Create an account and get 3 free clips per day.
Chapters
History of the Treatment of CLI | AVIR CLI Panel
History of the Treatment of CLI | AVIR CLI Panel
arthritischaptercytokinesdegenerativeembolisationembolizationhospitalizationsinflammationinjectionskneeleadsnsaidnsaidsosteoarthritisshouldersynovialunited
What To Expect From Today's Limb Preservation | AVIR CLI Panel
What To Expect From Today's Limb Preservation | AVIR CLI Panel
biopsybloodchaptercolorcytokinesdegenerativeembolisationinflammatoryneurovascularrheumatologyslidesvesselvessels
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
angiogramarteriesaxialchapterclinicalcomplicationscondyleembolicembolizationenhancementhematomaimagekneemedialmicronnervenumbnessocclusivepainparticlespatientsplantarpoplitealsynovialtibialtumorvessel
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
Conclusion to CLI | AVIR CLI Panel
Conclusion to CLI | AVIR CLI Panel
assesschaptercontrolledenrollfrozenhurtsorthopedicpainpatientshoulderstudiessurgeon
Introduction to CLI | CLI: Cause and Diagnosis
Introduction to CLI | CLI: Cause and Diagnosis
chaptercriticaldiagnosisdisclosuresischemianurses
Vascular Disease | CLI: Cause and Diagnosis
Vascular Disease | CLI: Cause and Diagnosis
arterycardiovascularchaptercoronarydeathdiseaseextremityperipheralstentvascular
Overview of PAD & CLI | CLI: Cause and Diagnosis
Overview of PAD & CLI | CLI: Cause and Diagnosis
arterybloodbotoxchaptercholesterolclaudicationcriticaldiseasefactorsflowintermittentischemialimbpainperfusionperipheralrisksevere
PAD and Diabetes | CLI: Cause and Diagnosis
PAD and Diabetes | CLI: Cause and Diagnosis
amputationsangiochapterclaudicationdiabetespatients
PAD Distribution | CLI: Cause and Diagnosis
PAD Distribution | CLI: Cause and Diagnosis
anatomicangiogramaortaarteriesarterycalcificationchapterdiabetesdiffuselydiseasefemoraliliacinfrainvolveskneepatientpatientsperinealpoplitealpopliteal arteryposteriorproximalradiologistsuperficialtibialulcer
Claudication vs CLI | CLI: Cause and Diagnosis
Claudication vs CLI | CLI: Cause and Diagnosis
amputationamputationsangiogramcancerscarolinachapterclaudicationcriticaldiseasefateischemialimbpalliationpatientsspecialiststabletexastreatworse
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
amputationangiogramanklearterialarterybiphasicbloodchapterclassificationclaudicationcolorcriticaldiabetesdiagnosisdiscomfortdiseasedopplerfootischemiaMRIpainpatientpatientsperipheralpredictpulsepulsesrutherfordsavetreatmentulcerultrasoundwaveformwoundwounds
Q&A CLI & PAD | CLI: Cause and Diagnosis
Q&A CLI & PAD | CLI: Cause and Diagnosis
arterychapterdopplerheartmonophasicrateveinveins
How Much Flow is Good Enough | Determining the Endpoints of CLI Interventions
How Much Flow is Good Enough | Determining the Endpoints of CLI Interventions
angioarterychapterfootincompleteischemialimbmultiplepatientperonealrevascularizationrevascularizetheorytibialtreatingversusvesselwoundzone
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
Angiographic Predictors of Successful Revascularization | Determining the Endpoints of CLI Interventions
angiogramangioplastybasalbiphasicblushcalibercapillarychapterchronicallycollateralsdopplerflowhemostatincreasedischemiaizationnormaloccludedopacificationoutflowpatientsperfusionphasicpredictorsrevascularizationrevascularizesignsignaltriphasiculcerulcerationsvessel
Post-intervention Non-invasive Tests | Determining the Endpoints of CLI Interventions
Post-intervention Non-invasive Tests | Determining the Endpoints of CLI Interventions
abnormalangiogrambasicallybloodbrachialchaptercompressiblecuffsdigitsdiseaseduplexflowfoothealhealinghelpfulincreaseindiceslevellimbmultiplenormalpatientsperfusionpredictivepressurepressurespulserestoringsegmentalsignalskintibialtissueulcervascularvesselvesselsvolumewound
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
angioplastychaptercolordopplerduplexflowhelpfulimageimagesimagingoccludedpatientssensitivespectraltriphasicultrasoundvelocitywaveform
CT Angiography | Determining the Endpoints of CLI Interventions
CT Angiography | Determining the Endpoints of CLI Interventions
aneurysmsangiogramangiographycalcificationcalcifiedcenterschaptercontrastemoryequivalentinterventionkneemraoccludedpatientvessels
MR Angiography | Determining the Endpoints of CLI Interventions
MR Angiography | Determining the Endpoints of CLI Interventions
angiogramanteriorartifactcalcifiedchapterclaudicationdeterminehemoglobiniliacimageinterventionmraMRIocclusionpatientsrecanalizationreperfusiontibialtissuevessels
What's on the Horizon | Determining the Endpoints of CLI Interventions
What's on the Horizon | Determining the Endpoints of CLI Interventions
angiographyarterybasicallyblushchaptercontrastdetectflowframesgraphimagesinjectioninterventionlevelmappingoxygenoxygenationpatientpatientsperfusionproceduresensorstissuetransmissionundergoingunderwentvessel
Clinical Follow-Up | Determining the Endpoints of CLI Interventions
Clinical Follow-Up | Determining the Endpoints of CLI Interventions
chapterinterventionischemiamedicationspatientspodiatry
Q&A Restoring Flow | Determining the Endpoints of CLI Interventions
Q&A Restoring Flow | Determining the Endpoints of CLI Interventions
ballooncenterschapterdissectionexpandablekneeperfusionsegmentsstentstibialvesselwound
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Case 2 - 4-month delayed heal wound, Rutherford Cat. 4 | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 2 - 4-month delayed heal wound, Rutherford Cat. 4 | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
anteriorballooncatheterchapterCordiscritical limb ischemiadeterminedeviceEnteer Re-Entry DevicehealediliacintimalischemialumenMedtronicmonophasicocclusionOUTBACK® ELITE Re-Entry Catheterpainportsre-entry devicerecanalizationstentingwaveformswirewound
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
AngioDymanicscatheterchapterCordiscritical limb ischemiadeviceenosfootguysiliacocclusionOUTBACK® ELITE Re-Entry Catheterproximalre-entry deviceSOS Omni Selective Catheterstentvessel
Transcript

so I'm gonna talk about me and shoulder embolization I'll take out my phone here so I know the timer perfect and I will try and cover everything about knee and shoulder embolization as quickly as I can so why are we doing this is really what I'm going to talk about there are

two different disease processes and the knee we're talking about arthritis and in the shoulder I'm talking about frozen shoulder so these are my disclosures obviously you know knee knee osteoarthritis is a major problem it

affects more than 30 million people in the United States and there are more than a hundred thousand hospitalizations a year just from NSAID toxicity in this patient population who takes NSAIDs for pain of course and they end up with

things like GI bleeds there are more deaths just related to ends as the United States and there are more than four million knee injections performed annually in the

