Create an account and get 3 free clips per day.
Chapters
IVC Filter Penetration (Aorta)|IVC Filter Retrieval||Male
IVC Filter Penetration (Aorta)|IVC Filter Retrieval||Male
2016arterialcavacavalcompressivefilterfluoroscopyfracturedhemorrhagelongitudinallylumbarmigrateretrieveretroperitonealSIRstrutstrutsvesselvitals
Long-Term Histologic Evaluation Of Resected AVMs In Head And Neck Post-Onyx Embolization
Long-Term Histologic Evaluation Of Resected AVMs In Head And Neck Post-Onyx Embolization
avmsdosedosimetersembolizationendothelialgiantheadhistologicinflammatoryinterstitialLiquid embolization systemlymphaticMedtronicminimalneckonyxradiationrecanalizationresectskinvenousvesselvesselsvialswallwalled
How Best To Treat Pediatric Vascular Injuries
How Best To Treat Pediatric Vascular Injuries
adjunctsangiographyarterialaxialbismuthbluntbrachialcannulationcenterschildrencommoncontralateralendovascularextremityiatrogenicinjuriesinjuryinterpositionischemiclimbmechanismminimalmortalitypediatricpenetratingradialrepairrepairedsaphenoussinghstentsuturestraumatruncaltypevascularVeithversus
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
anatomiesaneurysmaneurysmsaortobifemoralaortoiliacarterybrachialbranchcatheterizedCHcustomizablecustomizedistallyendovascularevarexcellentFfenestratedFenestrated GraftfenestrationflarefollowupGORE MedicalGore Viabahn VBXgraftgraftshypogastriciliaciliacsmodelingoccludedocclusiveparallelpatencyperfusionproximalpseudoaneurysmPseudoaneurysm of the proximal juxtarenal graft anastomosisptferenalsSelective Catheterization of the Right CIA to Hypogastric Arterystenosisstentstent graft systemstentstherapeuticVBX Stent Graftvesselvesselsvisceral
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
carotidcarotid stentCASCEAcerebraldemonstratedembolicendovascularincidenceinteractionmicroembolicplaqueprotectionproximalRoadSaverstentstentingstrengthsTerumo interventional systemstherapeuticunprotected
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
aneurysmAneurysm repairaxisBEVARceliacchronicDialysisdraindrainagedrainseliminatedextentFEVARflowFluid / PressorsheadachehematomahemorrhagehypotensionincludingintracranialOccluded SMAoutcomespalliativeparaplegiapatientpatientsplacementpostoperativeprolongedprospectiveprotocolratesevereSevere PancreatitisspinalTEVARtherapeutictreated
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
amputationamputationsarterialatherosclerosisbaselinecalcificationcategoryclinicalcomparedcompensatoryelutingfreeInfrapoplitealintermediatekaplanlowmajormedialmeiermulticenterpatientspredictionrandomizedregressionremodelingriskrutherfordstemstentstrial
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
anatomicaneurysmaneurysmsarterybilateralbranchbuttockclaudicationclinicalcontralateraldatadevicedevicesdysfunctionembolizationendoleakendoleaksevarexpansionsfreedomgoreGORE ExcluderGORE Medicalhypogastriciliaciliac branchIliac branch systemimportantlyincidenceinternalinternal iliacipsilateralocclusionsoutcomespatencypatientspivotalratesregistryreinterventiontechnicaltherapeutictrialtypeVeith
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
algorithmamputationarterialautogenouscomponentcompressiondataDVTendovascularEVLTextremityhealhealingincisionsisolatedmichiganmixedmoderatepatientspercutaneousperforatorsrefluxrevascularizationrevascularizesummasuperficialtreatmentulcersvenouswoundwounds
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
AbbottaccessanesthesiaAngio-Seal (Terumo Medical Corporation) - Closure deviceangiogramangiosealanteriorarteriotomybifurcationboreclampclosuredeployedEndologixevarfailedfailurefemoralgelfoamhemostasislengthmicropunctureobservedoperativePerclose ProGlidepercutaneousPEVARpredictorsprogliderandomizescarringSuture-Mediated Closure (SMC) Systemtechniquetherapeuticveitvenousvessel
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
acuteaneurysmangiographyarteriarterialbowelclinicianembolicembolusendovascularESVSguidelinesimagingischaemialactatemesentericrecommendationrepairrevascularisationthrombotic
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
advantagesautologousbypasscardiaccomorbidcomplicationsdecreasedecreaseddisadvantagesendoscopicendovascularextremityharvestincisionincreasedinexperiencedlaborligatedlowerpatencypatientspercutaneousperformedprimaryrisksaphenoussurgicalsuturevascularveinVeithwoundwounds
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
authorscarotidCASCEAclinicalcompletioncrestdatadecreasediagnosticduplexendarterectomyindicationsintraoperativemanuscriptmonitoringmultivariateneurologicpatientsrandomizedrateselectiveshuntstrokestudyunivariatevascular
The Novate Sentry Trial With A Novel Bio-Convertible IVC Filter: Follow-Up At 2 Years
The Novate Sentry Trial With A Novel Bio-Convertible IVC Filter: Follow-Up At 2 Years
adjudicatedanticoagulationarmsbioabsorbableBioconvertible IVC filterBTG Interventional MedicinecavalclinicalcomparescomplicationscontraindicationdeviceDVTendpointfavorablyfilterfilteringfiltersfracturehydrolysisimagedimplantocclusionorthopedicovinepatientspercentperforationretrievalriskSentrysymptomatictherapeuticthrombosistransientvenogramvenograms
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
advancedamputationbypasscentercontemporarydataendoendovascularevarextremityfailedlimblimbsocclusionsOpen Bypassoutcomespatencypatientpatientspercentrevascularizationrisksecondarystagesurgerytolerate
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
arteriesBEVARclinicalcollateralcorddopplerdorsalevarexperimentallaserlumbarmentoringmidlineMIS²ACEmonitoringnetworkneurologicocclusionoxygenationpatientreflectssegmentalsetupspectroscopyspinalspinestenttechnologytherapeuticvalidation
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
anatomicanatomyaneurysmaneurysmsaorticarteriesballoonBARDBEVARbranchbranchedbranchesceliaccenterscombinationCoveracovereddeviceendovascularexpandableextremityfenestratedFenestrated EndograftfenestrationfenestrationsFEVARincidencemayoocclusionocclusionsphenotypeproximalproximallyrenalrenal arteriesrenalsreproduciblestentstentstechnicaltherapeutictortuositytypeversusViabah (Gore) / VBX (Gore) / Bentely (Bentely)visceral
Combination Of Atherectomy (With Stealth 360 Device From CSI) And DCB For Treating Calcified Occlusions In BTK Arteries: How The Device Works And Preliminary Results
Combination Of Atherectomy (With Stealth 360 Device From CSI) And DCB For Treating Calcified Occlusions In BTK Arteries: How The Device Works And Preliminary Results
atherectomycadavercalcificationcalcifiedcalciumcircumferentialcoatedconcentricdataDCBdrugefficacyenrollmentfabriziofreedomgunnarlatelengthlesionlesionslosslumenOASorbitalorbital atherectomyoutcomepatencypatientsPeripheral Orbital Atherectomy SystempermeabilitypreclinicalStealth 360studytrendeduntreateduptakevessel
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
additionalangioplastybailoutballoonballoonsbasedcentercodescostDCBdecreasedDESdollarsgeometricInterventionslimbmedicalmedicareoutpatientpasspatencyPatentpayerpercentprimaryreimbursementreinterventionreinterventionsrevascularizationstents
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
adjudicatedanchoringbailoutclinicaldissecteddissectionDissection repair devicedissectionsefficacyendovascularenrollenrolledfreedomimplantimprovementIntact MedicallengthlesionlesionsnitinolpatencypatientsPOBAprimaryradiopaqueregardrestenoticstenosisstentTack endovascular systemtargettherapeuticvessel
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
acuteangioplastyanteriorballoonBalloon angioplasty systembifurcationcapturecapturedchronicContego MedicaldebrisdevicedistalembolicembolizationlesionlesionslimboccludedocclusionplanarpoplitealreocclusionriskrotationalrunoffstentstentstherapeutictibialtotalulcerationVanguard IEPvessel
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
adjunctiveaneurysmaorticarterialautologousbleedingcellulitisclosurecomplicationcomplicationsCryopreserved Allograftdeviceetiologyextremityfemoralgraftinfectedinfectioninfectionsinfectiousintraoperativelateligationlimbmycoticpatientspercutaneousperipheralprimaryprofundaprostheticpseudoaneurysmpseudoaneurysmsresectionscanseedingstenttherapeutictreatedulceratedvisceral
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
adjunctiveanatomicaneurysmaneurysmalaortoiliacarteryasymptomaticbilateralbranchbuttockcalcificationclaudicationcoildeviceembolizingendoleakserectileevarexperienceexternalflowfluoroscopygoreGORE ExcluderGORE Medicalhypogastriciatrogeniciliaciliac arteryIliac branch systeminternalinternal iliacipsiipsilaterallengthlimblimitationsmaneuversmulticenterocclusionocclusionspatencypatientperioperativeproceduralsacrificeshorterstentstentingtechnicaltherapeuticthrombectomytortuositytreatedtype
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
adjuvantaneurysmsaorticapplicabilityarteryBEVARbridgingceliaccorddiameterendograftsendoleakendovascularevarexpandGORE MedicalGore Viabahn VBXgraftsiliacischemialimitationsmajoritymultiorganobservationalOpen AAA repairorificeparaplegiapatientpatientspercutaneouslyperformedprospectiveproximalrenalrenal arteryspinalstemstenosisstentstent graft systemstentedtherapeuticthrombectomythrombocytopeniatreatedvesselvisceralZenith T-Branch (Cook Medical)
Transcript

filter with a strut penetrating into the aorta, how many of you have seen something like this before?

A very large majority of you. And I'm gonna solicit an opinion from somebody, how would you deal with this? Would you get arterial access prospectively? Is there a need to do that?

Have you seen any issues with not getting arterial access? [BLANK_AUDIO] Gents? >> I would ask, how many of you have seen this aortic strut? Sorry I know, but how many of you get, of those people with your

hands raised, how many of you got arterial access prior to pulling? Interesting, okay. Has anyone ever had an arterial complication from this when they're pulling a filter out? >> Let me ask has anybody not retrieved a filter because of this?

>> Sorry back of the room sir you said? >> [INAUDIBLE] laceration of the lumbar artery [INAUDIBLE] >> So was the strut actually in the aorta and it injured the lumbar coming out or was it another strut you think that was- >> Another strut. >> Another strut. >> Okay.

I've had a similar case with a huge retroperitoneal hemorrhage that was related to just simple an IVC filter that perforated, I think it was exactly the same thing that you're telling me. >> I think small vessel injury is way more serious than large vessel injury. The wall's thinner, blah blah blah. >> Certainly, in this case we did not get arterial access. We went about it after the initial cavagram.

You can see that there's a fractured strut. Trying to get through this. A fractured strut that on the initial cavagram has extracaval, and I'm gonna have to do this. >> [INAUDIBLE] Just roll it over. >> Roll it over, got you.

That we ended up needing forceps to retrieve successfully. There was no arterial complication. We were watching patients' vitals throughout the whole time remain rock solid stable. >> Could you just go back to that case really quick.

I think you kinda glossed over, you removed the filter but you left that piece on. >> No, and I showed on this cavagram that this was extracaval so we were unable to retrieve it. >> Does anybody worry about that,

leaving behind, clearly it looks like it's extravascular. Let's assume it is, it's in the retroperitoneum. Does anybody do follow-up for that? Are you concerned about whether that strut may or may not migrate anywhere over time?

Routine follow-up, CT? Anybody? No? Okay, all right. To confirm it's extravascular, but in terms of follow-up, no?

