Create an account and get 3 free clips per day.
Chapters
Idiopathic Thrombocytopenic Purpura | Splenic Embolization | 74 | Female
Idiopathic Thrombocytopenic Purpura | Splenic Embolization | 74 | Female
2016angiogramarteryBoston ScientificcoilsdorsalembolicembolizationMerit MedicalpancreaticproximalrefractorySIRspleensplenectomysplenic
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
Q&A- Embolization: Trauma and Bleeding Cases | Emoblization: Bleeding and Trauma
Q&A- Embolization: Trauma and Bleeding Cases | Emoblization: Bleeding and Trauma
abnormalityaccessangiogrambleedbleedingchapterembolizationfoamgelfoamhemorrhagenaturenegativeNoneorganpathologypatientpatientsplacementpostpartumpreserveradialrupturescantpa
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
antiplateletarterybraincarotidchapterdualembolicmedicareplavixprocedureprotectionproximalstenosisstentstentingtherapy
Geniculate Artery Embolization - Frozen Shoulder | Geniculate Artery Embolization for Arthritic Pain Why How & Results
Geniculate Artery Embolization - Frozen Shoulder | Geniculate Artery Embolization for Arthritic Pain Why How & Results
anatomyangiogramanteriorarteriesarterycapsulecatheterceliacchallengeschaptercircumflexdiseaseembolizationfrozenhyperimageinflammatoryinvestigationaljapankneeliningorthopedicpainpatientpatientsprostateradialshoulderstudysurgeontextbookvascularvascularityvessels
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
abnormalangiogramarteryaxisbleedingbleedsbloodcatheterceliacchaptercoilscontrastembolizationembolizeendoscopyesophagusFistulagastroduodenalhemoptysishepaticmalformationsmesentericNoneportalsuperiortipsupperUpper GI Bleedvaricesvenousvesselvesselsvomiting
Case 7: Retroperitoneal Hematoma | Emoblization: Bleeding and Trauma
Case 7: Retroperitoneal Hematoma | Emoblization: Bleeding and Trauma
angiogramaortaarterybifurcationchaptercoilsdelayedembolizationembolizefillgramhematomaimageinjurylumbarmicrocatheterNonerastretroperitonealRetroperitoneal hematoma due to a transverse process fracturespacespinetransverse
Geniculate Artery Embolization (Knee) A US Clinical Study | Geniculate Artery Embolization for Arthritic Pain Why How & Results
Geniculate Artery Embolization (Knee) A US Clinical Study | Geniculate Artery Embolization for Arthritic Pain Why How & Results
analogangiogramarteriesaspectassessbaselinebasicallybilateralchapterclinicalcomplicationsdecreasesembolicembolizationenhancementimagekneelateralmedialmedicationsmicronmonthMRImrisnervenumbnesspainpalpateparticlespatientpatientsplaceboplantarprocedurerespondshamstudiesstudysuperiorsynovialtibialtreatmentvessel
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
activeangiogramarterybleedingbloodchaptercoilsembolizationembolizeextravasationhematomainjuryleakingliverLiver TraumamelenamicrocatheterNonenoticeportalposteriorpseudoaneurysmtraumavenousvessels
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
angiogramarteriesaxialchapterclinicalcomplicationscondyleembolicembolizationenhancementhematomaimagekneemedialmicronnervenumbnessocclusivepainparticlespatientsplantarpoplitealsynovialtibialtumorvessel
C. Cope and Access | Lymphatic Imaging & Interventions
C. Cope and Access | Lymphatic Imaging & Interventions
accessangiogramantegradecathetercatheterizecentralchapterductembolizationembolizelymphlymphaticlymphaticsmachanneedleretrograderetroperitoneumthoracictransvenousvenouswire
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Case 9: Embolizing a Pseudoaneurysm Rrising from the Branch of the Inferior Epigastric Artery | Emoblization: Bleeding and Trauma
Case 9: Embolizing a Pseudoaneurysm Rrising from the Branch of the Inferior Epigastric Artery | Emoblization: Bleeding and Trauma
abdominalafibangiogramangiographyanteriorarterybruisingchaptercoilembolizationepigastrichematomainferiormicrocatheterNonepatientpseudoaneurysmPseudoaneurysm arising from the branch of the inferior epigastric arterywall
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Introduction- Nursing Management in Prostate Artery Embolization | Nursing Management in Prostate Artery Embolization
Introduction- Nursing Management in Prostate Artery Embolization | Nursing Management in Prostate Artery Embolization
ablationsallowingarterybasicallycarechapterclinicconsultationsembolizationindicationsNonenursingpatientspractitionersprocessprostatetreatingworkup
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Treatment Options | Pelvic Congestion Syndrome
Treatment Options | Pelvic Congestion Syndrome
amplatzblockblockingbloodchaptercoilcoilsembolizationembolizegluegonadalmaterialsoptionspelvicperipherallysclerosantsurgicalsuturetreatingtreatmentvalvesvaricosevaricositiesveinveins
Case 3b: Splenic Laceration | Emoblization: Bleeding and Trauma
Case 3b: Splenic Laceration | Emoblization: Bleeding and Trauma
angiogramarteriesarterychaptercoilsdelayedembolizationgastrichealhemodynamicallyinjurylacerationNonepictureproximalreconstitutionrupturespleensplenicSplenic Lacerationvessels
Case 3a: Splenic Trauma | Emoblization: Bleeding and Trauma
Case 3a: Splenic Trauma | Emoblization: Bleeding and Trauma
angiogramangiographybleedingchaptercoilscontrastembolizationembolizeextravasationgradehemodynamicallyimagelacerationlacerationsmicrocatheterNoneorganpainpatientproximalquadrantscanspleensplenicSplenic Traumatrauma
Examples of Pediatric Lymphangiography | Lymphatic Imaging & Interventions
Examples of Pediatric Lymphangiography | Lymphatic Imaging & Interventions
angiogramascitesatresiachaptercongenitalductlymphlymphaticsurgerythoracicthorax
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
angiogramarterybrachiocephaliccatheterchapterclickcoilcoilsembolizationmicromicrocatheterNonepseudoaneurysmPseudoaneurysm brachiocephalic arterystenttrachea
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
angiogramarteryaxialbleedcatheterizationchaptercontrastcoronalCoverage StentembolizationembolizehematomailiaciliacsimageinjuryNoneoptionpatientpseudoaneurysmRetroperitoneal hematomastentstents
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Transcript

of doing the same thing. So that's a proximal only embolization. This second case a 74 year old female with ITP, she's refractory to medical therapy and then splenectomy in her platelet count was 19 and they were worried about blood loss during the operation.

