Create an account and get 3 free clips per day.
Chapters
Iodine Mumps/Sialadenitis|Steroid, Antihistamine|72|Male
Iodine Mumps/Sialadenitis|Steroid, Antihistamine|72|Male
2016doseembolizationiodinatedrenalretroperitonealSIRsteroidsymmetricsymptoms
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
Does The ATTRACT Trial Result Change How You Manage Patients With Acute DVT
abstractacuteAnti-coagulantsanticoagulationattractclotclotsdistalDVTendovascularendovascular Clot RemovalextremityfemoralinterventionpatientspharmaphlegmasiaproximalrandomizedsymptomssyndromeulcerationsveinVeithvenous
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
Risk Assessment For Thrombosis Prophylaxis In Vascular Surgery - Necessary Or A Nuisance
anticoagulantsantiphospholipidantiplateletDVTendovascularfactorsfamilyhistoryincidenceinfrainguinalinpatientintraoperativepatientsperioperativepreoperativeriskscreeningsurgicalthoracicthrombosisvascularvenous
Panel Discussion (Session 62) 2018
Panel Discussion (Session 62) 2018
Aspiration SystemPenumbraPenumbra’s Indigotherapeutic
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
accessappropriatelyAV AccessAV Vascular AccessbilateralcatheterchronicCKD-Stage 4creatinineDialysisdisadvantagesegfrFistulapatientpatientspermanentpredictingproteinproteinuriareferralrenalrisksurgeontrajectoryvalidatedvascularveinswrist
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
centeredclinicaldeviceDialysisdiseasefuturehemodialysisinnovationkidneynephrologistoutcomespatientpatientsregulatorytherapiestreatmentsvascularVascular access
Thrombosis Prophylaxis Following Venous Ablation
Thrombosis Prophylaxis Following Venous Ablation
chartcompressiondegreeDVTfamilyhistorymolecularpatientprophylaxisriskSaphenous AblationscorescoresstockingssurgicalVTE
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
Surgical Creation Of A Moncusp Valve
Surgical Creation Of A Moncusp Valve
applycompetingcontralateraldeependovascularfibroticflapflowhemodynamicmalfunctioningmobilemodelingMono-cuspid neovalveMono-cuspid Stent PrototypeparietalreconstructionrefluxstentthrombosisvalveValvuloplastyveinvenouswall
2018 Update On KDOQI Guidelines For Dialysis Access
2018 Update On KDOQI Guidelines For Dialysis Access
accessarticlesCongenital Kidney DamageevidenceexternalfistulasguidelineshemointerventionalkdoqiLiving Donor for TransplantmortalitymultinephrologistpediatricradiologistrenalreviewtransplantvascularVascular access
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
How To Treat The Foot Varicose Veins
How To Treat The Foot Varicose Veins
ambulatoryassociateceapfoamlaserliquidpatientphlebectomyphysicalpolidocanolrefluxsatisfactionsclerotherapyspidertransdermaltreattreatmentultrasoundvaricesvaricosevaricose veinsveins
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
accessaneurysmalbypassclinicalDialysisdiameterduplexdynamicflowflowsgraftluminalmeasurepatientsrenalsensitivityultrasoundveinvelocityversusvolume
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
Transcript

I've actually encountered this a couple of times in my brief career. The first time it was a 72 year old guy. Had end stage renal disease due to Wegeners. He had acute flank pain and a large retroperitoneal hemorrhage.

He was brought to IR for a renal embolization and about 12 hours post-procedure, he developed marked symmetric sub-mandibular swelling that was non-tender and non-pruritic. So I think it's best shown with some pictures. So, as you can see, sub-mandibular glands are massively enlarged.

And, at the onset of symptoms, he was given an additional dose of steroid an antihistamine. Actually on a previous case out there he did have a history of "throat swelling" when he'd been given iodinated contrast in the past.

So he was pre-medicated with steroid and antihistamine, and he got another dose after the symptoms began. He confirmed that this "neck swelling" was identical to that which he'd had in the past. And the symptoms were managed conservatively, and he had spontaneous resolution over a one-week period. So here is the before and after.

As you can see it's a pretty dramatic reaction that he had.

- I've made this agent comparison chart, just sort of summarizing the areas where I think that Onyx is better as compared to ethanol. I think things to come, oops, sorry, I got to go back. I think the items to be commented on are one, that there's less skin necrosis with the polymers.

It's a less painful procedure, and the Onyx, in our experience, is durable. But in the treatment of any type of AVM, you have to get your agent into the nidus of the malformation. If you don't do that,

then you're just doing a proximal occlusion. And we know from the surgical literature that that does not work. They will simply, the angiogenic stimulus, whatever triggers it, will continue. And that gets me to another point.

I really don't think that we really know what stimulates these malformations to grow. We think it may have something to do with a resistance in the flow, but we have some pelvic AVMs who have been stable for 30 years.

We're not touching them, and we have no intention of touching them, whereas we have children who will present with an AVM at age four and then by age seven, they are unable to ambulate. So in any event, I think that

polymers represent the future. And I just want to quote from this old movie, The Graduate. "Plastics," thank you.

- Thank you to the moderators, thank you to Dr. Veith for having me. Let's go! So my topic is to kind of introduce the ATTRACT trial, and to talk a little bit about how it affected, at least my practice, when it comes to patients with acute DVT.

I'm on the scientific advisory board for a company that makes IVC filters, and I also advise to BTG, so you guys can ask me about it later if you want. So let's talk about a case. A 50-year-old man presents

from an outside hospital to our center with left lower extremity swelling. And this is what somebody looks like upon presentation. And pulses, motor function, and sensation are actually normal at this point.

And he says to us, "Well, symptoms started "three days ago. "They're about the same since they started," despite being on anticoagulation. And he said, "Listen guys, in the other hospital, "they wouldn't do anything.

"And I want a procedure because I want the clot "out of me." so he's found to have this common femoral vein DVT. And the question is should endovascular clot removal be performed for this patient?

Well the ATTRACT trial set off to try and prevent a complication you obviously all know about, called the post-thrombotic syndrome, which is a spectrum from sort of mild discomfort and a little bit of dyspigmentation and up

to venous ulcerations and quite a lot of morbidity. And in ATTRACT, patients with proximal DVT were randomized to anticoagulation alone or in combination with pharma mechanical catheter-directed thrombolysis.

And the reason I put proximal in quotes is because it wasn't only common sort of femoral vein clots, but also femoral vein clots including the distal femoral vein were included eventually. And so patients with clots were recruited,

and as I said, they were randomized to those two treatments. And what this here shows you is the division into the two groups. Now I know this is a little small, but I'll try and kind of highlight a few things

that are relevant to this talk. So if you just read the abstract of the ATTRACT trial published last year in the New England Journal of Medicine, it'll seem to you that the study was a negative study.

The conclusion and the abstract is basically that post-thrombotic syndrome was not prevented by performing these procedures. Definitely post-thrombotic syndrome is still frequent despite treatment. But there was a signal for less severe

post-thrombotic syndrome and for more bleeding. And I was hoping to bring you all, there's an upcoming publication in circulation, hopefully it'll be online, I guess, over the weekend or early next week, talking specifically about patients

with proximal DVT. But you know, I'm speaking now without those slides. So what I can basically show you here, that at 24 months, unfortunately, there was no, well not unfortunately,

but the fact is, it did cross the significance and it was not significant from that standpoint. And what you can see here, is sort of a continuous metric of post-thrombotic syndrome. And here there was a little bit of an advantage

towards reduction of severe post-thrombotic syndrome with the procedure. What it also shows you here in this rectangle, is that were more bleeds, obviously, in the patients who received the more aggressive therapy.

One thing that people don't always talk about is that we treat our patients for two reasons, right? We want to prevent post-thrombotic syndrome but obviously, we want to help them acutely. And so what the study also showed,

was that acute symptoms resolved more quickly in patients who received the more aggressive therapy as opposed to those who did not. Again, at the price of more bleeding. So what happened to this patient? Well you know,

he presented on a Friday, obviously. So we kind of said, "Yeah, we probably are able "to try and do something for you, "but let's wait until Monday." And by Monday, his leg looked like this, with sort of a little bit of bedrest

and continued anticoagulation. So at the end of the day, no procedure was done for this particular patient. What are my take home messages, for whatever that's worth? Well I think intervention for DVT

has several acute indications. Restore arterial flow when phlegmasia is the problem, and reduce acute symptoms. I think intervention for common femoral and more proximal DVT likely does have long-term benefit, and again, just be

on the lookout for that circ paper that's coming out. Intervention for femoral DVT, so more distal DVT, in my opinion, is rarely indicated. And in the absence of phlegmasia, for me, thigh swelling is a good marker for a need

for a procedure, and I owe Dr. Bob Schainfeld that little tidbit. So thank you very much for listening.

- Thanks a lot for again for inviting me because you know, (laughs) I'm in very hostile territory, (audience laughs) but, I will tell you the truth now, (audience laughs) and being in hostile territory and telling the truth can

be totally different things and I, I'm also never in any way, you know I'm totally scientific type, I will never be polemic, like you are. (audience laughs) Okay, so let's start with the truth, start with the truth, I show you two typical cases, this is a typical ethanol case

here with couple of, it was successful, at least in losing it's toes, and I'll show you another example again, a foot AVM, this is one session, one session, in fact its 14 vials of squid in this case, and it's done. so, this is not statistic, but I always

see, and I've seen it today in a couple of talks, Onyx used as glue. And that doesn't work, you have, if you start to treat a patient, you have to really treat him and it's not something you inject, and that it's gone, you have to fill all the AV shunts, you have to fill the whole lesion.

And if you don't do it, of course you see a lot of failed on ex-patients and if its used improperly, and that's the only thing I, I wouldn't say I agree with you, I would say I'm thinking in the same direction, yeah, that's if you use Onyx in the wrong way, you have a very good chance to make thing worse.

