Create an account and get 3 free clips per day.
Chapters
Idiopathic Thrombocytopenic Purpura | Splenic Embolization | 74 | Female
Idiopathic Thrombocytopenic Purpura | Splenic Embolization | 74 | Female
2016angiogramarteryBoston ScientificcoilsdorsalembolicembolizationMerit MedicalpancreaticproximalrefractorySIRspleensplenectomysplenic
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
abdominalangiographyanterioraortaaorticarteriogrambasicallybleedingcarboncatheterceliaccoilcontrastdiaphragmdioxideembolizationholeimaginginjectinjectioninjectionsiodinatedliverlowmultiplepatientpelvicrenalruptureselectivesolublesplenictraumavascularizationveinvesselvesselsvolumes
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
carotidcarotid stentCASCEAcerebraldemonstratedembolicendovascularincidenceinteractionmicroembolicplaqueprotectionproximalRoadSaverstentstentingstrengthsTerumo interventional systemstherapeuticunprotected
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
Advantages And Technical Tips For Mini-Incision CEAs
Advantages And Technical Tips For Mini-Incision CEAs
anesthesiaanterioranticoagulationarterybifurcationbladecarotidclopidogrelcranialendarterectomyincisionincisionsinternalinternal carotidinterventionalischemicmicenervepatientspediatricplaquepreoperativeproximalproximallystandardstentingtransversetypicallyVeith
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
ambulationantegradearteryassessingcalcifiedCardival Medicalcathcath labCelt ACD (Vasorum) - Vascular Closure DeviceclosurecollagencomplicationcomplicationscompressionconsconsecutivedeploymentdevicedevicesdiscembolizationfemoralhemostasismanualminorminutespatientsprosrandomizedrequiringretrogradestainlesssurgicaltherapeutictimetrialVascade VCDvascularVascular Closure Deviceversusvisualize
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
amputationangioplastyarteryballoonballoonsBoston ScientificcalcificationclinicalcoatedcompleteconcentrationdegreedistaldiureticdownstreamdrugendpointshealinglesionslimbnecrosispaclitaxelPaclitaxel-Coated PTA Balloon CatheterpatientpatientsPTAs with DCBRangerrutherfordsalvagestenosisstudytherapeuticwound
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Improper And Suboptimal Antiplatelet Treatment Casts Doubt On All CAS Trials: What Are The Implications
Improper And Suboptimal Antiplatelet Treatment Casts Doubt On All CAS Trials: What Are The Implications
accessactiveangioplastyantiplateletaspirincarotidCASconvertcrestdatadecreaseembolicendarterectomyenzymeeventsgroininsertintermediatelivermetabolitenormalpackagepatientspeopleplavixpoorrandomizedrapidriskshiftsitestentstentingstentstechnicaltrialsultra
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
AbbottaccessanesthesiaAngio-Seal (Terumo Medical Corporation) - Closure deviceangiogramangiosealanteriorarteriotomybifurcationboreclampclosuredeployedEndologixevarfailedfailurefemoralgelfoamhemostasislengthmicropunctureobservedoperativePerclose ProGlidepercutaneousPEVARpredictorsprogliderandomizescarringSuture-Mediated Closure (SMC) Systemtechniquetherapeuticveitvenousvessel
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
aneurysmanterioraorticarterycoilcoilingcoilscollateralcordembolizationischemicMIS²ACEocclusionPatentpatientperformsegmentalspinalstenotictechniquetherapeuticthoracoabdominal
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
acuteaneurysmangiographyarteriarterialbowelclinicianembolicembolusendovascularESVSguidelinesimagingischaemialactatemesentericrecommendationrepairrevascularisationthrombotic
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
Do Re-Interventions Cause EVAR Infections
Do Re-Interventions Cause EVAR Infections
52 mm AAAAAA EndoprothesisanterioraortoentericbacteremiacatheterembolizationendograftendoleakendovascularevarexcluderexplantfluidglutealgoreGore Excluder cuffgraftiliacinfectioninfectionsinguinalInterventionsmedicaremortalityonsetperioperativeprophylacticpurulentreadmissionsriskscansecondaryseedingsteriletherapeuticunderwent
Transcript

of doing the same thing. So that's a proximal only embolization. This second case a 74 year old female with ITP, she's refractory to medical therapy and then splenectomy in her platelet count was 19 and they were worried about blood loss during the operation.