In this case we did a splenic angiogram with a 5 inch catheter. We located the pancreatica magna and dorsal pancreatic artery which you can see right there at the corner of the splenic artery, lining up right here, so whenever you're doing particle embolization or scatter embolization,

if you're going to do that you wanna be sure that you're beyond those branches. So we did distal embolization with [UNKNOWN] in this case you can see we're taking out the whole spleen because we know the spleen is gonna be removed later this day, and then the operator chose

to also back that up with coils in the main splenic artery, and preserve those pancreatic branches. This was the intra-op photo. The one thing to keep in mind, the location of those coils they're in the mid portion of the splenic artery, is

often where the surgeons is going to divide the splenic artery and that's what happened, he actually had to divide right through the coils. He actually said it wasn't a problem but you might annoy your surgeons, so just ask your surgeons, before you do a pre op splenectomy, where are they planning on dividing the splenic artery so that

you don't put especially like a plug embolic or something that could really cause a problem in that area. And then a third case before I show you

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

the take-home point is this that most of the time when we see a bleeding patient we're thinking of embolization we're thinking of going in looking for an

arterial abnormality going as far into the organ that we can embolizing that organ and trying to preserve as much flow to the normal parts of the tissue that we can to preserve the function of the organ today in the back of our minds

we're always thinking about putting covered stents across this but in some ways you realize that's a band-aid right with just you know the arteries that we put those covered sense and we're severely injured and there's always a

chance that flow can work around there so they could be leaks around covered sense so I still think embolization is a bit more definitive than cover stent placement but I find it when a growing number of patients cover sent placement

is definitely an option for these patients so I am here for ask any questions but I can also appreciate that you have a break it's been a long day so I will not get offended if none of you have questions all right perfect

yeah yeah no that's it's the nature so what what he asked here is is that GI bleed cases tends to be unsatisfying because you hear about them and then by the time you get them down to the NGO suite and you

do an angiogram they're negative and it does happen a lot you should know it's the nature of the pathology so what ends up happening is let's be honest I mean a lot of people who work in AI are just like to push things off sometimes so

they get a call for a GI bleed or they say oh let's get a bleeding scanner let's get a CTA by the time you see them at 6 or 7 hours later and they're negative because they've stopped bleeding and that's the nature of the

pathology so my personal philosophy is to get at these patients as quickly as I can I think it's just a better way to go if someone thinks they're bleeding the faster you get at them the greater the likelihood is that you're going to see

some some abnormality there and I think that's been true I think as we start to do these faster we're seeing more positive cases it might be nice to have a CT angiogram or a bleeding scan but I think by the time you see them after

that you know they're negative it's not anything you're doing wrong it's the nature of the pathology it's intermittent bleeding and that's what happens some people feel like they can give TPA to some of those patients like

they'll go into the SMA they'll give some TPA which let's be honest right all of us are saying what the hell that seems like a horrible idea and I agree with that I mean if the body has stopped the bleeding on its own why in the world

would I give a drug to dissolve the clot to start them from bleeding again so I don't like that idea but there are people that will do a bleeding you know kind of a challenge with TPA to see if they can open up something to identify

the bleeding to then go back in and embolize it I think my bias is coming through and how I answered that I don't know we don't used to out for that anything else yeah I think gelfoam has its place I think

gelfoam has its place for things like postpartum hemorrhage or you know some maybe some trauma and a younger patient but gelfoam in general is something that you're giving over a much larger area of territory so I think if you can identify

a bleed and just coil that particular bleed you're doing a better service for the patient but all these are obviously good hey let's see it in a lecture case in real life you may or may not see something so obvious and I think if you

have a patient that had some bleeding on a CT scan a bad pelvic fracture and you just didn't see it in geographically but you know something's wrong giving gelfoam is a legitimate thing to do all of us equate gel foam with a

temporary embolization effect the truth is we're not we're second guessing that a little bit and a lot of people who use gel foam feel that the extent of the inflammation that we get when we use gel foam is probably so great that even

though the embolic agent itself may go away the occlusion that we caused with the gel foam probably stays around longer than we think so I'm not so sure it's a it's a great temporary agent but I would say which we mostly limited to

postpartum hemorrhage patients yeah what's the cause of it usually it's a uterine rupture it's a vessel rupture I've gone three more questions than the leadership guy which is great anyone else yeah

well there's no doubt about it I think that IR is moving towards radial access I think 10 years from now the vast majority cases are going to be radial access it's the one area of our practice that I think I'm starting to feel my age

in I mean you know I think and you probably may see this at your own centers I think people that have been doing ephemeral access for a long time we're just more comfortable with that one of the issues that we're facing with

radial access as we begin to think about doing more radial access at our place is that we may be comfortable with it but places like the ER and the ICUs and the other areas that we're sending our patients back to are not yet skilled

enough as to how they manage those patients so our nurses are very frequently the ones to say I don't know if they're ready for us to send a radial access patient to whichever floor we're talking about so we have some work to do

to in service those the nurses on those floors as to how to take care of those patients first and until we do that I think we're going to be limited more to outpatient work with our radial access all right guys enjoy the rest of the

meeting [Applause]

there a better option this is where a carotid artery stenting was developed over a couple decades ago and this is a

less invasive viable option for treating carotid artery stenosis it was generally started off as a trends ephemeral approach but I'll show you what the new approach is that many of us are involved in it involves the use of

in volunteer tection so it's one of the unique vascular territories where embolic protection is required if you're gonna get Medicare reimbursement for this you have to involvement and bollocky protection if you do without