I sorta wonder sometimes, I don't know what you guys think but these struts can definitely migrate into odd places and it's great it's extravascular's presumably not gonna end up in the heart and lungs but I don't know what you think Louie. These things can definitely migrate to other places.

>> Yeah, I agree totally that, the first thing I said is I would get cross sectional imaging afterwards, we try to determine in the room. And we've used cone beam CT at times but it hasn't always been as useful with the soft tissue reconstructions that we have

at least are algorithms at our institution. So we usually get a non-contrast CT scan. We have not to date followed them long term or longitudinally but I wonder if there was something I would see if it were near a critical structure that would maybe change my mind. I haven't seen that yet though.

>> But also raise the question. In my opinion there's some ambiguity with CT in looking at where struts are. It can be hard to tell where it is exactly in line with the cava but's it's truly extracaval. There's streak artifact,

all those things. Certainly they're complementary, CT can solve the problem that fluoroscopy can't. But in some cases, I think fluoroscopy provides a more definitive answer. >> Yes Sir. >> [INAUDIBLE]

>> How did the strut go up and out? This is how we found it. There was no prior retrieval attempt so we assumed that it was from normal caval dynamics. Certainly we've heard a lot about that through out the course of the day today but we have a very poor understanding of the cava.

I'll keep it brief but we have a very poor understanding of the cava and the way it twists, turns compressive forces and all metal fatigues at some point, and once the metal has fatigued enough it fractures.

[Mollie Meek] We are going to talk about our histology of head and neck AVMs after Onyx embolization. Like I said previously, we were in love with Onyx at the end of the 2000's. So we used lots and lots of Onyx, and then the patients generally went for resection.

Sometimes immediately, and sometimes years after the embolization. We are not as in love with Onyx anymore, and our hospital was certainly not in love with us using Onyx the way we were using it in the past, because it was super expensive,

and they weren't getting reimbursed for the multiple vials we were using. I had no disclosures. If I have time, I'll talk to you about radiation dose. The most important part is the pathological response. This is a slide of a typical AVM.

You see the thick walled arterial portion of the vascular channels and the thinner walled venous portion. This is just a higher magnification. I am not a pathologist. So when we did our scoring of our specimens,

we scored some acute and inflammatory changes, some chronic inflammatory changes, and then the amount of recanalization that we saw. What we found is that recanalization was extremely common. We saw it in 13 of our 18 specimens,

and the specimens that had minimal inflammatory changes had minimal recanalization. That's the take home message. This is a specimen with Onyx in cast material in the vessels. Trying not to blind our moderators like I did earlier.

This is a really pretty picture of the vessel wall, the Onyx material, and a brand new vessel in the middle of this old vessel. This is what just sort of a scout image of what their faces looked like.

One of, a sample. This is like a longitudinal slice of a vessel. So this is vessel wall on one side, vessel wall on the other side, Onyx material, and then new vessel formation

and interstitial tissue stuff in the middle of that old, big vessel. These are just some pictures. Another example of Onyx with vessels inside the Onyx. We saw a fair amount of giant cell formation, which you can kind of see these clusters

of multi nucleated things, are the giant cells. They come in and clean up the Onyx material. These are just more Onyx specimens. Here's a nice picture of giant cell. We also counted vessel wall necrosis in our tabulations.

And you can see this Onyx material is in the endothelial cells, and it kills the endothelial cells. So we did see some vessel wall necrosis. So the short story is there's no definitive time for the recanalization,

but we think it takes about a year for you to really see nicely formed vessels in the Onyx. And in our experience in the head and neck, it was common. It may be different in other locations, because obviously your head and neck

has different lymphatic ratios and inflammatory things, and there's all kinds of differences between the head and neck, and say your arm or your leg. The second part of this is your radiation dose,

which has been touched on a little bit. The plug and push technique, part of why I don't like it, and why I don't like using Onyx, is it's just slow. You have to wait, and wait.

And it takes a lot of x-ray penetration, because your computer is going to try to up your dose because you've got the black Onyx in the x-ray beam, if that makes any sense. Your machine's going to try to help you, and it amps up your dose

really quickly if you're not careful. And for our head and neck patients, obviously we're doing AP and lateral views. This is our equipment. We put dots, radiation dosimeters on peoples' heads

and one in their oropharynx before our treatments, and we did calculations of a sequence of patients. You can see the ages of the patients in the group, and the number of the patients. This was just for a short time period we did this.

This is the important part, that the AVMs have a much higher skin entrance dose than the venous malfs. Part of that is we don't put on in venous mals. Sometimes I will put glue in a venous mal if a surgeon wants to resect it

because they like the way it comes out when you do that. But otherwise I generally just use alcohol in venous mals. And then these were on X AVMs at this point in time when we collected this data. Some alcohol.

This is a reminder about the dosimetry. And this was the number of sessions, embolization sessions versus the skin entrance dose. And just some more pictures of yeah. So Onyx is not permanent in my histologic experience.

Watch out for wound healing issues and recanalization, and watch out for skin burns. That's it. Thanks.

- Good afternoon, Dr. Veith, organizer. Thank you very much for the kind invitation. I have nothing to disclose. In the United States, the most common cause of mortality after one year of age is trauma. So, thankfully the pediatric vascular trauma

is only a very small minority, and it happens in less that 1% of all the pediatric traumas. But, when it happens it contributes significantly to the mortality. In most developed countries, the iatrogenic

arterial injuries are the most common type of vascular injuries that you have in non-iatrogenic arterial injuries, however are more common in war zone area. And it's very complex injuries that these children suffer from.

In a recent study that we published using the national trauma data bank, the mortality rate was about 7.9% of the children who suffer from vascular injuries. And the most common mechanism of injury were firearm and motor vehicle accidents. In the US, the most common type of injury is the blunt type

of injury. As far as the risk factors for mortality, you can see some of them that are significantly affecting mortality, but one of them is the mechanism of injury, blunt versus penetrating and the penetrating is the risk factor for

mortality. As far as the anatomical and physiological consideration for treatment, they are very similar to adults. Their injury can cause disruption all the way to a spasm, or obstruction of the vessel and for vasiospasm and minimal disruption, conservative therapy is usually adequate.

Sometimes you can use papevrin or nitroglycerin. Of significant concern in children is traumatic AV fissure that needs to be repaired as soon as possible. For hard signs, when you diagnose these things, of course when there is a bleeding, there is no question that you need to go repair.

When there are no hard signs, especially in the blunt type of injuries, we depend both on physical exams and diagnostic tools. AVI in children is actually not very useful, so instead of that investigators are just using what is called an Injured Extremity Index, which you measure one leg

versus the other, and if there is also less than 0.88 or less than 0.90, depending on the age of the children, is considered abnormal. Pulse Oximetry, the Duplex Ultrasound, CTA are all very helpful. Angiography is actually quite risky in these children,

and should be avoided. Surgical exploration, of course, when it's needed can give very good results. As far as the management, well they are very similar to adults, in the sense that you need to expose the artery, control the bleeding, an then restore circulation to the

end organ. And some of the adjuncts that are using in adult trauma can be useful, such as use of temporary shunts, that you can use a pediatric feeding tube, heparin, if there are no contraindications, liberal use of fasciotomy and in the vascular technique that my partner, Dr. Singh will be

talking about. Perhaps the most common cause of PVI in young children in developed countries are iatrogenic injuries and most of the time they are minimal injuries. But in ECMO cannulation, 20-50% are injuries due to

ECMO have been reported in both femoral or carotid injuries. So, in the centers are they are doing it because of the concern about limb ischemia, as well as cognitive issues. They routinely repair the ECMO cannulation site.

For non-iatrogenic types, if is very common in the children that are above six years of age. Again, you follow the same principal as adult, except that these arteries are severely spastic and interposition graft must accommodate both axial and radial growths of these arteries, as well as the limb that it's been

repaired in. Primary repair sometimes requires interrupted sutures and Dr. Bismuth is going to be talking about some of that. Contralateral greater saphenous vein is a reasonable option, but this patient needs to be followed very, very closely.

The most common type of injury is upper extremity and Dr. McCurdy is going to be talking about this. Blunt arterial injury to the brachial artery is very common. It can cause ischemic contracture and sometimes amputation.

In the children that they have no pulse, is if there are signs of neurosensory deficit and extremity is cold, exploration is indicated, but if the extremity is pulseless, pink hand expectant treatment is reasonable. As far as the injuries, the most common, the deadliest injuries are related to the truncal injuries and the

mechanism severity of this injury dictates the treatment. Blunt aortic injuries are actually quite uncommon and endovascular options are limited. This is an example of one that was done by Dr Veith and you can see the arrow when the stent was placed and then moved.

So these children, the long-term results of endovascular option is unknown. So in summary, you basically follow many tenets of adult vascular trauma. Special consideration for repair has to do with the fact that you need to accommodate longitudinal

and radial growth and also endovascular options are limited. Ultimately, you need a collaborative effort of many specialists in taking care of these children. Thank you.

- I'm going to take it slightly beyond the standard role for the VBX and use it as we use it now for our fenestrated and branch and chimney grafts. These are my disclosures. You've seen these slides already, but the flexibility of VBX really does give us a significant ability to conform it

to the anatomies that we're dealing with. It's a very trackable stent. It doesn't, you don't have to worry about it coming off the balloon. Flexible as individual stents and in case in a PTFE so you can see it really articulates

between each of these rings of PTFE, or rings of stent and not connected together. I found I can use the smaller grafts, the six millimeter, for parallel grafts then flare them distally into my landing zone to customize it but keep the gutter relatively small

and decrease the instance of gutter leaks. So let's start with a presentation. I know we just had lunch so try and shake it up a little bit here. 72-year-old male that came in, history of a previous end-to-side aortobifemoral bypass graft

and then came in, had bilateral occluded external iliac arteries. I assume that's for the end-to-side anastomosis. I had a history of COPD, coronary artery disease, and peripheral arterial disease, and presented with a pseudoaneurysm

in the proximal juxtarenal graft anastomosis. Here you can see coming down the thing of most concern is both iliacs are occluded, slight kink in the aortofemoral bypass graft, but you see a common iliac coming down to the hypogastric, and that's really the only blood flow to the pelvis.

The aneurysm itself actually extended close to the renal, so we felt we needed to do a fenestrated graft. We came in with a fenestrated graft. Here's the renal vessels here, SMA. And then we actually came in from above in the brachial access and catheterized

the common iliac artery going down through the stenosis into the hypogastric artery. With that we then put a VBX stent graft in there which nicely deployed that, and you can see how we can customize the stent starting with a smaller stent here

and then flaring it more proximal as we move up through the vessel. With that we then came in and did our fenestrated graft. You can see fenestrations. We do use VBX for a good number of our fenestrated grafts and here you can see the tailoring.

You can see where a smaller artery, able to flare it at the level of the fenestration flare more for a good seal. Within the fenestration itself excellent flow to the left. We repeated the procedure on the right. Again, more customizable at the fenestration and going out to the smaller vessel.

And then we came down and actually extended down in a parallel graft down into that VBX to give us that parallel graft perfusion of the pelvis, and thereby we sealed the pseudoaneurysm and maintain tail perfusion of the pelvis and then through the aortofemoral limbs

to both of the common femoral arteries, and that resolved the pseudoaneurysm and maintained perfusion for us. We did a retrospective review of our data from August of 2014 through March of 2018. We had 183 patients who underwent endovascular repair

for a complex aneurysm, 106 which had branch grafts to the renals and the visceral vessels for 238 grafts. When we look at the breakdown here, of those 106, 38 patients' stents involved the use of VBX. This was only limited by the late release of the VBX graft.