So, its a technical thing, and if people start to use Onyx, and they inject something, and then its something like putting in some coils, that's not worthwhile, it makes no sense to include some arterial feeders, we know this since, I think more than 20 years, it's like making a surgical ligation of the feeding

artery, it's totally senseless. You have to completely occlude the area of the arteriovenous shunting, apart from the predominantly venous one, where you can just occlude the venous outflow, by whichever thing you use, and the area of arteriovenous shunting is always bigger than you see it in a normal DSA,

because the blood does the same as the contrast medium does, it flows along the route of the least flow resistance. And so, at the end, if you want to be sure that you have to completely occluded the AVM, you will end up with a cast which is much bigger than what you see at the beginning of a DSA, yep, it was agreed, see.

- [Audience Member] You know I'm shaking my head as you talk. - Yeah, yeah, your getting tired. (laughs) Here we go, So, and this is only the really scientific slide in my talk, because when people die when you inject ethanol

in vascular malformation treatment, its something, its banal, all of us have seen it many times, but there was a scientific question, why do people die on the table if you inject ethanol in AVM treatment on vascular malformation treatment? And there's one scientific publication here, because we

all thought do they die because of complete vasoconstriction in the pulmonary arterial system, or is it, are they dying due to the thrombi? That, you know ethanol, it uses small slatch or big thrombi and they go to the pulmonary circulation and they die. So, is it the vasospasm, induced by ethanol, or is it the

thrombi induced by ethanol, that they die is clear. So, there was a very nice publication out there in 2012, was presented in Malibu, at the IFSA meeting, it was about four patients, which three of them died, two were just after injecting of between five and 12 milliliters of ethanol, one was a direct puncture pelvic AVM, and it was caused,

that this was nicely stated there, it was caused by multiple small peripheral emboli. So it's not vasospasm that kills the people, it's the thrombus, and I think this was a very very worthwhile contribution to all our knowledge and really thank you Bob for this paper, thank you

very much, now we know why they died. I haven't, unfortunately I can't contribute to this discussion with Onyx because there wasn't any patient dying on the table during my embolization's and I've done now, we're preparing the paper of 160 AVM patients with I don't know, 400 sessions and well maybe if we wait

40 years more, 50% will have died but, (audience laughs) from natural cause, so I can tell you again this is the truth, we will talk about the truth here, and this is, ethanol can be worthwhile even in AVM's, I don't deny that and maybe it will have its place for a couple of more years

before we do Onyx and MEK1-Inhibitors, so there is for couple of more years, this is a role for ethanol, but it's somewhere deep down there, and this is a slide I show for the third time now just for you Wayne, please and I show it because you should start to publish your classification.

I didn't use it because there is no paper there, please publish it then I will always classify according to your classification. - [Audience Member Cheers] - Thank you for your attention, thank you for giving me the chance to talk about the truth here in this seminary

and please don't do anything stupid with ethanol.

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- Alright-ey, hands put up. Who is for Onyx? Put your arms up. - [Male Audience Member] Who supports the Onyx Motion? - Onyx Motion, that's correct. He should've gone to law school. Who supports the alcohol motion?

Who supports the motion in the ocean? Alright, thank you I think we covered a lot of territory today. We want to have theses things and we are so glad that everybody came. I think this is Tony's first time,

Walter's first time here, Loronze and we really learned a lot today. I'm really glad Pletio Rossi was here because without him and his development of selective catheterization, I mean where would we be

sticking needles in every artery like that, trying to do angiograms, much less advanced sheaths or anything else. Pletio was wonderful having him here, one of my hero's. Anybody like to say anything?

Anybody got any questions or anything? - [Female Audience Member] The HHT scientific meeting's in June in Puerto Rico if you want some more good-- - Do they have electricity there yet? - [Female Audience Member] I hope so, I knew it looked nice before.

- Oh, okay, okay. Alright, well thank ya'll so much and we'll see you next year. (Clapping)

- I am not Walter's enemy. I can tell you that. I am against the motion. (man laughing) I will stick to the truth, to the facts. I don't like polemic, like you. I don't like to play, let's say games

of undermining what my opponent is saying. I'm just showing what I believe in because it is the truth, okay? (quiet laughter) I have nothing to disclose. Let's stick to the definition of 'cure.'

We all know that 'cure' means 'at least one year follow-up, angiographic follow-up after the, so-called, final angiography, that shows that malformation is gone.' Call it whatever you want.

Technical success, obliterated, trombosed, concluded, ablated, gone. Then at least one year follow-up on that. Angiographic to prove it's gone. The rest is just a scale on how you can evaluate the results.

Angiographically and clinically. The only way, for me, to speak to the truth is to find in a material where there is a chance to compare.

Hat to hat. Both type of treatments. Polymerizing versus alcohol. And, the only way to find such a place is to go to Wayne's place, because he's also constantly called

talking about salvaging this and salvaging that. I am very critical about what Wayne does. You can be assured about that. He's had 16 patients, I dig out there, and polymerizing agents they were failed.

Definitely, failed. Actually, they were salvaged, by Wayne. And, I'll show that to you. These are the patients. This is the time to which they've been treated. The usual type of distribution.

Young patients. All of them extensive. There is no, for a lack of an effort. There is no, for a lack of knowing how to use

the polymer. Onyx. How we can tell that, most of those is Onyx, some of them are glue. Or a combination. The median number of sessions

with this polymerizing agent is 8.5. Range from one to thirty. The other radiologists, the other experts, besides my honorable opponent, Doctor, Professor Wolgemuth,

they also know how to use Onyx. I can assure that. Sixteen patients, all symptomatic. They are all decompensated, showing three, four tier symptomatically. They have high cardiac output,

they have required repeated, repeated blood transfusions, infections, ulcers, disarticulation. To have disarticulation of vascular malformation means, oh, horrible bleeding, infected. There is no doubt,

they are symptomatic. Couple of examples. This is a young woman, extensive AVM in the foot, type four. Been treated five times with Onyx. And they know what they've done.

They've treated well. Yet, worsening symptoms, wheelchair bound, infected ulcer. Seventy-one session. Now, pay attention. Seventy-one sessions of ethanol/coils embolization. And, this woman is now running with her friends

after her amputation of couple of necrotic toes. Not because of the alcohol. Because of the malformation. Angiographically, not cured. Example of that. Okay.

This is malformation. This is not something in a tiny, little bitty thing. It's a malformation, no question about that. Before treatment. And, this is after treatment. We can all agree that,

this is not completely cured. It is a grade three it is 80 to 99 percent still left. But, clinically, she's running. She continues to be treated. Another example.

One year old girl with bleeding malformation from the lip. Admittedly only one Onyx being used because we didn't know what to do. Luckily, the little girl was close by so she came to Wayne and after,

it's intravenous predominant lesion. It's a type two lesion. Only after a six month treatment sessions, cured. This is before start of ethanol treatment. No question there is recurrence. We can not close that only by pushing

polymerizing agents somewhere in something called 'nidus.' But if you ablate the cells, ablate the nidus. You achieve cure.

And it's cured in one year angiographic follow-up. This is time and time and again. I will show these examples. This is the outcome. The outcome tells you six cured angiographically. Eight considerably improved, they improved.

None of them is failed in this. All failed polymerizing agent treatment. Then we can move on. Complication because that's where talking about how dangerous. Alcohol is very dangerous,

but so is knife in operating room. Take a knife and stab it somewhere in some artery, or in a pressurized vein, you'll have all this blood in your face and a shoot of blood doesn't taste very good in your mouth. So it's dangerous.

But, if you use it carefully, that's what you achieve, as a result. Where do we stand with these patients? Ongoing treatment, five. Cured, five, by summation.

One still waiting for a follow-up on angiographic follow-up. Improved on watchful observation is two. Lost to follow-up because schizophrenia. Lost to follow-up because of unknown reason, after two years of follow-up.

He's been doing well throughout these two years. One clinical failure. I will tell you that Wayne have, he's seen this person. Not clinical failure. Yeah, it's clinic.

By definition, is clinical failure. Angiographically, improved. Clinically, improved. The little boy was wheelchair bound, didn't want to continue with that and, therefore, went for amputation.

So it's a clinical failure. One. To summarize that, I highlight on this, venous predominant lesions. These are the ones these create.

Type four. (man speaking off screen) Tough. Couple of examples. Striking examples. This is venous predominant lesion, IIA.

I'm sorry. IIIa, IIIb being treated. Sorry. Can we go back to that? Any way I can go back on that?

This IIIa, IIIb, there's has been five. That's moves forward. Five surgery, Onyx, anything thrown in. Extensive malformation. Shoulder, arm, a no-flow into the lower arm

because of the. And it's moving forward. I'm sorry for that. But it was cured. And there was a follow-up, too. I believe there was something.

Twenty, 15, 17 months follow-up. So we have the next patient. Thirty-two year old female treated with glue in the past.

Twenty procedure including all vessels. Everything that can not be, could be embolized, was emolized. Ended up with the worsening and this is the typical example a IIIa malformation, typical example.

This was way back in the past. This is how Wayne has developed that. It took him, I heard, nine hours and another 100 coils, but he cured that.

- [Male] 298. - Two hundred ninety-eight. This is the follow-up, you know. Eighteen months later. To summarize on that. Nothing to do with my feelings for Wayne.

Nothing to do with Walter being my enemy. (quiet laughter) No, it's just a fact, a truth. Polymerizing agents, by definition, do not cure AVMs. Do not cure.

Sometimes, when used properly, still worsen the patient's symptoms. Ethanol cures AVM. Provided that you do that with precision and skills. How you acquire precision and skills? Ask the surgeons around here.

How do they lift up this face? How Max can lift out, you know, big time metastasis sections in liver? How do you do that? With skills.

How do you acquire skills? Learn. Thank you.

- Thank you very much. Well this is a series that was actually published five years ago. And it outlined 45,000 patients after carotid endarterectomy, as well as open and closed thoracic abdominal procedures and infrainguinal bypasses.

And you can see here, that the VTE rate, and this is emblematic of a lot of studies. If you take everything together in a ball, you get an average result. And as you can see, the peripheral bypasses had a low incidence.

Carotids, very low incidence. But open procedures had a higher incidence than endovascular procedures. But here is the nub. Here is what's really important and why you need to do risk assessment.

Look at what happened to these percentages if the patients had any morbidity during hospitalization, as high as 7.8%. And here's the list after they went home. Again, it's not the .5 tenths of a percent or 1%, and this is what it's all about.