you can do the procedure but you won't get it you won't get reimbursed and ultimately it's it was proven to show much better outcomes if you use involved protection because even doing the procedure and trying to place the stent

there is some small embolic degree that that that shuttles off and if it happens in the foot you may or may not lose a toe but if it happens in the brain you're gonna lose brain cells and it's gonna be potentially catastrophic so

significant adjunct to the stenting procedure is doing embolic protection and there's two types of embolic protection there's distal and there's proximal I'll walk through each of those with some diagrams here and then anyone

that gets a carotid stent has to be on dual antiplatelet therapy so if they have an allergy they're unable to be on aspirin and plavix they don't get a stent because there's early stent thrombosis that can't occur in these

patients if they don't have that dual antiplatelet therapy so let's go through

with shoulder I'll go through this hopefully in five five minutes and I'll be under like 20 so frozen shoulder we're going to shift gears so unlike

arthritis frozen shoulder is an inflammatory condition that starts out of nowhere the classic history is a 35 to 45 year old woman who wakes up in the morning and says my shoulder hurts they think they slept on it incorrectly and

the pain does not go away they take medication doesn't go away the pain is worse at night and they can't figure out why it takes him about a month or two to go to orthopedic surgeon the surgeon goes you have frozen

shoulder they can't lift their arm forward they can't lift it laterally and basically it hurts over the shoulder they don't have a rotator cuff tear they don't have an injury they're not a baseball pitcher these are just average

people who are otherwise normally healthy except sometimes it occurs in certain patient populations it's a very prevalent disease and these are some of the risk factors so being female sorry that's an increased risk factor type 1

type 2 diabetics patients with hyperthyroidism even people who have autoimmune disease because there's some inflammatory process going on there are multiple stages one to four like in every disease of course early on it's

just inflammation but you'll see as you get to stage four you get these adhesions and stiffness in the shoulder so if you see someone who's a year out from this diagnosis who's really slobbing symptoms they cannot lift

they're on many of these patients walk around just like this and you they'll go to shake their hand they can't even get their hand out any further than that and so it can be a really progressive disease and really disabling to be

honest on MRI you can see findings that suggest this so on the top two images there are arrows that show exactly what I showed you in the knee this is thickening of basically the lining of the shoulder and they see this actually

even when they do arthroscopy and they actually put a camera inside the joint in these people with frozen shoulder as well remember I showed you this slide earlier exactly what we know more blood vessels in the lining in patients with

frozen shoulder than not more nerves more blood vessels what's been done on frozen shoulder has this been done well that same doctor in Japan dr. Okun Oh had published a study a number of years ago where in 24 patients he injected the

same antibiotic and 2/3 of these patients got rapid pain relief just one week after the after the procedure he analyzed the show and 87% at a month and there was basically no worsening or recurrences in

these patients out to 36 months so very good very good results but again we wanted to replicate that here in the United States so we applied to the FDA for an investigational device exemption study we're performing this study

actually it's sponsored by Tomo and we're enrolling patients who have a diagnosis of frozen children were working very closely with an orthopedic surgeon who just specializes in shoulder joints he's actually a very well

recognized shoulder surgeon so these patients like our knee patients have to be refractory to something and what we're looking for and this is a patient in in our clinical study is that red arrow on the Left points to an image

where that synovium enhances and on the right where the synovium is thickened and same thing here this is a case where it's even worse you can even see that white capsule all the way around the joint very prominent enhancement the

problem with shoulder embolization and we thought this would be great we do all our cases radial for life you know we'll do prostates uterine fibroids y9t we're like this is gonna be great we only have to go from here to here and

everything's gonna be fantastic the problem is you'll see here from this angiogram just at the subclavian artery is that all the vessels come off pointed towards the hand nothing really comes off when you're going this way so

unfortunately when you're going in with your catheter everything looks like you're gonna be going you know reverse and that can make things really painful and you need a 2o French catheter to get into these because they're so small and

they don't make very many - Oh French pre-curved or pre shaped catheters so you have all these challenges that we thought were gonna be we didn't realize in the beginning and the other thing is write everything now has made radial -

coronary or radial two legs or radial - pelvis or celiac but the distance is you can imagine from here to here I need a 90 centimeter based catheter in a 110 or 120 micro catheter I don't really you know people make 80s and 80s aren't long

enough and people make one 10s and they're too long and so we really found this to be actually fairly more difficult than we realized there are also six arteries that you have to get into in the shoulder so it's very

tedious and you have to get into all these and when you're injecting embolic in and around the vertebral artery and you guys recognize that on the image that's on the screen that's the largest artery there so if you're going to get

reflux you want to avoid of course having a stroke so especially in these younger female patients over 35 to 45 and you're taking something and put at risk so it can be a little bit more of a challenging procedure and obviously

if you have you know physicians and a team who are used to doing things like prostate and advanced celiac embolization for example you know that kind of team will be used to this but they're definitely more challenges than

we realized and so there are six arteries that we have to get into and you can see that third one of how tiny that is and I'll go through all these really quickly this is the suprascapular artery okay this is the first branch we

actually just number them one to six and you could see over that shoulder on the left look how hyper vascular that's actually worse than the knee that's pre-imposed embolization okay this is the throttle acromial artery the

throttle chromia artery as you can imagine goes to the acromion process and the shoulder and you can see on the left it sort of drapes over the shoulder as that hyper vascularity this is the coracoid artery you will not

find this artery in any anatomic textbook anywhere when I flew to Japan to work with dr. Okun oh when I went there and he's like we're going into the coracoid I'm like where is this I'm sitting there on my cellphone like while

he's doing the case looking up the cord under I couldn't find it anywhere looked in Grey's Anatomy looked at oof lockers masculine angio textbook it's nowhere it exists and just like you think it goes right to the coracoid

process which you can see on the image on the right and you can see the degree of vascularity and it's responsible for this anterior pain that patients feel and here's the circumflex scapular artery most of you have probably seen

this in some form or another and as you can see it goes to the inferior aspect of the shoulder so that goes to the bottom of the capsule on the right you can see how it's coming right under the humeral head and then there's the

anterior and posterior humeral circumflex arteries one in front of the humeral head one behind the Hume right so these six arteries we have to get into and we have to figure out which are hyper vascular and that embolized them