In this case we did a splenic angiogram with a 5 inch catheter. We located the pancreatica magna and dorsal pancreatic artery which you can see right there at the corner of the splenic artery, lining up right here, so whenever you're doing particle embolization or scatter embolization,

if you're going to do that you wanna be sure that you're beyond those branches. So we did distal embolization with [UNKNOWN] in this case you can see we're taking out the whole spleen because we know the spleen is gonna be removed later this day, and then the operator chose

to also back that up with coils in the main splenic artery, and preserve those pancreatic branches. This was the intra-op photo. The one thing to keep in mind, the location of those coils they're in the mid portion of the splenic artery, is

often where the surgeons is going to divide the splenic artery and that's what happened, he actually had to divide right through the coils. He actually said it wasn't a problem but you might annoy your surgeons, so just ask your surgeons, before you do a pre op splenectomy, where are they planning on dividing the splenic artery so that

you don't put especially like a plug embolic or something that could really cause a problem in that area. And then a third case before I show you

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- Thanks Frank, for inviting me again. We know very well that CAS and CEA are, and will remain, emboli-generating. This is an algorithm in which we can see the microembolic profile during unprotected carotid stenting. But I am a vascular surgeon, oriented to an endovascular approach, and I believe strongly

in carotid artery stenting renaissance, when we use tips, tricks and new devices. So the real difference between the two procedures are between 0 and 30 days, and this is demonstrated by the result of 10 year by CREST and by ACT 1. So, but the procedure must be protected.

Because as the Kastrup metanalisys said, the unprotected procedure are three, four-fold increase for cerebral protection embolic. And these are the recommendations from European Society of Cardiology and American Heart Association, regarding

the use of embolic protection devices. But what kind of embolic protection device? We know very well that the cerebral distal protection have some strengths and some weaknesses. And the same is for the cerebral proximal protection with the strengths and weaknesses.

So, but this is rarely used, both in the rest of Europe and in Italy. But what about dissent? We are four studies with only prospective, including a population cohort larger than 100 patients. From Italy, from Germany, from Piotr Michalik,

from Poland, again from Italy. As these are the results that are near with the rod centered stent, with very satisfactory results. With very low rate of... This is the CLEAR-ROAD study, with very low rate of complication.

This is a total of 556 patients who underwent stenting with the new generation of stent. This is the incidence of adverse events at 30 days. So, how we can apply the benefit to our procedures with OCT? And OCT demonstrated the safety of new stent design. And why I use OCT in carotids?

With two main issues. A high definition of carotid plaque, and the correct interaction between plaque and stent. With the high definition of carotid dark in order to identify the plaque type. The degree and area of stenosis,

the presence of ulceration, and the thrombus. I study the interaction between plaque and stent. In order to study the stent apposition, the stent malapposition, the fibrous cap rupture, and the plaque micro-prolaps. So this data I published last year on

EuroIntervention, with the conclusion that in relation to the slice-based analysis, we have the correct comparison with conventional stents, and the incidence of plaque prolapse was absolutely lower. So in conclusion, why I strongly believe in a reinvigoration of carotid stenting?

For the use of better embolic protection device. For the use of newer mesh covered stents, and definitively, OCT proves it as shown. Thank you for your attention.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- Good afternoon. On behalf of my co-author Danielle Lyon I'd like to thank Dr. Veith for allowing us to present our data. No disclosures are relevant to this talk. So, why a small incision carotid endarterectomy? I actually came on to it maybe a decade ago when in debates for carotid stenting versus

carotid endarterectomy my interventional colleagues would show pictures like this. And pictures like this, with big incisions which is how I was trained from sternal notch to the angle of the mandible and above. Then I started thinking you know, maybe this could be done

through a smaller incision safely. So it's a smaller incision, it's cosmetically much more acceptable especially in ladies. Endarterectomy typically only involves about three centimeters of artery anyways. And, there's decreased tissue trauma

with a smaller incision. All of my patients are operated on clopidogrel and aspirin and we also operate on patients on full warfarin anticoagulation without reversal which we published in the annals a few years ago. So first, rely on the preoperative imaging.

So I always get a CTA to confirm the duplex ultrasound. Here you can see a very focal plaque in the proximal internal carotid artery. Here's a more heterogeneous plaque and opposite a carotid stint. I typically do these with,

under general anesthesia with EEG monitoring. The self-retaining retractor I use to stretch the incision would be, I think, a challenge in an awake patient. I image the carotid bifurcation, just like our previous speaker, with ultrasound ahead of time. Just a regular Site-Rite ultrasound,

you don't need a duplex. I typically call my friend Russell who comes with the ultrasound, and doing both longitudinal and transverse views to identify the carotid bifurcation and confirm the extent of the plaque. The incision is typically around three centimeters,

but clearly less than four centimeters, and it's centered over the previously marked carotid bifurcation. I use a standard incision along the anterior border of the sternomastoid muscle. And then use a self-retaining retractor to stretch the incision a bit.

This is a pediatric omni retractor which works really well for this purpose. It's very important, especially for the more-sef-full-ab blade to make sure that you identify the hypoglossal nerve as you can put a fair bit of traction on that upper blade and sometimes the incision is small enough that I actually

make a little counter incision for the proximal clamp. I've found that the use of a shunt can be challenging with this technique. There's one case out of 124 that I had to extend more proximally in order to safely put a shunt. I do, though, use acute ischemic preconditioning.