United States keep this in mind there are double-blind randomized placebo-controlled studies that show that knee injections don't work and yet there are four million every year okay so what's the rationale for genicular

artery embolisation so in the knee we always learned that knee arthritis is degenerative right there's no inflammation like rheumatoid arthritis but many years ago they discovered that there's actually an

underlying synovial inflammation that leads to an increase in these cytokines being released that leads to new blood

vessel growth or angiogenesis and then this is the cycle of pain that occurs after that how does this actually occur

and like I mentioned it's not a new concept here as you can see this is a depiction from a 2005 article from Journal Rheumatology it just blown-up knee joint and what happens here is in the lining with that sort of peach color

or light color on the lateral aspect of the image where it says synovium gets inflamed releases these cytokines those cytokines break down the cartilage lead to new blood vessel growth and it's an inflammatory process so not just a

degenerative process and that it's that inflammation that we aim to target with genicular artery embolisation if you even take biopsies of patients who have inflammatory diseases and the joints here if you look at those two slides on

top where all those little dark staining blood vessels there that's a biopsy specimen from somebody with frozen shoulder to two slides below or actually biopsy specimens of someone's synovium who has just a rotator cuff tear and

you'll see there's no increased blood vessels in the two slides below but on top there increased blood vessels everytime you have more blood vessels you have more nerves that's why they called a neurovascular bundle because

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

and you can see on this t1-weighted image that increased area of enhancement which is the area of synovial thickening you actually see this on MRI beforehand and there it is located over the lateral aspect of the knee on the axial image

and so what we're doing sorry in the medial aspect of the knee so what we're doing here on the angiogram is and you solve these leg angiograms where everyone doesn't really care about these Janicki lit arteries they're really

important when you have sfa or popliteal occlusive disease because they serve as a collateral source but otherwise and people have arthritis they can be a real pain and pain in the knee if you will so this is a this is the superior medial

genicular artery it always drapes over the femoral condyle and you'll see here on this image you don't really see very much once we get into the vessel look at this it almost looks like a small about a cellular carcinoma like when you're in

the liver you get this tumor type blush vascularity that's what we're looking for that corresponds to the patient's area of pain and then after embolization this is what it looks like takes a very small amount

of embolic we're using maybe 0.4 2.6 sometimes 1 CC at most of dilute embolic that we're injecting this is another case again before and after if you look here on the right and then on the left you don't really see much until you

select the vessel out once you get into that super medial vessel you can see how much enhancement there is so in our clinical study of 20 patients this is what we did you'll see on the bottom here we used embassy and 75 micron in 9

patients and 1111 patients got a 100 micron and I'll explain why we upsized our particles so initially we wanted to go very small because that's what dr. o Cano had done in Japan but then we wanted to actually up size our particles

and I'll explain this here in our complications so like all clinical studies the purpose of doing really good clinical research is because this is early and we don't know if they're going to be complications and it's always fun

when you're the first one to figure it out and you tell patients I don't really know what's gonna happen and this is what happens so 13 patients had this kind of skin discoloration over their knee now we knew this because we've been

doing knee embolization for about 10 years in bleeding patients not necessarily arthritic patients so we had seen this before but none of these patients in this clinical study went on to have any alteration of the skin and

it resolved in all patients there was some minor side effects from basically medications and one small groin hematoma but there were two patients who developed plantar numbness over their great toe so under their great toe

basically in the medial distribution of their tibial nerve they ended up getting plantar numbness and this is believed at least in our experience to probably be related to non-target embolization to the tibial nerve the tibial nerve

probably gets its blood supply from many of these generic arteries so we decided

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

patient actually get the treatment and they don't know either if they got the

treatment and then we follow these patients and we assess if you if they have improvement all pain mediated procedures must undergo sham controlled studies because pain is so right in it's so intuitive to just

yourself so you can't really assess if there's a placebo effect so this is why post evo controlled studies are very important I believe we have one more patient left to enroll in this clinical study and then we should be done with

that so I'll switch gears really quick with shoulder and I'll go through this hopefully in five five minutes and I'll be under like 20 so frozen shoulder we're going to shift gears so unlike arthritis frozen shoulder is an

inflammatory condition that starts out of nowhere the classic history is a 35 to 45 year old woman who wakes up in the morning and says my shoulder hurts they think they slept on it incorrectly and the pain does not go away

they take medication doesn't go away the pain is worse at night and they can't figure out why it takes him about a month or two to go to orthopedic surgeon the surgeon goes you have frozen shoulder they can't lift their arm

forward they can't lift it laterally and basically it hurts over the shoulder

so I am mark Leslie I'm going to talk about critical limb ischemia it specifically cause and diagnosis if any of you have questions you can ask me we can we can certainly make this informal here are my disclosures so what I want to do in the next 15 minutes or so 10

minutes is discussed causes of peripheral artery disease in critical ischemia and I want to introduce diagnosis and clinical presentation of PID and CLI and one of the things my text and nurses always tell me is you

know we see the patient on the table we have no idea what happens before them we don't know how they got here and just a little plug i do teach a course for techs and nurses to sort of get that framework in i think it's really

important so well we'll talk about that right now so PID SI la silla and scope of the

problem so first of all as you know all vascular disease is related in other words coronary artery disease is related

to cerebral vascular disease is related to lower extremity or peripheral artery disease they're all intertwined okay that's why a lot of our patients that we see for peripheral t disease have a sternotomy score or a coronary stent or