It's about the extra risk factors that the patient has. So now, anybody that's starting to do work with the Caprini Score, you've got to go to the patient-friendly form. Because we don't just do it,

if the patient comes in for surgery, and somebody does a preoperative evaluation in the holding area, stop it! It's ridiculous! Have you ever been in the holding area? What are you worried about?

You're worried about having the operation. Are they going to find cancer? Will the surgeon have a bad day? How much pain am I going to be in? How long am I going to be out of work? They're not going to talk to you

about their family history or their obstetrical misadventures. So you have them fill a form out ahead of time with their family, and then when they come in, you just double-check it. And we've studied this, it's in five languages,

and it's got perfect correlation with trained observers doing the same thing. And remember, if you fail to carefully interrogate your patients regarding the history or family history of venous thromboembolism, vascular surgery or not, sooner or later you may

be faced with a fatal PE. And the idea that you're giving anticoagulants during your procedure that's going to protect them is not valid. The relative risk of thrombosis increases with the number of risk factors identified.

A combination of genetic and acquired risk factors in a person without a history of a thrombosis personally, but with a family history, has a 60-fold higher chance than those that have a negative family history. And a positive family history increased

the risk of venous thrombosis more than 2-fold, regardless of the other risk factors. Don't forget the history of thrombosis. You won't need to look this article up. It's 183,000 patients over 25 years and it shows that both in first, second,

and third-degree relatives, as well as cohabitants in the household, there's an increased risk of venous thromboembolism. Lowering down, getting lower for each degree of a relative.

But a DVT in a cousin, there may also be a thrombopathic condition in that patient. So you better pay attention to that. National Surgical Quality Improvement Program, wonderful program. The database has no information on history

or family history of VTE, use of perioperative VTE prophylaxis, intraoperative anticoagulation, or perioperative use of antiplatelet agents. How are you supposed to make any sense out of DVT-related studies?

Finally, due to the lack of routine screening for VTE, the incidence of VTE may be underestimated in this NSQIP database, which only makes the need for further study more pressing. This is an important consideration because

more recent data indicates that two-thirds of the patients are found to have DVT during screening and after vascular operations, have no signs or symptoms of the problem. And I'd like to remind you, so this is based on the Boston data, which is the best data.

Patients with a low score pneumatic compression during hospitalization. Moderate score, of 7-10 days of anticoagulation. Don't make any difference if they're inpatient or outpatient. And 28 days if their score is over nine.

They lowered their incidence on the surgical services from 2.2% to a tenth of a percent at 30 days. And finally, and I think this is really, really important. Take a look at all these risk assessment scores.

To my knowledge, there's only two scores. It's not the Padua, it's not the IMPROVE that have a history of obstetrical misadventures which can reflect antiphospholipid antibody syndrome, as well as family history

in various degrees of relatives. So with that, thank you very much.

- Alright, that's our beautiful city by our inland freshwater ocean. I'm against the proposal because, in my opinion, ONYX and the polymerizing agents don't do what they're supposed to do, which is cure. You know, we could talk about this, but in preparation for this, I looked at the

relatively sparse, but available, literature on ONYX, and the fact of the matter is, repeatedly when one looks at what is in the literature, ONYX does not cure with a few exceptions. For example, this is the curative exception. This is a mandibular AVMs, three of them cured

at one year angiographic followup. Now, I consider cure a very simple metric: is it gone at one year followup angiography or imaging? And this meets that criteria, but again, we know that mandibular AVMs, as Dr. Fannis has so nicely shown, this is a bone cyst, essentially,

fill it with anything, it'll get cured. All venous predominant legions, three A. So, yes, cure is possible in isolated circumstances. I think Walter has acknowledged that. But, all the other data, including Dr. Loglos' own data, is that there is no angiographic

followup, short clinical followup. Other papers, Embolization of peripheral high-flow AVMs by Kilani et. al, surgical excision in nine out of 19. Right, that's not the same thing, but it is one aspect of doing it, and there's no angiographic followup. And we see this again and again and again.

Very short clinical followup. So paper after paper refused to tell us that we don't really know what the behavior of ONYX is, as defined by the very simple metric of cure. Although complete, in this paper for example, although complete angiographic exclusion of the nidus

is obtained in a minority, 36 percent, of cases, there's no angiographic followup, so the exclusion is presumably based on immediate post-embolization angiography. In other words, ONYX looks good, acts bad. Other embolization agents in this paper also used,

probably some of them ethanol, which actually got the job done. And then finally, another paper with zero clinical or angiographic followup. So the answer is obvious: ONYX, while it is used copiously by some of the participants in this debate, does not cure,

and I, as my Chinese friends said, think ONYX is garbage. I don't think it works. Few examples of that, here's a young woman, a patient of Dr. Yakes, who, 12 years old, extensive facial maxillary scalp AVM, nine ONYX embolizations, left blind in the right eye

with persistent massive oral and nasal hemorrhage, and after appropriate embolizations, patient was stabilized clinically, and the ONYX was resected. She's stable now, not cured, but she's actually had an excellent clinical result. And you can see that's what it looks like.

Now that's hideous, that's not going to work. And it also, I think, points out what Dr. Walgramuth has actually admitted to, which is it's very difficult to see through this stuff. Radiation dose is increased, and identifying what to do and where to go is a real challenge.

Another such example, I think, suffice it to say a picture is worth a thousand words is this illustrative case of an extensive pelvic AVM, treated with what appeared to be gallons of ONYX, with very little benefit, and an enlarging ulcer. This was later treated by direct alcohol injection

with cure and improvement resolution of that ulcer. So, in summary, it's real simple, folks. There's no evidence in the literature that polymerizing agents have cured AVMs with an exception of a few venous predominant legions. And as I said, you could probably put Jello

in the outflow of those things and it'd work. My own personal experience is repeatedly had ONYX failures, and importantly, many patients are worsened by this treatment, and actually, their subsequent curative treatments are hampered. Thanks very much.

- My rebuttal is short and sweet. I think that those of us who have seen both agents, seen it in a fair comparison, understand that while ethanol has an appearance of difficulty to use, have come to the conclusion that it is actually safe. It has to be applied in the right spot. If it is such it will absolutely cure

and in it's very, very safe fashion. I think Walter mentioned the four deaths that I referred to. I agree, tragic, terrible, but we learn. Haven't had any deaths since, because I understand now the mistake I made and how to use ethanol.

I think the same thing is true. Max will tell you that there were enumerable deaths during the development of transplanting these difficult operations. No longer, all controlled, it's all because of learning. Thanks.

- I think we have time. If there are any questions, please come up to the microphone and any of the panels have questions for each other. I have a number of questions I could ask but I just see if anyone wants to start out. Claudio?

- I have a question Doctor Mark. He show us very nice utilization of this device for occluded limbs. My question is, do you protect in any way the other side? If not, don't you have, you're not concerned

or you're not afraid of pushing clots from one side to the other one when you're manipulating the device? And the second one, do you do this percutaneously? And if that's the case, do you have any concern about having destabilization?

Because once you start to manipulate the clot that is occupying the entire graft, and there is reestablishment of flow in an antegrade flush, and you may have some of that clot dislodge and embolize distant. - Yeah, as I mentioned,

nobody wants to be the guru of limb occlusions. However, we have seen them and we always go retrograde ipsilateral, not seen emboli once from those seven cases and in fact, the 73 we presented at the midwest there was only two instances of embolization

when we utilized this device. And both times we were able to extract those just by going further down with the cat six and both of them was below the knee popliteal. In particular, the acute ones, it's soft and it's no different than watching it in vivo

or in vitro model, as you know better than I, comes out quite easily. - Let's take our question from the audience. - [Scott] Hi, Scott Tapart from Stuart, Florida. So I'd like to poll the panel there about are you doing every single

acute limb ischemia percutaneously? The pictures are elegant, the techniques are elegant, but the last speaker touched on the profoundly ichemic Rutherford 2B patient, where you're most likely going to have to do a fasciotomy. Are you going to the OR

or are you doing this percutaneously and then watching and waiting and seeing about fasciotomy? Or has this changed your fasciotomy approach? - So since we have a number of people, that's a great question. Why don't we start at the end

and let's just go kind of rapid fire, maybe one or two sentences, how do you choose your patients and what do you do with those 2Bs and we'll try to get through everybody. - Sure, so, to reiterate the last slide of the presentation,

essentially anybody with a significant motor or neutral deficit is somebody I tend to do in an open fashion. And if I'm the least bit concerned about doing a fasciotomy or there's evidence of compartment syndrome I do that patient open.

- We try to start endovascular, and if we can clean and reestablish antegrade flow, that would take care of the problem. And of course, I'm a radiologist, so I always consult with my colleagues in surgery and they decide if a fasciotomy needs to be done or not.

And it's that at the end. - Okay, I have to be honest, we start with the selective indication but now we move maybe to 90% of our patients doing percutaneously. We will adjust patients with probably an embolization,

a huge embolization, into the common femoral artery for open surgery. Of course, in our mind, also in the registry, we have some cases of fasciotomy after percutaneous approach so it's not a limitation. - The advantage of acute arterial protocol,

as they all go to the end of asher suite and they all run along our protocol but you can run the option. You get them to treatment quicker because they don't dilly-dally around in the holding room. But then according to how the patient's doing

you can mop up as much clot as you can with the percutaneous technique and then do the fasciotomy when you're done or press head and drip more if you need to. So I think to have an algorithm where you can treat the full spectrum

is what's best for the patient. - I think it depends on the time as well because I did two weeks ago a patient who needed a fasciotomy directly so I performed that first and then it rules out any traumalitic therapy

or whatever that you want to do. And actually, if I do antivascular techniques I usually give a shot or RTPA or something and then go further with it. But anomerization of this patient's arteries as well so prefer actually if it's really a case

that needs fasciotomy just to perform surgical thrombectomy. - Yeah, percutaneous eight French up and over and almost always, you're going to be done with your thrombectomy within about 30 to 45 minutes. I don't think you're adding that much time

and for us, by the time we get anesthesia in him assuming anesthesia's anesthesia no matter what part of the world you're in, so you can get to the hybrid room quicker and then if it's going to fail then you're going to call in the OR or call an anesthesiologist.