So typically the mean blood pressure is 90 or above, the patient's fully anticoagulated. I'll clamp the distal internal carotid artery and if there are EEG changes I'll unclamp it, raise the pressure just a little bit more and in most occasions the second or sometimes third time the internal

carotid artery is clamped the EEG does not change. And again, you can extend the incision if necessary as patient safety is absolutely paramount. So the technique is safe. In 124 consecutive patients there were no strokes or deaths.

There was one temporary cranial nerve injury which was the marginal mandibular. A complete endarterectomy can be achieved. Again, no increase in cranial nerve injury compared with a standard incision. And it really is a superior cosmetic result.

So here's a photo that I received from silk road, you probably did too. So here's the TCAR incision compared with a standard carotid endarterectomy incision on the other side. Here's a couple of my recent patients, so you can do this operation with an incision

that is about the same size as that utilized for TCAR. Thank you.

- I'd like to thank Dr. Veith for this kind invitation and the committee as well. So these are my disclosures, there's none. So for a quick background regarding closure devices. Vascular closure devices have been around

for almost 20 years, various types. Manual compression in most studies have always been shown to be superior to vascular closure devices mainly because there's been no ideal device that's been innovated to be able

to handle all sorts of anatomies, which include calcified vessels, soft plaque, etc. So in this particular talk we wanted to look at to two particular devices. One is the Vascade vascular closure device

made by Cardiva and the other is the CELT arterial closure device made by Vasorum in Ireland. Both these devices are somewhat similar in that they both use a disc. The Vascade has a nitinol disc

as you can see here that's used out here to adhere to the interior common femoral artery wall. And then once tension is applied, a series of steps is involved to deploy the collagen plug

directly on to the artery which then allows it to expand over a period of time. The CELT is similar in that it also uses a stainless steel disc as you can see here. Requires tension up against the interior wall of the common femoral artery.

Nice and tight and then you screw on the top end of the device on to the interior wall of the artery creating a nice little cylinder that compresses both walls of artery. As far as comparability is concerned between the two devices you can see

here that they're both extravascular, one's nitinol, one's stainless steel. One uses a collagen material, the other uses an external clip in a spindle-type fashion. Both require about, anywhere between three to seven minutes of pressure

to essentially stop the tract ooze. But the key differences between the two devices, is the amount of time it takes for patients to ambulate. So the ambulation time is two hours roughly for Vascade, whereas for a CELT device

it's anywhere from being immediate off the table at the cath lab room to about 20 minutes. The data for Vascade was essentially showing the RESPECT trial which I'll summarize here, With 420 patients that was a randomized trial

to other manual compression or the device itself. The mean points of this is that the hemostasis time was about three minutes versus 21 minutes for manual compression. And time to ambulation was about 3.2 hours versus 5.7 hours.

No major complications were encountered. There were 1.1% of minor complications in the Vascade versus 7% in the manual compression arm. This was actually the first trial that showed that a actual closure devices

had better results than manual compression. The main limitations in the trial didn't involved complex femoral anatomy and renal insufficiency patients which were excluded. The CELT ACD trial involved 207 patients that were randomized to CELT or to manual

compression at five centers. Time to hemostasis was anywhere between zero minutes on average versus eight minutes in the manual compression arm. There was one complication assessed at 30 days and that was a distal embolization that occurred

early on after the deployment with a successfully retrieved percutaneously with a snare. So complication rate in this particular trial was 0.7% versus 0% for manual compression. So what are some pros and cons with the Vascade device?

Well you can see the list of pros there. The thing to keep in mind is that it is extravascular, it is absorbable, it's safe, low pain tolerance with this and the restick is definitely possible. As far as the cons are involved.

The conventional bedrest time is anywhere between two to three hours. It is a passive closure device and it can create some scarring when surgical exploration is necessary on surgical dissections.

The key thing also is you can not visualize the plug after deployment. The pros and cons of the CELT ACD device. You can see is the key is the instant definitive closure that's achieved with this particular device, especially in

calcified arteries as well. Very easy to visualize under fluoroscopy and ultrasound. It can be used in both antegrade and retrograde approaches. The key cons are that it's a permanent implant.

So it's like a star closed devised, little piece of stainless steel that sits behind. There's a small learning curve with the device. And of course there's a little bit of discomfort associated with the cinching under the (mumbles) tissue.