And so we had 68 patients who were treated with non-VBX grafts. Their other demographics were very similar. We then look at the use, we were able to use some of the smaller VBXs, as I mentioned, because we can tailor it more distally

so you don't have to put a seven or eight millimeter parallel graft in, and with that we found that we had excellent results with that. Lower use of actual number of grafts, so we had, for VBX side we only had one graft

per vessel treated. If you look at the other grafts, they're anywhere between 1.2 and two grafts per vessel treated. We had similar mortality and followup was good with excellent graft patency for the VBX grafts.

As mentioned, technical success of 99%, mimicking the data that Dr. Metzger put forward to us. So in conclusion, I think VBX is a safe and a very versatile graft we can use for treating these complex aneurysms for perfusion of iliac vessels as well as visceral vessels

as we illustrated. And we use it for aortoiliac occlusive disease, branch and fenestrated grafts and parallel grafts. It's patency is equal to if not better than the similar grafts and has a greater flexibility for modeling and conforming to the existing anatomy.

Thank you very much for your attention.

- Thanks Frank, for inviting me again. We know very well that CAS and CEA are, and will remain, emboli-generating. This is an algorithm in which we can see the microembolic profile during unprotected carotid stenting. But I am a vascular surgeon, oriented to an endovascular approach, and I believe strongly

in carotid artery stenting renaissance, when we use tips, tricks and new devices. So the real difference between the two procedures are between 0 and 30 days, and this is demonstrated by the result of 10 year by CREST and by ACT 1. So, but the procedure must be protected.

Because as the Kastrup metanalisys said, the unprotected procedure are three, four-fold increase for cerebral protection embolic. And these are the recommendations from European Society of Cardiology and American Heart Association, regarding

the use of embolic protection devices. But what kind of embolic protection device? We know very well that the cerebral distal protection have some strengths and some weaknesses. And the same is for the cerebral proximal protection with the strengths and weaknesses.

So, but this is rarely used, both in the rest of Europe and in Italy. But what about dissent? We are four studies with only prospective, including a population cohort larger than 100 patients. From Italy, from Germany, from Piotr Michalik,

from Poland, again from Italy. As these are the results that are near with the rod centered stent, with very satisfactory results. With very low rate of... This is the CLEAR-ROAD study, with very low rate of complication.

This is a total of 556 patients who underwent stenting with the new generation of stent. This is the incidence of adverse events at 30 days. So, how we can apply the benefit to our procedures with OCT? And OCT demonstrated the safety of new stent design. And why I use OCT in carotids?

With two main issues. A high definition of carotid plaque, and the correct interaction between plaque and stent. With the high definition of carotid dark in order to identify the plaque type. The degree and area of stenosis,

the presence of ulceration, and the thrombus. I study the interaction between plaque and stent. In order to study the stent apposition, the stent malapposition, the fibrous cap rupture, and the plaque micro-prolaps. So this data I published last year on

EuroIntervention, with the conclusion that in relation to the slice-based analysis, we have the correct comparison with conventional stents, and the incidence of plaque prolapse was absolutely lower. So in conclusion, why I strongly believe in a reinvigoration of carotid stenting?

For the use of better embolic protection device. For the use of newer mesh covered stents, and definitively, OCT proves it as shown. Thank you for your attention.

- Thanks Fieres. Thank you very much for attending this session and Frank for the invitation. These are my disclosures. We have recently presented the outcomes of the first 250 patients included in this prospective IDE at the AATS meeting in this hotel a few months ago.

In this study, there was no in-hospital mortality, there was one 30-day death. This was a death from a patient that had intracranial hemorrhage from the spinal drain placement that eventually was dismissed to palliative care

and died on postoperative day 22. You also note that there are three patients with paraplegia in this study, one of which actually had a epidural hematoma that was led to various significant and flacid paralysis. That prompted us to review the literature

and alter our outcomes with spinal drainage. This review, which includes over 4700 patients shows that the average rate of complications is 10%, some of those are relatively moderate or minor, but you can see a rate of intracranial hemorrhage of 1.5% and spinal hematoma of 1% in this large review,

which is essentially a retrospective review. We have then audited our IDE patients, 293 consecutive patients treated since 2013. We looked at all their spinal drains, so there were 240 placement of drains in 187 patients. You can see that some of these were first stage procedures

and then the majority of them were the index fenestrated branch procedure and some, a minority were Temporary Aneurysm Sac Perfusions. Our rate of complication was identical to the review, 10% and I want to point out some of the more important complications.

You can see here that intracranial hypotension occurred in 6% of the patients, that included three patients, or 2%, with intracranial hemorrhage and nine patients, or 5%, with severe headache that prolonged hospital stay and required blood patch for management.

There were also six patients with spinal hematomas for a overall rate of 3%, including the patient that I'll further discuss later. And one death, which was attributed to the spinal drain. When we looked at the intracranial hypotension in these 12 patients, you can see

the median duration of headache was four days, it required narcotics in seven patients, blood patch in five patients. All these patients had prolonged hospital stay, in one case, the prolongation of hospital stay was of 10 days.

Intracranial hemorrhage in three patients, including the patient that I already discussed. This patient had a severe intracranial hemorrhage which led to a deep coma. The patient was basically elected by the family to be managed with palliative care.

This patient end up expiring on postoperative day 21. There were other two patients with intracranial hemorrhage, one remote, I don't think that that was necessarily related to the spinal drain, nonetheless we had it on this review. These are some of the CT heads of the patients that had intracranial hemorrhage,

including the patient that passed away, which is outlined in the far left of your slide. Six patients had spinal hematoma, one of these patients was a patient, a young patient treated for chronic dissection. Patient evolved exceptionally well, moving the legs,

drain was removed on postoperative day two. As the patient is standed out of the bed, felt weakness in the legs, we then imaged the spine. You can see here, very severe spinal hematoma. Neurosurgery was consulted, decided to evacuate, the patient woke up with flacid paralysis

which has not recovered. There were two other patients with, another patient with paraplegia which was treated conservatively and improved to paraparesis and continues to improve and two other patients with paraparesis.

That prompted changes in our protocol. We eliminated spinal drains for Extent IVs, we eliminated for chronic dissection, in first stages, on any first stage, and most of the Extent IIIs, we also changed our protocol of drainage

from the routine drainage of a 10 centimeters of water for 15 minutes of the hours to a maximum of 20 mL to a drainage that's now guided by Near Infrared Spectroscopy, changes or symptoms. This is our protocol and I'll illustrate how we used this in one patient.

This is a patient that actually had this actual, exact anatomy. You can see the arch was very difficult, the celiac axis was patent and provided collateral flow an occluded SMA. The right renal artery was chronically occluded.

As we were doing this case the patient experienced severe changes in MEP despite the fact we had flow to the legs, we immediately stopped the procedure with still flow to the aneurysm sac. The patient develops pancreatitis, requires dialysis

and recovers after a few days in the ICU with no neurological change. Then I completed the repair doing a subcostal incision elongating the celiac axis and retrograde axis to this graft to complete the branch was very difficult to from the arm

and the patient recovered with no injury. So, in conclusion, spinal drainage is potentially dangerous even lethal and should be carefully weighted against the potential benefits. I think that our protocol now uses routine drainage for Extent I and IIs,

although I still think there is room for a prospective randomized trial even on this group and selective drainage for Extent IIIs and no drainage for Extent IVs. We use NIRS liberally to guide drainage and we use temporary sac perfusion

in those that have changes in neuromonitoring. Thank you very much.

- Thank you chairman, ladies, and gentlemen. These are my disclosures. The objective was to asses the prognostic value of a high or immeasurable Ankle-Brachial Index at baseline for major amputation and Amputation Free Survival in patients with CLTI. And, we did this within two randomized control trials,

the PADI trial and the JUVENTAS trial, which I will spend a bit on later. We did a regression analysis of both trials, and had data pooled at a patient level, looking at risk factors such as Diabetes, Cardiovascular Comorbidities,

and Ankle-Brachial-Index. Patients were divided in either low, intermediate, or a high, or immeasurable, ABI. So, in short, the PADI trial was a Multicenter 2-arm randomized clinical trial with controls looking at Rutherford Category over three on

Infrapopliteal Lesions comparing Drug Eluting Stents verses PTA and without bail out stenting, endpoints, patency, major amputation, and mortality. This study was published in 2017. The JUVENTAS Trial, was a stem cells trial with double-blinded placebo controlled giving a

infusion of bone marrow stem cells versus placebo. And again, the endpoints were major amputation and mortality, published in 2015. Overall from these two trials, we were able to collect 260 patients, and this is the baseline table.

You can see that the majority of patients fitted in the Low ABI group, 146 patients. And, 33 patients fitted in the High ABI group. Overall, the prevalence of Diabetes, History of Stroke Coronary Disease, and Impaired Renal Function, was significantly higher in the High ABI group.

Follow-up of these patients with median of 229 weeks, and in this period we observed 59 amputations, and 103 deaths. The majority of this major amputations was performed, actually, in the first year after inclusion within these trials,

which you can see here in this Kaplan Meier Curve, showing that the amputation rate was about double in the High ABI group, as compared to the Low or Intermediate group. Looking at ABI for its Amputation Free Survival, again showed significantly higher rate of amputations

in the High ABI group, as compared to Low or Intermediate. And, at five years, you can see that almost all patients in the High ABI group either had amputation or had died. This was about 50% in the Low or Intermediate group. Looking at the Multivariate Regression Analysis, we observe the Rutherford Category and ABI

in the High or Immeasurable group, related to major amputation, and is same for amputation or death, now adding also age. So, the interrelation between ABI and major events, is J shaped, and actually, there's a higher risk for patients with a high or immeasurable ABI for major events,

as compared to patients with a low ABI. So why is this so? Well, it's not fully elucidated, but it's believed to be related to Medial Arterial Calcifications, being an independent age associated pathway different from Atherosclerosis.

And, the stiffness due to this calcification, may prevent compensatory positive remodeling related to Atherosclerosis when both diseases coincide. And, actually it's coexistence of Medial Calcification Atherosclerosis is not that uncommon, even up to 80%. So, what is the clinical relevance of all this?

Well, we did look at the PREVENT-III prediction model for Amputation Free Survival. You can see on the slide, the included factors in the original PREVENT-III model. We added the I, or Immeasurable ABI to this model, and has lead to an increase in C-statistics from 46% to 72%

Net Reclassification Improvement of 0.38. So, ladies and gentlemen, in conclusion, a high or immeasurable ABI in patients with CLTI and Infrapopliteal Arterial Obstructive Disease is an independent risk factor of major amputation and of poor Amputation Free Survival.

Incorporating this factor in a PREVENT-III prediction model improves its performance. Thank you very much, also to the research groups.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- [Doctor] Thank you Tom and thanks Dr Veith for the invitation to be here again. These are my disclosures, so hypogastric embolization is not benign, patients can develop buttock claudication, higher after bilateral sacrifice, it can be persistent in up to half of patients. Sexual dysfunction can also occur, and we know that

there can be catastrophic complications but fortunately they're relatively rare. So now these are avoidable, we no longer have to coil and cover in many patients and we can preserve internal iliac's with iliac branch devices like you just heard. We had previously published the results of looking from

the pivotal trial, looking at the Gore IBE device with the six month primary end point showing zero aneurysm-related morality, high rates of technical success, 95% patency of the internal iliac limb, no type one or type three endoleaks and 98% freedom from reintervention. Importantly on the side of the iliac branch device, there

was prevention of new-onset of buttock claudication in all patients, and importantly also on the contralateral side in patients with bilateral aneurysms that were sacrificed, the incidents in a prospect of trial of the development of buttock claudication was 28%, confirming the data from those prior series.

And this is in line with the results of EVAR using iliac branch device published by many others showing low rates of mortality, high rates of technical success and also good patency of the devices. In press now we have results with follow-up out through two years, in the Gore IBE trial, we also compared

those findings to outcomes in a real world experience from the great registry, so 98 patients from the pivotal and continued access arm's of the IBE trial and also 92 patients who underwent treatment with the Gore IBE device in the great registry giving us 190 patients with 207 IBE devices implanted.

