is a virgin tumor,

has never been treated and she is a BCLC B person.Since we're talking about TACE complications, we obviously prescribed TACE in this case. The practitioner did this case selected for, actually I think it was me,

doxorubicin loaded drug-eluting beads, and this is the patient's initial hepatic arteriogram. You can see that the ciliac anatomy is conventional. We micro catheterized the left hepatic artery and you can start to see the enhancing tumor supplied by the segment three branch to the left hepatic artery.

Got the microcatheter into a more selective location, you can see the segment three hypervascular tumor. And we performed segmental TACE using 100 to 300 micron drug-eluting beads loaded with doxorubicin. This was our angiographic endpoint. This is the post-embolization ateriogram, you can see the embolized left hepatic artery segment three branch.

Complete tumor devascularization. Not much much flow to segment three of the left hepatic lobe. Probably a slightly more aggressive end point that I might have desired however nonetheless this is our outcome. [BLANK_AUDIO] In terms of course this patient had what we thought was post-embolization post-procedure.

However it was poorly controlled with pain med medications, and upon lab check was found to have profound transaminitis AST and ALT measuring over 1000 on post TACE days two and three. And that prompted a CT scan and we came to find that the patient had a left hepatic lobe infarction.

So actually, I might pose the question to the group here. Was the angiographic endpoint aggressive in your mind? [BLANK_AUDIO] >> What do you guys think? Without looking at this picture. Well who would have used conventional TACE? DEB TACE? I would have too

RFA? It is funny isn't it if you're in one institution you default to one, if you're at another institution, you default to the other. And I think the reason for that is because, other than some compelling data now with combination therapy,

I don't know that we've really proven that one therapy is better than another depending on the size of the tumor. That's why we all do it differently. >> [INAUDIBLE] >> I can't hear you, I'm sorry.

>> Why wont you ablate it? Its such a [INAUDIBLE] small lesion. [INAUDIBLE] >> Yeah. >> It's a great point. I think you'd be 100% right if you decided to ablate this lesion.

I think it would be sonographically visible. It's within size for complete ablation. So I So I think that's a perfectly appropriate approach. >> You might not be presenting it here though- >> Absolutely complications

of transarterial chemoembolization, right. Yeah? >> [INAUDIBLE] >> That's a great point. We're gonna take a look a little bit further in a second. Yeah?

>> [INAUDIBLE] >> Absolutely a possible Possible approach here, yeah. I think that would be totally feasible and appropriate. >> [INAUDIBLE] >> I think in general in our practice,

once we apply a transarterial therapy I tend to stay with it. I tend to use ablation as a first line approach and then transarterial to clean up. So we typically don't do that but I think that'd be a reasonable approach for this particular tumor.

All right, I'm gonna move on. So we've established that this patient had left hepatic lobe infarction. It's an ischemic complication of TACE. Actually the incidence in the literature is higher than I thought but that's the 3 to 12% incidence kinda spans liver and biliary system.

And the main signs and symptoms are high transaminase levels and then symptoms of weakness, fatigue, confusion, if you have poor hepatic reserve and jaundice. Again we're looking for kinda geographic hypoattenuation, non-enhancement

of liver parenchyma in a vascular distribution. And there are some risk factors for this actually, non-selective catheter position, high embolic load or dose, small beads, lack of portal venous flow which was brought up and previous hepatic surgery maybe disrupting collateral arcades.

So actually in this case going back this patient had a congenital portosystemic shunt. So you can see on this sequential CT images that the left portal vein had a direct communication with the other middle hepatic vein or IVC. This was actually demonstrated angiographically on a study that

was performed several years prior for this person. Here's an SMA gram showing portal venous flow directly into the systemic circulation by the middle hepatic vein. So actually given that finding how does that change the panel's thought about the modality selection for therapy? >> I think you treat it like PVT for the most part cuz you have no portal flow to the left. So getting back to

his point about ablation, I think that's one more reason to consider ablation. [INAUDIBLE] >> Not necessarily, I gotta be honest I didn't see the original tumor, but it's a straightforward it was a portal vein out doing Y90 will be pretty straight forward. >> I'd probably go with ablation but that's just my preference and the other risk factor is you use a Surefire anti-reflux catheter. I've seen [INAUDIBLE] report of by using that you are putting so

much more agent that you can cause infarction like this. So that would be another risk factor. >> That's a good point there. It's not just the anti-reflux catheter the surefire now, there's also we're seeing some literature and companies producing these balloon occlusion TACE.

So microcatheters with a balloon that you blow it up and you can force a lot of things in it and yesterday in an embolization session [UNKNOWN] from Europe showed a nice case where he didn't see a falciform artery and he delivered regulating beads with one of these catheters. And the patient had significant cutaneous toxicity probably because he drove a lot of this in through that process

that it might not have been delivered had he not had the balloon up, so good point. >> Well confounding the decision making in this case was the fact that the patient had tolerated three previous TACEs well albeit conventional TACE and for me in retrospect I probably would have pursued a conventional TACE instead of a drug-eluting bead TACE

in this case. This is a direct portal systemic catheterization of the vessel, and I think the combination of portal venus diversion, small particles maybe an aggressive endpoint precipitated the infarction to avoid it maybe consider less symbolic therapy ablative therapy, a lot of things that were mentioned here.

And we just treated this patient supportively, normalization of enzymes over time and then Bob I'd like to point out the nice chemo lobectomy here. So this patient, good news tumor gone, bad news the left lobe is gone too actually.