have had strokes I will remind you that cardiovascular disease is the number one cause of death in the u.s. for both men and women to this day we still hear vascular disease is an old man's disease that is BS it is the number one cause of

death in women in the United States

peripheral artery disease affects up to 12 million peopl amputations occur yearly do a peripheral artery disease specifically critical

limb ischemia that is almost certainly way more than should be done up to two million people have critical limb ischemia so how do patients present when they have PA d in general okay there's really one of two presentations general

categories the first thing is intermittent claudication so Claude occation means I walk and I get pain okay when I stop walking the pain goes away you also have critical limb ischemia

which we call CLI CLI is such severe peripheral artery disease that you actually a foot and leg pain at rest in other words your blood flow is so bad that even at rest you don't have enough perfusion to go to

your foot and you have a scheming pain or your blood flow is so bad that you can't heal a sore or an ulcer okay so forget walking these are the this is the most severe form of peripheral artery disease

okay so again Kumar mentioned this before peripheral artery disease is like a highway if you and I say this a million times a day my pas are so sick of hearing it if you block a highway traffic can't get through and so it has

to go through detours when you go through detours you're always slower things are never as efficient and you back up that's exactly what happens here plaque builds up in the artery blood flow can't get through and so you can't

get to where you're going there's the highway analogy a key point and again I hear this all the time you know the patient came in with a wound but it's weird they never had claudication so maybe this isn't arterial wrong

intermittent claudication does not need to come before critical limb ischemia in other words many patients their first presentation is critical of ischemia so they'll never know that PA D they never have what you know pain when they walk

their first presentation is a potentially severe morbid and mortal one so what are the risks factors for PID it's everything we think about smoking obviously is a big one high blood pressure cholesterol diabetes obesity

physical activity well there's other risk factors family history and age so my question is what's the difference between these two risk factors what there's been these risk factors and these risk factors

one is changeable the other is not as much as we try with Botox or Juvederm or whatever it is we can't change our age and as much as we try we can't change our family history but we can change smoking and cholesterol and do all the

things that we can do and it's not easy but it can be done I will say a special

note of PA D in patients with diabetes unfortunately in diabetes all the bad things that happen in PA D amplified in diabetes so 20% of patients with

diabetes over 40 40 have PA D diabetes increases the risk of claudication three times in men eight times in women all right basically everything you think about going bad happens in diabetes it is more common it's more often silent

which means you're not going to catch it earlier it happens at a younger age it gets worse faster and the male and female distributions equal 15% of patients with diabetes develop ulcers and 85% of amputations it's the most

common cause of non-traumatic amputations worldwide and should be preventable so when we're in the angio

suite and we start talking about treatment of PA D we got to talk about Anatomy a little bit in levels so the

way we think about is three broad classifications we talk about a or two iliac disease which obviously involves the aorta and iliac arteries we talked about the fem-pop which involves this superficial femoral artery in the

popliteal artery and then we talk about the infra popliteal or below knee arteries and I will say more and more we discuss the infra maleo lore below ankle arteries because as our sophistication has gotten has got more progressive

we're able to not only treat sort of the arteries in the leg but the arteries actually into the foot and really reconstruct the foot arteries that are the end the the final off ramp to the ulcer so here's what we're looking at

you all see this all the time here's the distal eye order we have a common iliac arteries is a patient who's got terrible calcification in their proximal sfa you can see that there this is a superficial femoral artery that's diffusely diseased

looks terrible but that's through the thigh and this is a popliteal artery behind the knee the popliteal artery some I'm not sure anyone's heard this terminology or people use it but we talk

about p1 p2 p3 so p1 is the popliteal artery above the knee p2 is the popliteal artery at the knee p3 is the popliteal artery below the knee so sometimes we'll say you know we have to you know traverse a blowy p3 popliteal

artery segment so Bologna arteries you have three arteries as Kumar mentioned you have a tee perineal and PT it's very important that we have these arteries that especially profuse the ulcer there are a lot of anatomic variations and I

feel like my text and nurses here sort of we encounter these a lot where you have the posterior tibial artery coming off the polity or the answer tibial artery coming up high or low or whatever it is so just be aware of it this is a

classic patient where that's spaghetti there are no named arteries in that leg and so it's just nothingness and so we have to recreate what should be there again people died with diabetes patients with diabetes their distributions

different - they tend to have Bologna disease and so often we'll have a patient of the wound and we'll do an angiogram and you do the aorta you do the iliac you do the sfa you do the popliteal or the above knee popliteal

and ever in the rooms like oh sweet okay this is normal I guess we can go home and eat an early lunch and then you do the Bologna popliteal and you're like okay I guess we should cancel dinner so these patients often have just baloney

disease but it's awful Bologna nice disease again that if you close the end of the highway it's hard to reroute so this is sort of the most severe patients and unfortunately they're also the least likely to be treated okay and the reason

is Bologna artery disease is difficult it's much more difficult everyone and their cousin who's a vascular specialist cardiologist radiologist surgeon treats iliac and sfa disease there's not as many people treating Bologna disease

because it's more time consuming it's more technically challenging the patient population is difficult and unfortunately those are the ones who need it the most

I would like to convince you that

claudication is a different disease than critical limb ischemia even though it's the same on you're lying principle it's a different disease and here's why what is the fate of a Claude account so in five years

most Claude Akins are stable now I'm not saying they're living without pain I'm not trying to diminish their symptoms they may say look I can I can't live my life because I'm you know it hurts to walk from here to there and I'm sorry

but at the end of the day most of them will be stable they're not gonna dot they're not gonna get worse and they're not gonna have an amputation only a small percentage progress to critical of ischemia now let's look at the fate of a

critical limb ischemia patient in one year the majority are either dead or have another amputation have a bilateral heba have lost one of their legs and a lot of them have lost both their legs and so this is a serious mortal morbid

disease in fact if you look at it compared to some cancers critical of ischemia has a worse overall survival than a lot of common cancers and when I was trained my mentor used to say CLI critical mass Kimia is cancer by another

name we just have to treat it like palliation okay and that becomes important the way we treat things so when I treat a Claddagh Kent I am really looking toward their entire life you know is this treatment worth it I don't

want to make you worse with a critical limb ischemia patient I am all hands on deck we're gonna do everything we can and why every 20 seconds a lower limb is lost to diabetes patients with rest pain or gangrene really need to see a