So we looked at our own experience with both devices at the Christie Clinic. We looked at Vascade with approximately 300 consecutive patients and we assessed their time to hemostasis, their time to ambulation,

and their time to discharge, as well as the device success and minor and major complications. And the key things to go over here is that the time to hemostasis was about 4.7 minutes for Vascade, at 2.1 hours for ambulation, and roughly an average

of 2.4 hours for discharge. The device success was 99.3% with a minor complication rate of .02% which we have four hematomas and two device failures requiring manual compression. The CELT ACD device we also similarly did

a non-randomized perspective single center trial assessing the same factors and assessing the patients at seven days. We had 400 consecutive patients enrolled. And you can see we did 232 retrograde. We did a little bit something different

with this one, we did we 168 antegrade but we also did direct punctures to the SFA both at the proximal and the mid-segments of the SFA. And the time to hemostasis in this particular situation was 3.8 minutes,

ambulation was 18.3 minutes, and discharge was at 38.4 minutes. We did have two minor complications. One of which was a mal-deployment of the device requiring manual compression. And the second one was a major complication

which was an embolization of the device immediately after deployment which was done successfully snared through an eighth front sheath. So in conclusion both devices are safe and effective and used for both

antegrade and retrograde access. They're definitely comparable when it comes, from the standpoint of both devices (mumbles) manual compression and they're definitely really cost effective in that they definitely do increase the

throughput in the cath lab allowing us to be able to move patients through our cath lab in a relatively quick fashion. Thank you for your attention.

- Thank you very much Mr. Chairman. Thank you Frank, for this kind invitation again to this symposium. This is my disclosure. With the drug coated balloons it is important to minimize the drug loss during the balloon transit during the inflation of the balloon.

Because Paclitaxel has a high degree of cytotoxicity that may induce necrosis and increase inflammation in the distal tissue, and we know that even with the best technique, we can loose 70 - 80% of the drop to the distal circulation,

the inference by different factors between them and the calcification of degree of these blood cells. There are adverse events secondary to drug coated balloons that have been reported recently. In animal molders it has shown that Downstream Vascular Changes are more frequent with

Drug Coated Balloons than with Drug-Eluting Stents. In animal molders it has been also shown that there is no evidence of significant downstream emboli or systemic toxicity with DCB's than with patients with controls. This was a study presented yesterday by (mumbles)

with a very nice and elegant study with a good methodology that shows in animals that there are different concentrations of the drug in distal tissue depending on the balloon that you are using. In this case, the range in balloon (mumbles)

those ones have the lowest concentration in the distal tissue. In clinical experience in this meta-analysis amputations and wound healing rate are lower with this series with controls. But there is controversy because

Complete Index Ulcer Healing is higher in this series than with control patients. But there are lower wound healing index in patients compared with drug-eluting stents. In the debate, (mumbles) and also in the dialux which are clinical trials in diuretic patients with CLI,

there we no issues of safety and no impair of the wounds healing. But, remember the negative result of the IN PACT DEEP trial in which there were more amputation at six months that could be influenced, but in all their factors, the lack of standardized

wound care protocols. (mumbles) has also reported recently good survival to 100% in patient treated with DCB's compared with plain balloons and with lutonic balloons. So in our institution, we did a study with the objective to examine

patient outcomes following the use of the drug-coated balloons in patients with CLI and diuretic patients with Complex Real World lesions undergoing endovascular intervention below-the-knee with the Ranger balloon coated with Paclitaxel.

This is a Two-Center Experience that is headed by the National University of Mexico in 30 patients with strict followup. With symptomatic Rutherford four to six. With the Stenosis and occlusion of infrapopliteal vessels and many degrees of calcification.

It was mandatory for all patients to have Pre-dilation before the use of DCB. We studied some endpoints like efficacy. (mumbles) Limb salvage, sustained clinical improvement, wound healing rate

and technical success and some other endpoints of safety. This is an example of multi level disease in a patient that has to be approached by (mumbles) access with a balloon preparation of the artery before the use of the DCB, and after this, we treated the anterior artery

and even to the arch of the foot. This is the way we follow our patient with ultra sound duplex with an index fibular of no more that 2.4. All patients were diabetic with Rutherford 5-6. 77% have a (mumbles) at the initial of the study.

And as you can see there were longer lesions and with higher degree of calcification and stenosis only in two of them we produced (mumbles). There were bailout stent placements in five patients and we did retrograde access in 43 patients.

Subintimal angioplasty was done in 32 patients, and Complete Index Wound Healing was in 93 of our patients. This is our Limb Salvage 94%. The Patency rate was 96% with this Kaplan Meir analysis. And in some patients we did a determination of Paclitaxel concentration in distal tissue

with the High Pressure Liquid Chromatography method. We only did this in five patients because of the lack of financial support, and technical problems. As you can see in three of them we had Complete Wound Healing.

Only one we had major amputation. This was the patient with the higher concentration of Paclitaxel in the distal tissue, and in one patient, we could not determine the concentration of Paclitaxel. This is the way we do this.

They take the sample of the patient at the moment we do the minor amputation. During day 10 after the angioplasty, we also do a (mumbles) analysis of the patient we have a limb salvage we can see arterial and capillar vessel proliferation and hyperplasia of the

arteriole media layer. But, in those patients that have major amputation even when they have a good sterio-graphic result like in this case, we see more fibrinoid necrosis which is a bad determination. So in conclusion,

angioplasty with the (mumbles) balloon maintain clinical efficacy over time is possible. We didn't see No Downstream clinical important or significant effects and high rates of Limb Salvage in complex CLI patients is possible.