But she made it to transplant as far as I remember and this was 30 months post TACE. So I think I've taken up about 20 minutes. I'm gonna let the next speaker Don go. >> Let me ask you a question going back to your first case Ron. >> Sure.

>> That was conventional TACE. The accessory left gastric artery what if you had done drug-eluting beads or Y90 you think you would have gotten away with it? >> I don't know the answer is I don't know I think it's hard to make these sort of judgments with single few case experience,

anecdotal experience I think it's anybody's guess. Sometimes I wonder how much subclinical non-target occurs that we just don't catch and whether we're just sort of underestimating the amount of non-target that we're getting and only a few patients are manifesting. But as that case shows,

we got away with it very fortunately. I don't want it to happen so we do our best to avoid it

- Thank you very much. Well this is a series that was actually published five years ago. And it outlined 45,000 patients after carotid endarterectomy, as well as open and closed thoracic abdominal procedures and infrainguinal bypasses.

And you can see here, that the VTE rate, and this is emblematic of a lot of studies. If you take everything together in a ball, you get an average result. And as you can see, the peripheral bypasses had a low incidence.

Carotids, very low incidence. But open procedures had a higher incidence than endovascular procedures. But here is the nub. Here is what's really important and why you need to do risk assessment.

Look at what happened to these percentages if the patients had any morbidity during hospitalization, as high as 7.8%. And here's the list after they went home. Again, it's not the .5 tenths of a percent or 1%, and this is what it's all about.

It's about the extra risk factors that the patient has. So now, anybody that's starting to do work with the Caprini Score, you've got to go to the patient-friendly form. Because we don't just do it,

if the patient comes in for surgery, and somebody does a preoperative evaluation in the holding area, stop it! It's ridiculous! Have you ever been in the holding area? What are you worried about?

You're worried about having the operation. Are they going to find cancer? Will the surgeon have a bad day? How much pain am I going to be in? How long am I going to be out of work? They're not going to talk to you

about their family history or their obstetrical misadventures. So you have them fill a form out ahead of time with their family, and then when they come in, you just double-check it. And we've studied this, it's in five languages,

and it's got perfect correlation with trained observers doing the same thing. And remember, if you fail to carefully interrogate your patients regarding the history or family history of venous thromboembolism, vascular surgery or not, sooner or later you may

be faced with a fatal PE. And the idea that you're giving anticoagulants during your procedure that's going to protect them is not valid. The relative risk of thrombosis increases with the number of risk factors identified.

A combination of genetic and acquired risk factors in a person without a history of a thrombosis personally, but with a family history, has a 60-fold higher chance than those that have a negative family history. And a positive family history increased

the risk of venous thrombosis more than 2-fold, regardless of the other risk factors. Don't forget the history of thrombosis. You won't need to look this article up. It's 183,000 patients over 25 years and it shows that both in first, second,

and third-degree relatives, as well as cohabitants in the household, there's an increased risk of venous thromboembolism. Lowering down, getting lower for each degree of a relative.

But a DVT in a cousin, there may also be a thrombopathic condition in that patient. So you better pay attention to that. National Surgical Quality Improvement Program, wonderful program. The database has no information on history

or family history of VTE, use of perioperative VTE prophylaxis, intraoperative anticoagulation, or perioperative use of antiplatelet agents. How are you supposed to make any sense out of DVT-related studies?

Finally, due to the lack of routine screening for VTE, the incidence of VTE may be underestimated in this NSQIP database, which only makes the need for further study more pressing. This is an important consideration because

more recent data indicates that two-thirds of the patients are found to have DVT during screening and after vascular operations, have no signs or symptoms of the problem. And I'd like to remind you, so this is based on the Boston data, which is the best data.

Patients with a low score pneumatic compression during hospitalization. Moderate score, of 7-10 days of anticoagulation. Don't make any difference if they're inpatient or outpatient. And 28 days if their score is over nine.

They lowered their incidence on the surgical services from 2.2% to a tenth of a percent at 30 days. And finally, and I think this is really, really important. Take a look at all these risk assessment scores.

To my knowledge, there's only two scores. It's not the Padua, it's not the IMPROVE that have a history of obstetrical misadventures which can reflect antiphospholipid antibody syndrome, as well as family history

in various degrees of relatives. So with that, thank you very much.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Talk to you a little bit about again a major paradigm shift in AVMs which is the retrograde vein approach. I mean I think the biggest benefit and the biggest change that we've seen has been in the Yakes classification the acknowledgment

and understanding that the safety, efficacy and cure rate for AVMs is essentially 100% in certain types of lesions where the transvenous approach is not only safer, but easier and far more effective. So, it's the Yakes classification

and we're talking about a variety of lesions including Yakes one, coils and plugs. Two A the classic nidus. Three B single outflow vein. And we're talking now about these type of lesions. Three A aneurysmal vein single outflow.

Three B multiple outflows and diffuse. This is what I personally refer to as venous predominant lesions. And it's these lesions which I think have yielded the most gratifying and most dramatic results. Close to 100% cure if done properly

and that's the Yakes classification and that's really what it's given us to a great degree. So, Yakes one has been talked about, not a problem put a plus in it it's just an artery to vein.