and of course like in prostate like in every other place is going to be aberrant anatomy our very first case we go into I came back from Japan we're all excited to start the clinical trial I'm looking for the I'm looking for the

suprascapular artery and lo and behold it comes off the lean of the Lima and I'm like oh that's interesting you know how the heck we're getting in this and so you run into these challenges just like in any other situation and so we're

learning we're getting through this and learning about this patient population as well I will tell you so we don't I don't have any preliminary data to share because we just have done eight patients out of 20 but all but one had a dramatic

improvement I mean even far better than our knee patients they're coming in there like 10 out of 10 they're like do this I had a patient we made a video because she wants to show her orthopedic surgeon if her arms just throwing around

like this and she was like dancing in my office and I'm texting and pictures it's really remarkable and what's great about this is there's no treatment option so orthopedic surgeons said them to go get physical therapy take pain meds there's

nothing to do for these patients so this is a real opportunity hopefully by the end of you know this year we'll be finished and rolling and following up on these patients and we're hoping by maybe early 2020 which is not too far away

you'll probably see an fda-approved product even for the embolization so things are moving pretty quickly and just as just one case again if someone who has severe superior labral pain you can see the image on the right how

densely standing or vasco's it's very easy to see and I'll challenge you when you go back and you're doing a leg angiogram and you look and they do a run off and you see staining around the knee or some of that blush just reach over

and ask the patient and palpate right where it is and go do you have pain right here and I'll bet you they'll say yes you never really would have paid attention at any time before and now we do it kind of for fun when we're doing

our run offs for other reasons of course for CLI etc but it's really interesting and you'll go back and see that so in conclusion embolization really is an exciting has an exciting future really in the setting of msk related pain there

will be need to be many more larger studies of course this is still investigational we do not tell people to go out and start doing this we need to really better understand how angiogenesis really affects these

disease processes and with that I will finish thanks very much [Music]

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

right now here's a different case is a 49 year old male who presented to the emergency department after vomiting a lot of blood vomiting was the key word there it's going the other direction so that's an upper GI bleed all right and

when we talk about upper GI bleeds there's a lot of different causes for upper GI bleeds the most common are ulcers but there's mallory-weiss tears of the esophagus there's just esophagitis or gastritis

there's different cancer vascular malformations fistula is varices which I'm not going to talk about but varices on the venous side in a patient with portal hypertension these are all causes of upper GI bleeding now

once again we might treat them medically we might look at them with endoscopy and potentially cauterize something embolization usually is used when and when endoscopy is not successful all right or certainly surgery but an upper

GI bleeds embolization is a lot more attractive of an option all right so here's another picture what do you think you up for it nope you turned me down all right who wants to who wants to tell me what they see how about you how about

you guys you can team up together what do you think so what do you seeing so let's look at that together so this is a seal EF is an anagram of the celiac axis you want to think it through you want to volunteer you see a filter we don't care

about that yeah all right that's fair so you see the catheter going up right in the middle and it's going right into the celiac axis all right what I want to draw your attention to is right in the middle of the screen a little bit over

to the left is again a blobby thing all right that's extravagant of contrast and the vessel that that's coming off of is the gastroduodenal artery so I want you to see that if you look at the catheter you

can see the shadow of the catheter right up going up from the bottom that's going into the celiac axis and the big vessel going over to the left side of the screen is the proper hepatic artery that the common hepatic artery excuse me and

the first vessel heading south from there is the gastroduodenal artery that blood vessel is supplying the end of the stomach and the beginning of the small intestine and what you see is the extravagant coming off now what it's

very important if you're dealing with bleeding patients whether it's in dusky whether it's hemoptysis or GI bleeding anything like that we're looking for that type of blob appearance which just mean the contrast is no longer

constrained by the artery it's free into space okay usually the way we were built is that the blood vessels the biggest they ever are near the heart as they leave the heart they get progressively smaller until they reach

the tips of your fingers and the tips of your toes if there's any place that you see where it gets big small then big again that's not normal okay that's not normal and now we just got to figure out what's

the abnormal part is it the small part or the big part all right in this particular case it's that big blob that's big it doesn't belong there all right but in the upper GI system there's lots of collateral vessels so we can

just go in and we can put coils right in the gastroduodenal artery and we can embolize that and we can do it safely because we know that there is alternative routes for blood to flow now the one thing we have to do here and

this is an important concept for any abnormal bleeding whether it's trauma or other causes is we always look for the backdoor so in this particular patient we did an angiogram of the superior mesenteric artery there's another vessel

going to the intestines and it's nice cuz we have the coils there you can get a sense that it's possible for blood to flow from a branch of the superior mesenteric artery backwards into the GDA and so we just want to make sure that

that's not happening because we can do the best job ever with an embolization procedure but if we don't get the front door and the back door we're gonna fail patients will come back with recurrent bleeding and at least in my experience

that's a big reason why people do come back so we think we do a great job in two or three days later people come back with abnormal bleeding it's weak because we didn't address both sides of the pathology all right so here's another

all right another patient 52 year old patient ATV accident we get a lot of

lunatics on ATVs in our area and they presented with severe back pain here's the cat scan you see that white thing kind of in the back on the right side it almost looks exactly like that liver one I showed you two patients ago the

difference is that that's not conscious that's a part of the patient's bone that's the spine that fractured off and is now sitting in the middle of a big hematoma so that's why my kids don't have ATVs all right so basically that's

a big retroperitoneal hematoma due to a transverse process fracture all right in light of an ATV injury here's the angiogram now look at the picture on the left first that's an aorta gram you see the renal

artery at the top you see the bifurcation of the aorta kind of in the middle going down to each side and maybe just on that first image you see a hint of maybe some cloudy extravasated on the left side of the spine excuse me the

right side of the spine the left side of the image now remember I just I know I keep hammering this point home but you need the delayed image to make the diagnosis that's normally going to tell you if there's a real problem and on

that image on the right which is a bit more delayed you can see the extravagant Rast next to where the spine was that's an injury that's a lumbar artery injury and as we get closer all right we put a micro catheter in that lumbar artery now