Local toxic effects of paclitaxel and significant drug loss on the way to the lesion are theoretical considerations up to now because there is no biological study that can confirm this. Thank you very much.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- Thank you very much. I'm going to talk on Improper and Suboptimal Antiplatelet Therapy which is probably currently the standard on most carotid angioplasty stent trials and I'm going to show you how it could potentially affect all of the results we have seen so far. I have nothing to disclose.

So introduction, based on the composite end point of stroke/death in our technical trials, they're always, in all randomized trials Endarterectomy always did marginally better than Carotid angioplasty and stenting. However, a small shift, just about a one person shift

could make carotid artery stenting better could shift the results of all these carotid stent trials. Let's just look at CREST. I think it's the gold standard for randomized trial comparing endarterectomy with stenting. You can see the combined death, streak and MI rate.

For endarterectomy, it's 6.8%, for CAS, 7.2%. For stroke, again 2.3, 4.1. Again, it's a one person shift in a direction of making stents better could actually show that stents were favorable, but comparable to it, not just inferior.

Now if you look at the data on CREST, it's very interesting that the majority of the strokes, about 80% of the strokes happened after about 24 hours. In fact, most of them happened on the third day period. So it wasn't a technical issue. You know, the biggest issue with current stenting

that we find is that we have filters, we have floor reversal. They're very worried about the time we place the stent, that we balloon, pre- and post-, but it wasn't a technical issue. Something was happening after 24 hours.

Another interesting fact that no one speaks about is if you look at the CREST data a little bit in more detail, most of the mortality associated with the stenting was actually associated with an access site bleed.

So if you could really decrease the late strokes, if you can decrease the access site bleeds, I think stents can be performed better than endarterectomies. The study design for all stent trials, there was a mandatory dual antiplatelet therapy.

Almost all patients had to be on aspirin and Plavix and on CREST, interestingly, they had to be on 75 milligrams BID for Plavix so they were all on very high dose Plavix. Now here's the interesting thing about Plavix that most people don't know.

Plavix is what is called a pro-drug. It requires to be converted to its active component by the liver for antiplatelet effect. And the particular liver enzyme that converts Plavix to its active metabolic enzyme is very variable patient to patient

and you're born that way. You're either born where you can convert its active metabolite or you can't convert it to its active metabolite and a test that's called 2C19 is actually interesting approved and covered by Medicare and here's the people

that read the black box warning for Plavix, that looked at the package insert. I just cut and paste this on the package that said for Plavix. I'm just showing you a few lines from the package insert. Now next to aspirin, it's the commonest prescribed drug

by vascular specialists, but most people probably have not looked at the package insert that says effectiveness of Plavix depends on activation by a liver enzyme called 2C19 and goes on to say that tests are available to identify to 2C19 genotype.

And then they go on to actually give you a recommendation on the package insert that says consider alternative treatment strategies in patients identified as 2C19 poor metabolizers. Now these are the people who cannot metabolize Plavix and convert them to its active metabolite.

So let's look at the actual incidents. Now we know there is resistance to, in some patients, to aspirin, but the incident is so small it doesn't make worth our time or doesn't make it worth the patient's outcome to be able to test everyone for aspirin resistance,

but look at the incidents for Plavix resistance. Again, this is just a slide explaining what does resistance mean so if you're a normal metabolizer, which we hope that most of us would be, you're going to expect advocacy from Plavix at 75 milligrams once a day.

Other hand, let's say you're a rapid or ultrarapid metabolizer. You have a much higher risk of bleeding. And then if you go to the other side where you are normal, intermediate or poor metabolizer, you're not going to convert Plavix to its active metabolite

and poor metabolizers, it's like giving a placebo. And interestingly, I'm a poor metabolizer. I got myself tested. If I ever have a cardiac interventionalist give me Plavix, they're giving me a placebo. So let's look at the actual incidents

of all these subsets in patients and see whether that's going to be an issue. So we took this from about 7,000 patients and interestingly in only about 40%, NM stands for nominal metabolizer or normal metabolizers. So only 40% get the expected efficacy of Plavix.

Let's look at just the extremes. Let's just assume people with normal metabolizers, normal intermediate and the subgroup between the ultra rapid, the normals, they're all going to respond well to Plavix. Let's just look at the extremes.

Ultra rapid and poor metabolizers. So these are the people who are going to convert Plavix to a much higher concentration of its active metabolite, but have a much higher risk of bleeding. Ultra rapid metabolizers. Poor metabolizers, Plavix doesn't work.