We all know how to do that. That's pulmonary AVM or other things. Yakes two B however, is a nidus is still present but there is a single outflow aneurysmal vein. And there are two endovascular approaches. Direct puncture, transarterial,

but transvenous retrograde or direct puncture of the vein aneurism with the coil, right. You got to get to the vein, and the way to get to the vein is either by directly puncturing which is increasingly used, but occasionally transvenous. So, here's an example I showed a similar one before,

as I said I think some of these are post phlebitic but they represent the archetype of this type of lesion a two B where coil embolization results in cure, durable usually one step sometimes a little more. In the old days we used to do multiple

arterial injections, we now know that that's not necessary. This is this case I showed earlier. I think the thing I want to show here is the nature of the arteriovenous connection. Notice the nidus there just on this side of the

vein wall with a single venous outflow, and this can of course be cured by puncture, there's the needle coming in. And interestingly these needles can be placed in any way. Wayne and I have talked about this.

I've gone through the bladder under ultrasound guidance, I've gone from behind and whatever access you can get that's safe, as long as you can get a needle into it an 18 gauge needle, blow coils in you get a little tired, and you're there a long time putting in

coils and guide wires and so on. But the cures are miraculous, nothing short of miraculous. And many of these patients are patients who have been treated inappropriately in the past and have had very poor outcomes,

and they can be cured. And that a three year follow-up. The transcatheter retrograde vein is occasionally available. Here's an example of an acquired but still an AVM an acquired AVM

of the uterus where you see the venous filling on the left, lots of arteries. This cannot be treated with the arterial approach folks. So, this one happened to be available

and I was having fun with it as well, which is through the contralateral vein in and I was able to catheterize that coil embolization, cured so. Three A is a slightly different variant but it's important it is different.

Multiple in-flow arteries into an aneurysmal vein wall. And the important identification Wayne has given us is that the vein wall itself is the nidus and there's a single out-flow vein. So, once again, attacking the vein wall by destroying the vein, packing

and thrombosing that nidus. I think it's a combination of compression and thrombosis can often be curative. A few examples of that this was shown earlier, this is from Dr. Yake's experience but it's a beautiful example

and we try to give you the best examples of a singular type of lesion so you understand the anatomy. That's the sequential and now you see single out-flow vein. How do you treat this?

Coil embolization, direct puncture and ultimately a cure. And that's the arteriogram. Cured. And I think it's a several year follow-up two or three year follow-up on this one.

So a simple lesion, but illustrative of what we're trying to do here. A foot AVM with a single out-flow vein, this is cured by a combination of direct puncture right at the vein. And you know I would say that the beauty of

venous approach is actually something which it isn't widely acknowledged, which is the safety element. Let's say you're wrong, let's say you're treating an AVM and you think okay I'm going to attack

from the vein side, well, if you're not successful from the vein side, you've lost nothing. The risk in all of these folks is, if you're in the artery and you don't understand that the artery is feeding significant tissue,

these are where all the catastrophic, disastrous complications you've heard so much about have occurred. It's because the individuals do not understand that they're in a nutrient artery. So, when in doubt direct puncture

and stay on the venous side. You can't hurt yourself with ethanol and that's why ethanol is as safe as it is when it's used properly. So, three B finally is multiple in-flow arteries/arterioles shunting into an aneurysmal vein

this is multiple out-flow veins. So direct puncture, coils into multiple veins multiple sessions. So, here's an example of that. This is with alcohol this is a gentleman I saw with a bad ulcer,

and this looks impossible correct? But look at the left hand arteriogram, you can see the filling of veins. Look at the right hand in a slight oblique. The answer here is to puncture that vein. Where do we have our coil.

The answer is to puncture here, and this is thin tissue, but we're injecting there. See we're right at the vein, right here and this is a combination arteriogram. Artery first, injection into the vein.

Now we're at the (mumbles), alcohol is repeatedly placed into this, and you can see that we're actually filling the nidus here. See here. There's sclerosis beginning destruction of the vein

with allowing the alcohol to go into the nidus and we see progressive healing and ultimately resolution of the ulcer. So, a very complex lesion which seemingly looks impossible is cured by alcohol in an out-flow vein.

So the Yakes classification of AVMs is the only one in which architecture inform treatment and produces consistent cures. And venous predominant lesions, as I've shown you here, are now curable in a high percentage of cases

when the underlying anatomy is understood and the proper techniques are chosen. Thanks very much.

Thanks very much, Tom. I'll be talking about thermal ablation on anticoagula is it safe and effective? I have no disclosures. As we know, extensive review of both RF and laser

ablation procedures have demonstrated excellent treatment effectiveness and durability in each modality, but there is less data regarding treatment effectiveness and durability for those procedures in patients who are also on systemic anticoagulation. As we know, there's multiple studies have been done

over the past 10 years, with which we're all most familiar showing a percent of the durable ablation, both modalities from 87% to 95% at two to five years. There's less data on those on the anticoagulation undergoing thermal ablation.

The largest study with any long-term follow up was by Sharifi in 2011, and that was 88 patients and follow-up at one year. Both RF and the EVLA had 100% durable ablation with minimal bleeding complications. The other studies were all smaller groups

or for very much shorter follow-up. In 2017, a very large study came out, looking at the EVLA and RF using 375 subjects undergoing with anticoagulation. But it was only a 30-day follow-up, but it did show a 30% durable ablation

at that short time interval. Our objective was to evaluate efficacy, durability, and safety of RF and EVLA, the GSV and the SSV to treat symptomatic reflux in patients on therapeutic anticoagulation, and this group is with warfarin.

The data was collected from NYU, single-center. Patients who had undergone RF or laser ablation between 2011 and 2013. Ninety-two vessels of patients on warfarin at the time of endothermal ablation were selected for study. That's the largest to date with some long-term follow-up.