specialist I've asked your specialist not any vascular specialist a basket specialist who knows how to do critical an ischemia okay so I'm from North Carolina or I live in North Carolina now cardiovascular disease rates were you

know obviously toward toward the south hi here's the amputation rates we are right there in the amputation belt if you look at the dark blue they sort of along the south and into Texas and we're all in the amputation belt right now

because we're all in Texas and so we do way way too many amputations sadly over 50% of patients who have an amputation never had an angiogram so in other words that doesn't mean someone tried and failed which is at least respectable you

know at least tried it's we never looked we never even bothered now there's a lot of amputations that should if someone's septic and dying or sure or limbs unsalvageable of course yeah you don't just take the like I understand

that but that's not 50% that is a lot of patients who no-one's even bother looking so how do we make the diagnosis

of critical of ischemia well a lot of times it starts in our office with a physical examination so we do a risk

factor assessment and this is what happens before they get on our table with with everyone in this room and us seeing the patient assessment of intermittent claudication and it can be subtle many patients don't come in and

say oh yeah I have pain when I walk for a short time and then it I rest and it goes away a lot of times it's yeah you know my leg gives out or now it doesn't hurt it's kind of this weird feeling when I walk and it these atypical

symptoms and then obviously if they have a wound you have to a wound evaluation on physical examination things we're looking for feeling a pulse you'll be surprised how many primary care providers never feel a pulse and if we

say if you feel a pulse you may save a life because you may be the first one to say hey this patient doesn't have a pulse maybe they have got peripheral artery disease and if they prefer order these maybe have coronary artery disease

and maybe they should we start on aspirin or statin and save them from a heart attack and stroke and so you really can save a life abnormal capillary refill so in other words you've got such bad blood flow

that if you smush on their foot it takes a long time for that blood to come back because they have such poor perfusion there's something a Peugeot stess TWEN that if you lift their leg gravity alone pushes their blood isn't it overcomes

the force of blood and so there are foot becomes power becomes losing some color and then when you put them down it dilates and you get sort of this ruborous red color so that's a burger sign I just had a good example in clinic

about a week or two ago so what do we ask for patients do of any pain or discomfort in the leg thigh or butt with walking your exercise I will sell you tell you I often don't use the word pain because everyone thinks pain is

different so so some people say well it's not paying it's a key lake ease pain to me I'm a guy everything's pain to me right low low threshold but discomfort is a good way of asking it foot or toe pain

that disturbs your sleep do you have any skin ulcers or sores on your ankles feet or toes I think it's very important to know what kind of patient you're talking to in terms of Education level or in terms of just language so some patients

don't know what it all sir is and they use the term sore some people don't know what a sore is they used term wound and so just sort of you ask things different ways I think is really important when we all talk to our patients and again a lot

of classic history will miss a large majority of PAE because patients don't read the textbook the one thing I'll say is I hear this all the time well the patient had pulses and so they don't have P ad that is hashtag false and the

reason is pulse exam is insensitive so in other words even if you feel pulses they can still have peripheral artery disease okay now if you don't feel pulses they certainly have peripheral artery disease or you're just terrible

at it PID classification the way we talk about patients with PA D we use a classification scale called Rutherford it may come up so in other words patient who has PA D but asymptomatic is

Rutherford zero a patient who has got major tissue loss and is basically 1 for amputation is Rutherford 6 and then everything in between is sort of a gradation we cut off 3 to 4 so 3 is claudication pain only 4 is critical in

ischemia rest pain alright so rather for classification when we talk about wounds you may see this you don't need to go in details but there's a Wi-Fi classification that sort of Germans how bad is the ulcer and how likely are you

to to lose your leg it's sort of a prognostic I will remind you that in medicine there's differentials for everything in other words the patient comes to you with pain or you talk to your friend or whatever with pain

there's a lot of things in cause pain it could be back pain arthritis infection DVT so there's things we have to think about when I was in medical school I sort of loved this my OB GaN professor said when he sees a patient the first

thing he does is say what do I think this patient have if this were a man because you get so pigeon-holed in your specialty every patient we see as well must be vas here must be vas care but you've got to take a step back and say

okay well am I missing something maybe it's arthritis may something else so don't get pigeonholed by your own prejudices which is a good life lesson in general there's also a differential for wounds so obviously

when we see a wound we could have arterial arterial tends to be sort of the toes and distal foot it can be severe pain if you see an ulcer around the ankle that tends to be more venous so vein related which again we

can treat and then a common cause is neuropathic so if you see I'm sort of at the pressure points where people walk a lot of times patient diabetes will step on something and where you and I would be like oh man that hurts

I better oh my god I have a wound there I better check that out they'll never know because they don't feel their feet and so they could have this monster ulcer and finally someone inspects their feet and says you know you have like a

golf ball sized hole in your foot and that's the first time they ever notice it so how do we test ever for peripheral artery disease well a lot of it is non-invasive now we do a B is a b is is a measure of blood pressure in the foot

or leg we can do some ultrasound to actually look at the artery and obviously we can do CT and MRI when we look at ultrasound you may look at this every once a while this is a normal ultrasound Doppler waveform where we've

got good blood flow up down and back three now the reason that's important is that correlates the sounds so if you listen to a artery i'ma do my best Doppler impression out okay a normal artery goes once you start getting

peripheral artery disease you lose that triphasic waveform it becomes biphasic when you get severe peripheral artery disease you lose that biphasic waveform it becomes monophasic and when you have nothing it becomes

okay so here's want to be alert to that so ankle brachial index is important and it's helpful again some patients who have calcific us a-- fication it's not helpful for I will tell you a B eyes alone actually not only do they predict