Follow-up was up to three years, it was an longer mean follow-up in the IDE study with the IBE device. Looking at outcomes between the clinical trial and the real world experience, they were very similar. There was no aneurysm-related mortality, there was no recorded new-onset ipsilateral buttock claudication,

this is all from the IDE trial since we didn't have that information in the great registry, and looking at the incidence of reinterventions, it was similar both in the IDE clinical trial experience and also in the great registry as well. Looking at patency of the internal iliac limb, it was

93.6%, both at 12 months and 24 months in the prospective US IBE pivotall trial and importantly all the internal iliac limb occlusions occurred very early in the experience likely due to technical or anatomic factors. When we look at the incidence of type two endoleaks, we had previously noted there was a very high incidence of

type two endoleaks, 60% at one month, this did tail off a bit over time but it was still 35% at two years. A total of five patients in the pivotal IBE trial had a reintervention for type two endoleak through two years, and despite that high incidence of type two endoleak, overall the incidence of aortic aneurysm sac expansion

of more than five millimeters has been rare and low at two and nine percent at 12 and 24 months, and there's been no expansions of the treated common iliac artery aneurysm sac's at either 12 or 24 months. Freedom from reintervention has been quite good, 90.4% through two years in the trial and most of these

re-interventions were type two endoleaks. We now have some additional data out through three years in about two thirds of the patients we have imaging data available now through three years in the pivotal IBE trial, there have been no additional events, device related events reported since the two year data and through three years

we have no recorded type one or type three endoleaks, no aneurysm ruptures, no incidences of migration, very high rates of patency of the external and internal iliac arteries, good freedom from re-intervention and good freedom from common iliac artery aneurysm sac enlargement. And I think, in line with these findings, the guidelines

now from the SVS are to recommend preservation of the internal iliac arteries when ever present and that's a grade 1A recommendation, thank you.

- Thank you, thanks for the opportunity to present. I have no disclosures. So, we all know that wounds are becoming more prevalent in our population, about 5% of the patient population has these non-healing wounds at a very significant economic cost, and it's a really high chance of lower extremity amputation

in these patients compared to other populations. The five-year survival following amputation from a foot ulcer is about 50%, which is actually a rate that's worse than most cancer, so this is a really significant problem. Now, even more significant than just a non-healing wound

is a wound that has both a venous and an arterial component to it. These patients are about at five to seven times the risk of getting an amputation, the end patients with either isolated venous disease or isolated PAD. It's important because the venous insufficiency component

brings about a lot more inflammation, and as we know, this is associated with either superficial or deep reflux, a history of DVT or incompetent perforators, but this adds an increasing complexity to these ulcers that refuse to heal.

So, it's estimated now about 15% of these ulcers are more of a mixed etiology, we define these as anyone who has some component of PAD, meaning an ABI of under point nine, and either superficial or deep reflux or a DVT on duplex ultrasound.

So we're going to talk for just a second about how do we treat these. Do we revascularize them first, do we do compression therapy? It has been shown in many, many studies, as with most things, that a multi-disciplinary approach

will improve the outcome of these patients, and the first step in any algorithm for these patients involves removing necrotic and infected tissue, dressings, if compression is feasible, based on the PAD level, you want to go ahead and do this secondary, if it's not, then you need to revascularize first,

and I'm going to show you our algorithm at Michigan that's based on summa the data. But remember that if the wounds fail to heal despite all of this, revascularization is a good option. So, based on the data, the algorithm that we typically use is if an ABI is less than point five

or a toe pressure is under 50, you want to revascularize first, I'll talk for a minute about the data of percutaneous versus open in these patients, but these are the patients you want to avoid compression in as a first line therapy.

If you have more moderate PAD, like in the point five to point eight range, you want to consider compression at the normal 40 millimeters of mercury, but you may need to modify it. It's actually been shown that that 40 millimeter of mercury

compression actually will increase flow to those wounds, so, contrary to what had previously been thought. So, revascularization, the data's pretty much equivocal right now, for these patients with these mixed ulcers, of whether you want to do endovascular or open. In diabetics, I think the data strongly favors

doing an open bypass if they have a good autogenous conduit and a good target, but you have to remember, in these patients, they have so much inflammation in the leg that wound healing from the surgical incisions is going to be significantly more difficult

than in a standard PAD patient, but the data has shown that about 60% of these ulcers heal at one year following revascularization. So, compression therapy, which is the mainstay either after revascularization in the severe PAD group or as a first line in the moderate group,

is really important 'cause it, again, increases blood flow to the wound. They've shown that that 40 millimeters of mercury compression is associated with a significant healing rate if you can do that, you additionally have to be careful, though,

about padding your bony areas, also, as we know, most patients don't actually keep their compression level at that 40, so there are sensors and other wearable technologies that are coming about that help patients with that, keeping in mind too, that the venous disease component

in these patients is really important, it's really important to treat the superficial venous reflux, EVLT is kind of the standard for that, treatment of perforators greater than five, all of that will help.

And I'm not going to go into any details of wound dressings, but there are plenty of new dressings that are available that can be used in conjunction with compression therapy. So, our final algorithm is we have a patient with these mixed arterial venous ulcers, we do woundcare debridement, determine the degree of PAD,

if it's severe, they go down the revascularization pathway, followed by compression, if it's moderate, then they get compression therapy first, possible treatment of venous disease, if it still doesn't heal at about 35 weeks, then you have to consider other things,

like biopsy for cancer, and then also consider revacularization. So, these ulcers are on a rise, they're a common problem, probably we need randomized control trials to figure out the optimal treatment strategies.

Thank you.

- Thank you very much and I would like to thank Dr. Veit for the kind invitation, this is really great meeting. Those are my disclosures. Percutaneous EVAR has been first reported in the late 1990's. However, for many reasons it has not been embraced

by the vascular community, despite the fact that it has been shown that the procedure can be done under local anesthesia and it decreases OR time, time to ambulation, wound complication and length of stay. There are three landmark papers which actually change this trend and make PEVAR more popular.

All of these three papers concluded that failure or observed failure of PEVAR are observed and addressed in the OR which is a key issue. And there was no late failures. Another paper which is really very prominent

is a prospective randomize study that's reported by Endologix and published in 2014. Which revealed that PEVAR closure of the arteriotomy is not inferior to open cut down. Basically, this paper also made it possible for the FDA to approve the device, the ProGlide device,

for closure of large bore arteriotomies, up to 26 in the arterial system and 29 in the venous system. We introduced percutaneous access first policy in our institution 2012. And recently we analyzed our results of 272 elective EVAR performed during the 2012 to 2016.

And we attempted PEVAR in 206 cases. And were successful in 92% of cases. But the question was what happened with the patient that failed PEVAR? And what we found that was significantly higher thrombosis, vessel thrombosis,

as well as blood loss, more than 500 cc in the failed PEVAR group. Similarly, there was longer operative time and post-operative length of stay was significantly longer. However, in this relatively small group of patients who we scheduled for cut-down due to different reasons,

we found that actually there was no difference between the PEVAR and the cut-down, failed PEVAR and cut-down in the terms of blood loss, thrombosis of the vessel, operative time and post-operative length of stay. So what are the predictors of ProGlide failure?

Small vessel calcification, particularly anterior wall calcification, prior cut-down and scarring of the groin, high femoral bifurcation and use of large bore sheaths, as well as morbid obesity. So how can we avoid failures?

I think that the key issue is access. So we recommend that all access now or we demand from our fellow that when we're going to do the operation with them, cut-down during fluoroscopy on the ultra-sound guidance, using micropuncture kits and access angiogram is actually mandatory.

But what happened when there is a lack of hemostasis once we've deployed two PEVARs? Number one, we try not to use more than three ProGlide on each side. Once the three ProGlide failed we use the angioseal. There's a new technique that we can have body wire

and deployed angioseal and still have an access. We also developed a technique that we pack the access site routinely with gelfoam and thrombin. And also we use so-called pull and clamp technique, shown here. Basically what it is, we pull the string of the ProGlide

and clamp it on the skin level. This is actually a very very very good technique. So in conclusion, PEVAR first approach strategy successful in more than 90% of cases, reduced operative time and postoperative length of stay, the failure occurred more commonly when the PEVAR

was completed outside of IFU, and there was no differences in outcome between failed PEVAR and planned femoral cut-down. Thank you.

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Thank you so much. I have no disclosures. These guidelines were published a year ago and they are open access. You can download the PDF and you can also download the app and the app was launched two months ago

and four of the ESVS guidelines are in that app. As you see, we had three American co-authors of this document, so we have very high expertise that we managed to gather.

Now the ESVS Mesenteric Guidelines have all conditions in one document because it's not always obvious if it's acute, chronic, acute-on-chron if it's arteri

if there's an underlying aneurysm or a dissection. And we thought it a benefit for the clinician to have all in one single document. It's 51 pages, 64 recommendations, more than 300 references and we use the

ESC grading system. As you will understand, it's impossible to describe this document in four minutes but I will give you some highlights regarding one of the chapters, the Acute arterial mesenteric ischaemia chapter.

We have four recommendations on how to diagnose this condition. We found that D-dimer is highly sensitive so that a normal D-dimer value excludes the condition but it's also unfortunately unspecific. There's a common misconception that lactate is

useful in this situation. Lactate becomes elevated very late when the patient is dying. It's not a good test for diagnosing acute mesenteric ischaemia earlier. And this is a strong recommendation against that.

We also ask everyone uses the CTA angiography these days and that is of course the mainstay of diagnoses as you can see on this image. Regarding treatment, we found that in patients with acute mesenteric arterial ischaemia open or endovascular revascularisation

should preferably be done before bowel surgery. This is of course an important strategic recommendation when we work together with general surgeons. We also concluded that completion imaging is important. And this is maybe one of the reasons why endovascular repair tends to do better than

open repair in these patients. There was no other better way of judging the bowel viability than clinical judgment a no-brainer is that these patients need antibiotics and it's also a strong recommendation to do second look laparotomoy.

We found that endovascular treatment is first therapy if you suspect thrombotic occlusion. They had better survival than the open repair, where as in the embolic situation, we found no difference in outcome.

So you can do both open or endo for embolus, like in this 85 year old man from Uppsala where we did a thrombus, or the embolus aspiration. Regarding follow up, we found that it was beneficial to do imaging follow-up after stenting, and also secondary prevention is important.

So in conclusion, ladies and gentlemen, the ESVS Guidelines can be downloaded freely. There are lots of recommendations regarding diagnosis, treatment, and follow-up. And they are most useful when the diagnosis is difficult and when indication for treatment is less obvious.

Please read the other chapters, too and please come to Hamburg next year for the ESVS meeting. Thank You

- Good morning. I'd like to thank Dr. Veith and Symposium for my opportunity to speak. I have no disclosures. So the in Endovascular Surgery, there is decrease open surgical bypass. But, bypass is still required for many patients with PAD.

Autologous vein is preferred for increase patency lower infection rate. And, Traditional Open Vein Harvest does require lengthy incisions. In 1996 cardiac surgery reported Endoscopic Vein Harvest. So the early prospective randomized trial

in the cardiac literature, did report wound complications from Open Vein Harvest to be as high as 19-20%, and decreased down to 4% with Endoscopic Vein Harvest. Lopes et al, initially, reported increase risk of 12-18 month graft failure and increased three year mortality.

But, there were many small studies that show no effect on patency and decreased wound complications. So, in 2005, Endoscopic Vein Harvest was recommended as standard of care in cardiac surgical patients. So what about our field? The advantages of Open Vein Harvest,

we all know how to do it. There's no learning curve. It's performed under direct visualization. Side branches are ligated with suture and divided sharply. Long term patency of the bypass is established. Disadvantages of the Open Vein Harvest,

large wound or many skip wounds has an increased morbidity. PAD patients have an increased risk for wound complications compared to the cardiac patients as high as 22-44%. The poor healing can be due to ischemia, diabetes, renal failure, and other comorbid conditions.