And this group was compared to a matched group of 124 control patients. Devices used were the ClosureFast catheter and the NeverTouch kits by Angiodynamics. Technical details, standard IFU for the catheters. Tumescent anesthetic.

And fiber tips were kept about 2.5 centimeters from the SFJ or the SPJ. Vein occlusion was defined as the absence of blood flow by duplex scan along the length of the treated vein. You're all familiar with the devices, so the methods included follow-up, duplex ultrasound

at one week post-procedure, and then six months, and then also at a year. And then annually. Outcomes were analyzed with Kaplan-Meier plots and log rank tests. The results of the anticoagulation patients, 92,

control, 124, the mean follow-up was 470 days. And you can see that the demographics were rather similar between the two groups. There was some more coronary disease and hypertension in the anticoagulated groups, and that's really not much of a surprise

and some more male patients. Vessels treated, primarily GSV. A smaller amount of SSV in both the anticoagulated and the control groups. Indications for anticoagulation.

About half of the patients were in atrial fibrillation. Another 30% had a remote DVT in the contralateral limb. About 8% had mechanical valves, and 11% were for other reasons. And the results. The persistent vein ablation at 12 months,

the anticoagulation patients was 97%, and the controls was 99%. Persistent vein ablation by treated vessel, on anticoagulation. Didn't matter if it was GSV or SSV. Both had persistent ablation,

and by treatment modality, also did not matter whether it was laser or RF. Both equivalent. If there was antiplatelet therapy in addition to the anticoagulation, again if you added aspirin or Clopidogrel,

also no change. And that was at 12 months. We looked then at persistent vein ablation out at 18 months. It was still at 95% for the controls, and 91% for the anticoagulated patients. Still not statistically significantly different.

At 24 months, 89% in both groups. Although the numbers were smaller at 36 months, there was actually still no statistically significant difference. Interestingly, the anticoagulated group actually had a better persistent closure rate

than the control group. That may just be because the patients that come back at 36 months who didn't have anticoagulation may have been skewed. The ones we actually saw were ones that had a problem. It gets harder to have patients

come back at three months who haven't had an uneventful venous ablation procedure. Complication, no significant hematomas. Three patients had DVTs within 30 days. One anticoagulation patient had a popliteal DVT, and one control patient.

And one control patient had a calf vein DVT. Two EHITs. One GSV treated with laser on anticoagulation noted at six days, and one not on anticoagulation at seven days. Endovenous RF and EVLA can be safely performed

in patients undergoing long-term warfarin therapy. Our experience has demonstrated a similar short- and mid-term durability for RF ablation and laser, and platelet therapy does not appear to impact the closer rates,

which is consistent with the prior studies. And the frequency of vein recanalization following venous ablation procedures while on ACs is not worse compared to controls, and to the expected incidence as described in the literature.

This is the largest study to date with follow-up beyond 30 days with thermal ablation procedures on anticoagulation patients. We continue to look at these patients for even longer term durability. Thanks very much for your attention.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you very much for the very kind invitation, and I promise I'll do my best to stick to time. The answer is probably to this audience I don't really need to say very much about the ATTRACT trial, but I think it is quite important to note that the ATTRACT trials have now been out for some time, and it is constantly being

talked about in its various dimensions. So I'm going to just spend a few seconds really talking about the ATTRACT trial. A large number of patients screened. One in 41 patients were actually recruited into it and it was a trial that ran for a long time.

Wasn't really with respect to the primary endpoint any particularly good evidence, but for those people who had moderate or severe post-thrombotic syndrome, it probably was of benefit. And if you looked at the Villalta score

and the VCSS scores there was some evidence to support it. So overall, probably some positive take-home messages, but not as affirmative as people would have thought. Now the reason that I've dwelled a little bit on that is that actually, what do we mean when we talk about the post-thrombotic syndrome?

Because I would say in the upper limb, because I have never personally seen an ulcer in the upper limb. Has anybody seen an ulcer in the upper limb due to venous disease? No.

So in a way we are talking about a slightly different entity. We are talking about a limb that has undoubtedly much more finer movements. And there was depression by some people with the results of the ATTRACT trial.

But when you look at the five year results from the CaVenT trial, there was some evidence to suggest that actually, as you get further out, there may be some benefit. If you look at this summation analysis, and I completely accept this is related to the leg,

again, there may be some benefit from the CDT. Now, this is a case of mine. Now I wonder if any of you can tell me how many stages may have been involved from going from the right, to having a ballonplasty in the vein. Pick a number, anywhere between five and ten.

The answer is you have numerous checks of the thrombolysis, you may have a venoplasty, you might have a first rib excision. You may then have occlusion and then realize this before you go on and do the first rib. So all I'm suggesting to you that this is not

a cheap treatment to offer patients treatment to the upper limb. Then we looked forward to some help from the guidelines. Well we look at the American guidelines and give or take, I think the answer is we probably shouldn't be doing it and that we should be only offering anticoagulation.

So do the Brits help? Well actually if you look at the Brits, it sort of says well, you can think a bit about doing decompression, but really if I was standing up in a court of law, I really wouldn't want much support from this guideline

that I had done the right thing. And then the International Society of Thrombolysis and Hemostasis really says well, you can do a little bit of this that thoracic outlet syndrome may be a risk factor. But give or take, surgeries still are a little bit dubious.