PA D they predict death that's how important PA D is link to mortality CT and MRI is very useful you can see here we can see a good anatomic description of the arteries unfortunately patients with calcium

sometimes we can't see as well because the calcium is so bright on CT scan that it obscures the lumen so we have other problems in patients with diabetes and heavy calcification and a lot of those patients just need to go to angiogram

and as you know my techs and nurses know sometimes rarely but sometimes we do an angiogram and it's normal and we say or there's mild disease we say okay perfect we've taken that off the table we need to move on when some of these

non-invasive testings aren't as clear so alright so in summary critical of ischemia is a morbid disease and can be the first presentation of PA d clinical suspicion and accurate diagnosis is essential for early diagnosis and

treatment and a multidisciplinary team that includes vascular venture loss who know critical limb ischemia not just the SFA and iliac artery jockeys and wound care specialists do decrease amputation rates I like this quote it's not mine

but I'm going to steal it with impunity amputation is not a treatment option it is a treatment failure okay so we have to keep that in mind I appreciate everyone's attention because we can save questions to the end or you do it now if

there's pressing I think we may need new batteries or my thumb's weak which is also a possibility any questions

concerns yes ma'am hmm hmm

yeah so it's a great question so the quail repeated so everyone heard it the question is when you're listening to a foot by Doppler how can you tell whether you're listening to the artery or the vein so don't forget in the foot the

artery in the veins live next to each other in fact there's two veins for every artery that's usually split like this and the arteries in the middle and so if your probe is over the vein you'll hear the vein noise I will tell

you a lot of times if you have severe peripheral artery disease it can be hard because an artery should sound and a vein goes but if you have bad PA D your artery could easily sound the difference is the way you can tell most of the time

is look at the heart rate the artery should track the the heart rate so in other words even if the monophasic should be whereas the vein won't be related to heart rate and then the other way you can tell is by squeezing down by

the toes because you can augment the flow so I often do it if I don't know I just squeeze it and if you get your oh right as you squeeze it that that's suggest that you're not on an artery yeah that's a great great point although

it don't upstage me with your sounds all right

good morning my name is Kyle Cooper I'm a an attending at Loma Linda University I'm also the answer to the question what if Mark last need never hit puberty so this is my hospital it's almost completed so this is a rendering of what it's going to look

like see if my thumb is stronger guys have no disclosures and I want to acknowledge these people my mentors and friends so a lot of people ask me where where Loma Linda is it's about an hour east of Los Angeles this is a view out

of my back back window and this is my commute to work by bike and out my front window it's a very mountainous part of Southern California so I'm gonna skip over the definitions because I'm marked in an amazing job on this but just as a

reminder you know peripheral arterial disease and critical limb ischemia and it would be a very important problem to know this is the same picture that mark showed it's important to know where the schema cultures that there are some very

characteristic findings on them they're typically painful at the edge they're often they have this punched-out appearance they're usually not wet unlike venous ulcers no discharge this is your welcome for those who's still

eating comparisons between dry and wet gangrene wet gangrene more associated with infection so the crux of my talk is

gonna be how do you decide when you've done enough intervention when to stop because as you know these cases can take

a very long time and as Mark talked about in critical limb ischemia patients you really need to get flow from the heart to the foot so while sometimes you have to stage these just because of pure exhaustion of the team or you need

Northmoor tools or you need to try a different approach in general if you have a patient with critical limb ischemia you you want to go until you have flow into the foot so that may require treating multiple levels of

disease that's okay and it's generally impractical to to especially late in the day to be doing a you know to treating every single vessel on the leg so there are theories for infernal

revascularization so below the groin as to when to stop so the complete versus incomplete revascularization therapy theory and the wound related artery theory also knows angio zome concept which you may have heard of

so the first theory is the complete versus incomplete so one run-off vessel is better than none two or three is better than one and tibial arteries are more important than the peroneal artery as they usually

enter the foot directly although this is variable Theory two is the wound related artery or angio zone theory it's suggest that revascularize in a particular target vessel that is most likely to profuse the area where the wound is is

going to be more advantageous so when determining which vessel is supplying the region of an ulcer you may have seen these pictures but conceptualizing the foot in terms of a specific angeas ohm is helpful to decide which one to go

after so you this is the picture I was alluding to you can see that the foot can in general obviously there's some blurring it between patient to patient but can be split into what part what artery is most likely to supply what

part of the foot and this can help you to determine if you have multiple options as to what to go after and for for your first vessel I'm gonna try both of them so not all ulcers are confined to a

single ng zone however this this tells you kind of where to start so Andrew graphic

predictors of a successful or vascular ization there are several so obviously you know you have a great result Andrew

graphically when you say hey the vessels back that wasn't there before so Payton see if a previously occluded vessel is a good sign but what else improve vessel caliber so after an angioplasty the vessel becomes you know more normal and

caliber the flow velocity increases or the outflow improves you see less collateral so that's a good sign that you've done something good because those collaterals have only gotten large because of increased pressure and the

normal outflow vessel and then increased distal branch opacification Perry procedurally things that you can look at that indicators of success are if the pulses returned or if you have a Doppler signal

that either comes back or goes from a mono phasic I'm not gonna repeat those sounds they were way above my pay grade but go from a mono phasic signal back to a normal triphasic or sometimes even biphasic is pretty close to normal

particularly in diabetics skin discs skin coloration you sit you may see a foot pink up relatively quickly after a good revascularization and actually some patients may develop rube or if they've had prolonged ischemia because their

capillaries are chronically dilated so you now sending flow into chronically dilate a capillary bed and they may get rubriz capillary refill time as you mentioned earlier may decrease to a normal range to less than 5 seconds and

ulcerations I've seen them just begin weeping or bleeding right on the table if you do a really good job upon awaking from sedation patients who have rest paint off and indicate that the pain is gone but you have to remember that

patients with wounds may actually wake up and be in a lot of pain because you're reap refusing an area that's been dead for or dying for a long time so the wound blush is something that I'm always looking for and I'm frustrated if I

don't see it and basically this is analogous to when the when the ulcer begins bleeding after a good revascularization you may see Andrew graphically that there's now a contrast blush in the area of the ulcer and so I

like to mark on the patient usually with a hemostat or something the area of the ulcer and take my final angiogram just to kind of know where it is and to be looking for that it may it not always be visible as it may take time for the

capillary network to adapt to the new flow pathways and for basal spasm to resolve but this is an example of a patient has an ulcer underneath the base of their big toe after revascularize them and you can see

that there's increased perfusion to that area so this is a sign of a good result

other things that we look at tools that we use include the ankle and toe brachial indices those are these at blood pressure comparisons between the

arm and the foot or the toe the great first toe we use segmental pressures your blood pressures and multiple levels down the leg pulse volume recordings which look very similar with cuffs down the leg but they're looking at the size

of the leg per heartbeat PPG's which is basically pulse ox for the four individual toes TCP o2 which is very important and not used enough which is looking at the oxygen tension within the tissue itself and skin perfusion