These can include hematoma, dehiscense, infection, and increased length of stay. So the advantages of Endoscopic Vein Harvest, is that there's no long incisions, they can be performed via one or two small incisions. Limiting the size of an incision

decreases wound complications. It's the standard of care in cardiac surgery, and there's an overall lower morbidity. The disadvantages of is that there's a learning curve. Electro-cautery is used to divide the branches, you need longer vein compared to cardiac surgery.

There's concern about inferior primary patency, and there are variable wound complications reported. So recent PAD data, there, in 2014, a review of the Society of Vascular Surgery registry, of 5000 patients, showed that continuous Open Vein Harvest

was performed 49% of the time and a Endo Vein Harvest about 13% of the time. The primary patency was 70%, for Continuous versus just under 59% for Endoscopic, and that was significant. Endoscopic Vein Harvest was found to be an independent risk factor for a lower one year

primary patency, in the study. And, the length of stay due to wounds was not significantly different. So, systematic review of Endoscopic Vein Harvest data in the lower extremity bypass from '96 to 2013 did show that this technique may reduce

primary patency with no change in wound complications. Reasons for decreased primary patency, inexperienced operator, increased electrocautery injury to the vein. Increase in vein manipulation, you can't do the no touch technique,

like you could do with an Open Harvest. You need a longer conduit. So, I do believe there's a roll for this, in the vascular surgeon's armamentarium. I would recommend, how I use it in my practices is, I'm fairly inexperienced with Endoscopic Vein Harvest,

so I do work with the cardiac PA's. With increased percutaneous procedures, my practice has seen decreased Saphenous Vein Bypasses, so, I've less volume to master the technique. If the PA is not available, or the conduit is small, I recommend an Open Vein Harvest.

The PA can decrease the labor required during these cases. So, it's sometimes nice to have help with these long cases. Close surveillance follow up with Non-Invasive Arterial Imaging is mandatory every three months for the first year at least. Thank you.

- So again, I'd like to thank Dr. Veith for the opportunity to participate in this interesting debate. So, I have been tasked with the position Intra-operative Completion Study is not mandatory, and in fact I will show you why a selective approach will actually provide better results for our patients. These are my disclosures related to ongoing

clinical research and clinical trials. So again, Professor Eckstein and his colleagues should be very significantly commended for getting the entire German vascular surgery community to look at their data in a very rigorous fashion. However, both he and his co-authors will acknowledge

within the manuscript that there are significant problems with this database. A very large number of 142,000 elective carotid endarterectomy procedures with very ballotable stroke and death rates of 1.4 and 2.5%. However, a typical criticism from outside the

vascular surgery community, these are all self-reported. These are not 30 day outcomes, they're actually in-hospital outcomes. And while in Germany that still may be four days, it's not the 30 days that we see. I'll show you a little bit later on within the Crest data.

And interestingly, within their own manuscript only 50% of the patients actually had neurologic assessment both pre- and post-procedural. So, how can we make a relevant decision in terms of thinking about how we're going to treat these patients if we only have neuro data on half of them.

Lets for the moment assume we can call out those patients. How does this relate to clinical practice? Well the authors also admit that this is an observational study, and that even though there is some association, there clearly is no causal relationship

as my previous debater just admitted. And in fact, they argue that this is perhaps the best method to look at generating hypotheses for future randomized trials, much like Dr. Aborama has done with the use of carotid endarterectomy with patching. So, let's look a little bit more about the data

and see how relevant it is to your current practice. So in the Germany registry, a quarter of the patients are treated under local anesthetic. 40% have no type of neurologic monitoring, and over 40% are performed with aversion endarterectomy. Very, very different than the practice that we see

in our institution, and in the New England region. And I would argue that there's a lot of concern in terms of what the indications are for monitoring, what the indications are for shunt use. Again, that's 43%. But there's absolutely no data in this registry about

indications for shunting, when it was used, or when patients were re-explored and what they found at the time. And a little bit concerning is in 17% of the patients, there was no anti-platelet agent used in patients undergoing carotid endarterectomy.

And, I would argue that that number is just a little bit high. How about when we go to the univariate analysis? Once again, we see that there's a benefit of 0.4% decrease in stroke and death for a local anesthetic, although we are well aware that there are numerous other

perspectives that have looked at this and not shown that same relationship. Again, there's a benefit for aversion endarterectomy, but I would argue at least in the New England region and perhaps in the United States except for select centers, aversion endarterectomy is used the minority of the time

and that in fact is an indication in my mind to have a lower threshold for either angiogram or completion duplex. Most concerning, there was 0.3% difference in the stroke and death rate with the lack of an intraoperative completion study, but there was no data about indications, findings,

whether that resulted in an intervention, or what the result of that intervention was. And initially in the univariate analysis, neuro-psyche, physiologic monitoring was protective, but later on in the multivariate, it was not. Here is that same multivariate analysis that shows again

that in fact shunting and neuro-physiologic monitoring are increased risk factors for stroke. Certainly there's going to be some bias. My concern is I'm not convinced the authors are able to call out the co founding variables, even in their multivariate regression analysis.

And in fact, in their concluding paragraphs they state there's no information supplied on whether intraoperative completion studies caused an operative revision or not, and no information about cause of death. In fact, they don't even have information about

intraoperative heparin or protamine application. So I would argue I'd be very skeptical about making my final decisions based on this. Thinking about the technical aspects of angiography, there's no doubt that this is very helpful at times, but think about the details of where do you put the needle.

What type of imaging? Is it a C-arm, is it a flat plate? Who interprets it, and what are your thresholds for intervention? So, it certainly may be harmful, may be unnecessary, and may even give you false positives.

Similarly with Completion Duplex studies, there certainly is a false positive rate and then there's risk for re-clamping. I reached out to my friend and colleague Braglol to see if there was any data from Crest that would help us, and unfortunately other than the fact that stroke happens

up to 30 days after our initial endarterectomy, there was no data supporting that. So, perhaps the best study that we have is our current practice in New England where we had 6,000 patients, a third of whom received completion studies. We broke this down into rare, selective, and routine

duplex or angio studies. And in fact, in the selective group we had a very low rate of re-exploration versus the other group, and a much lower incidence of overall stroke and death. In fact, the only benefit that was statistically significant was a decrease one year rate of re-stenosis.

So in conclusion, I would argue that this is probably unnecessary, and in fact maybe harmful. Meticulous technique, intra-procedural monitoring with selective shunt use, and continuous wave doppler use may, in fact, be the way to go. But this does give us an opportunity for prospective,

randomized trial as part of another study to look for completion study indications. Thank you very much.

- It's my pleasure on behalf of the Sentury Trial investigators to present the two year data on the BTG Novate Sentry filter. These are my disclosures. Well, as we have heard this afternoon, it's no surprise to anyone the topic of IVC filter placement is controversial.

We know that IVC filters can protect patients by preventing PE. We also know that retrievable filters that are not retrieved have been reported to have, be associated with some complications. And we talked about FDA advisory,

obviously that has resulted somewhat in a decrease in filter use in this country. Obviously complication rates we've also heard about increase with implant time and include tilting, migration, fracture, perforation and embolization. And retrieval success reduces with implant time.

What's not controversial, and we have heard also about this, is the frequency of PE in this country and the expense associated with it. Obviously, survival benefits have been shown in appropriate populations, that are selected based on known indications. And existing retrieval technology, unfortunately,

as we've heard from Dr. Askandari, has not met the needs of patients when up to 40 to 50 percent are not coming back for retrieval. That was sort of the impetus behind the design of the Sentry Bioconvertible IVC Filter, which is designed to protect patients at transient risk

from PE and reduce complications of existing technologies. It employs a stable frame with filter arms held together by a bioabsorbable filament and designed to provide PE protection during a transient risk period, reduce IVC filter complications, including tilting, migration, fracture, perforation and embolization.

And this just shows an example in vitro and with a CT scan of the filter in the so-called filtering configuration. The filter then automatically bioconverts after the PE risk period is past. That's guaranteed to be in the

filtering position for at least 60 days. It bioconverts by hydrolysis of the bioabsorbable element, which allows the filter arms to retract to the IVC wall, leaving a patent lumen and reducing the risk for IVC occlusion or thrombosis later on, and obviously, the cost of IFC filter retrieval.

Here you can see filters that are in the bioconverted configuration. This just shows the deployment. It's a simple pin and pull seven French delivery system. These stable arms allow this to be placed almost always without any tilting

and is quite easy and accurate to deploy. This is in an ovine modeled pre-clinical study shows in a bioconverted configuration all of the filter elements become endothelialized and in this angioscopic view, really can't even see any of the filter elements.

This is again sort of predicated on something that I believe we're not all that familiar with and that's when the timing of PE occurs. And you can see here, from the trauma literature, orthopedic literature, other literature, on 500,000 patients and in these groups you can see

that over 90 percent of PEs take place in less than 10 days after an initial event and 99 percent of PEs within 20 days. That led the FDA to write a position decision analysis paper, which recommend filter retrieval between

29 and 54 days after implantation. So, on s, 23 sites, 63 operators. You can see this was a relatively imaging-intense protocol with 24 month CT Venogram and CT Venograms also at one month and six months.

Long term follow up, 94 percent of the eligible subjects were imaged at 24 months. You can see that 67.5 percent of the subjects had current PE and/or DVT at the time of enrollment, and 100 percent had contraindication to anticoagulation for some or all of the protection period.

In terms of the composite primary endpoint, there was a high degree of technical success, 100 percent of the patients received the device. 100 percent freedom from new symptomatic PE to 60 days. Two patients had symptomatic caval thrombosis at 8

by angiojet, one by EKOS. And there was no tilting, migration, embolization, fracture or perforation. At 12 months there were no new symptomatic PEs and there were no device related complications out to 12 months.

And at 24 months, two new symptomatic PEs, days 581 and 632,in patients with fully bioconverted filters. There were no device related out to 24 months. Both of these were adjudicated by a clinical events committee as not being device related.

And again, you can see that the bioconversion rate of 96.5 percent compares favorably to published retrieval rates, and we've talked about that. So, in conclusion, the primary endpoint at six months was met with clinical success of 97.4 percent. No new symptomatic PEs at 12 months.

2.4 new symptomatic PEs at 24 months, but no tilting, migration, perforation, fracture or embolization. And the 96.5 percent bioconversion rate compares favorably to published retrieval rates. Thanks very much.

- Thank you and thanks Craig, it's fun to have these debates with good colleagues, thoughtful colleagues. These are my disclosures for the talk. But pry my most important disclosure is I work in academic center with a dedicated Limb Preservation Center, very tertiary practice. And I perform both open and endovascular surgery

and actually my current lower extremity practice is probably about 60 to 65 percent endovascular so, I do both of these procedures. We already saw this slide about how the increase in endovascular intervention has grown. But, I would caution you to look a little more closely

at this outpace of decline in bypass surgery by more than three to one. I don't think this is an epidemic, I think it's a little bit of this, and a little bit of this. Everything looks like a nail when you only have a hammer

or a hammer when you only have a nail. So, what should we really be doing today? We should be trying to select the best thing for the right patient at the right time. And it really comes down to starting not with the lesion, but with the patient.

Start with assessing the patient's risk, what's their perioperative risk, what's their long-term survival, what are their goals for care? And then look at the limb itself, because not all limbs are the same.

There are minor ulcers, there's extensive and severe rest pain and there are large areas of tissue loss. And the WIfI system is good for that. And then let's look at the anatomy last. And when we're looking at it from the standpoint of what all the options are, endovascular we're looking

at what's the likelihood not just of technical success, but of hemodynamic gain and sustained patency for as long as a patient needs it. With bypass, we also have to look at other things. What kind of vein do they have, or what kind of target do they have?