So, really there's one good review out there, and this is the review of Vasquez that basically looked at 146 articles, and they found some data on just under 1300 patients. And they postulated and chose some evidence to suggest that there was some evidence

that first rib excision and thrombolysis reduce PTS, and that anticoagulation alone was not enough for the majority of the patients. Very difficult to work out how you selected which patients you should or should not intervene on. Now, I'm sure everybody is rather sick and tired

of me talking about money, and I accept it doesn't really apply here. But money is actually quite important. Five interventions to prevent something that may not happen and at worst may be just a few collateral veins across the chest.

So ladies and gentlemen, I would want you to think very hard, is it actually cost-effective to be offering all patients presenting with an early auxiliary vein thrombosis thrombolysis, and then subsequently first rib excision? These are some of the truths, I think the answer is

it does seem to work. You do need to recognize and make the diagnosis. Usually delayed thrombolysis doesn't work, but there are lots of questions that are unanswered. And how would you defend what you have done in a court of law?

Somebody has a stroke, you then do the first rib, they get a large hemothorax, and they then die because there had been too much TPA on board. Yes, give it some thought. So ladies and gentlemen, I'm afraid I haven't actually answered the question,

but I think you need to give it careful consideration, what are the indications and merits? Thank you very much.

- Thank you very much. It's an hono ou to the committee for the invitation. So, I'll be discussing activity recommendations for our patients after cervical artery dissection. I have no relevant disclosures.

And extracranial cervical artery dissection is an imaging diagnosis as we know with a variety of presentations. You can see on the far left the intimal flap and double lumen in the left vertebral artery

on both coronal and axial imaging, a pseudoaneurysm of the internal carotid artery, aneurysmal degeneration in an older dissection, and an area of long, smooth narrowing followed by normal artery, and finally a flame-tipped occlusion.

Now, this affects our younger patients with really opposity of atherosclerotic risk factors. So, cervical artery dissection accounts for up to 25% of stroke in patients under the age of 45. And, other than hypertension, it's not associated with any cardiovascular risk factors.

There is a male predominance, although women with dissections seem to present about five years younger. And there is an indication that there may be a systemic ateriopathy contributing to this in our patients, and I'll show you some brief data regarding that.

So, in studies that have looked at vessel redundancy, including loops, coils, and in the video image, an S curve on carotid duplex. Patients with cervical artery dissection have a much higher proportion of these findings, up to three to four times more than

age and sex matched controls. They also have findings on histology of the temporal artery when biopsied. So one study did this and these patients had abnormal capillary formation as well as extravasation of blood cells between the median adventitia

of the superficial temporal artery. And there is an association with FMD and a shared genetic polymorphism indicating that there may be shared pathophysiology for these conditions. But in addition, a lot of patients report minor trauma around the time or event of cervical artery dissection.

So this data from CADISP, and up to 40% of cases had minor trauma related to their dissection, including chiropractic neck manipulation, extreme head movements, or stretching, weight lifting, and sports-related injuries. Thankfully, the majority of patients do very well after

they have a dissection event, but a big area of concern for the patient and their provider is their risk for recurrence. That's highest around the original event, about 2% within the first month, and thereafter, it's stable at 1% per year,

although recurrent pain can linger for many years. So what can we tell our patients in terms of reducing their risk for a recurrent event? Well, most of the methods are around reducing any sort of impulse, stress, or pressure on the arteries, both intrinsically and extrinsically,

including blood pressure control. I advise my patients to avoid heavy lifting, and by that I mean more than 30 pounds, and intense valsalva or isometric exercise. So shown here is a photo of the original World's Strongest Man lifting four

adult-sized males in addition to weights, but there's been studies in the physiology literature with healthy, younger males in their 20s, and they're asked to do a double-leg press, or even arm-curls, and with this exercise and repetitions, they can get mean systolic pressures,

or mean pressures up into the 300s, as well as heart rate into the 170s. I also tell my patients to avoid any chiropractic neck manipulation or deep tissue massage of the neck, as well as high G-force activities like a roller coaster.

There are some case reports of cervical artery dissection related to this. And then finally, what can they do about cardio? A lot of these patients are very anxious, they're concerned about re-incorporating exercise after they've been through something like this,

so I try to give them some kind of guidelines and parameters that they can follow when they re institute exercise, not unlike cardiac rehabilitation. So initially, I tell them "You can do light walking, but if you don't feel well,

or something's hurting, neck pain, headache, don't push it." Thereafter, they can intensify to a heart rate maximum of 70-75% of their maximum predicted heart rate, and that's somewhere between months zero and three, and then afterwards when they're feeling near normal,

I give them an absolute limit of 90% of their maximum predicted heart rate. And I advise all of my patients to avoid extreme exercise like Orange Theory, maybe even extreme cycling classes, marathons, et cetera. Thank you.

- I'm going to be speaking about indirect access sites for access intervention. I'm going to be focusing on the transjugular approach. So access interventions, typically we perform them through a direct puncture of the fistula. Sometimes you place two introducers. There are some disadvantages to the direct approach.

The crossing catheters technique that we generally use for declots is awkward and cumbersome. The introducers can obstruct flow, there's dead space behind the introducers that can trap clot, and there's radiation exposure or the direct exposure

or scatter radiation from hands near the field. Admit it, we've all had access-site complications, suture-site necrosis and infection, as well as pseudoaneurysms. There's also prolonged procedure time related to needing to obtain hemostasis

in the high-pressure segment. There are also problems particularly to immature fistulas, such as hematoma formation, spasm at the introducer site causing pseudo-stenosis, decreased flow, and fistula thrombosis. Now, the good news is that we do have options

for alternative access sites. I'm sure many of you here use arterial access for immature fistulas in particular. Brachial access can be used to, this can be used for diagnostic or therapeutic purposes. We can also utilize radial or ulnar access.