- I wouldn't have much else to add. I do think there is some patient selection, if you have an entire SFA, 30 centimeter clot, that's going to take you hours to do so for these thromboembolic things that are 10 centimeters or shorter

lodged in the popliteal TP trunk, this method works really well. I think for the longer patients, you might think about something else. - But just a comment on the general anesthesia. If a patient is in real or really pain,

he can't lie down for 30 minutes, even. I mean, they are rolling in pain and I would do the fasciotomy first because general anesthesia is needed because there is so much pain or, yes, so yeah.

- So, let me say, does that answer it, Scott? So let's, since we have a number of panelists and we're running out of time, how about if we ask each person going down the room, you heard a whole bunch of different speakers here with a lot of experience

and if you haven't used this, there is a learning curve. The learning curve is pretty shallow. Really, a lot of it has to do with controlling your blood loss. But if we ask each person for just one tip

and we'll see if we can get through everybody. If you telling people who hadn't done a lot of this, one tip or one trick, let's see if we can get seven or eight tips and tricks out. So, I'll go last. Let's start back down at that end

and we'll end up at this end. - Sure. Use the largest catheter that the vessel will comply to. - Amen, brother. - I agree with that.

And the way I do it, in order to avoid too much blood loss, I like to engage with a syringe. So I come with my catheter, I hook a syringe in the bag, 20cc or sometimes even larger, and when I have the fish at the end of my line, then I connect to the pump and I continue.

That way if I'm aspirating, I'm not going to aspirate a large volume so I want to engage the clot. And then I bring the clot out. That's my trick. - Okay.

Very nice comment. Of course, I agree with the previous colleagues but I will say that first the trick is really the largest catheter is better, then my idea that I developed during my learning curve is the use of separate to cut away.

I probably use now in 95% of cases because it just makes everything quicker and faster and better. - I use the perclose device for large-bore catheters often and that allows me to pull the plug out, especially if it's fibrous plugs,

safe from the heart without shearing it off on the end of the catheter. I've got one question for Claudio, on that case of the carotid subclabian with the acute carotid occlusion, do you think the nitroglycerin would have helped?

- For the doctor? - For the surgeon. - Absolutely. - And then, change the diapers. - Well, I would advise if you do a surgical embolectomy do it also on the hybrid room

and try to do it also over the wire. Especially be careful if you do it below the knee. I would suggest do it open below the knee, even. - I would say don't afraid to use an eight French for ALI and that closure devices are your friends here. But you can use an eight all the way down to the pop

and then for us, the tibials, we'll use a six. - Yeah, I would agree with that. So I guess my tip would be, I agree with everything everyone said, although I don't use the separator very often in the arterial side, I do in the veins.

But one tip is, if you're not going to use a separator, if you're going to start without it, let's say you want to give it a try, I don't work through a 2E borst because the angle, the eddy currents that form around that 2E borst

trap clots and you constantly have to clean that 2E out so if you're going to start with a focal embolis in the artery my recommendation is take the 2E off, hook up to the vacuum directly, and you'll get less clot stuck in the 2E. If you want to go to the separator

then you can always add that on at the back end. - So I have a question for Fennel. I used a penumbra like a few weeks ago and it ended up really bad because the surrounding catheter from the penumbra, everything got, you know, clotted

and then I didn't have any outflow did I choose the wrong size or what is it that happened, did you see it ever? - We have not had that problem. We're usually working on heparinized patients and have not seen that happen.

- She was heparinized. No? Okay. - Okay. Any other comments? Otherwise, we'll end one minute early

on a nice, long day.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- I think it's unfair to have Wayne here with all his expertise and knowledge and throwing all these combative comments, vulgar attack, et cetera. But the bottom line is all these types, no matter how you define them, they are mixed.

They are mixed, they are not, with the exception for HDT. You have Type 1 in a midst of Type 2. You have Type 2A and then 3B, type something. I don't even know what they are, except that you say venous predominance, yes. Can be multiple venous predominance, yes.

Then you can have Type 4, these are the major groups. But to have a filler that occupies a space, can be Onyx, it's fine. It doesn't cure. You have to do something to these cells. You have to compress them.

You have to ablate them. You have to take them out. And a filler doesn't do that. The filler recolonizes on top of that, as you've put it already, from Molly. Recolonizes.

You can use it as a filler, but the cure, the ablation, has to be something that's powerful. Like a knife, even worse than knife, burn injuries, burn it to the bottom. That's how you achieve a cure. If you don't believe me, just look at ...

Can you play us that clip that was rotating constantly as Walter was talking, here, how Onyx is wonderful? This is the girl that you show on the pictures from Bob. Can you look at that? It's a ton of extras placed into the veins,

arteries, everywhere. She continues to bleed. On top of that, it's horrendous, how to treat it. Wayne managed to stop and control the bleeding, but this is an example.

This is the most scary sample of what Onyx cannot do. So back to the motion. Polymerizing Onyx can cure, and it's the material of choice to use? The answer is no. Alcohol is dangerous, personally,

I say yah, very dangerous, if you drive and you don't know how to use it. But so is everything else. But if you know, you can cure them. Thanks.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you, Larry, thank you, Tony. Nice to be known as a fixture. I have no relevant disclosures, except that I have a trophy. And that's important, but also that Prabir Roy-Chaudhury, who's in this picture, was the genesis of some of the thoughts that I'm going to deliver here about predicting renal failure,

so I do want to credit him with bringing that to the vascular access space. You know, following on Soren's talk about access guidelines, we're dealing with pretty old guidelines, but if you look at the 2006 version, you know, just the height--

The things that a surgeon might read in his office. CKD four, patients there, you want a timely referral, you want them evaluated for placement of permanent access. The term "if necessary" is included in those guidelines, that's sometimes forgotten about.

And, of course, veins should be protected. We already heard a little bit about that, and so out our hospital, with our new dialysis patients, we usually try to butcher both antecubital veins at the same time. And then, before we send them to surgery

after they've been vein-marked, we use that vein to put in their preoperative IV, so that's our vascular access management program at Christiana Care. - [Male Speaker] That's why we mark it for you, Teddy. (laughing)

- So, you know, the other guideline is patients should have a functional permanent access at the initiation of dialysis therapy, and that means we need a crystal ball. How do we know this? A fistula should be placed at least six months

before anticipated start of dialysis, or a graft three to six weeks. Anybody who tells you they actually know that is lying, you can't tell, there's no validated means of predicting this. You hear clinical judgment, you can look at

all sorts of things. You cannot really make that projection. Now there is one interesting study by Tangri, and this is what Premier brought to our attention last year at CIDA, where this Canadian researcher and his team developed a model for predicting

progression of chronic kidney disease, not specifically for access purposes, but for others. They looked at a large number of patients in Canada, followed them through chronic kidney disease to ESRD, and they came up with a model. If you look at a simple model that uses age, sex,

estimated GFR from MDRD equation and albuminuria to predict when that patient might develop end stage renal disease, and there's now nice calculators. This is a wonderful thing, I keep it on my phone, this Qx Calculate, I would recommend you do the same,

and you can put those answers to the questions, in this app, and it'll give you the answer you're looking for. So for instance, here's a case, a 75-year-old woman, CKD stage four, her creatinine's 2.7, not very impressive,

eGFR's 18. Her urine protein is 1200 milligrams per gram, that's important, this is kind of one of the major variables that impacts on this. So she's referred appropriately at that stage to a surgeon for arteriovenous access,

and he finds that she really has no veins that he feels are suitable for a fistula, so an appropriate referral was made. Now at that time, if you'd put her into this equation with those variables, 1200, female, 75-year-old, 18 GFR, at two years, her risk of ESRD is about 30%,

and at five years about 66%, 67%. So, you know, how do you use those numbers in deciding if she needs an access? Well, you might say... A rational person might say perhaps that patient should get a fistula,

or at least be put in line for it. Well, this well-intentioned surgeon providing customer service put in a graft, which then ended up with some steal requiring a DRIL, which then still had steal, required banding, and then a few months, a year later

was thrombosed and abandoned because she didn't need it. And I saw her for the first time in October 2018, at which time her creatinine is up to 3.6, her eGFR's down to 12, her protein is a little higher, 2600, so now she has a two-year risk of 62%, and a five-year risk of 95%,

considerably more than when this ill-advised craft was created. So what do you do with this patient now? I don't have the answer to that, but you can use this information at least to help flavor your thought process,

and what if you could bend the curve? What if you treated this patient appropriately with ACE inhibitors and other methods to get the protein down? Well, you can almost half her two-year risk of renal failure with medical management.

So these considerations I think are important to the team, surgeon, nurses, nephrologists, etc., who are planning that vascular access with the patient. When to do and what to do. And then, you know, it's kind of old-fashioned to look at the trajectory.

We used to look at one over creatinine, we can look at eGFR now, and she's on a trajectory that looks suspicious for progression, so you can factor that into your thought process as well. And then I think this is the other very important concept, I think I've spoken about this here before,

is that there's no absolute need for dialysis unless you do bilateral nephrectomies. Patients can be managed medically for quite a while, and the manifestations of uremia dealt with quite safely and effectively, and you can see that over the years, the number of patients

in this top brown pattern that have been started on dialysis with a GFR of greater than 15 has fallen, or at least, stopped rising because we've recognized that there's no advantage, and there may be disadvantages to starting patients too early.

So if your nephrologist is telling I've got to start this patient now because he or she needs dialysis, unless they had bilateral nephrectomies that may or may not be true. Another case,

64-year-old male, CKD stage four, creatinine about four, eGFR 15, 800 milligrams of proteinuria, referred to a vascular access surgeon for AV access. Interesting note, previous central lines, or AICD, healthy guy otherwise.

So in April 2017 he had a left wrist fistula done, I think that was a very appropriate referral and a very appropriate operation by this surgeon. At that time his two-year risk was 49, 50%, his five-year risk 88%. It's a pretty good idea, I think, to get a wrist fistula

in that patient. Once again, this is not validated for that purpose. I can't point you to a study that says by using this you can make well-informed predictions about when to do vascular access, but I do think it helps to flavor the judgment on this.