And I think the bottom line here is in today's practice, it's kind of silly to say endo first for all patients, it's certainly not surgery first for all patients because they have complementary roles in contemporary practice. Well what's happening in the world out there,

this is the German CRITISCH registry, I'll just point out 12 hundred patients recently published only a couple of years ago, 24 percent of patients get bypass first. And if you look at who they are, not surprisingly they are the patients

with long occlusions and complex anatomy. They are out there, in fact most of these patients have multi-segment disease, as Craig pointed out. Here's some contemporary data that you haven't seen yet because it's in press, but this is VQI data looking at 2003 to 2017.

I'll point out just in the last 2013 years, still, if you looked at unique patients, not procedures, one-third of the patients are getting a bypass first. And if you define risk groups considering what might be a low risk patient as a three percent mortality and survival greater than 70 percent,

and a high risk patient, you can put these patients into buckets and in fact, of all the patients getting lower extremity revascularization and VQI today, 80 percent of them would be called low risk based on this definition. So, most patients are not high risk patients

who don't have long-term survival. In fact, this is current VQI data. If you're a low risk patient in that cohort, your five year survival actually is over 70 percent. So there's a lot of these patients actually today with better CLO medical therapy that are actually

living longer and are not that high risk. We talked about the BASIL trial already, and he pointed out how the early results were similar, but what we learned also with BASIL, that if you've got a bypass as a secondary procedure, or if you got a bypass with a prosthetic,

you simply did not do as well. That doesn't mean that the initial endovascular revascularization caused the bypass failure, but it means that secondary bypass surgery does not work as well. And when Dr. Bradbury looked at this data

over a longer period of time now going over many more years, there's a consistent inferior outcome to the patients who had their bypass after failed angioplasty in comparison to bypass as the initial strategy. This is not an isolated finding. When we looked in the VSGNE data over a,

more than 3000 patients at the impact of restenosis on subsequent treatment failure, we found that whether patients had a failed previous PVI or bypass, their secondary bypass outcomes were inferior, and the inferiority continued to get worse with time.

These bypasses just don't perform as well. Unfortunately, if we only do bypass after endo has failed, this is what all the results are going to start to look like. So let's be a little bit smarter. Now what about patency?

I think we, even today in the endovascular world, we realize patency is important. After all, that's why we're doing drug elution. Most, but not all patients with advanced limb ischemia will recrudesce their symptoms when their revascularization fails.

I think we all know that. Most CLTI patients have multi-segment disease. I don't want to sit up here and be a high school or elementary school math teacher, but here's the reality. If you look at it above the lesion, you say I'm going to get 70 percent patency there, and you look at

the tibial lesion, you say I'm going to get 50 percent patency there, what do you think your patency is for the whole leg? It's 35 percent folks, it's the product of the two. That is the reality pretty often. Patients with more advanced limb presentations,

such as WIfI stage do not tolerate these failures. They tolerate them poorly. They go on to amputation pretty fast. And patient survival, as I've already shown you has improved. Now, what the all endo-all the time

camp does and doesn't say. He already showed us, many datasets suggest the downstream outcomes are roughly equivalent but, these are not the same patients, we are not operating on the same patients you are doing endo on.

If I told you the results are the same for PCI and CABG without showing you anatomy, you would laugh me off the stage right? So, this is really not an equivalent argument. Endo can be repeated with minimal morbidity, but patients suffer.

Their limb status deteriorates, they come in the hospital often, and they continue to decline in the outcomes of these secondary procedures. CLTI patients are too frail for surgery, I just showed you that's really not true for many patients.

There is really unfortunately, an economic incentive here. Because there is unfortunately, no incentive for durable success. I hate to bring that up, but that's the reality. Now just quickly, some results. This is a large Japanese series

where they were performing endovascular interventions only for advanced limb ischemia. And basically what you can see as you go across the WIfI stages here from stage one to stage four, when you get to these stage four patients, the wound healing rate's only 44 percent,

limb salvage rate drops to 80 percent, repeat EVT rate is encroaching 50 percent. These patients really are not doing well with endovascular intervention. And we found that in our own series too, it's relatively small numbers and not randomized.

But if we look at the stage 4 limbs with bypass versus endo, when these patients failed at revascularization, and they may not have been bypass candidates, but they didn't do well, they went on to amputation very quickly.

So the ESC guidelines that just came out really sort of line up with what I'm telling you. You'll see bypass first. If you have long occlusions in an available vein, is actually currently the favorite approach, with level 1A recommendation.

So in summary, this is how I currently approach it. You look at all these factors, some people should get endo first, but there's still about 20 or 30 percent that I think should get bypass. Some people should go on to amputation earlier, is the bottom line, and I'll go right to the bottom line.

If you don't have access to a skilled open bypass surgeon, you're probably not at a center of excellence, go find one.

- Now we are delighted that there's apparently two things that we came up with years ago proved useful. This is the Near-Infrared Spectroscopy slide by Joe Bavaria from UPENN providing patient data on delayed paraplegia. That's a problem that we see in open NN (mumbles) very frequently.

How does the NIRS work? And again to this illustrative picture and now imagine the spinal cord sitting here in the spine canal and there's no more blood flow and this is the end result. When you know the oxygenation in the collateral network

and there was the problem with this technology that had been attempted 12 years back already, in Houston, I bet they put the NIRS optodes in the midline and the light cannot penetrate bone so it didn't work. But if you put it on the collateral network

and you measure the oxygen in this area, you obviously know it in the spinal canal. Dorsal view, again, so this is position of the optodes and this is oxygen content way interested in it. This is another cast just to illustrate

how these segmentals are regionally connected into the spinal canal, obviously. Experimental validation and pilot series in the next two minutes. Experimental cross clamping, this is the setup so years mentoring Laser Doppler Flow

to a real time evaluation of what you measure with your infrared setup in the animal lab and we see here, correlation is very nice between the lumbar NIRS, optodes, and the actual lumbar spinal cord oxygenation measured by Laser Doppler which is evaluated

with other techniques. Very nice to see the corelation between the two. So lumbar collateral network NIRS directly reflects spinal cord tissue oxygenation. After we have proven that step, next step was serial segmental artery occlusion.

As this is a technology that we or the strategy that we using, obviously want to know with our monitoring works for that. You see here, experimental setup basically the same. Starts with anesthesia, exposure of the segmentals. Now an open approach

and then you get 120 minutes surveillance period. You got a drop or dip in the NIRS measurements. Interestingly in the experimental setup in the recovery group, you see here that the new logical function comes back after the procedure and the NIRS comes back after the procedure.

Paraplegic group, all segmentals sacrificed NIRS, drops after the procedure in the first couple days, and the neurologic function does not recover. So experimental evidence that actually works. Nice corelation, again, so the experimental validation proves that lumbar NIRS

reflects lumbar spinal cord oxygenation and reacts to occlusion, of segmental arteries in real-time, but careful it's only regional so where ever you put your optodes, this is the area where you can monitor

your collateral network associated dip when you coil or include the segmental arteries. First clinical results published a couple years ago, I think you have all seen this video. Optodes are putting in the back of the patient, same setup for endo and open

and then we take the monitors theory and we have real-time monitoring on oversights midline here, this is (mumbles). Concept validation from 2016 with the first clinical data and now we're working on the clinical evaluation

of the use of this technology in EVAR and in clinical coil-embolization. 11 patients have been included so far for the EVAR group and you see here, it is very sensitive when you put stent in, stent deployment, but we have to still work so to speak

on the area that we have to monitor. There's a lot of work to do and probably also device modifications are necessary. MISACE, last couple words, on this you see pretty stable, NIRS all over the time course and actually this is nothing we wouldn't have expected

because the patient obviously were protected from spine cord anesthesia. So also here but sometimes we see a significant drop and this is when you should be careful and that's when you usually stop the procedure. So in conclusion, minor changes

in Collateral Network oxygenation have been seen in EVAR in this preliminary results using the nearest technology and to establish one very nice ... Nicely how clinical practice is already guided at his institution.

There's no immediate complete occlusion of covered segmental arteries and there's ongoing study in very heterogeneous patient group. There's no relevant changes with the chlorine technology so far,

but that, just to remind you, is the purpose of this technology, that we do not harm the patient during the preparation period. Thank you very much for your attention.

- Thank you and thanks again Frank for the kind invitation to be here another year. So there's several anatomic considerations for complex aortic repair. I wanted to choose between fenestrations or branches,

both with regards to that phenotype and the mating stent and we'll go into those. There are limitations to total endovascular approaches such as visceral anatomy, severe angulations,

and renal issues, as well as shaggy aortas where endo solutions are less favorable. This paper out of the Mayo Clinic showing that about 20% of the cases of thoracodynia aneurysms

non-suitable due to renal issues alone, and if we look at the subset that are then suitable, the anatomy of the renal arteries in this case obviously differs so they might be more or less suitable for branches

versus fenestration and the aneurysm extent proximally impacts that renal angle. So when do we use branches and when do we use fenestrations? Well, overall, it seems to be, to most people,

that branches are easier to use. They're easier to orient. There's more room for error. There's much more branch overlap securing those mating stents. But a branch device does require

more aortic coverage than a fenestrated equivalent. So if we extrapolate that to juxtarenal or pararenal repair a branched device will allow for much more proximal coverage

than in a fenestrated device which has, in this series from Dr. Chuter's group, shows that there is significant incidence of lower extremity weakness if you use an all-branch approach. And this was, of course, not biased

due to Crawford extent because the graft always looks the same. So does a target vessel anatomy and branch phenotype matter in of itself? Well of course, as we've discussed, the different anatomic situations

impact which type of branch or fenestration you use. Again going back to Tim Chuter's paper, and Tim who only used branches for all of the anatomical situations, there was a significant incidence of renal branch occlusion

during follow up in these cases. And this has been reproduced. This is from the Munster group showing that tortuosity is a significant factor, a predictive factor, for renal branch occlusion

after branched endovascular repair, and then repeated from Mario Stella's group showing that upward-facing renal arteries have immediate technical problems when using branches, and if you have the combination of downward and then upward facing

the long term outcome is impaired if you use a branched approach. And we know for the renals that using a fenestrated phenotype seems to improve the outcomes, and this has been shown in multiple trials

where fenestrations for renals do better than branches. So then moving away from the phenotype to the mating stent. Does the type of mating stent matter? In branch repairs we looked at this

from these five major European centers in about 500 patients to see if the type of mating stent used for branch phenotype grafts mattered. It was very difficult to evaluate and you can see in this rather busy graph

that there was a combination used of self-expanding and balloon expandable covered stents in these situations. And in fact almost 2/3 of the patients had combinations in their grafts, so combining balloon expandable covered stents

with self expanding stents, and vice versa, making these analyses very very difficult. But what we could replicate, of course, was the earlier findings that the event rates with using branches for celiac and SMA were very low,

whereas they were significant for left renal arteries and if you saw the last session then in similar situations after open repair, although this includes not only occlusions but re-interventions of course.

And we know when we use fenestrations that where we have wall contact that using covered stents is generally better than using bare stents which we started out with but the type of covered stent

also seems to matter and this might be due to the stiffness of the stent or how far it protrudes into the target vessel. There is a multitude of new bridging stents available for BEVAR and FEVAR: Covera, Viabahn, VBX, and Bentley plus,

and they all seem to have better flexibility, better profile, and better radial force so they're easier to use, but there's no long-term data evaluating these devices. The technical success rate is already quite high for all of these.

So this is a summary. We've talked using branches versus fenestration and often a combination to design the device to the specific patient anatomy is the best. So in summary,

always use covered stents even when you do fenestrated grafts. At present, mix and match seems to be beneficial both with regards to the phenotype and the mating stent. Short term results seem to be good.