pressure so ABI as I mentioned as a comparison the arm and the leg pressures and people with CLI often have an ABI less than point for the pressures gonna be less than 50 millimeters in mercury so the ABI may be falsely elevated

people who have chronic kidney disease because the vessels get calcified and they don't compress very well when you blow up the cuff increasing it above 0.45 after if it's been below that is somewhat predictive of wound healing but

not that helpful at the time of an angiogram so as the higher the two pressures is often used to calculate this because you have two pressures and each leg right you have it dorsalis pedis pressure that

you can get and you have posterior tibial so the way that you do in ABI is you look at the higher of the two and compare that to your arm pressure so just remember if your ulcer is being supplied by the vessel that's got the

lower pressure than your ABI is could be normal you could still have CLI so again not always that helpful the toe brachial indices is a it is a little bit more helpful people with diabetes only because the toe arteries tend not to

calcify as quickly in these patients less than 0.75 is considered abnormal and increasing it up into the normal range of course is predictive of fluid wound healing so limitations these only really look at

the macro vascular so that you know the named ves blood vessel patency they don't really tell you what's going on at the level of the capillaries and a recent meta-analysis suggests that neither of them can be consistently

relied upon as okay it came to a normal range we're definitely not gonna get an amputation now so I think I really do have to press both buttons each time so the systolic pressure measurements for segmental pressures you basically look

at the pressures on multiple levels of down the leg a drop of greater than 20 is considered significant and then severity of a number of lesions can't be totally determined from that again this only really tells you what's going on in

the named vessels pulse volume recordings these are cuffs that are looking at the volume of the limb with each pulse it's helpful and patients would they have non compressible vessels because the leg actually has a it's a

microscopic but detectable increase in size with each pulse and so this is better in people who have non compressible vessels and changes in PVR's often will actually precede angiographic findings CTA findings and

recent publication from the s from the society vascular surgery however calls into question their usefulness compared to a bi alone the good pictures are coming soon so this is an example what you may see in

the chart for some of your patients with critical limb ischemia so this is actually segmental pressure and pulse while recording from where I trained in Miami and basically what we're looking at is a combination of things on one of

these sheets so the pressures are listed in the middle but each sheet is going to be different depending on your institution so you're looking for a big drop and pressure from one level to the next so if you look for example in the

middle at the right leg you know there's a 176 in the arm and then there's a 126 in the high thigh normally because of gravity you should have an increase in flow at that level so that's already I have normal on the right side and then

progressing down any grade any drop greater than 20 suggested that something may be abnormal at that level PPG's these are really good for detecting what may be going on at the foot or lower levels so you transmit an infrared

signal through the toe and then try to see how much of that light comes out the other side essentially and so the amount of it it's depending on how much bloods in the digit and the flow the flow of the blood vessels so if you had a

previously flatlined signal then restoring a pulsatile signal is considered a and it you know an approved marker of tissue perfusion so this is essential in patients who have distal ulcers particularly in the level of the

toe because restoring you see you've probably all seen those of you that work in labs that do a lot of peripheral disease seen an angio graphic result where you get flow down to like the mid foot but you see no perfusion down to

the digits and unfortunately that's often not going to be enough to heal a wound so the PPG's are something I try to get in all patients who have tote tote ones so there's an example of a patient who

has flatline and all five digits on the right foot and we recant alized their anterior tibial artery and had flow all the way down there and there was a wound blush in the toe and this is the restore pulsatilla T in all five digits the next

day so at our institution now and also I've modeled after what it was with my training which is the day after the procedure we keep all these patients overnight we get an ABI i segmental pressures and pulsefire

recordings and PPG's and anyone who has flat waveforms in them in their foot level or anybody with a toll sir and if possible we try to get a duplex which you get which I'll go over next it's not always reimbursable at all institutions

if you do them in the same day though so TCP o2 as I mentioned is something that's a little underutilized I think the the task two recommendations that we actually use to stratify the different types of disease and perf arterial

disease suggest that all patients with CLI should have this testing done but it's hard because patients have to not smoke and not drink coffee or tea the morning of the exam and that's hard to get patients to do you have to keep the

room temperature controlled and so it's office availability is limited so an improvement values greater than forty millimeters of mercury in the area surrounding an ulcer suggests that it's going to have successful healing so we

often will do this before we take the patient for an angiogram as a baseline and then bring them back afterwards and if we're if we have a very large increase that you know that's a good sign but of course we're our goal is

usually to be greater than forty and it's one of the few of these tests that's actually useful in patients who don't have Doppler signals so this is a totally not fake wound on this right foot this is example of what it looks

like you basically put multiple probes around the area of the foot and you're testing for the different oxygen tensions skin perfusion pressures is analogous but slightly different basically you're inflating a cop over

different areas of tissue and until the blood flow stops and then slowly deflating it until you can detect light being transmitted through that area again greater than thirty values or predictive of wound healing a lot of

numbers and there will be a test at the end of this so this is a chart kind of showing the ischemic wounds healing likelihood is correlated with an increase in the skin perfusion pressure so if you're less than 30 you're

unlikely to heal if you're greater than 40 it's most likely not an excuse mcquown and you should start looking at other ideologies like venous disease or neuropath neuropathic disease or infection duplex ultrasound is extremely

helpful and you know many of us use this on the table at the time of the procedure we also look at our own images because it reports are not all that helpful and what you're looking for I don't know duplex ultrasound is what is

the vessel wall look like is it narrowed is it patent are there are there large collateral so you're going to need a lookout for or what's the velocity of flow because as you know as you know you put your

finger over the end of a of a garden hose it's going to increase the velocity of the water that you're shooting at somebody and the flow direction and quality can also be detected so color Doppler imaging often changes from this

kind of smooth the uniform color with laminar flow on the on the right side to one of multi-directional flow with turbulence you'll see colored multiple different colors in the same image spectral Doppler waveforms are also

obtained with with duplex ultrasound so what you're looking for is this is the the picture equivalents of marks noises from earlier which is a triphasic waveform see that the flow goes above the line and then goes back below the

line and then comes you can wholly state that it comes back above the line here that would suggest that it was triphasic or normal and then these often just go above the line and they never go back below the line and these patients if

they're if you're looking at the ultrasound below the level and destruction so we're looking for a return from the image on the right to the image on the left we have specific number criteria that we use as a

determination of whether one we've been successful the numbers are not that important but the ant vanish is a duplex are that it's low-cost and it's highly sensitive but it it's time-consuming and depending on who the operators are that

are actually taking the images and who are the readers are you may or may not find them that helpful and it's less accurate for determining if the vessels completely occluded because they may just not have seen it they may have

missed it so it's operator dependent several papers suggest that we should be this should be our first line imaging study for following up patients after we do an intervention particularly angioplasty alone and if the initial

follow-up is normal we can usually push them out to just clinical follow-up and making sure they have a pulse exam if patients have an abnormal finding then we usually bring them back sooner and get a repeat ultrasound at two to three

months CT a very sensitive and specific

for it's very it at centers where CTA protocols are very good it's basically equivalent to a angiography has been shown in multiple papers to be so newer studies show that