Rarely, femoral access is used, as we saw in the last presentation. But there's also pendula venous access sites. You can sometimes, as a fortuitous tributary, what I call a target of opportunity, and also, the internal jugular vein.

Now, the transjugular approach was first reported in 1998. It does have some definite advantages over direct puncture technique. You can avoid the cumbersome access, you can keep your hands away from the beam, and there's no dead space as compared

to crossing sheaths for your declot. And if the intervention is unsuccessful, you can convert your IJ access to a catheter if you already have a wire in it. There are some technical challenges associated with this technique.

You do have to overcome the valves. It can be difficult to access the cephalic vein, but you can get around this by using a snare. And there's possibly a risk of IJ thrombosis if you're using large introducers. When to use this technique?

Well, when direct puncture's going to be difficult or cumbersome, when there's a short cannulation segment, when it's an extensively stented access, and when there's inflow pathology requiring a retrograde approach or arterial empathalogy, and it's a good option for clotted access.

The technique, micropuncture access of the jugular vein, ipsilateral or contralateral, place a sheath, and an important thing to use is a reverse-curve catheter, followed by glidewire. So here, we've cannulated the jugular vein going down,

glidewire out into the arm. If you're unable to cross into the cephalic vein, you can use that snare technique. And you can get a long, stable access in this way. It's been reported about, there's about 10 publications on transjugular approach, seven retrospective studies.

There's a large study that's reported thrombectomy. Also a large study looking at immature fistulas. Smaller studies looking at dysfunctional access and pseudoaneurysms. Two case reports, one review article, but there's of course no randomized studies.

There's a recent study from this year from Ferral and Alonzo. This was a retrospective study. Over two years they performed 30 transjugular AV access interventions. This accounted for 5% of their access experience

and this series was all fistulance. Indications for the procedure, 43% were declots, 43% were arterial and fistual pathology, there were two immature fistulas and two bleeding pseudoaneurysms. The access approach was 29 for ipsilateral,

only one contralateral. The results, 97% technical success, a snare was required in 4 cases, a catheter was inserted in two of the cases. There were no episodes of jugular vein thrombosis. In the remaining time, I'd like to show

a couple of case studies. Again, from Ferral and Alonzo. This is a case of an immature fistula. This was a partially occluded, immature left upper arm fistula. The initial fistulagram shows outflow stenosis

with a multiple stenosis in thrombus, and there's an arterial in stenosis that's distal to the access point, so you're not going to be able to treat that. They performed four millimeter angioplasty. Follow-up fistulagram shows a small, but patent vein

and the arterial end could not be treated. They brought the patient back in two weeks for a staged transjugular approach. And you can see the jugular catheter coming down. The vein diameter's improved, but there's still the untreated arterial end stenosis,

which is easily treated through the jugular approach. This is a study from, a case from Dr. Rabellino, ruptured pseudoaneurysm. This is a basilic transposition with a ruptured pseudoaneurysm at an infiltration site. Pretty ugly arm, swollen, skin necrosis.

I don't think we want to be sticking that arm. They initially went with a femoral approach for the fistulagram, demonstrated the pseudoaneurysm. As you can see here, tandem outflow stenoses. Coming up from below with the femoral artery diagnostic catheter.

Down and into the arm through the jugular approach. And here, you can see the venous outflow after angioplasty, covered stent deployed through the jugular access. So in summary, the transjugular approach is a useful but underutilized technique. The advantages include single-puncture intervention,

does not involve the outflow vein directly, simplified hemostasis, it's a low pressure system. It does have the advantage that you can use large introducers, there's less radiation for the operator, and you can convert to a catheter easily if needed. It is a useful technique for fistula maturation,

thrombectomy, and access maintenance. I say go for the jugular.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- So this was born out of the idea that there were some patients who come to us with a positive physical exam or problems on dialysis, bleeding after dialysis, high pressures, low flows, that still have normal fistulograms. And as our nephrology colleagues teach us, each time you give a patient some contrast,

you lose some renal function that they maintain, even those patients who are on dialysis have some renal function. And constantly giving them contrasts is generally not a good thing. So we all know that intimal hyperplasia

is the Achilles Heel of dialysis access. We try to do surveillance. Debbie talked about the one minute check and how effective dialysis is. Has good sensitivity on good specificity, but poor sensitivity in determining

dialysis access problems. There are other measured parameters that we can use which have good specificity and a little better sensitivity. But what about ultrasound? What about using ultrasound as a surveillance tool and how do you use it?

Well the DOQI guidelines, the first ones, not the ones that are coming out, I guess, talked about different ways to assess dialysis access. And one of the ways, obviously, was using duplex ultrasound. Access flows that are less than 600

or if they're high flows with greater than 20% decrease, those are things that should stimulate a further look for clinical stenosis. Even the IACAVAL recommendations do, indeed, talk about volume flow and looking at volume flow. So is it volume flow?

Or is it velocity that we want to look at? And in our hands, it's been a very, very challenging subject and those of you who are involved with Vasculef probably have the same thing. Medicare has determined that dialysis shouldn't, dialysis access should not be surveilled with ultrasound.