Technical results good and reproducible but long term results are lacking and there is very limited comparative data. Thank you. (audience applauding)

- Yes, thank you, this is the talk about the combination of atherectomy and DCB for treating calcified lesions in below-the-knee arteries. As we've heard from Fabrizio Fanelli, we know that calcium is really an issue in our daily practice, especially when we use DCB. As circumferential calcium increases,

the efficacy of DCP decreases, late lumen loss increases, and primary patency decreases. This has been shown also for a longer term follow up by Gunnar Tepe, and retrospective analysis of 91 patients that as calcium increases,

late lumen loss increases at 6 months. The severity of lesion calcification was a single independent predictor of late lumen loss outcome after DCB treatment. We have a lot of below-the-knee studies out there with really different results.

But anyway, we have in the meantime, one study which has positive results about DCB trials, so I guess all these usage will become broader in below-the-knee treatment, and then we have to trust calcium. This is the Peripheral Orbital Atherectomy System

which I do not have to explain here in the United States. This has a unique mode of action, changing compliance using Centrifugal Force and is 360 degree crown contact is designed to create a smooth, concentric lumen

and allows constant blood flow and particulate flushing during orbit. You do not need a filter to use this atherectomy system which is very comfortable, especially in below-the-knee arteries because the particulates are so small

and there is not an issue of distal embolization. Calcified plaque modification alters local drug delivery and this has been shown by cadaver study. You see on the left hand side, the untreated vessel and the drug uptake in the circumstance of an untreated vessel.

And this is the drug uptake of a calcified cadaver vessel after orbital atherectomy treatment and drug coated balloon applied. So the Optimize-BTK study was Optimal Orbital Atherectomy plus DCB verse DCB Alone in below-the knee arteries.

Pilot study, non-powered, prospective one to one randomization. Only calcified lesions below the knee. And we used as a comparative Lutonix Drug Coated Balloon. We had 65 patients were planned.

The number of available patients should be 50. We figured out the inclusion criteria. Only lesions below the knee, and we figured out the calcium. We had the Cts come before and they had to confirm the distribution of the calcium.

They had to be a length of calcium of more than 25% of the total lesion length or more than two centimeters in total length. And the target lesion length could be up to 20 centimeters. Late lumen loss, the primary outcome measures were late lumen loss patency of the target lesion

freedom from major adverse event and freedom from clinically driven TLR follow up and freedom from unplanned, unavoidable major amputation. The enrollment have been completed in May 2018. We have enrolled 66 patients. 32 of the Orbital Atherectomy plus DCB

and 34 did DCB. This study has been conducted in Australia and Germany, so I hope we will be able to present the data next year. Just to conclude, calcified lesions may reduce the efficacy of DCBs by blocking uptake into the vessel wall. Preclinical data suggest that Orbital Atherectomy treatment

to calcified plaques trended in greater drug permeability and the Optimize trial is designed to test this hypothesis and we will be happy to present six month data next year. Thank you very much.

- I want to thank Dr. Veith for the invitation to present this. There are no disclosures. So looking at cost effectiveness, especially the comparison of two interventions based on cost and the health gains, which is usually reported

through disability adjusted life years or even qualities. It's not to be really confused with cost benefit analysis where both paramaters are used, looked at based on cost. However, this does have different implications from different stakeholders.

And we look, at this point, between the medical center or the medical institution and as well as the payers. Most medical centers tend to look at how much this is costing them

and what is being reimbursed. What's the subsequent care interventions and are there any additional payments for some of these new, novel technologies. What does the payers really want to know, what are they getting for the money,

their expenditures and from here, we'll be looking mainly at Medicare. So, background, we've all seen this, but basically, you know, balloon angioplasty and stents have been out for a while and the outcomes aren't bad but they're not great.

They do have continued high reintervention rates and patency problems. Therefore, drug technology has sort of emerged as a possible alternative with better patency rates. And when we look at this, just some, some backgrounds, when you look at any sort of angioplasty,

from the physician's side, we bill under a certain CPT code and it falls under a family of codes for reimbursement in the medical center called an APC. Within those, you can further break it down to the cost of the product.

In this situation, total products cost around 1400 dollars and the balloons are estimated to be 406 dollars in cost. However, in drug-coated balloons, there was an additional payment, which average, because they're such more expensive devices than the allotments and this had an additional payment.

However, this expired in January of this year. When you look at Medicare reimbursement guidelines, you'll see that on an outpatient hospital setting, there's a reimbursement for the medical center as well as for the physican which is, oops sorry, down eight percent from last year.

And they also publish a geometric mean cost, which is quite higher than we expected. And then the office based practice is also the reimbursement pattern and this is slated to go down also by a few percentage points.

When you look at, I'm sorry, when you look at stents, however, it's a different family of CPT codes and APC family also. Here you'll see the supply cost is much higher in the, I'm sorry, the stent in this category is actually 3600 dollars.

The average cost for drug-eluting stents, around 1500 dollars and the only pass through that existed was on the inpatient side of it. Again, looking at Medicare guidelines, the reimbursement will be going down 8 percent

for the outpatient setting and the geometric mean cost is 11,700. So, what we want to look at really is what is the financial impact looking at primary patency, target lesion revascularization based on meta analysis. And the reinterventions are where the real cost

is going to come into effect. We also want to look at, when it doesn't work and we do bailout stenting, what is the cost going to happen there, which is not often looked at in most of these studies. So looking at a hypothetical situation,

you've got 100 patients, any office based practice, the payee will pay about 5145. There's a pass through payment which averages 1700 dollars per stent. Now, if you look at bailout stenting, 18.5 percent at one year,

this is the additional cost that would be associated with that from a payer standpoint. Targeted risk for revascularization was 12 percent of additional costs. So the total one year cost, we estimated, was almost a million dollars

and the cost per primary patency limb at one year was 13 four. In a similar fashion, for drug-eluting stents, you'll see that there's no pass through payment, but although there is a much higher payer expenditure. The reintervention rate was about 8.4 percent

at one year for the additional cost. And you'll see here, at the one year mark, the cost per patent limb is about 12,600 dollars. So how 'about the medical center, looking at Medicare claims data, you'll see the average cost for them is 745,000,

the medical center. Additional costs listed at another 1500. Bailout renting, as previously, with relate to a total cost at one year of 1.2 million or at 16,900 dollars per limb. Looking at the drug-eluting stents,

we didn't add any additional costs because the drug-eluting stents are cheaper than the current system that is in there but the reinterventions still exist for a cost per patent limb at one year of 14 six. So in essence, a few other studies have looked

at some model, both a European model and in the U.S. where the number of reinterventions at two to five years will actually offset the additional cost of drug-eluting stents and make it a financially advantageous process.

And in conclusion, drug-eluting stents do have a better primary patency and a decreased TLR than drug-coated balloons or even other, but they are more expensive than conventional treatment such as balloon angioplasty and bare-metal stents.

There is a decreased reintervention rate and the bailout stenting, which is not normally accounted for in a financial standpoint does have a dramatic impact and the loss of the pass through makes me make some of the drug-coated balloons

a little more prohibitive in process. Thank you.

- So I have the honor to provide you with the 12-month result of the TOBA II trial. I guess we all confirmed that this action is the primary mechanism of angioplasty. We all know that lesions of dissection have a TLR rate of 3.5 times higher than lesions without dissection.

The current tools for dissection repair, these are stents. They have limitations, really a large metal load left behind causing inflammation. This is leading to in-stent restenosis. So the Tack Endovascular System.

It's a delivery system over six French catheter. This is for above the knee with six implants pre-loaded on a single catheter. The Tack implant itself, it has an adaptive sizing, so it adapts to the diameter of the vessel from 2.6 up to 6.0 for SFA and PPA usage.

It's a nitinol implant with gold radiopaque markers for visibility. Has a unique anchoring system, which prevents migration, and a deck which is deployed in six millimeter in length. So with regard to the TOBA II study design,

this was a prospective multi-center single-arm non-blinded study at 33 sites in US and Europe. We enrolled 213 subjects. These were all subjects with post-PTA dissection. So only with a dissection visible on the angiogram, the patients could be enrolled into this study.

We had the usually primary safety end point, primary efficacy end points, which we are familiar from other trials and other studies so far. With regard to the inclusion criteria, I just want to look at this very briefly.

Mainly we had de novo or non-stented restenotic lesions in the SFA P1. If it was a stenosis, the lesion length could be up to 150 millimeter. If it was a total occlusion, the length was up to 10 centimeters.

They had to be the presence of at least one target run of vessel to the foot. They had to be a post residual, post-PTA residual stenosis of lower than 30%, and the presence of at least one dissection Grade A to F. With regard to the key lesion characteristics,

baseline for the different patients, there was not a big difference to other studies out there. The only difference was maybe we had slightly more patients with diabetes. The lesion, the target lesion length, the mean target lesion length was up to 74 millimeters.

We also had patients with calcification, mainly moderate but also some with severe calcification. There were two met the primary end points. The 30-day freedom from major adverse event, and also the primary efficacy end point at 12 months, which was a freedom from clinical driven TLR,

and freedom from core lab adjudicated duplex ultrasound derived binary restenosis. Now, with regard to patency in a patient cohort, where we really had 100% dissected vessel at 100% dissected vessel population, we had primary patency at 12-month of 79.3%

and a freedom clinical driven TLR of 86.5%. There was with regard to dissection severity, we had 369 total dissections we were treating. The number of dissections per subject was 1.8. The mean dissection length was two centimeters. So around 70% of subjects had a dissection of

Grade C or greater before using the Tack. In 92.1% of all dissections, this could be completely resolved with a Tack. With regard to the Tack stability and durability, in total, 871 Tacks have been deployed. So that was a number of 4.1 Tacks per subject.

The bailout stent rate was very low, just one. The freedom from Tack fracture at 12 months, 100%, and there was one minor Tack migration at 12 months with education by the core lab so the Tack was not seen at the same place as six months or 12 months before.

There was significant clinical improvement with Rutherford category improvement in 63%, which improved of up to two classes. There was also an improvement in ABI, walking impairment questionnaire. So just to conclude, TOBA II is a unique trial.

First to enroll 100% dissected vessels. Successfully met the primary efficacy and safety end points, and demonstrated the Tack is an efficient repair system for dissections after POBA or DCB with minimum metal left behind, low radial force, stable and durable design,

and preservation of future treatment options. There was only a very, very low bailout stent rate. This in combination with high patency rate and high freedom from clinical TLR. Thank you very much.

- Yeah now, I'm talking about another kind of vessel preparation device, which is dedicated to prevent the occurrence of embolic events and with these complications. That's a very typical appearance of an occluded stent with appositional stent thrombosis up to the femur bifurcation.

If you treat such a lesion simply with balloon angioplasty, you will frequently see some embolic debris going downstream, residing in this total occlusion of the distal pocket heel artery as a result of an embolus, which is fixed at the bifurcation of

the anterior tibial and the tibial planar trunk, what you can see over here. So rates of macro embolization have been described as high as 38% after femoral popliteal angioplasty. It can be associated with limb loss.

There is a risk of limb loss may be higher in patients suffering from poor run-off and critical limb ischemia. There is a higher rate of embolization for in-stent restenosis, in particular, in occluded stents and chronic total occlusions.

There is a higher rate of cause and longer lesions. This is the Vanguard IEP system. It's an integrated balloon angioplasty and embolic protection device. You can see over here, the handle. There is a rotational knob, where you can,

a top knob where you can deploy, and recapture the filter. This is the balloon, which is coming into diameters and three different lengths. This is the filter, 60 millimeter in length. The pore size is 150 micron,

which is sufficient enough to capture relevant debris going downstream. The device is running over an 80,000 or 14,000 guide-wire. This is a short animation about how the device does work. It's basically like a traditional balloon.

So first of all, we have to cross the lesion with a guide-wire. After that, the device can be inserted. It's not necessary to pre-dilate the lesion due to the lower profile of the capture balloon. So first of all, the capture filter,

the filter is exposed to the vessel wall. Then you perform your pre-dilatation or your dilatation. You have to wait a couple of second until the full deflation of the balloon, and then you recapture the filter, and remove the embolic debris.