Also, I saw him for the first time last month, and his left arm is like this. Amazing, that has never had a catheter or anything, so I did his central venogram, and this is his anatomy. I could find absolutely no evidence of a connection between the left subclavian and the superior vena cava,

I couldn't cross it. Incidentally, this was done with less than 20 CCs of dye of trying to open this occlusion or find a way through, which was unsuccessful. You can see all the edema in his arm. So what do you do with this guy now?

Well, up, go back. Here's his trajectory of CKD four from the time his fistula is done to the time I'm seeing him now, he's been pretty flat. And his proteinuria's actually dropped

with medical management. He's only got 103 milligrams per gram of proteinuria now, and his two-year risk is now 23%, his five-year risk is 56%, so I said back to the surgeon we ligate this damn thing, because we can't really do much to fix it,

and we're going to wait and see when it's closer to time to needing dialysis. I'm not going to subject this guy to a right-arm fistula with that trajectory of renal disease over the past two years. So combining that trajectory with these predictive numbers,

and improved medical care for proteinuria I think is a good strategy. So what do you do, you're weighing factors for timing too early, you've got a burden of fistula failure, interventions you need to use to maintain costs, morbidity, complications,

steal, neuropathy that you could avoid versus too late and disadvantages of initiating hemodialysis without a permanent access. And lastly, I'm going to just finish with some blasphemy. I think the risk of starting dialysis with a catheter is vastly overstated.

If you look at old data and patient selection issues, and catheter maintenance issues, I think... It's not such an unreasonable thing to start a patient with a catheter. We do it all the time and they usually live.

And even CMS gives us a 90-day grace period on our QIP penalties, so... If you establish a surgeon and access plan, I think you're good to go. So who monitors access maturation? I don't know, somebody who knows what they're doing.

If you look at all the people involved, I know some of these individuals who are absolute crackerjack experts, and some are clueless. It has nothing to do with their age, their gender, their training, their field. It's just a matter of whether they understand

what makes a good fistula. You don't have to be a genius, you just can't be clueless. This is not a mature usable fistula, I know that when I see it. Thank you.

- I have nothing to disclose but what I will tell you is that the only way for me to learn the mechanics of treating low-flow malformations has been to learn from Wayne, follow what he's doing, and basically what I've done is I've filmed every single step he's taking,

dissect that, and then present you the way that he's doing it. The best way to do that is not listen to Wayne, but to film him, and just to check that afterwards. And he goes regularly to Cairo, this is the place of Dr. Rodovan sitting here

in front of us, and with Dr. Alaa Roshdy. I've learned a lot there from Wayne. This is Wayne's techniques, so normally if you look at puncture, the low flow malformations here then you get return or you aspirate so this is what happens, they inject contrast then they find volume

and inject whatever agent you prefer to inject. It happens to be alcohol but that is not essential. More often than not, there is no return. What to do then? There is a technique that Wayne has developed. Stab-Inject-Withdraw, just under high modification inject,

identify that you're not outside the vessel, get the vessel, start to fill slowly, and identify that and inject the alcohol. Of course you can do that under exposure just to see the effect of the alcohol thrombosing, et cetera.

Another example of no return is to subcutaneously certainly show that there is a low pressure system, and again, Stab-Inject-Withdrawal, and there is a cyst. Is it extravasation or is the malformation aspirate? And if it collapses, that's the malformation.

And then continue to fill in with contrast, define how big the malformation is, and then accordingly inject the amount of abrasive agent that you're using. Lymphatic malformation is very difficult to treat because the vessel's so small, would say microscopic,

and again, Stab-Inject-Withdraw, identify that it's not extravasating but it is the vessel, and start slowly, slowly to fill and any time in doubt that should there, just do a run, identify, and that is the vessel, or the network of the vessels and

start to fill that with the agent you're using. But there are certain zones that just don't inject anything, and these are the arteries. How often do arteries occur? When you puncture them. I just directly looked at all these 155 patients I've seen Wayne treat there a matter of,

I would say, 100 patients in three days. 30 patients per day, that's about six percent. And you see the artery by pulsating flow depending on the pressure that you apply. And we see again the artery pulsating and we have no doubt about that.

However, it could be difficult to see. Depending on how much you push in the contrast and you see these being ornery so there's a No-Go-Zone, no injection of any agent and again, a tiny bit of lottery there in the foot could be disastrous.

You inject any agent, any, you will have ended up with necrosis of course if you don't inject inhibitors, but not yet. The humorous may not end up with necrosis when all the mysticism with puncture will be gone. So we have extravasation, when you say extravasation

like starting injecting, still good, looking good, but you see how the extravasation even blows up and at the end it bursts, again under pressure they should apply, so pressure is really important to control and then you stop and don't inject any more.

Extravasation, you see how its' leaking in the back there, but you correct the position of the needle, identify all the vessels, the tiny little vessels, just have to be used to identify the pattern and then you start to inject the agent again.

Control is very essential. Here is the emphatic malformation labia and though there is this tiny little bity extravasation you continue because there is you know, run-off, it is filling the system and you can safely inject the alcohol.

Intraarticular could be malformation there and this is definitely safe pla however, if it is in the free space in the the joint, that's again, it's No-Go-Zone. How you see that is just be used to

the pattern recognition and you find that this is free. It's around the condyle there so there is no injection. Compression is again good to note to control by compression where the agents go. This is a normal vein, certainly at risk of getting with alcohol, whatever agent

you're using deep in the system, avoid that by compression. Compression can be applied manually and then that gives you a chance to fill the malformation itself and not strike connection too deep in the system. Intraosseous venous malformation,

low-flow malformations can occur anywhere, here in the spine and the axis is transpedicular patient prone because it's soft. The malformation has softened up the bone. You can just use a 21-gauge needle and identify the malformation and follow

by the agent you're using. Peculiar type of venous malformation called capillary venous malformation. Basically it's a low-flow malformation without any shunt here in the sciatic notch of the patient and geography shows that there is no shunt

there is just big veins and intense pacification. And identify the veins by indirect puncture again, see the pattern of that and inject alcohol and following geography we can see that there has decreased the density but it is a lot more left to be done.

In conclusion, direct puncture is the technique in this low-flow malformation but Stab-Inject-Withdraw is the really helpful technique for successful treatment of microvascular, microcystic lesion. No-Go-Zones for certain when you see arteries

and anytime in doubt you just have to do a run to identify if they're arteries or not. Intraarticular free space and extravasation and normal veins, similarly, No-Go-Zone. Capillary venous, intraosseous malformations can be treated successfully. Thank you.

(audience applause) - [Facilitator] Thank you, Crossey. Excellent talk, very practical and pragmatic. Any comments or questions? Dr. Yakes. - [Dr. Yakes] We have been to many meetings and people have talked about doing

other ultrasound guides, accessing the malformations. You'll never see those arteries by ultrasound. - [Facilitator] That's absolutely correct. I concur. I concur and I think some of the disasters we've seen where suddenly something falls off

have been in these situations because they don't understand or in expansile foam-based therapies, I've seen that. I've seen plenty of these, so it's always present, potentially.

- First of all I'd like to thank the organizers for inviting me to give this presentation. These are my disclosures. I'm going to divide this presentation into three main parts. I will initially make the case that at the present time we are providing relatively poor value in ESRD and Vascular Access Care.

I'll then submit to you that one way to address this issue is through Patient Centered Device Innovation and then I'll tell you a little bit about some regulatory initiatives in this area. If you define value as being outcomes over cost

then I would argue that in vascular access we actually provide very poor value in that we have pretty bad outcomes and in order to achieve these bad outcomes we actually spend a huge amount of money at about 1.5 billion dollars per year and these is no talk at all

in the construct before you about quality of life. How can we break this cycle of a lack of innovation resulting in poor quality and outcomes and a high cost burden? I would submit to you that one way that we may be able to break the cycle

is through patient centered innovations. Patient centered innovation, whether it's discovery or process of care innovation, is basically innovation that targets the issues that are important to patients, not necessarily the issues that are important to physicians,

or payors, or regulators, or to industry. The reason that this is important is that the things that are relevant and critical to patients are often very different from the things that are important to the other stakeholder groups that I mention. If you look at hemodialysis for example

the things that are important to a patient on hemodialysis are ability to travel, and dialysis free time, and not feeling washed out post dialysis. On the other hand, if you're an nephrologist as I am, the things that are important to me are survival, and hospitalization, and being a nephrologist

I completely obsess about blood pressure which is really not something that patients are that worried or bother about. The next question is, of course, how do we develop therapies that address the issues that are important to patients? I got this slide from Frank Hurst at the FDA.

It basically makes the point that we need to have patient input at every point in the product development process, from initial ideation, to clinical trial design, to patient preferences, to patient centered outcomes. The FDA actually has a number of programs

in this area, one example is their Patient Focused Drug Development Initiative which allows the FDA to speak with patients and patient groups in different therapeutic areas. Closer to home, the Medical Device Innovation Consortium is extremely interested in Patient Preferences

and in a Risk-Benefit analysis. Within the kidney health initiative, which is a public-private partnership between the American Society of Nephrology and the FDA, we are also very interested in patient preferences for renal devices, and the background for this is

that an individual patient's tolerance for risk actually varies tremendously. Patients on home hemodialysis, for example, may be happy to sacrifice some degree of safety with regard to, say, vascular access, in order for an improved

or a more independent quality of life. But if you're a regulator there needs to be a way that you can get insight in to how patients perceive the risk/benefit ratio so that it can be incorporated into the regulatory pathway, and at least at the present time

the tools for this do not exist. The Kidney Health Initiative hosted an extremely successful patient preference workshop in the Baltimore area a couple of years ago. We asked three main questions: how can patients assist in the development

of a new medical device? How can they ensure the success of future clinical trials? And how can they help with the decision to make a new device available? The proceedings of this workshop have been published, and I'm really not going to go into details there.

I'm going to share with you a video that was made to try and attract patients to this webinar, and I think it really epitomizes the importance of patient centered innovation. - Hello, I'm CeCe, a fellow kidney disease patient. For 33 years I've done dialysis, both hemo and PD.