you see the extraction and the question always comes up how much of that space do we need to fill that's an abnormal space that's just receiving all the blood that's leaking out of the artery and basically we don't have to fill all

of it we try we try to but it takes a lot to fill that up so we'll go in there you can see we put a lot of coils in this space and then we started packing coils back into the artery that was injured and I know it looks really big

on that image but if you go back into a finally orna gram you can appreciate that we were in a very small artery there but the technology that we have now allows us to get very far into very small arteries and that I think is

what's changed over the 20 years that I've been doing this at the very beginning of my career we wouldn't think about doing any of these things since we didn't have the tools to get that far out we had to

embolize these vessels very close to their origin and that led to a failure rate and an adverse injury rate that we don't see now that we can get this far out keypoint another case we have an older

designed a u.s. clinical study we got an investigational device exemption

actually Julie's our clinical research coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe

pain so greater than 50 means basically greater than 5 out of 10 on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail

medications injections radiofrequency ablation you had to fail some other treatment we followed these patients for 6 months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any

non-target embolization likes a bone infarct after this procedure these are the clinical scales we use to assess are not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the

VA s or visual analog score and on the right is the whoa max scale so patients fill this out you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain

it's a little bit limiting because of course most patients have bilateral knee pain so in trying to assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but

their pain may improve significantly in that knee when we did our patients these were the baseline demographics in our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1

class 2 obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating

and that may impact the results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my home knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

and you can see on this t1-weighted image that increased area of enhancement which is the area of synovial thickening you actually see this on MRI beforehand and there it is located over the lateral aspect of the knee on the axial image

and so what we're doing sorry in the medial aspect of the knee so what we're doing here on the angiogram is and you solve these leg angiograms where everyone doesn't really care about these you Nicollet arteries they're really

important when you have SMA or popliteal occlusive disease because they serve as a collateral source but otherwise and people have arthritis they can be a real pain and the pain in the knee if you will so this is a this is the superior

medial geniculate artery and always drapes over the femoral condyle and you'll see here on this image you don't really see very much but once we get into the vessel look at this it almost looks like a small about a cellular

carcinoma like when you're in the liver you get this tumor type blush vascularity that's what we're looking for that corresponds to the patient's area of pain and then after embolization this is what it looks like takes a very

small embolic we're using maybe point four two point six sometimes one CC at most of dilute embolic that we're injecting this is another case again before and after if you look here on the right and then

on the left you don't really see much until you select the vessel out once you get into that super medial vessel you can see how much enhancement there is so in our clinical study of twenty patients this is what we did you'll see on the

bottom here we used embassy and 75 micron in nine patients and eleven eleven patients got a hundred micron and I'll explain why we upsized our particles so initially we wanted to go very small because that's where dr. o

Cano had done in Japan but then we wanted to actually up size our particles and I'll explain this here in our complications so like all clinical studies the purpose of doing really good clinical research is because this is

early and we don't know if they're going to be complications and it's always fun when you're the first one to figure it out and you tell patients I don't really know what's gonna happen and this is what happens so thirteen patients had

this kind of skin discoloration over their knee now we knew this because we've been doing the embolization for about ten years in bleeding patients not necessarily arthritic patients so we had seen this before but none of these

patients in this clinical study went on to have any alteration of the skin and it resolved in all patients there was some minor side effects from basically medications and one small groin hematoma but there were two patients who

developed plantar numbness over their great toe so under their great toe basically the medial distribution of their tibial nerve they ended up getting plantar numbness and this is believed at least in our experience to probably be

related to non-target embolization to the tibial nerve the tibial nerve probably gets its blood supply from many of these Jamaican arteries so we decided after having these two cases one at our institution and one at University of

North Carolina Chapel Hill that we would then basically upsize our particles to 100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that he's either we had about a 70% reduction in pain so if you

look at our visual analog score out to six months and if you look at our disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months

very good results 90% of patients were responders so two out of our twenty patients did not really respond one patient didn't respond at his one month follow-up but did wrist that is three and six so I still

consider them a clinical failure because we expect these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after

a month how much it decreases and we looked at this in terms of synovial thickness and distension and even on MRI you can objectively count calculate synovitis scores and we calculated that they actually statistically decreased

this is another patient on the left the image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking

and this is actually one of our nurses who's enrolled in the clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was

in the booth over at the meeting across the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap her knee we didn't do anything else if you look at this premium post it's pretty dramatic

so clearly there's an inflammatory process that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a

great future but so far we know it's at least technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long

term it'll probably really really good for this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now

it's a randomized control study against placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing there -

Nicola arteries are not we wake them up and they get off the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the patient actually get the treatment and they

don't know either if they got the treatment and then we follow these patients when we assess if you if they have improvement all pain mediated procedures must undergo sham controlled studies because pain is so right in it's

so intuitive to just yourself so you can't really if there's a placebo effect so this is why pussy bow control studies are very important I believe we have one more patient left to enroll in this clinical

study and then we should be done with that so I'll switch gears really quick

24 year old patient after a car accident has lower abdominal pain and melena so blood coming out of the rectum here's the CT scan anyone want to take a stab but you can just shout it out

so this time we're looking at the liver right so the liver is the big thing on the right side of the screen and what you can see is the dark hematoma posterior to the liver but you should also notice that big white dots sitting

right in the hematoma all right that's important because that's active bleeding that's the report when you guys when you guys get called in for these cases and someone says oh this you know liver trauma with active

bleeding this is the picture that is spurring that announcement okay this is what active bleeding and the liver looks like again there's a bleeding scale there's an injury scale for a liver trauma we don't need to go into that

slides are available if you want them alright here is the angiogram now again my rule works all right if you see vessels get smaller and then big again something's abnormal so in this particular picture I want you to notice

the catheter sitting in the right hepatic artery the blood is going up into the right lobe of the liver and right near the top of the pictures that big circular kind of blobby thing now this is by definition extravasation

sometimes we use the term pseudoaneurysm to describe this I just want you to appreciate what a pseudoaneurysm means it means that there's a hole in the artery that contrasts or blood is leaking out of that hole and the body is