It's not medically necessary unless you have a specific reason for looking at the dialysis access, you can't simply surveil as much as you do a bypass graft despite the work that's been done with bypass graft showing how intervening on a failing graft

is better than a failed graft. There was a good meta-analysis done a few years ago looking at all these different studies that have come out, looking at velocity versus volume. And in that study, their conclusion, unfortunately, is that it's really difficult to tell you

what you should use as volume versus velocity. The problem with it is this. And it becomes, and I'll show you towards the end, is a simple math problem that calculating volume flows is simply a product of area and velocity. In terms of area, you have to measure the luminal diameter,

and then you take the luminal diameter, and you calculate the area. Well area, we all remember, is pi r squared. So you now divide the diameter in half and then you square it. So I don't know about you,

but whenever I measure something on the ultrasound machine, you know, I could be off by half a millimeter, or even a millimeter. Well when you're talking about a four, five millimeter vessel, that's 10, 20% difference.

Now you square that and you've got a big difference. So it's important to use the longitudinal view when you're measuring diameter. Always measure it if you can. It peaks distally, and obviously try to measure it in an non-aneurysmal area.

Well, you know, I'm sure your patients are the same as mine. This is what some of our patients look like. Not many, but this is kind of an exaggerated point to make the point. There's tortuosity, there's aneurysms,

and the vein diameter varies along the length of the access that presents challenges. Well what about velocity? Well, I think most of us realize that a velocity between 100 to 300 is probably normal. A velocity that's over 500, in this case is about 600,

is probably abnormal, and probably represents a stenosis, right? Well, wait a minute, not necessarily. You have to look at the fluid dynamic model of this, and look at what we're actually looking at. This flow is very different.

This is not like any, not like a bypass graft. You've got flow taking a 180 degree turn at the anastomosis. Isn't that going to give you increased turbulence? Isn't that going to change your velocity? Some of the flow dynamic principles that are important

to understand when looking at this is that the difference between plug and laminar flow. Plug flow is where every bit is moving at the same velocity, the same point from top to bottom. But we know that's not true. We know that within vessels, for the most part,

we have laminar flow. So flow along the walls tends to be a little bit less than flow in the middle. That presents a problem for us. And then when you get into the aneurysmal section, and you've got turbulent flow,

then all bets are off there. So it's important, when you take your sample volume, you take it across the whole vessel. And then you get into something called the Time-Averaged mean velocity which is a term that's used in the ultrasound literature.

But it basically talks about making sure that your sample volume is as wide as it can be. You have to make sure that your angle is as normal in 60 degrees because once you get above 60 degrees, you start to throw it off.

So again, you've now got angulation of the anastomosis and then the compliance of a vein and a graft differs from the artery. So we use the two, we multiply it, and we come up with the volume flow. Well, people have said you should use a straight segment

of the graft to measure that. Five centimeters away from the anastomosis, or any major branches. Some people have actually suggested just using a brachial artery to assess that. Well the problems in dialysis access

is there are branches and bifurcations, pseudoaneurysms, occlusions, et cetera. I don't know about you, but if I have a AV graft, I can measure the volume flow at different points in the graft to get different numbers. How is that possible?

Absolutely not possible. You've got a tube with no branches that should be the same at the beginning and the end of the graft. But again, it becomes a simple math problem. The area that you're calculating is half the diameter squared.

So there's definitely measurement area with the electronic calipers. The velocity, you've got sampling error, you've got the anatomy, which distorts velocity, and then you've got the angle with which it is taken. So when you start multiplying all this,

you've got a big reason for variations in flow. We looked at 82 patients in our study. We double blinded it. We used a fistulagram as the gold standard. The duplex flow was calculated at three different spots. Duplex velocity at five different spots.

And then the diameters and aneurysmal areas were noted. This is the data. And basically, what it showed, was something totally non-significant. We really couldn't say anything about it. It was a trend toward lower flows,

how the gradients (mumbles) anastomosis, but nothing we could say. So as you all know, you can't really prove the null hypothesis. I'm not here to tell you to use one or use the other, I don't think that volume flow is something that

we can use as a predictor of success or failure, really. So in conclusion, what we found, is that Debbie Brow is right. Clinical examinations probably still the best technique. Look for abnormalities on dialysis. What's the use of duplex ultrasound in dialysis or patients?

And I think we're going to hear that in the next speaker. But probably good for vein mapping. Definitely good for vein mapping, arterial inflow, and maybe predicting maturation. Thank you very much.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- I'd like to thank Dr. Veith and the committee for the privilege of presenting this. I have no disclosures. Vascular problems and the type of injuries could be varied. We all need to have an awareness of acute and chronic injuries,

whether they're traumatic, resulting with compression, occlusion, tumoral and malformation results, or vasospastic. I'd like to present a thoracoscopic manipulation of fractured ribs to prevent descending aortic injury

in a patient with chest trauma. You know, we don't think about this but they can have acute or delayed onset of symptoms and the patient can change and suddenly deteriorate with position changes or with mechanical ventilation,

and this is a rather interesting paper. Here you can see the posterior rib fracture sitting directly adjacent to the aorta like a knife. You can imagine the catastrophic consequences if that wasn't recognized and treated appropriately.

We heard this morning in the venous session that the veins change positions based on the arteries. Well, we need to remember that the arteries and the whole vascular bundle changes position based on the spine

and the bony pieces around them. This is especially too when you're dealing with scoliosis and scoliotic operations and the body positioning whether it's supine or prone the degree of hypo or hyperkyphosis

and the vertebral angles and the methods of instrumentation all need to be considered and remembered as the aorta will migrate based on the body habits of the patient. Screws can cause all kinds of trouble.

Screws are considered risky if they're within one to three millimeters of the aorta or adjacent tissues, and if you just do a random review up to 15% of screws that are placed fall into this category.