I had a transplant for 10 years and as you can imagine too many pills, shots, and accesses to mention. As kidney patients you and I both know that a few things in life are not optional. Strength, courage,

persistence, and determination. No matter what life throws at us, we try to stay balanced, maintain our routine, and remain positive. But let's face it, we are often in a holding pattern. Kidney disease treatments have not

changed much over the years. The options for patients like us have largely remained the same for many years. You want to help change that? We need you. Each day we're asked to share our lives with our treatment. But now, let's share our voice, ideas, opinions.

From patients like us, they matter. Key people are realizing our voices matter too. Here's what I found out. The Food and Drug Administration, often known as the FDA, is looking for patients living with kidney disease like you and me, to provide input

on how potential treatments of the future could look. Picture a big table. Around it are dialysis caregivers, researchers, doctors, nurses, and companies providing new products and treatments. They want us and our families to sit beside them

and have a seat at this table. We'll work together to bring potential new treatment options, safe and effective ones, and ones that patients like you and me want and need. Imagine the future of your treatment. What does it look like?

How does it improve your day-to-day life? This future doesn't have to remain just a dream. Join me and other patients to contribute our thoughts and make our ideas a possible reality. - The driving force and also the voice behind that video was the lady on the right, Celeste Lee.

She was a dialysis patient for over 30 years, she was a member of the KHI board of directors, and Celeste died a year and a half ago, she basically withdrew from dialysis because of bone disease from the 30 years of dialysis. I really think that her death

should be a charge for all of us really to try and develop therapies that target the things that are important to patients. Thank you very much for your attention.

- Thank you very much again, I greatly appreciate the honor to be able to be here and be able to present these data. These are my they're my conclusions, thank you very much. So, what I think is really very important for all of us

is to remember this Chinese Proverb, never kill a friend, never treat a stranger. And what that means is that you have to learn a lot about that patient before you just go ahead and operate on them.

Then they're not strangers anymore. And if God forbid the CT scanner is broken, you're going to have to do a history and physical. We know that chart review I hate to look at reviews of the Caprini scores going back with retrospective chart reviews,

because they're terribly flawed. We have one of the only risk assessments that looks at the history of obstetrical complications and if you look at chart review, nobody asks the questions. Six tenths of a percent,

13 percent face to face. Same thing with family history of thrombosis. Five point two percent, 17 percent live. Personal history of DVT even doubled in live versus chart review. These questions aren't asked

and of course in the National Surgical Quality Improvement Project and the American College of Surgeons. These things aren't even in there. And they have five million patients. And they talk about DVT studies, and they don't know about what's going on.

We have 39 factors in the Caprini score and that's judged to be too many. You can't have too good a history and physical. The better your history and physical, the better you can take care of the patient. So if devised in a patient friendly form,

it's in five languages. The patients fill it out ahead of time. And then, this was compared to professionals filling it out. There's excellent correlation except for a couple of problems.

And that is that the patient fills the form out, then when they come in, we reemphasize history of family history, B.M.I., obstetrical history, and then see if they have pitting edema or varicose veins.

And so that takes less than five minutes. The last thing in the world you want to do, and I would say anybody that has preoperative surgical nurses in the holding area that Caprini scores, that's flawed. Stop it.

That's no place to be doing that. Because people are worried about their surgery, are they going to get through it, are they going to find cancer, how long are they going to be out of work. You can't ask them about this at that time.

So, these are the scores that we use. Part of this is also reinforced by stuff that's been done. God bless that we would need a moment of silence for the University of Michigan. All the fabulous work that they've done there

in this regard. And we also, this is how we score these patients. Got a lot of operator error here today. Age, as you can see, and contraceptives or hormonal therapy and so forth. This, everybody needs to get this study and to read it.

This is 183000 individuals in the Scandinavian system followed for 25 years. And what they showed is, that there's an increased incidence. If you take a look at a person that's never had a clot, if they have a first degree relative with a clot,

they have an increased risk of thrombosis, slightly less for second degree relatives, slightly less for third degree relatives, and believe it or not, even slightly more compared to controls for people that are living together but of course with the person's lifestyles and so forth

so it's not totally understandable. The point of this is, the point of this is, pay attention to family history of thrombosis. Because that might uncover a whole thrombopathic family that you don't realize. And that'll be the difference in these low risk

procedures between life and death. I've seen a number of patients die with simple procedures because nobody asked about the family history. So, what we recommend is Caprini scores of one to four. You can use compression stockings when they're

if they're in the hospital if it's for ablation. You can use compression stockings according to your protocol, whatever you do. If the patient's at moderate risk, five to eight, low molecular weight heparin for seven to ten days and compression stockings.

And if they're high risk, over nine, then we also like to do a duplex scan before stopping the low molecular weight heparin. And so in conclusion, risk assessment using the score, utilize patient-friendly form,

avoid chart review, face to face critical. And remember that some of these simple procedures, these patient's are very high risk if they're thrombopathic. Provide prophylaxis for at least one week in those at risk for a score of over five.

And then extended prophylaxis for history of VTE, family history of VTE and thrombophilia. Now, I put 14 to 28 days because you have to take these situations individually. Somebody's had four family members in their past history that have had thrombosis.

That's a thrombopathic family. I would go for 30 days. If it's only one incident and one patient, then maybe two weeks. Thank you very much.

- The proposition is polymerizing agents can and do cure AVMs and are now the agents of choice, ethanol is too dangerous. When I saw what Wayne had asked me to talk about, I immediately called him. And I said there are two words in this proposition

which are giving me some trouble. The first word is dangerous. In IR we do dangerous every day, especially in July. And with respect to cure in IR, mostly we just try to fix things.

Nonetheless, there are proper uses of ethanol. There are, however, some risks to the use of ethanol in medicine. First off, ethanol is a sclerosing agent and it is toxic to tissue. It denatures the proteins

of the endothelium, activates the coagulation system and produces blood clots. While we are trying to do that, when we're trying to control an AVM, it does also generate acetaldehyde and reactive oxygen species

which damage healthy tissue. It can result in endotoxin leakage, inflammatory cytokine release, and modification of signal transduction in the cell membrane and when we deliver alcohol, unless we dilute it with contrast,

we really cannot see where it goes. There are some other issues with ethanol. The first is that it's known to impair wound healing. If ulcers occur with ethanol use, they are difficult to heal. If you place skin grafts on these lesions,

they typically fail. And if you use ethanol in an area of prior surgical scar, there is a high risk of skin injury. In addition, the use of ethanol is associated with pain, it's a painful procedure.

If you deliver ethanol in proximity to a nerve, you will develop nerve injury and if you have sciatic nerve injury, that can be devastating which can take months if it all to heal. The other issue relates to the dosing

and the volume of ethanol that's delivered. If you deliver high doses of ethanol at one sitting, you can get systemic effects. Now, a slightly tipsy patient post-embolization is not necessarily a big problem, however, if the patient develops hemoglobinuria,

that can be significant. If you use low volumes of ethanol with each treatment, it requires multiple treatments. You can also get cardiopulmonary problems with ethanol. The ethanol can induce arrhythmias, it can induce bronchiospasm,

it can precipitate pulmonary emboli because of the sludge that migrates up to the lungs and you can get cardiovascular collapse with the use of ethanol. Fortunately that is rare. Other polymers such as the cyanoacrylates

or liquid embolics and their viscosity can be altered. The downside in our experience with the cyanoacrylates is that they're difficult to control, they tend to spatter.

And our long-term experience with the cyanoacrylate shows that it is not permanent and it does degrade. The ethanol vinyl alcohol copolymer or Onyx behaves as a filler. It induces a mild inflammatory reaction.

It's associated with minimal pain post-procedure and skin injury is infrequent and it is in our experience a permanent agent. There may be difficulty getting it to travel deep into the nidus and that can be a big problem,

if you just deliver the Onyx in just a push away, it will not go very far and you will leave your nidus untreated which can lead to recanalization. So, we dilute our Onyx 18 with DMSO

which makes it more easier to spread out into the distal portion of the malformation. It is somewhat harder to see when it is diluted. We also use a glue roadmap. This will reduce our radiation dose

and we don't deliver the Onyx the way the neuro-interventionalists do, we tend to deliver it much faster than the neuro people do. And if you have obscuration of your vessels by prior Onyx placement, the glue roadmap can help.

When we use Onyx without operative resection, it is an off label use. But nonetheless, when used, it does facilitate operative resection and you just have to remind your surgeons to use a bipolar bovie otherwise you will get sparking.

With respect to cure. I think cure, when we talk about it, it really depends upon our definition of cure. Polymer occlusion will result in relief of AVM symptoms. And it can cure some lesions.

Whether we are able to remove all shunting in large lesions I think is doubtful, but nonetheless, Onyx copolymer is associated with lower morbidity than alcohol. And when we look at ethanol versus polymers, the ethanol is a one-generation agent.

Whereas if we look at polymers, if we consider cyanoacrylate as a first generation and Onyx as a second generation, and squid maybe as a third, the future is pretty much unlimited for us because you can prepare polymers which will contain drugs

or other agents. So, I think the choice is you have to determine whether you want to use ethanol, or whether you want to use a polymer. Thank you.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

- Thank you (mumbles). The purpose of deep venous valve repair is to correct the reflux. And we have different type of reflux. We know we have primary, secondary, the much more frequent and the rear valve agenesia. In primary deep venous incompetence,

valves are usually present but they are malfunctioning and the internal valvuloplasty is undoubtedly the best option. If we have a valve we can repair it and the results are undoubtedly the better of all deep vein surgery reconstruction

but when we are in the congenital absence of valve which is probably the worst situation or we are in post-thrombotic syndrome where cusps are fully destroyed, the situation is totally different. In this situation, we need alternative technique

to provide a reflux correction that may be transposition, new valve or valve transplants. The mono cuspid valve is an option between those and we can obtain it by parietal dissection. We use the fibrotic tissue determined by the

sickening of the PTS event obtaining a kind of flap that we call valve but as you can realize is absolutely something different from a native valve. The morphology may change depending on the wall feature and the wall thickness

but we have to manage the failure of the mono cuspid valve which is mainly due to the readhesion of the flap which is caused by the fact that if we have only a mono cuspid valve, we need a deeper pocket to reach the contralateral wall so bicuspid valve we have

smaller cusps in mono cuspid we have a larger one. And how can we prevent readhesion? In our first moment we can apply a technical element which is to stabilize the valve in the semi-open position in order not to have the collapse of the valve with itself and then we had decide to apply an hemodynamic element.