essentially constraining the bleeding it's not going all over the place it's being constrained that's what we call a pseudoaneurysm all right that's just one way to look at it and geographically so this is an injury to the artery blood is

leaking out of the artery but maybe one layer of a three-layered blood vessel or even just the surrounding tissue is constraining that bleeding alright so what do we want to do for this exactly exactly you're getting it all right so

here we can get our microcatheter all the way out there the closer we get to it the better now in end organs like the liver or the kidney we don't actually have to get all the way out there getting close to it's going to be good

enough but the closer we get to it the better for stopping the bleeding and preserving the function of that organ all right so look how close we literally got right into the injury and then we're able to embolize it that's the goal all

right now the liver is a nice place the treat because as you know there's two sets of blood vessels going to the liver there's the portal veins in the apat ik artery so if we just embolize a little a patek artery the

liver is not going to notice that at all because it still has the portal venous flow bringing blood to that liver but our goal is to get in there preserve as much of the liver that we can and address that injury okay here's another

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

and you can see on this t1-weighted image that increased area of enhancement which is the area of synovial thickening you actually see this on MRI beforehand and there it is located over the lateral aspect of the knee on the axial image

and so what we're doing sorry in the medial aspect of the knee so what we're doing here on the angiogram is and you solve these leg angiograms where everyone doesn't really care about these Janicki lit arteries they're really

important when you have sfa or popliteal occlusive disease because they serve as a collateral source but otherwise and people have arthritis they can be a real pain and pain in the knee if you will so this is a this is the superior medial

genicular artery it always drapes over the femoral condyle and you'll see here on this image you don't really see very much once we get into the vessel look at this it almost looks like a small about a cellular carcinoma like when you're in

the liver you get this tumor type blush vascularity that's what we're looking for that corresponds to the patient's area of pain and then after embolization this is what it looks like takes a very small amount

of embolic we're using maybe 0.4 2.6 sometimes 1 CC at most of dilute embolic that we're injecting this is another case again before and after if you look here on the right and then on the left you don't really see much until you

select the vessel out once you get into that super medial vessel you can see how much enhancement there is so in our clinical study of 20 patients this is what we did you'll see on the bottom here we used embassy and 75 micron in 9

patients and 1111 patients got a 100 micron and I'll explain why we upsized our particles so initially we wanted to go very small because that's what dr. o Cano had done in Japan but then we wanted to actually up size our particles

and I'll explain this here in our complications so like all clinical studies the purpose of doing really good clinical research is because this is early and we don't know if they're going to be complications and it's always fun

when you're the first one to figure it out and you tell patients I don't really know what's gonna happen and this is what happens so 13 patients had this kind of skin discoloration over their knee now we knew this because we've been

doing knee embolization for about 10 years in bleeding patients not necessarily arthritic patients so we had seen this before but none of these patients in this clinical study went on to have any alteration of the skin and

it resolved in all patients there was some minor side effects from basically medications and one small groin hematoma but there were two patients who developed plantar numbness over their great toe so under their great toe

basically in the medial distribution of their tibial nerve they ended up getting plantar numbness and this is believed at least in our experience to probably be related to non-target embolization to the tibial nerve the tibial nerve

probably gets its blood supply from many of these generic arteries so we decided

and then getting back to really where the rubber hits the road you know we can do all of these fancy techniques why

does it matter well Constantin cope one of the fathers of IR is certainly the pioneer of lymphatic interventions and over subsequent five publications in the mid 90s really showed the the technical

build as well as the feasibility of imaging lymphatics putting a needle into them and then starting to be able to embolize them and functionally curing patients who had Kyle authorities and a potential morbidity or mortality of over

50% and how did he do it well as he did his lymph angiogram and it got up to the retroperitoneum and the structure started dilating into some of the central structures such as the cisterna chyli he would take that 21 gauge needle

and go after that structure put a needle into him pass a wire that wire would pass into the central lymphatic circulation and then he'd be able to put in a micro catheter Neff set machan visa or whatever inner inner

components and then do central and faint geography as well as potential and fame gia embolization so that would be the general antegrade trains abdominal access this was a traditional access that was done for over a decade more

recently a lot of authors have started focusing on doing retrograde trans venous access which you do basically a PICC line axis on the left arm and you take a sauce catheter to where the thoracic duct dumps into the veins and

you catheterize it backwards and just kind of showing you and get your sheath down or you can put a wire from below and then snare and come across it so that's a retrograde transvenous and finally the direct train cervical access

and some patients who you never see another target you can potentially access this under ultrasound or if you have fluoroscopy and some contrast in there in this case we put our wire retrograde and were able

to complete the case and you see of the lymphatic fluid leaking out in this case as well so those are your three main ways to access the central lymphatics

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

60s year old patient with afib who fell and presented with abdominal pain and bruising in their anterior abdominal

wall for whatever reason we see a lot of these patients who come in with kind of bruising after they fall on their abdomen here you can see why hopefully you can see the big hematoma and the anterior abdominal wall so you can

imagine what this patient look like they have this kind of you know ball sized thing under their abdominal wall all right here's our angiogram in this particular case we went into the inferior epigastric artery which kind of

runs up from the pelvis up along the anterior abdominal wall you can see how small it is we were able to get a micro catheter in there and just in the middle just to the left of the middle of the picture you can see that kind of black

your circle that's again a pseudoaneurysm arising from the branch of the inferior epigastric artery and boom we can go in and coil it all right so that's what that looks like so now all of you kind of maybe I used to

sitting in the background we'll know when you're getting called in for these patients this is the type of pathology that we're looking at on CT and on angiography all right another patient 68 year old