Vertebral loops and tortuosity is either a congenital or acquired anomaly and the V2 segment of the vertebral is particularly at risk, most commonly in women in their fifth and sixth decades,

and here you can see instrumentation of the upper cervical spine, anterior corpectomy and the posterior exposures are all associated with a significant and lethal, at times, vertebral artery injuries.

Left subclavian artery injury from excessively long thoracic pedicle screws placed for proximal thoracic scoliosis have been reported. Clavicular osteosynthesis with high neurovascular injury especially when the plunge depth isn't kept in mind

in the medial clavicle have been reported and an awareness and an ability to anticipate injury by looking at the safe zone and finding this on the femur

with your preoperative imaging is a way to help prevent those kinds of problems. Injuries can be from stretch or retraction. Leave it to the French. There's a paper from 2011 that describes midline anterior approach

from the right side to the lumbar spine, interbody fusion and total disc replacement as safer. The cava is more resistant to injury than the left iliac vein and there's less erectile dysfunction reported. We had a patient present recently

with the blue bumps across her abdomen many years after hip complicated course. She'd had what was thought to be an infected hip that was replaced, worsening lower extremity edema, asymmetry of her femoral vein on duplex

and her heterogeneous mask that you can see here on imaging. The iliac veins were occluded and compressed and you could see in the bottom right the varicosities that she was concerned about. Another case is a 71-year-old male who had a post-thrombotic syndrome.

It was worsened after his left hip replacement and his wife said he's just not been the same since. Initially imaging suggests that this was a mass and a tumor. He underwent biopsy

and it showed ghost cells. Here you can see the venogram where we tried to recanalize this and we were unsuccessful because this was actually a combination of bone cement and inflammatory reaction.

Second patient in this category, bless you, is a 67-year-old female who had left leg swelling again after a total hip replacement 20 plus years ago. No DVTs but here you can see the cement compressing the iliac vein.

She had about a 40% patency when you put her through positioning and elected not to have anything done with that. Here you could see on MR how truly compressed this is. IVA suggested it was a little less tight than that.

So a vascular injury occurs across all surgical specialties. All procedures carry risk of bleeding and inadvertent damage to vessels. The mechanisms include tearing, stretching, fracture of calcific plaques,

direct penetration and thermal injury. The types of injuries you hear are most common after hip injuries, they need to be recognized in the acute phase as looking for signs of bleeding or ischemia. Arterial lesions are commonly prone then.

Bone cement can cause thermal injury, erosion, compression and post-implant syndrome. So again, no surgery is immune. You need to be aware and especially when you look at patients in the delayed time period

to consider something called particle disease. This has actually been described in the orthopedic literature starting in the 70s and it's a complex interaction of inflammatory pathways directed at microparticles that come about

through prosthetic wear. So not only acute injury but acute and chronic symptoms. Thank you for the privilege of the floor.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Thank you (mumbles). The purpose of deep venous valve repair is to correct the reflux. And we have different type of reflux. We know we have primary, secondary, the much more frequent and the rear valve agenesia. In primary deep venous incompetence,

valves are usually present but they are malfunctioning and the internal valvuloplasty is undoubtedly the best option. If we have a valve we can repair it and the results are undoubtedly the better of all deep vein surgery reconstruction

but when we are in the congenital absence of valve which is probably the worst situation or we are in post-thrombotic syndrome where cusps are fully destroyed, the situation is totally different. In this situation, we need alternative technique

to provide a reflux correction that may be transposition, new valve or valve transplants. The mono cuspid valve is an option between those and we can obtain it by parietal dissection. We use the fibrotic tissue determined by the

sickening of the PTS event obtaining a kind of flap that we call valve but as you can realize is absolutely something different from a native valve. The morphology may change depending on the wall feature and the wall thickness

but we have to manage the failure of the mono cuspid valve which is mainly due to the readhesion of the flap which is caused by the fact that if we have only a mono cuspid valve, we need a deeper pocket to reach the contralateral wall so bicuspid valve we have

smaller cusps in mono cuspid we have a larger one. And how can we prevent readhesion? In our first moment we can apply a technical element which is to stabilize the valve in the semi-open position in order not to have the collapse of the valve with itself and then we had decide to apply an hemodynamic element.

Whenever possible, the valve is created in front of a vein confluence. In this way we can obtain a kind of competing flow, a better washout and a more mobile flap. This is undoubtedly a situation that is not present in nature but helps in providing non-collapse

and non-thrombotic events in the cusp itself. In fact, if we look at the mathematical modeling in the flow on valve you can see how it does work in a bicuspid but when we are in a mono cuspid, you see that in the bottom of the flap

we have no flow and here there is the risk of thrombosis and here there is the risk of collapse. If we go to a competing flow pattern, the flap is washed out alternatively from one side to the other side and this suggest us the idea to go through a mono cuspid

valve which is not just opens forward during but is endovascular and in fact that's what we are working on. Undoubtedly open surgery at the present is the only available solution but we realized that obviously to have the possibility

to have an endovascular approach may be totally different. As you can understand we move out from the concept to mimic nature. We are not able to provide the same anatomy, the same structure of a valve and we have to put

in the field the possibility to have no thrombosis and much more mobile flap. This is the lesson we learn from many years of surgery. The problem is the mobile flap and the thrombosis inside the flap itself. The final result of a valve reconstruction

disregarding the type of method we apply is to obtain an anti-reflux mechanism. It is not a valve, it is just an anti-reflux mechanism but it can be a great opportunity for patient presenting a deep vein reflux that strongly affected their quality of life.

Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.