Whenever possible, the valve is created in front of a vein confluence. In this way we can obtain a kind of competing flow, a better washout and a more mobile flap. This is undoubtedly a situation that is not present in nature but helps in providing non-collapse

and non-thrombotic events in the cusp itself. In fact, if we look at the mathematical modeling in the flow on valve you can see how it does work in a bicuspid but when we are in a mono cuspid, you see that in the bottom of the flap

we have no flow and here there is the risk of thrombosis and here there is the risk of collapse. If we go to a competing flow pattern, the flap is washed out alternatively from one side to the other side and this suggest us the idea to go through a mono cuspid

valve which is not just opens forward during but is endovascular and in fact that's what we are working on. Undoubtedly open surgery at the present is the only available solution but we realized that obviously to have the possibility

to have an endovascular approach may be totally different. As you can understand we move out from the concept to mimic nature. We are not able to provide the same anatomy, the same structure of a valve and we have to put

in the field the possibility to have no thrombosis and much more mobile flap. This is the lesson we learn from many years of surgery. The problem is the mobile flap and the thrombosis inside the flap itself. The final result of a valve reconstruction

disregarding the type of method we apply is to obtain an anti-reflux mechanism. It is not a valve, it is just an anti-reflux mechanism but it can be a great opportunity for patient presenting a deep vein reflux that strongly affected their quality of life.

Thank you.

- Now I want to talk about, as Chrissy mentioned AVM Classification System and it's treatment implication to achieve cure. How do I put forward? Okay, no disclosures. So there are already AVM Classification Systems. One is the well-known Houdart classification

for CNS lesions, and the other one is quite similar to the description to the Houdart lesion, the Cho Do classification of peripheral AVM's. But what do we expect from a good classification system? We expect that it gives us also a guide how to treat with a high rate of cure,

also for complex lesions. So the Yakes Classification System was introduced in 2014, and it's basically a further refinement of the previous classification systems, but it adds other features. As for example, a new description of

a new entity, Type IV AVM's with a new angioarchitecture, it defines the nidus, and especially a value is that it shows you the treatment strategy that should be applied according to angioarchitecture to treat the lesion. It's based on the use of ethanol and coils,

and it's also based on the long experience of his describer, Wayne Yakes. So the Yakes Classification System is also applicable to the very complex lesions, and we start with the Type I AVM, which is the most simple, direct

arterial to venous connection without nidus. So Type I is the simplest lesion and it's very common in the lung or in the kidney. Here we have a Type I AVM come from the aortic bifurcation draining into the paralumbar venous plexus,

and to get access, selective cauterization of the AVM is needed to define the transition point from the arterial side to the venous side, and to treat. So what is the approach to treat this? It's basically a mechanical approach, occluding

the lesion and the transition point, using mechanical devices, which can be coils or also other devices. For example, plugs or balloons. In small lesions, it can also be occluded using ethanol, but to mainly in larger lesions,

mechanical devices are needed for cure. Type II is the common and typical AVM which describes nidus, which comes from

multiple in-flow arteries and is drained by multiple veins. So this structure, as you can see here, can be, very, very dense, with multiple tangled fistulaes. And the way to break this AVM down is mainly that you get more selective views, so you want to get selective views

on the separate compartments to treat. So what are the treatment options? As you can see here, this is a very selective view of one compartment, and this can be treated using ethanol, which can be applied

by a superselective transcatheter arterial approach, where you try to get as far as possible to the nidus. Or if tangled vessels are not allowing transcatheter access, direct puncture of the feeding arteries immediately proximal to the nidus can be done to apply ethanol. What is the difference between Type IIa and IIb?

IIb has the same in-flow pattern as Type a, but it has a different out-flow pattern, with a large vein aneurysm. It's crucial to distinguish that the nidus precedes this venous aneurysm. So here you can see a nice example for Type IIb AVM.

This is a preview of the pelvis, we can here now see, in a lateral view, that the nidus fills the vein aneurysm and precedes this venous aneurysm. So how can this lesion be accessed? Of course, direct puncture is a safe way

to detect the lesion from the venous side. So blocking the outflow with coils, and possibly also ethanol after the flow is reduced to reflux into the fistulaes. It's a safe approach from the venous side for these large vein aneurysm lesions,

but also superselective transcatheter arterial approach to the nidus is able to achieve cure by placing ethanol into the nidus, but has to be directly in front of the nidus to spare nutrient arteries.

Type IIIa has also multiple in-flow arteries, but the nidus is inside the vein aneurysm wall. So the nidus doesn't precede the lesion, but it's in the vein wall. So where should this AVM be treated?

And you can see a very nice example here. This is a Type IIIa with a single out-flow vein, of the aneurysm vein, and this is a direct puncture of the vein, and you can see quite well that this vein aneurysm has just one single out-flow. So by blocking this out-flow vein,

the nidus is blocked too. Also ethanol can be applied after the flow was reduced again to reflux into the fistulas inside the vein aneurysm wall. And here you can see that by packing a dense packing with coils, the lesion is cured.

So direct puncture again from the venous side in this venous aneurysm venous predominant lesion. Type IIIb, the difference here is again, the out-flow pattern. So we have multiple in-flow arteries, the fistulaes are again in the vein aneurysm.

Which makes it even more difficult to treat this lesion, is that it has multiple out-flow veins and the nidus can also precede into these or move into these out-flow veins. So the dense packing of the aneurysm might have to be extended into the out-flow veins.

So what you can see here is an example. Again you need a more selective view, but you can already see the vein aneurysm, which can be targeted by direct puncture. And again here, the system applies. Placing coils and dense packing of the vein aneurysm,

and possibly also of the out-flow veins, can cure the lesion. This is the angiogram showing cure of this complex AVM IIIb. Type IV is a very new entity which was not described

in any other classification system as of yet. So what is so special about this Type IV AVM is it has multiple arteries and arterioles that form innumerable AV fistulaes, but these fistulaes infiltrate the tissue. And I'm going to specify this entity in a separate talk,

so I'm not going too much into details here. But treatment strategy of course, is also direct puncture here, and in case possible to achieve transarterial access very close to the nidus transarterial approach is also possible. But there are specific considerations, for example

50/50 mixture of alcohol, I'm going to specify this in a later talk. And here you can see some examples of this micro-fistulae in Type IV AVM infiltrative type. This is a new entity described. So the conclusion is that the Yakes Classification System

is based on the angioarchitecture of AVM's and on hemodynamic features. So it offers you a clear definition here the nidus is located, and where to deliver alcohol in a safe way to cure even complex AVM's.

Thank you very much.

- I will be talking about new KDOQI guidelines. I know many of you have heard about KDOQI guidelines being revised for the past maybe over a year or maybe two. Yes, it is being done, and it is going slow only because it's being done in a very different way. It's more than an update.

It's going to be more of an overhaul for the entire KDOQI guidelines. We in KDOQI have looked at access as a solitary problem like we talked about grafts, catheters, fistulas for access, but actually it sort of turns out

that access is part of a bigger problem. Fits into a big ESKD lifeline of a patient. Instated distal patients come in many varieties. It can affect any age, and they have a lot of other problems so once you have chronic renal failure, renal replacement mortality fits in

only when it becomes Stage IV or Stage V. And renal replacement mortality is not just access, it is PD access, it's hemo access, it is transplant. So these things, we need to see how they fit in in a given person. So the new KDOQI guidelines concentrates more

on individualizing care. For example, here the young Darien was an 11 year old with a prune belly syndrome. Now he has failed PD. Then there's another person here who is Lydia who is about 36 or 40 year old lady

with a insulin dependent diabetes. Already has bad vascular pedicle. Lost both legs. Needs access. Now both these patient though they need access, it's not the same.

It's different. For example, if you think of Darien, he was in PD but he has failed PD. We would love to get him transplanted. Unfortunately he's got terrible social situation so we can't get him transplanted.

So he needs hemo. Now if he needs hemo, we need to find an access that lasts for a long time because he's got many years ahead of him. On the other hand we have Lydia, who has got significant vascular disease.

With her obesity and existing infectious status, probably PD won't be a good option for her. So she needs hemo, and she's obviously not a transplant candidate. So how are we going to plan for hemo? So these are things which we are to more concentrate

and individualize when we look at patients, and the new guidelines concentrate more on these sort of aspects. Doing right access for right patient, right time, and for right reasons. And we go about planning this keeping the patient first

then a life plan ESKD lifeline for the patient, and what access we are looking at, and what are the needs of the patient? Now this is also different because it has been done more scientifically. We actually have a evidence review team.

We just poured over pretty much 1500 individual articles. Recent articles. And we have looked through about 4000 abstracts and other articles. And this data is correlated through a workgroup. There a lot of new chapters.

Chapter specific surgery like peri-operative, intra-operative, post-operative, cat issues, managing complication issues. And we started off with the coming up with the Scope of Work. The evidence review team took the Scope of Work

and tried to get all the articles and sift through the articles and came up and rated the evidence using a certain rating system which is very scientific. The workgroup then kind of evaluated the whole system, and then came up with what is clinically relevant.

It's one thing for statisticians to say how strong evidence this is, but it's another thing how it is looked upon by the clinicians. So then we kind of put this into a document. Document went through internal and external review process.

This is the process we have tried to do it. Dr. Lok has been the Chair of the group. Myself and Dr. Yevzlin are the Vice-Chairs. We have incredible workgroup which has done most of the work. And here are the workgroup members.

We comprised of nephrologist, transplant surgeons, vascular surgeons, Allied Health personnel, pediatric nephrologist so it's a multi interventional radiologist and interventional nephrologist. This is a multi disciplinary group which has gone through this process.

Timothy Wilt from Minnesota was the head of the Evidence Review Team, who has worked on the evidence building. And now for the editorial sections we have Dr. Huber, Lee, and Dr. Lok taking care of it. So where are we today?