4%, 3%. That's not a small incidence. Now in no way am I saying that carotid stent trials itselves are totally based on Plavix resistance, but just look at the data from CREST. Let's say the patients with poor metabolizers,

that's 3%, so these people did not get Plavix. Plavix does not affect you in doses of up to 600 milligram for people with poor metabolizers. Incidents of embolic events in CREST trial for carotid stents was 4%. This happened after three days.

I believe it's possibly related to platelet debris occurring in the stent on people who did not receive a liquid anti-platelet therapy. How about the people who had the groin bleed? Remember I told you that access site bleeds were most highly predictable mortality.

If you're the ultra rapid metabolizers, that incidence was 4%. So these were the people that convert Plavix with a very high dose of active metabolite, very high risk of bleeding. Access site bleed rate,

if you look at the major/minor rates, 4.1%, very close to the ultra rapid metabolizers. So fact remains that carotid angioplasty stenting post procedure events are highly dependent on appropriate antiplatelet therapy to minimize embolic events and to decrease groin bleeds.

So in conclusion, if we just included 2C19 normal metabolizers, as was recommended by the packaging insert, so just test the people, include the people on normal metabolizers, exclude the rest, we are probably going to shift the results in favor of carotid angioplasty and stenting.

Results of all carotid angioplasty stent trials need to be questioned as a significant number of patients in the carotid angioplasty stent arm did not receive appropriate antiplatelet therapy. Thank you very much.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you very much and I would like to thank Dr. Veit for the kind invitation, this is really great meeting. Those are my disclosures. Percutaneous EVAR has been first reported in the late 1990's. However, for many reasons it has not been embraced

by the vascular community, despite the fact that it has been shown that the procedure can be done under local anesthesia and it decreases OR time, time to ambulation, wound complication and length of stay. There are three landmark papers which actually change this trend and make PEVAR more popular.

All of these three papers concluded that failure or observed failure of PEVAR are observed and addressed in the OR which is a key issue. And there was no late failures. Another paper which is really very prominent

is a prospective randomize study that's reported by Endologix and published in 2014. Which revealed that PEVAR closure of the arteriotomy is not inferior to open cut down. Basically, this paper also made it possible for the FDA to approve the device, the ProGlide device,

for closure of large bore arteriotomies, up to 26 in the arterial system and 29 in the venous system. We introduced percutaneous access first policy in our institution 2012. And recently we analyzed our results of 272 elective EVAR performed during the 2012 to 2016.

And we attempted PEVAR in 206 cases. And were successful in 92% of cases. But the question was what happened with the patient that failed PEVAR? And what we found that was significantly higher thrombosis, vessel thrombosis,

as well as blood loss, more than 500 cc in the failed PEVAR group. Similarly, there was longer operative time and post-operative length of stay was significantly longer. However, in this relatively small group of patients who we scheduled for cut-down due to different reasons,

we found that actually there was no difference between the PEVAR and the cut-down, failed PEVAR and cut-down in the terms of blood loss, thrombosis of the vessel, operative time and post-operative length of stay. So what are the predictors of ProGlide failure?

Small vessel calcification, particularly anterior wall calcification, prior cut-down and scarring of the groin, high femoral bifurcation and use of large bore sheaths, as well as morbid obesity. So how can we avoid failures?

I think that the key issue is access. So we recommend that all access now or we demand from our fellow that when we're going to do the operation with them, cut-down during fluoroscopy on the ultra-sound guidance, using micropuncture kits and access angiogram is actually mandatory.

But what happened when there is a lack of hemostasis once we've deployed two PEVARs? Number one, we try not to use more than three ProGlide on each side. Once the three ProGlide failed we use the angioseal. There's a new technique that we can have body wire

and deployed angioseal and still have an access. We also developed a technique that we pack the access site routinely with gelfoam and thrombin. And also we use so-called pull and clamp technique, shown here. Basically what it is, we pull the string of the ProGlide

and clamp it on the skin level. This is actually a very very very good technique. So in conclusion, PEVAR first approach strategy successful in more than 90% of cases, reduced operative time and postoperative length of stay, the failure occurred more commonly when the PEVAR

was completed outside of IFU, and there was no differences in outcome between failed PEVAR and planned femoral cut-down. Thank you.

- Thank you, good morning everybody. Thank you for the kind invitation, Professor Veith, it's an honor for me to be here again this year in New York. I will concentrate my talk about the technical issues and the experience in the data we have already published about the MISACE in more than 50 patients.

So I have no disclosure regarded to this topic. As you already heard, the MISACE means the occlusion of the main stem of several segmental arteries to preserve the capability of the collateral network to build new arteries. And as a result, we developed

the ischemic preconditioning of the spinal cord. Why is this so useful? Because it's an entirely endovascular first stage of a staged approach to treat thoracoabdominal aortic aneurysm in order to reduce the ischemic spinal cord injury.