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

so my name is Paul I'm one of the nurse practitioners from UCI Irvine healthcare and what am i one of our minerals in there is basically working on patients for consultations doing the patient rounds writing notes ordering labs etc we also have several clinics that we run

at UCI Medical Center involving patients needing consultations for Libra direct therapies ablations and so forth and one of the more recent clinic that we started running is basically treating patients with BPH and so what we would

know inspiration is basically treating and regarding their symptoms and the procedures pretty much called a prostate artery embolization so the main purpose of this patient excuse me the main purpose of this

topics is basically to provide the general information of what the procedures are about illustrating indications risk and to hopefully help our nursing staff to better take care of these patients sorry so first and

foremost I just wanted to thank my team UC Irvine for allowing me to take some time off of work and enjoying Austin and its many food and object and and allowing me to speak to you guys a little bit about prostate ammo on our

pitchers basically you can't I don't know laser printer but our physicians dr. Karen Nelson she's one of our chief of IR dr. Dan through Fernando dr. Nadine a bitch day and dr. James Castro thesis

he's got daughter Kat Reese is our main doctor that does most of our process embolization our excellent iron nursing team and of course my fellow nurse practitioners who is holding the fort back home Pamela and Takara and watch

and Lou sorry but so our objectives for discussions basically to illustrate the indications and benefits of prostate artery embolization we're going to go over the side effects and risk complications associated with this

procedure and also recognize the value of nursing care going starting from the workup leading to the proper process in trot process and post procedure care sort of a brief outline of what we're gonna be

talking about we're just gonna go over the basic fundamentals of BPH as well as the treatment for PAE and the second portion of this lecture is going over how we walk patients up in clinic what we tell patients and we're gonna go

through the proper care and drop care ask well ask the post-op care and we're going to go through a couple of cases in there it's just to describe to you guys how we care for these special population

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

treatment options once you've sort of isolated that there are leaky valves and the patient has typical symptoms that there are some surgical options but really embolization and catheter

directed treatment are really the mainstays of treatment both because it's an outpatient procedure you get to go home the same day and the recoveries fairly easy the factors that we consider when you embolize or block these

varicose veins are listed here you want to you want desired duration you want it to be closed forever you can't replace valves it would be nice to be able to do that but there's not a valve replacement so much like in the leg when you're

treating varicose veins you're either blocking or taking veins out so the surgical options are to take the vein out or to ligate but and the vascular options would be to block it and so I would just thought I would cover just a

little bit of embolization materials I'm sure you're all very familiar with and as I'll mention a little bit later there's there's sort of not necessarily agreement on what type of things people use to embolize gonadal veins or pelvic

varicosities but i'll show you what i do but give you a background of just generalized embolization materials so I'm sure you've all seen gel foam supplied as a sheet you can make a slurry you soak it with contraire

so that you can see it as you're putting it in some people use glue and will glue the entire gonadal vein it solidifies when it's mixed with saline or blood usually mix it with acai it also you can see it as

you're injecting it and then the standard coils which there are multiple sizes shapes detachable non-detachable Amplatz or plugs all the mechanical devices that can be used to block blood vessels and then I put on Souter deck

all because there are some people that will sort of do the sandwich technique you may have heard we'd put a coil peripherally and a coil up by the renal vein and then in between the coils you can film a sclerosant and embolize that

way the other important factor for me is using the suture deck all on the actual varicosities I'm not just necessarily treating or blocking off the the blood supply to them you know and I'll mention that a little bit more during the case

here so go through a case patient with

different patient this is an unrestrained passenger in a motor vehicle accident now that you are all

experts in looking at this CT you can see on the right side of both of those images is the spleen you can see that darker grey areas within the spleen that's bad it should look more like the the the lighter parts

and actually all the grey are on the outside is all blood or fluid in the abdomen so this is a bad laceration probably at least a grade four splenic laceration but again this was a hemodynamically stable patient all right

and here's what we saw this is the angiogram you can see the splenic artery and you can see they're kind of diffuse abnormality of the spleen it just doesn't look right under normal circumstances it just look like branches

on a tree and what we're seeing here is just kind of splotchy looking splenic ranked them up so that's not normal we just want to give it a chance to heal this is the scenario we might do a proximal splenic embolization where

we'll go in and we'll basically put a plug or some coils right at the origin of the splenic artery and I love this picture because what it shows is why we do this philosophically what I want you to notice is on the image to the left

you can see the coil right there right if you see the abrupt stopping of the splenic artery and then what you see are all those vessels going up towards the top of the picture those are arteries that are supplying

the stomach it's the left gastric artery some other vessels that then go through vessels we call the short gastric arteries and what you get is is the reconstitution of the splenic artery so on the image to the right all the way on

the right side of the picture those branches that you see are within the spleen so even though we plugged up the splenic artery right at its start the spleen is able to get blood flow through those collateral vessels all right so

that's our goal that's what a proximal splenic embolization is trying to do we just want the spleen to heal a little bit and reality what we want to do is these patients are usually fine we just don't want them to go home and have a

delayed rupture of their spleen because that's something many of us probably don't appreciate if someone has a splenic artery injury or splenic injury and they're doing fine and then we send them home there is an incidence of

delayed rupture of the spleen and what we know through lots of good papers is doing these proximal embolization procedures helps to reduce that risk of delayed splenic rupture so that's what we're trying to do there all right so

case I can make up the ages anyway so it doesn't matter so 43 year old patient on a motorcycle that collided with a deer all right presents with left upper quadrant abdominal pain and now we're looking at a cat scan all right who

wants to look at a cat scan you look like you're up for it what do you think what do you see no no you're not sure so we're looking so the key is the left upper quadrant pain right the patient presented with left-sided pain you

should know that whenever we're looking at a study like this we're looking as if we're talking to the person so the right side is on the left the image the left is on the right side and so if you look on the these are two

images if you look at the right side of the image you can actually see the spleen that's like that beam shape thing towards the back of the patient and what we should see is a homogeneous appearance of the organ but what we're

seeing are some kind of dark grayish lines going through it that's essentially a laceration of the screen that's what we're looking at that's the pathology that will prompt us doing a procedure like this and when we ever we

see a patient with splenic trauma we try and grade the trauma so one thing you're going to hear about is it's a patient with a grey 2 laceration or a great 4 laceration or something like that and that basically just describes the extent

of the laceration through the spleen the further through the spleen it goes the higher the number is the worse it is for the patient okay we tend to get involved with patients who who essentially have grade 3 or higher lacerations and are

hemodynamically stable so in this particular patient this was thought to be a grade 3 splenic laceration but there was not a whole lot of blood around the spleen so we thought this patient had some time to come to