CTA and Emory are equivalent so I don't know it depends on your institution there are a lot of places that still practice with the MRA is kind of the gold standard but CTA is just so much more available that CTA is becoming kind

of the new gold standard for for quick vascular assessment often like to use it to help us plan our intervention so if we don't know what's going on above the level of the groin CTA could be helpful to see whether or

not we could even go from right to left how calcified the vessels are or whether or not there's concomitant aneurysms things that we don't like to discover at the time of the procedure because we might not have the equipment we need to

treat it one of the strengths is that it's quick and that it's cheap but of course it uses contrast and just like you know we like to minimize the amount of contrast that we're using at knee and rogram this can use anywhere from 75 to

150 cc's of contrast or not a small amount and if you're gonna do an intervention the same or the next day that's a lot of dough that's a lot iodine in a couple days these are examples of what we can see at the time

of the procedure there's a 3d reconstruction and a BU these are kerf planer reformatted images what basically they draw a line down the image and you can lay the entire vessel out even if it's very squiggly and then this isn't

this an angiogram and that same patient you can see that they correlate exactly another example a patient with aortic calcification you can see that it can be potentially challenging this patient with diabetes to determine whether or

not these vessels in below the level of the knee are paetynn or not because I can tell you that the one that's closest to the small bone there is actually occluded it's just all calcified you can't really tell what's going on and

the one that's behind that is actually Payton so it could be difficult to tell whether it's calcium or contrast that you're seeing this is where MRA can be

very helpful these patients the calcium this and the vessels can be

seen through with the MRA it doesn't it doesn't cause as much artifact so it could be easier to see what's going on in calcified vessels additionally you saw an image in Marc's talk as well of this is an example of a time-resolved

image of an MRA or you can basically recreate exactly what you're seeing in an angiogram and this could be very helpful to kind of determine what kind of TVL disease you're getting yourself into

newer MRI techniques that we're using in the evaluation patients with PID functional MRI which compares the ratio of how much oxygen versus deoxygenated hemoglobin we have in a tissue so we can apply this to a pre and post exercise

scenario in patients to have claudication as well although it's not it's only approved in research protocols this is an example of what you see for that so pre intervention here's the CTA image reconstruct

in 3d with a long segment an iliac occlusion and then post intervention you can see there's a standard reconstructed vessel and the you can both chart this out and do it and superimpose it on the MRA image and you're gonna get an actual

quantitative amount of tissue reperfusion but studies are still ongoing to determine just how much increasing the amount of red that's in that image is important we don't know the answer to that yet here's just

another example a patient underwent an anterior tibial artery recanalization and you can see the improvement in the t2 star which is just one of the one of the measurements that you can use on these images so what's on the horizon

none of the all of these are great tests for determining how to plan a procedure or if you did a good job but really what we need is something like analogous to a wound blush which is at the time of the procedure can we quit or do we have to

go after another vessel so one of these is 2d perfusion angiography so this is an advanced DSA technique it requires you to have a specific software package in your lab you have to use a standard contrast bolus and rate to deliver it

with a power injector you have to use the same frames per second every time it's 3 frames per second a 30 second lateral projection acquisition at least it was on the Philips system that I learned it on post processing software

calculates how quickly the contrast arrives how long it takes to peak wash in curve with all this stuff is automatically calculated and you can alter the image of the graph similar to how you window and level your your

images when you're filming you can glean all that information out region of interest can be drawn over a specific area like the wound and see just how much improvement in flow you've had so this is an example a is a pre

intervention of B as post intervention basically this is a time this is a time to peak graph so basically you know the greener it is the quicker the quicker that the contrast arrived to the tissues yet another example how you can graph

these out you have an A and B in a patient that the top level was a patient where we did an intervention and there was still and B was post intervention are still significant that there's a drop in the time to arrival of contrast

and then the image below this is another patient where Reid intervened and saw that there was no significant change despite opening up the SFA and popliteal artery and so we had to go on and and treat the anterior

tibial artery too after that and just one more example this is that patient I showed you earlier with the the wind blush you can get a 2d perfusion eye equivalent of that same picture you can draw a region of interest over there

other things that have been used include fluorescence angiography so this is an intravenous injection of a dye called IC g IG C they use it not the optima logic pursuit and procedures still it's about for the last 40 to 50 years

it stays intravascular for a long amount of time and it's excreted through the liver so basically you give it ia or or IV and our purposes we would give it I a because we're already in the artery fixing it and then we darken the room

and we use a detector to determine just how much flow we have so in this patient who underwent an intervention pre intervention there was no flow below the level of the for foot-post intervention there is that vessel you can see that

you see the artery flowing to the toe but there's really not much perfusion below the level of these KS car on the top of the Tobit nail bed and this is another way that those images can be displayed which show you that you know

red is more flow and you know blue is less and so you can see just how much perfusion can be has been achieved this can be done on the table in the room and you can actually get specific photon count levels and this can kind of be

used to give you a bit more objective rather than just a subjective measure of when you can stop other tools include tissue oxygenation saturation mapping so basically you are mapping out the transmission you see a theme here

transmission of light rays in the near-infrared spectrum there absorb differently beaten depending on the weather you have oxygen bond to your hemoglobin or not and so the probes placed on numerous points over the foot

and similar to what you saw with the ice with the dye injection you can actually map this out and this is in a in a paper where they're actually showing that this can actually be used to determine where angio zomes truly are in patients

because I showed you that picture earlier where it was a cut and dry right down the middle of the foot but in patients especially who have long-standing disease those and resumes can be really variable really really