How do you perform the MISACE? Basically, we perform the procedure in local anesthesia, through a percutaneous trans-femoral access using a small-bore sheath. The patient is awake, that means has no cerebrospinal fluid damage

so we can monitor the patient's neurological for at least 48 hours after the procedure. So, after the puncture of the common femoral artery, using a technique of "tower of power" in order to cannulate the segmental arteries. As you can see here, we started with a guiding catheter,

then we place a diagnosis catheter and inside, a microcatheter that is placed inside the segmental artery. Then we started occlusion of the ostial segment of the segmental artery. We use coils or vascular plugs.

We don't recommend the use of fluids due to the possible distal embolization and the consequences. Since we have started this procedure, we have gained a lot of experience and we have started to ask,

what is a sufficient coilembolization? As you can see here, this artery, we can see densely packed coils inside, but you can see still blood flowing after the coil. So, was it always occluding, or is it spontaneous revascularization?

That, we do not know yet. The question, is it flow reduction enough to have a ischemic precondition of the spinal cord? Another example here, you can see a densely packed coil in the segmental artery at the thoracic level. There are some other published data

with some coils in the segm the question is, which technique should we use, the first one, the second one? Another question, is which kind of coil to use? For the moment, we can only use the standard coils

in our center, but I think if we have 3-D or volume coils or if you have microvascular plugs that are very compatible with the microcatheter, we have a superior packing density, we can achieve a better occlusion of the segmental artery, and we have less procedure time and radiation time,

but we have to think of the cost. We recommend to start embolization of the segmental artery, of course, at the origin of it, and not too far inside. Here, you can see a patient where we have coiled a segmental artery very shortly after the ostium,

but you can see here also the development of the collaterals just shortly before the coils, leading to the perfusion of segmental artery that was above it. As you can see, we still have a lot of open question. Is it every patent segmental artery

a necessary to coil? Should we coil only the large ones? I show you an example here, you can see this segmental artery with a high-grade stenotic twisted ostium due to aortic enlargement.

I can show you this segmental artery, six weeks after coiling of a segmental artery lower, and you can see that the ostium, it's no more stenotic and you can see also the connection between the segmental artery below to the initial segmental artery.

Another question that we have, at which level should we start the MISACE? Here, can see a patient with a post-dissection aneurysm after pedicle technique, so these are all uncovered dissection stent, and you can see very nicely the anterior spinal artery

feeded by the anterior radiculomedullary artery from the segmental artery. So, in this patient, in fact, we start the coiling exactly at the seat of this level, we start to coil the segmental artery that feeds the anterior spinal artery.

So, normally we find this artery of the Th 9 L1, and you can see here we go upwards and downwards. We have some challenges with aneurysm sac enlargement, in this case, we use this technique to open the angle of the catheter, we can use also deflectable steerable sheath

in order to reach the segmental artery. And you can see here our results, again, I just will go fast through those, we have treated 57 patients, most of them were Type II, Type III aortic aneurysms. We have found in median nine patent segmental artery

at the level of the aorta to be treated, between 2 and 26, and we have coiled in multiple sessions with a mean interval of 60 days between the sessions. No sooner than seven days we perform the complete exclusion of the aneurysm

in order to let the collateral to develop, and you can see our result: at 30 days we had no spinal cord ischemia. So I can conclude that our first experience suggest that MISACE is feasible, safe, and effective, but segmental artery coiling in thoracoabdominal aneurysm

can be challenging, it's a new field with many open questions, and I looking forward for the results with PAPA_ARTiS study. Thank you a lot.

- Thank you so much. I have no disclosures. These guidelines were published a year ago and they are open access. You can download the PDF and you can also download the app and the app was launched two months ago

and four of the ESVS guidelines are in that app. As you see, we had three American co-authors of this document, so we have very high expertise that we managed to gather.

Now the ESVS Mesenteric Guidelines have all conditions in one document because it's not always obvious if it's acute, chronic, acute-on-chron if it's arteri

if there's an underlying aneurysm or a dissection. And we thought it a benefit for the clinician to have all in one single document. It's 51 pages, 64 recommendations, more than 300 references and we use the

ESC grading system. As you will understand, it's impossible to describe this document in four minutes but I will give you some highlights regarding one of the chapters, the Acute arterial mesenteric ischaemia chapter.

We have four recommendations on how to diagnose this condition. We found that D-dimer is highly sensitive so that a normal D-dimer value excludes the condition but it's also unfortunately unspecific. There's a common misconception that lactate is

useful in this situation. Lactate becomes elevated very late when the patient is dying. It's not a good test for diagnosing acute mesenteric ischaemia earlier. And this is a strong recommendation against that.

We also ask everyone uses the CTA angiography these days and that is of course the mainstay of diagnoses as you can see on this image. Regarding treatment, we found that in patients with acute mesenteric arterial ischaemia open or endovascular revascularisation

should preferably be done before bowel surgery. This is of course an important strategic recommendation when we work together with general surgeons. We also concluded that completion imaging is important. And this is maybe one of the reasons why endovascular repair tends to do better than

open repair in these patients. There was no other better way of judging the bowel viability than clinical judgment a no-brainer is that these patients need antibiotics and it's also a strong recommendation to do second look laparotomoy.