We have pretty much gone through the first part of it. We are at the place where we are ready for the Internal Review and External Review. So many of you probably will get a chance to look through it when it comes for the External Review and would love

to have your comments on this document. Essentially, we are looking at access in the context of end stage renal disease, and that is new. And obviously we have gone through and done a very scientific review, a very scientific methodology to try

to evaluate the evidence and try to come up with guidelines. Thank you.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- Now we all have seen one thing. We have to treat AVM's according to their classification angio anatomy. If you have something like, direct arterial venous communications, like pulmonary HHT patients, like the rare patients with inborn arterial venous fistulas,

you will never use ethanol. That's my opinion. That's an opinion. But I think most of us will agree on that. Will you? - [Audience] Yes.

- I think many of us will agree. So would you just do it for a HHT pulmonary patient, you would inject ethanol? - [Audience] No. - So, okay. And the direct arterial venous communications inborn,

they are very rare and they can be beautifully treated with plugs and whatever. These are one part on the AVM patients. Second part is predominantly venous outflow. However you say it's 2B, 3A or whatever. It's a dominant venous outflow

and you can cure them and I say cure, even in my paper there is imaging of follow up, but it's not in the abstract bar. (smiling) So you just, - (laughing)

- So you just occlude the venous outflow, as close to the nidus as you can. So I don't need ethanol for that. I don't need to take the risk for my patient. And so that leaves the type 4 small vessel AVM's. They are, even in my opinion,

not treatable with a polymerizing agent. There is a real place for ethanol. And then you you go to these difficult, more net-like, type 3 or whatever, AVM's, then my opinion is, I do it as long as possible,

with a safe agent. Like pushing in tons of onyx. And if there is something left over, or if there comes something in follow up, because we all need follow up for these patients, then you can finish it with ethanol.

That's my statement. Thank you.

- [Presenter] Thanks again, Laurel, for this kind invitation. We're going to discuss about how I do the treatment for varicose veins for the foot. And we're going to show you our experience for that. I have no disclosure. I came from Natal, Brazil.

There's our wonderful beach that we have there, but we don't have time to go there, unfortunately. This is our hospital, and these are the people that worked with us. To do this treatment we have to pay attention of the history and the physical examination.

It's very important to decide what you can do to these patients, because we have to associate some tools to do this kind of treatment. So phleboscopy, transillumination is very important to define the feeder veins,

so it's very important in this case to show us where is the veins that we feed these spider veins to treat that. And of course, the ultrasound associated with all the physical examinations of course and then the black scan. You can see in this case, a patient does not have any

varicose veins on the thigh, of the leg. They have only varicose veins by the foot. If you can see, the reflux of there, comes from the junction to the foot. If you don't have the good ultrasound

or duplex scan it can have a mistake and treat wrong way these patients. So, what are the tools we have to do to treat these patients? A lot of tools, you can see the liquid sclerotherapy with a low concentration of 75%.

Foam polidocanol for these two concentrations. Of course, transdermal laser, hooks that we can apply in the surgery and polidocanol laser. How about this procedure? This paper from the Netherlands, show us patient satisfaction after ambulatory phlebectomy

of varicose veins, what they conclude about that. The most important factors that influence the patient satisfaction is: discoloration, persistent pain, and the perception of varices after surgery. This last one is very important for us,

because the patient comes to us to be cleaning off veins of the foot, if we miss that everything we did, the patient will complain about after their surgery. We have two kinds of treatment, ambulatory treatment being the option

and the hospital we can do the procedures. We have separate patients with CO grade, CEAP classifications and C2 classifications. When we have a C1 grade classification we use transdermal laser and liquid sclerotherapy. You can see one case is a cosmetic

and one is a severe one. A C2 case we have ambulatory treatment, we have transdermal laser and we associate all this with foam sclerotherapy. But the concentrations are 0.5% and 0.25%, you can see its low concentrations.

At the hospital we have can do almost everything nearly in the same day. Transdermal laser, liquid sclerotherapy, foam sclerotherapy. Yes, we can associate liquid sclerotherapy, sometimes the people say that you cannot do that, but we do that.

In case like this, we also say transdermal laser in spider veins, phlebectomy and you can see in this case we have a use for sclerotherapy and is this is the result of 60 days. This other case that we use phlebectomy and we have to be careful because you

can take nerves, the patient will complain about after surgery. And these are the results. Polidocanol with laser tool, yes, but it's not our routine to use that. In conclusion:

Physical exam and a precise diagnosis of the feet varicose veins is essential to do a good surgery. With all these tools, that we have, the treatment of varicose veins of the foot is safe and effective. This is my fugu in Natal, Brazil.

Thank you.

- So this was born out of the idea that there were some patients who come to us with a positive physical exam or problems on dialysis, bleeding after dialysis, high pressures, low flows, that still have normal fistulograms. And as our nephrology colleagues teach us, each time you give a patient some contrast,

you lose some renal function that they maintain, even those patients who are on dialysis have some renal function. And constantly giving them contrasts is generally not a good thing. So we all know that intimal hyperplasia

is the Achilles Heel of dialysis access. We try to do surveillance. Debbie talked about the one minute check and how effective dialysis is. Has good sensitivity on good specificity, but poor sensitivity in determining

dialysis access problems. There are other measured parameters that we can use which have good specificity and a little better sensitivity. But what about ultrasound? What about using ultrasound as a surveillance tool and how do you use it?

Well the DOQI guidelines, the first ones, not the ones that are coming out, I guess, talked about different ways to assess dialysis access. And one of the ways, obviously, was using duplex ultrasound. Access flows that are less than 600

or if they're high flows with greater than 20% decrease, those are things that should stimulate a further look for clinical stenosis. Even the IACAVAL recommendations do, indeed, talk about volume flow and looking at volume flow. So is it volume flow?

Or is it velocity that we want to look at? And in our hands, it's been a very, very challenging subject and those of you who are involved with Vasculef probably have the same thing. Medicare has determined that dialysis shouldn't, dialysis access should not be surveilled with ultrasound.

It's not medically necessary unless you have a specific reason for looking at the dialysis access, you can't simply surveil as much as you do a bypass graft despite the work that's been done with bypass graft showing how intervening on a failing graft

is better than a failed graft. There was a good meta-analysis done a few years ago looking at all these different studies that have come out, looking at velocity versus volume. And in that study, their conclusion, unfortunately, is that it's really difficult to tell you

what you should use as volume versus velocity. The problem with it is this. And it becomes, and I'll show you towards the end, is a simple math problem that calculating volume flows is simply a product of area and velocity. In terms of area, you have to measure the luminal diameter,

and then you take the luminal diameter, and you calculate the area. Well area, we all remember, is pi r squared. So you now divide the diameter in half and then you square it. So I don't know about you,

but whenever I measure something on the ultrasound machine, you know, I could be off by half a millimeter, or even a millimeter. Well when you're talking about a four, five millimeter vessel, that's 10, 20% difference.

Now you square that and you've got a big difference. So it's important to use the longitudinal view when you're measuring diameter. Always measure it if you can. It peaks distally, and obviously try to measure it in an non-aneurysmal area.

Well, you know, I'm sure your patients are the same as mine. This is what some of our patients look like. Not many, but this is kind of an exaggerated point to make the point. There's tortuosity, there's aneurysms,

and the vein diameter varies along the length of the access that presents challenges. Well what about velocity? Well, I think most of us realize that a velocity between 100 to 300 is probably normal. A velocity that's over 500, in this case is about 600,

is probably abnormal, and probably represents a stenosis, right? Well, wait a minute, not necessarily. You have to look at the fluid dynamic model of this, and look at what we're actually looking at. This flow is very different.

This is not like any, not like a bypass graft. You've got flow taking a 180 degree turn at the anastomosis. Isn't that going to give you increased turbulence? Isn't that going to change your velocity? Some of the flow dynamic principles that are important

to understand when looking at this is that the difference between plug and laminar flow. Plug flow is where every bit is moving at the same velocity, the same point from top to bottom. But we know that's not true. We know that within vessels, for the most part,

we have laminar flow. So flow along the walls tends to be a little bit less than flow in the middle. That presents a problem for us. And then when you get into the aneurysmal section, and you've got turbulent flow,

then all bets are off there. So it's important, when you take your sample volume, you take it across the whole vessel. And then you get into something called the Time-Averaged mean velocity which is a term that's used in the ultrasound literature.

But it basically talks about making sure that your sample volume is as wide as it can be. You have to make sure that your angle is as normal in 60 degrees because once you get above 60 degrees, you start to throw it off.

So again, you've now got angulation of the anastomosis and then the compliance of a vein and a graft differs from the artery. So we use the two, we multiply it, and we come up with the volume flow. Well, people have said you should use a straight segment

of the graft to measure that. Five centimeters away from the anastomosis, or any major branches. Some people have actually suggested just using a brachial artery to assess that. Well the problems in dialysis access

is there are branches and bifurcations, pseudoaneurysms, occlusions, et cetera. I don't know about you, but if I have a AV graft, I can measure the volume flow at different points in the graft to get different numbers. How is that possible?

Absolutely not possible. You've got a tube with no branches that should be the same at the beginning and the end of the graft. But again, it becomes a simple math problem. The area that you're calculating is half the diameter squared.

So there's definitely measurement area with the electronic calipers. The velocity, you've got sampling error, you've got the anatomy, which distorts velocity, and then you've got the angle with which it is taken. So when you start multiplying all this,

you've got a big reason for variations in flow. We looked at 82 patients in our study. We double blinded it. We used a fistulagram as the gold standard. The duplex flow was calculated at three different spots. Duplex velocity at five different spots.

And then the diameters and aneurysmal areas were noted. This is the data. And basically, what it showed, was something totally non-significant. We really couldn't say anything about it. It was a trend toward lower flows,

how the gradients (mumbles) anastomosis, but nothing we could say. So as you all know, you can't really prove the null hypothesis. I'm not here to tell you to use one or use the other, I don't think that volume flow is something that

we can use as a predictor of success or failure, really. So in conclusion, what we found, is that Debbie Brow is right. Clinical examinations probably still the best technique. Look for abnormalities on dialysis. What's the use of duplex ultrasound in dialysis or patients?

And I think we're going to hear that in the next speaker. But probably good for vein mapping. Definitely good for vein mapping, arterial inflow, and maybe predicting maturation. Thank you very much.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.