futuristic here is implantable tissue oxygen sensors so these are basically little tiny beats that can detect the amount of oxygen that's in the tissue of real-time these are these are undergoing research in multiple sites and are used

in a few places routinely in Europe so in one recent study ten patients underwent implantation of four sensors one in the treated three in the foot and one in the arm is a control and basically they look at nine out of the

ten of them showed a measurable increase in dynamic oxygen after intervention so this is kind of how it works it's supposed to be sitting in the level of the Kapler that it can detect whether or not you have real-time oxygenation so

here is kind of cool you can watch as you're doing the procedure the the different steps of the procedures the balloon goes up and the number and the oxygenation tension goes down you deflate it goes back up and you repeat

that multiple times when you put in a stent you can see that there's a dramatic rise and the amount of oxygens in the tissue so they show promise but unfortunately all of them are still undergoing studies so nothing has really

hit the primetime yet finally the most

important thing that we that we use is clinical follow-up if you think that you can treat these patients and send them off to their primary care doctor to manage them from now on that's the wrong

answer you need to see them back special critical limb ischemia patients you probably should be seeing between one and three weeks after your intervention and taking responsibility for putting them on all these medications so this is

what your Doc's are looking at making sure that they're on all these appropriate medications and if they're not comfortable doing wound care then they often refer them out to podiatry or surgery for that for that intervention

any questions okay good there's one question the back

if you yeah thank you I can't see that far I don't have glasses like mark how often do you use dents below the knee because I've I don't see that I work

with vascular surgeons is it just when you have a dissection or so it mean that depends on your on your practitioner so there are centers for example like the Mount Sinai group in New York that use them all regularly and they use them not

just for short segments but sometimes even long segments disease there are some places who they think it's heresy to even do it it's been shown to be safe and effective I would say I'd probably use it in less than five to ten percent

of my tibial interventions but there are times yeah if there's a perforation if there's a dissection or you just you balloon it and it immediately looks just like it did before so you know if that's the vessel that's perfusion or your your

area of your wound I think you you need to do what you'd need to do to get that flow back restored yeah I think it's like anything if you're using it all the time you're probably doing the wrong thing if you're never using it you're

almost certainly doing the wrong thing there's very good data for tibial stents using coronary stents below the knee and yeah totally we're here with Kyle it's not all the time but we use it and it should be used

most likely issue this year they presented an abstract was presented yesterday which is showing long lesion treatments so you know traditionally they're just using no more than three to four centimeters but now we're talking

about treating up to even half the length of the tibial vessel and these are what balloon expandable stents which I always thought would probably have a problem with being crushed as patients walk around but it doesn't seem to bear

out that way and again remember that the purpose of this is to get the vessel open long enough to heal the wound not necessarily to keep it open until they the patient expires orientation

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

who came in with just over she had a four month with delayed heal wound she finally presented at us after the wound

healed because she had rest pain that wasn't recognized they thought the pain was due to the the wound the wound healed and they realized oh she still has pain well that's because she has crippled limb ischemia and so she was

she was brought in for that just you know she has bilateral disease I'm just gonna concentrate on talking about the right leg for for today's discussion but she does have inflow disease in these types of patients I do get

cross-sectional imaging so I can determine just how extensive the iliac diseases or if it involves the aorta to then determine what it what to make sort of jumping into it so the right leg again she has about a 10-7

occlusion of the bright SFA this occlusion here's the femur for reference the knee is actually down way down here so this is actually just above the a doctor again tried to use in this case I did do wire work I got past a good

portion of it here's my wire right here and here's the O pacified lumen so what you can see is the wires actually adjacent to the lumen so at this point I'm re said suspecting that I'm sub intimal I confirm that by removing the

wire do little puff there's blushing that blush is up intimal so I know I'm sub intimal so at this point what were the things you can do obviously the first things you do try to pull that back try to find a different space a

different location to wreak analyze when that's not successful then you start thinking about southern super recanalization multiple devices for that there's the outback device which is a little hook that you can try to spear

yourself into the main lumen and pass a wire there's also device from Medtronic about the anterior device what this is it's a balloon that you inflate to sort of stick yourself into that wall it has two ports that are on the side one

points one direction one points the other direction it allows you to find that open lumen and we use a re-entry angled wire to get back in so in this case just as a cartoon here's the the anterior device place downward this is

would be the balloon inflated you would basically jab into the port into the into the main lumen so that's sort of basically what I did here again here's the agile device each of the ports you can see as a little divot once you put

it sideways you can determine which we are going to stick there's my wire right into the lumen and there it is down further into the rest of the the vessel subsequent to that pre-dive it with a three and then overlapping

since were used finally here is her post i did treat both legs but you can see just the dramatic difference going from the monophasic waveforms to tri-phasic waveforms restoration table api's for her I couldn't help but throw this in

her I couldn't help but throw this in

just talking about back device here's a patient that had a iliac occlusion the right it was very difficult to get past the very proximal plaque cap so in this case I did a sub into a we can remember I talked about that out back device it

has like a little L and upside down L that you can use to point into the vessel lumen so what I did was on the healthy side I put in a sauce on me this allows me to know exactly where the arches and where the right coming he

like origin is certainly I don't want to be out backing into the aorta deeply right so this allows me to identify where that location is once I've out backed into the vessel here then I just pre dilated and then stent it up into

the vessels so just sort of interesting case one thing since I am Austin there's a couple of places just you may or may not be aware of this is a Barton Creek it's actually not just a cross town lake not far from here it's about a seven

mile a little Greenbelt inside the city where basically you don't feel like getting your traffic your gaze definitely away from everything this is called the land bridge oops so there's a couple of guys right here

that's about probably about a 20-foot jump there's this guy right here who just took off from that ledge it's about a 40 50 foot drop I did try to get up to that part one time it's about it one foot with ledge so I didn't get the ax

courage to do it now I'm sort of happy because during the summer months it does get just dry up so what I noticed with this is this is about a 10 12 foot depth here this guy's jumped in something's about

12 to 15 deep so it's sort of interesting the the balls enos of these guys some guys are doing backflips out there there is water there so you know if you guys have a chance check it out

if you do happen to find it I'm not encouraging it excited I wanna get sued but if you want to take a jump off have fun all right thank you [Applause]

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.