We found that endovascular treatment is first therapy if you suspect thrombotic occlusion. They had better survival than the open repair, where as in the embolic situation, we found no difference in outcome.

So you can do both open or endo for embolus, like in this 85 year old man from Uppsala where we did a thrombus, or the embolus aspiration. Regarding follow up, we found that it was beneficial to do imaging follow-up after stenting, and also secondary prevention is important.

So in conclusion, ladies and gentlemen, the ESVS Guidelines can be downloaded freely. There are lots of recommendations regarding diagnosis, treatment, and follow-up. And they are most useful when the diagnosis is difficult and when indication for treatment is less obvious.

Please read the other chapters, too and please come to Hamburg next year for the ESVS meeting. Thank You

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Good morning. I'd like to thank everybody who's in attendance for the 7 A.M. session. So let's talk about a case. 63 year old male, standard risk factors for aneurismal disease. November 2008, he had a 52 mm aneurism,

underwent Gore Excluder, endovascular pair. Follow up over the next five, relatively unremarkable. Sac regression 47 mm no leak. June 2017, he was lost for follow up, but came back to see us. Duplex imaging CTA was done to show the sac had increased

from 47 to 62 in a type 2 endoleak was present. In August of that year, he underwent right common iliac cuff placement for what appeared to be a type 1b endoleak. September, CT scan showed the sac was stable at 66 and no leak was present. In March, six months after that, scan once again

showed the sac was there but a little bit larger, and a type two endoleak was once again present. He underwent intervention. This side access on the left embolization of the internal iliac, and a left iliac limb extension. Shortly thereafter,

contacted his PCP at three weeks of weakness, fatigue, some lethargy. September, he had some gluteal inguinal pain, chills, weakness, and fatigue. And then October, came back to see us. Similar symptoms, white count of 12, and a CT scan

was done and here where you can appreciate is, clearly there's air within the sac and a large anterior cell with fluid collections, blood cultures are negative at that time. He shortly thereafter went a 2 stage procedure, Extra-anatomic bypass, explant of the EVAR,

there purulent fluid within the sac, not surprising. Gram positive rods, and the culture came out Cutibacterium Acnes. So what is it we know about this case? Well, EVAR clearly is preferred treatment for aneurism repair, indications for use h

however, mid-term reports still show a significant need for secondary interventions for leaks, migrations, and rupture. Giles looked at a Medicare beneficiaries and clearly noted, or at least evaluated the effect of re-interventions

and readmissions after EVAR and open and noted that survival was negatively impacted by readmissions and re-interventions, and I think this was one of those situations that we're dealing with today. EVAR infections and secondary interventions.

Fortunately infections relatively infrequent. Isolated case reports have been pooled into multi-institutional cohorts. We know about a third of these infections are related to aortoenteric fistula, Bacteremia and direct seeding are more often not the underlying source.

And what we can roughly appreciate is that at somewhere between 14 and 38% of these may be related to secondary catheter based interventions. There's some data out there, Matt Smeed's published 2016, 180 EVARs, multi-center study, the timing of the infection presumably or symptomatic onset

was 22 months and 14% or greater had secondary endointerventions with a relatively high mortality. Similarly, the study coming out of Italy, 26 cases, meantime of diagnosis of the infection is 20 months, and that 34.6% of these cases underwent secondary endovascular intervention.

Once again, a relatively high mortality at 38.4%. Study out of France, 11 institutions, 33 infective endographs, time of onset of symptoms 414 days, 30% of these individuals had undergone secondary interventions. In our own clinical experience of Pittsburgh,

we looked at our explants. There were 13 down for infection, and of those nine had multiple secondary interventions which was 69%, a little bit of an outlier compared to the other studies. Once again, a relatively high mortality at one year. There's now a plethora of information in the literature

stating that secondary interventions may be a source for Bacteremia in seeding of your endovascular graft. And I think beyond just a secondary interventions, we know there's a wide range of risk factors. Perioperative contamination, break down in your sterile technique,

working in the radiology suite as opposed to the operating room. Wound complications to the access site. Hematogenous seeding, whether it's from UTIs, catheter related, or secondary interventions are possible.

Graft erosion, and then impaired immunity as well. So what I can tell you today, I think there is an association without question from secondary interventions and aortic endograft infection. Certainly the case I presented appears to show causation but there's not enough evidence to fully correlate the two.

So in summary, endograft infections are rare fortunately. However, the incidence does appear to be subtly rising. Secondary interventions following EVAR appear to be a risk factor for graft infection. Graft infections are associated without question

a high morbidity and mortality. I think it's of the utmost importance to maintain sterile technique, administer prophylactic antibiotics for all secondary endovascular catheter based interventions. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.