So when to use it? Well, at higher risk for embolization, I already mentioned, which kind of lesions are at risk and at higher risk of clinical consequences that should come if embolization will occur. Here visible thrombus, acute limb ischemia,

chronic total occlusion, ulceration and calcification, large plaque volume and in-stent reocclusion of course. The ENTRAP Study was just recently finished. Regarding enrollment, more than 100 patients had been enrolled. I will share with you now the results

of an interim analysis of the first 50 patients. It's a prospective multi-center, non-randomized single-arm study with 30-day safety, and acute performance follow-up. The objective was to provide post-market data in the European Union to provide support for FDA clearance.

This is the balloon as you have seen already. It's coming in five and six millimeter diameter, and in lengths of 80, 120 and 200 millimeters. This is now the primary safety end point at 30 days. 53 subjects had been enrolled. There was no event.

So the safety composite end point was reached in 100%. The device success was also 100%. So all those lesions that had been intended to be treated could be approached with the device. The device could be removed successfully. This is a case example with short lesion

of the distal SFA. This is the device in place. That's the result after intervention. That's the debris which was captured inside the filter. Some more case examples of more massive debris captured in the tip of the filter,

in particular, in longer distance total occlusions. Even if this is not a total occlusion, you may see later on that in this diffused long distance SFA lesion, significant debris was captured. Considering the size of this embolus,

if this would have been a patient under CLI conditions with a single runoff vessel, this would have potentially harmed the patient. Thank you very much.

- So I'm going to be talking about allografts for peripheral graft infections. This is a femoral artery that's been replaced after a closure device infection and complication, and we've bypassed to the SFA and profunda femoris. These are my disclosures. So peripheral arterial infectious processes,

well the etiology either is primary or secondary. Primary can be from bacteremic states and seeding of ulcerated plaque or thrombus. Secondary reasons for infections can be the vast usage of percutaneous closure devices that really have flooded the market these days.

Prosthetic graft infections after either a bypass or patch in the femoral artery. So early onset infections usually are from break in sterility. Secondary infections can be from either wound breakdowns or late seeding of the prosthetic graft.

The presentation for these patients can be relatively minor such as cellulitis or draining sinus, or much more dramatic, such as sepsis or pseudoaneurysm or mycotic aneurysm. On the CT scan we can see infected mycotic aneurysm after infected closure device and bleeding complications.

The treatment is broad in range. Ligation is obviously one option, but it leads to a very high risk of major limb amputation. So ideally some form of reconstruction, either extra-anatomic through clean planes,

antibiotic graft as we heard from the previous speaker, the use of autologous replacement with deep vein, or we become big proponents of the use of cryopreserved arterial allografts for reconstruction. And much of this stems from our work from about 10 years ago, where we looked

at the use of aortic cryopreserved grafts for aortic graft infections. This was published about 10 years ago but we looked at a small series of patients with aortic infections. You can see the CT scan of an infected stent graft

and associated aneurysm. And then the intraoperative photo after we've resected the stent graft and replaced that segment of the aorta with a cryopreserved aortic segment. So using that as a springboard,

we then decided to look at the outcomes using these types of conduits, arterial conduits, for peripheral arterial reconstructions in contaminated or infected surgical fields. So retrospective review at our tertiary care center, we looked at roughly 60 patients over a 15-year period

and excluded any aortic-based reconstructions. So these are all peripheral reconstructions. Mean follow-up was 28 months. As you would expect, the distribution of treatment zones were primarily in the lower extremities, so 51 cases.

As you can see, there's a list of all the different types of cases that we treated. But then there were a few upper extremity visceral and then carotid. I've shown this slide before at this meeting in the past, with a carotid patch infection

that was treated after it had a blow-out, and it's obviously a infected aneurysm, and this was treated with resection and a cryopreserved arterial segment. Looking at our outcomes, the 30-day outcome showed a mortality rate of 9%.

The 30-day conduit-related complication rate was surprisingly low at 14%. We had four patients that had bleeding complications, four patients with recurrent infectious complications. All eight of those patients required a return back to the operating room for correction.

The late conduit-related complication rate was only 16%. As listed here, you can see there's only one case of reinfection, three cases of graft thrombosis, surprisingly only one major limb amputation, two pseudoaneurysms and one late bleeding complication.

And graphically depicted, you can see here, this area here is looking at the less than 30 days, this is primarily when the complications occur. When you get to six months, fewer complications, and then beyond six months, the primary complications that we would see are either thrombosis of the graft

or the development of late pseudoaneurysms, again relatively low. So in summary, I think peripheral arterial infectious complications can be treated with a cryopreserved arterial allografts. The advantage is it's a single stage operation,

maintains in-line flow, there's a low incidence of repeat infection. I think it's also important to mention that the majority of these patients had adjunctive muscle flap coverage to cover the large soft tissue defect

at the time of the operation. So I think that this is a valuable alternative conduit in a setting of peripheral arterial infections. Thank you.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you. We've all heard that hypogastric artery occlusion can be not so benign as Dr. Snyder mentioned. It's not advancing, there we go. There's the systematic meta-analysis of 61 papers and showing that when you have bilateral occlusion you actually can have worse symptoms

of claudication, even erectile dysfunction. There are these known commercially available devices but should we be doing bilateral cases? There's certainly increased complexity inherent in this and anatomic limitations and cost. We choose to look at a multicenter experience

of 24 centers, 47 patients. Here are the contributing contributors. When we published our experience these are the 47 patients using the GORE IBE device both in Europe and the United States with 6.5 month follow up. The aortic diameters, some of the characteristics.

You can see here that 23% had exclusive iliac aneurysm treatment in the absence of a AAA. Four had aneurysmal or ectatic internal iliac arteries. These are sometimes treated by coil embolizing the first branch and extending the internal branch into a first order branch, there you can see.

But anatomic limitations persist and you can see especially with lengths. You need quite a long length for that ipsilateral side with its device in order to do the bilateral case. These are the IFUs, 165 for the contra and 195 for the ipsi. In our experience you can see that actually 194 on the ipsi

and 195 is what we found as a mean. This seems prohibitive. Some of the tips and tricks to accommodate the shorter lengths are shown here. We can maximize overlap, and we can see that from 195 we can drop this

by maximizing the overlap to 175. We can certainly cross the limbs, that eats up some length. Intrinsic tortuosity can eat up the distance. We can see we can recreate the flow divider, bring up the flow divider higher, match the two limbs. That also can cut down the distance.

Finally in some of these patients we had shorter bridging stents, the endurant stent in particular is a little shorter instead of the 100 millimeter Gore limb and that can also shorten the distance. More about the procedural outcomes. You can see here great technical success.

There were no type one or type three endoleaks. There were some adjunctive stenting in some patients, four patients, because of some kinking and distal dissection. One technical failure's worth pointing out. This is a patient who has heavy calcification

in the iliac system here. Couldn't cannulate, the internal iliac artery required coil embolization. You can see this patient, we had to sacrifice that internal and extend into the external. Complications at 30 days are very acceptable.

One groin infection. You can see that radiographing clinical follow up. One patient with new buttock claudications, a patient who lost the internal iliac artery as I'll mention to you in a minute. The other one was asymptomatic

but also one internal iliac artery lost. No aneurysm related deaths. You can see there's some type two endoleaks but not type one or three endoleaks. More about limb occlusions. This is the external iliac limb.

You can see there were three external iliac limb occlusions, two in the perioperative period and one at six months which presented with claudication requiring a Fem-Fem. The two in the perioperative period, one was a thrombectomy and stent that was treated nicely. The other one was really an iatrogenic limb occlusion

because the internal branch was deployed inadvertently high jailing the external and causing the operators to have to go back and essentially sacrifice that internal in order to preserve flow to the external. You can see that this a patient who in fact did have the claudication symptoms, this is that one patient.

As far as internal iliac limb occlusion in addition to the one we just described there was one asymptomatic incidental find of a limb occlusion at six months. This is a comparison of what Dr. Snyder just discussed, the pivotal trial with expanded access to the global experience I just presented.

You can see when you look at fluoroscopy time, for instance, contrast media used or procedural duration that there is, of course, some increase requirement in the bilateral cases but I would argue that this is not prohibitive. Cost, however, may in fact be an issue.

Certainly this can be a quite costly procedure when we start doing bilateral cases. There are, in fact, new procedure codes that Gore has provided that can offset some of this cost especially for the hospital cost, but nonetheless this is something to be considered.

So in conclusion, preservation of bilateral internal iliac artery with a Gore IBE can be performed safely with excellent technical results and short term patency rates. Only one new onset of buttock claudication occurred in that inadvertent limb jailing. Limb and branch occlusions are rare but can be treated

successfully with stenting most of the time. Some anatomic limitations exist but a number of maneuvers can permit technical success even in shorter length aortoiliac segments. Contrast fluoroscopy and length of case do not appear to be prohibitive.

However, cost remains an issue. Thank you.

- So thank you for the kind introduction and thanks for professor Viet for the invitation again this year. So, if we talk about applicability, of course you have to check the eye views from this device and you're limited by few instructions for users. They changed the lengths between the target vessel

and the orifice and the branch, with less than 50 mm , they used to be less than 25 mm. Also keep in mind, that you need to have a distance of more than 67 mm between your renal artery cuff and your iliac bifurcation. The good thing about branch endografts

is that if you have renal artery which comes ... or its orifice at the same level of the SME, you can just advance and put your endorafts a bit more proximally, of course risking more coverage of your aorta and eventually risking high rate

of paraplegia or spinal cord ischemia. Also if your renal artery on one side or if your target vessel is much lower with longer bridging stent grafts which are now available like the VBX: 79 mm or combination of bridging stem grafts, this can be treated as well.

Proximally, we have short extensions like the TBE which only allows 77 or 81 mm. This can also expand its applicability of this device. The suitability has already been proven in.. or assessed by Gaspar and vistas and it came around plus 60%

of all patients with aortic aneurysms. Majority of them are limitations where the previous EVAR or open AAA repair or the narrow diameter reno visceral segment in case of diabetes sections. So, what about the safety of the T-branch device?

We performed an observational study Mister, Hamburg and Milner group and I can present you here the short term results. We looked at 80 patients in prospective or retro prospective manner with the t-branch as instructed for use.

Majority were aneurysms with the type two or type four Crawford tracheal aneurysms, also a few with symptomatic or ruptured cases. Patient characteristics of course, we have the same of the usual high risk cardiovascular profiling,

this group of patients that has been treated. Majority was performed percutaneously in 55%. The procedure time shows us that there is still a learning curve. I think nowadays we can perform this under 200 minutes. What is the outcome?

We have one patient who died post operative day 30, after experiencing multiorgan failure. These are 30 day results. No rupture or conversion to open surgery. We had one patient with cardiac ischemia, seven patients with spinal cord ischemia

and one patient has early branch occlusion. There was both renal arteries were occluded, he had an unknown heparin induced thrombocytopenia and was treated with endovascular thrombectomy and successfully treated as well. Secondary interventions within 30 days were in one patient

stent placement due to an uncovered celiac stent stenosis In one patient there was a proximal type one endoleak with a proximal extension. One patient who had paraplegia or paraparesis, he had a stenosis of his internal iliac artery which stem was stented successfully,

and the paraparesis resolved later on in this patient. And of course the patient I just mentioned before, with his left and right renal artery occlusion. So to conclude, the T-branch has wide applicability as we've seen also before, up to 80% especially with adjuvant procedures.

Longer, more flexible bridging stent grafts will expand the use of this device. Also the TBE proximal extensions allows aortic treatment of diameters for more than 30 mm and I think the limitations are still the diameter at reno visceral segment,

previous EVAR or open AAA repair and having of course multiple visceral arteries. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.