angiography and embolization so here's the angiogram lo and behold what we see is again a blobby thing which is the theme of this lecture remember this is bleeding so we're looking for blobby things and all the way on the right side

of that image you can see that cloud of contrasts that black contrast that's extravasated of contrast that's not normal all the way to the right you guys see it are you good so going all the way to the right that's

what we're trying to do now when we do splenic embolization there's two ways we think about this do we want to go all the way to where the bleeding is all the way out into the screen and embolize one little branch that's injured or do we

want to do something called the proximal splenic embolization we would just put like some coils or plugs right at the origin of the splenic artery with the goal of being to slow down the flow and allow the spleen to heal a lot of it is

just what's possible maybe what time it is how tired we are things like that all factors that weigh into it but here's a little bit of a better view you can see the area of extravasation now here's another picture now we put

our microcatheter out there now you're getting a bit more of a sense of what's going on there you can see the extravagance II the vessel that it's coming from and then we put our catheter all the way out there and now we're

right at the source of the bleeding so our philosophy is if we see bleeding we want to go as far as we can towards the source of the bleeding keeping in mind that whenever we don't get as close to the bleeding as possible we're

sacrificing normal parts of the organ that we're treating and that's the philosophical leap that we make during these procedures so we were able to get out there and then we embolize leaving a lot of flow through the rest of the

spleen and the patient was able to survive like we never did anything alright that's our goal now here's a

these kids just to show a couple cases from our study this was a three-month-old who'd had a congenital Kyle thorax as well as congenital ascites and you see that we're starting

be lymph angiogram it certainly looks very bizarre certainly not like anything else I'm showing you so far and you see if this child was actually born can generally without a thoracic duct or central lymphatic so this was a an

example of thoracic duct atresia unfortunately not compatible with life very rare thing that has published every couple years this was another child a little bit older 15 year old we wonder with scoliosis a corrective surgery lots

of screws had a great outcome from surgery unfortunately noticed right there that one of the screws went right through the thoracic duct so not a surprise this kid had recurrent Kyllo thorax we certainly didn't oblique here

to prove that it also went right through that structure we got our wire up and in all the way across and put our catheter up we'll put some coils right at the top and then place some glue across the whole thoracic duct and you see the two

areas where the site of injury were the two arrow heads at the bottom of the screen there so plastic bronchitis is a

here's another patient 62 year old male

patient just a similar case who had head in that cancer again after radiation therapy who experienced some bright red blood while coughing all right here's the CT scan and what I want to draw your attention to a little tough to see I

think I'll let me go up up here point it out with a mouse well I don't have a mouse so I guess not is basically you can see right in the middle of the two lungs kind of right in front of the trachea which is the black

circle alright just go right in front of that up to the top you can see the round white circle which is the brachiocephalic artery and just projecting off the back of that is another little kind of outpouching of

contrast a little nipple coming off of of the brachiocephalic artery that doesn't belong there all right here's the angiogram and it's a little difficult to see but there is a see if I can describe it better to you alright I

think this is actually a video so I'm sorry I don't know the ability to run it unless you can click on it can you guys click on the back up so if you want to look at it again you see the angiogram kind of running and just at the origin

of the brachiocephalic artery which is the first branch of the aortic arch you can see that outpouching of contrasts coming right to the right of that vessel that's a pseudoaneurysm and again we went through the same thought process we

said you know I want to put a covered stent across that but my problem was that we didn't just have the right size that would not block one of the carotid arteries and not extend too far into the aorta so we had no choice but to

consider embolization in this particular case so here's what we did here we actually put a micro catheter if you can just click I think that's a video to the left no I guess not you know what it's okay

what we did for this particular case was we went in from the arm and we put a micro catheter directly into that pseudoaneurysm because we couldn't feel we didn't feel we could put a stent across it so we put the micro catheter

in there we started to put some coils and it actually went further than we thought outside of the artery and here's the post image so you can see our final image you can see the coils that are sitting just adjacent to the

brachiocephalic artery and we preserved good flow there to end this basically

patient who experienced the heart attack who had right little quadrant pain after a cardiac catheterization all you like oh so here's the cat scan and what you should appreciate there is in the front of that first image which is the axial

image all right you can see the hematoma that's brewing kind of in the front you notice how all these pictures kind of look the same that's the good part about giving a lecture on bleeding and trauma because they all kind of look the same

so that's the hematoma on the front part of the pelvis and on the on the right image which is more of a coronal like looking at the patient image you can see it right near the right groin you can see that hematoma all right so our next

step was to do an angiogram and this is what the angiogram looks like who wants to volunteer what do they say all right I saw someone raise his hand over here some walk over here what do you think yeah well yes so it is a retro hematoma

would you say describe the angiogram for everybody right where it's at the external iliac down the common femoral looks like there's contrast going up to the left and down to the right probably close to where they accessed yeah

probably but so yeah probably probably too high but the other thing is that's probably a pseudoaneurysm that probably is the evidence that there was a bleed there we're not seeing Frank extrapolation of contrast in a literally

contrast pouring out but we are seeing the effects of an injury to the artery and the constraining of the the remaining normal tissue to hold on to that bleed so the question is what do we want to do no that was very good because

I fooled you it's not always embolization so sorry I lied so in today's world a lot of times when we see this type of pathology we have again relatively new technology available to us again we

could go into that pseudoaneurysm and embolize it and that would be a legitimate treatment but my friend here is right you know this is a great case for a covered stent so we could go in and put a stent right across that area

of injury and stent it so these days looking at coverage stands as an option for patients with arterial injury is a very legitimate option you just have to be able to deliver it has to be the right artery you have to be able to get

the stent where it needs to go we all work with vascular surgeons who are great and they can put these stents and iliacs and aortas but they can't make those turns into livers and kidneys and spleens it's got to be the right artery

this is this is the right artery okay we saw this patient and we said well we could kind of get a micro catheter into that area of injury and embolize it or we could just put a cover sent across it and all go home to have dinner with our

kids so that was option B is what we chose here so this is a great cover stent case okay here's another patient

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.