Create an account and get 3 free clips per day.
Chapters
IVC Filter Strut Migration (Heart)|Sternotomy, Pericardiotomy||Male
IVC Filter Strut Migration (Heart)|Sternotomy, Pericardiotomy||Male
2016cardiacconsultfilterforcepsfragmentsintravascularpatientpulledretrieveretrievedsheathSIRstrutsurgeonultrasound
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
accessappropriatelyAV AccessAV Vascular AccessbilateralcatheterchronicCKD-Stage 4creatinineDialysisdisadvantagesegfrFistulapatientpatientspermanentpredictingproteinproteinuriareferralrenalrisksurgeontrajectoryvalidatedvascularveinswrist
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
advantagesautologousbypasscardiaccomorbidcomplicationsdecreasedecreaseddisadvantagesendoscopicendovascularextremityharvestincisionincreasedinexperiencedlaborligatedlowerpatencypatientspercutaneousperformedprimaryrisksaphenoussurgicalsuturevascularveinVeithwoundwounds
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
cessationcounselingevaluatesintermedmedicarepatientpatientspharmacotherapyreducesrestenosissessionssmokingtobaccovascularwebsitewithdrawal
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
aneurysmAneurysm repairaxisBEVARceliacchronicDialysisdraindrainagedrainseliminatedextentFEVARflowFluid / PressorsheadachehematomahemorrhagehypotensionincludingintracranialOccluded SMAoutcomespalliativeparaplegiapatientpatientsplacementpostoperativeprolongedprospectiveprotocolratesevereSevere PancreatitisspinalTEVARtherapeutictreated
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
3D medical imagingaortaaugmentedcardiaccatheterCoreValve (Medtronic) - Transcatheter Aortic Valve Delivery Catheter System / TAVIguide (FEops) - Simulation technology / Holoscope (RealView Imaging) - 3D medical imagingDigital Light ShapingdynamicfloatingfocalfocusinteractmitralneedlepatientRealView ImagingsliceTherapeutic / DiagnosticvalveVeith
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
AbbottaccessanesthesiaAngio-Seal (Terumo Medical Corporation) - Closure deviceangiogramangiosealanteriorarteriotomybifurcationboreclampclosuredeployedEndologixevarfailedfailurefemoralgelfoamhemostasislengthmicropunctureobservedoperativePerclose ProGlidepercutaneousPEVARpredictorsprogliderandomizescarringSuture-Mediated Closure (SMC) Systemtechniquetherapeuticveitvenousvessel
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
advancedamputationbypasscentercontemporarydataendoendovascularevarextremityfailedlimblimbsocclusionsOpen Bypassoutcomespatencypatientpatientspercentrevascularizationrisksecondarystagesurgerytolerate
DEBATE: Not So: Transfemoral Access Should Be The First Option For Most CAS Procedures In Most Low Risk And Many High Risk Patients: Why It Is Better Than TCAR
DEBATE: Not So: Transfemoral Access Should Be The First Option For Most CAS Procedures In Most Low Risk And Many High Risk Patients: Why It Is Better Than TCAR
cardiologistscarotidCASCEAcomplicationembolizationsendarterectomyincisioninterventioninterventionalinterventionalistmyocardialourielpatientsrangerevascularizationrobustsurgeonsurgeonsTCARTherapeutic / Diagnostictransfemoralvascular
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
bicarbonateboluscardiovascularcombinationcomparingcoronarydoseevarhydrationHypertensionintralowmechanismspatientsperipheralpreviousrandomizedreducingrenalsalinesodiumstandardTherapeutic / Diagnostictrialtrialswillingness
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
additionalangioplastybailoutballoonballoonsbasedcentercodescostDCBdecreasedDESdollarsgeometricInterventionslimbmedicalmedicareoutpatientpasspatencyPatentpayerpercentprimaryreimbursementreinterventionreinterventionsrevascularizationstents
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
The PREPIC Trial: Fact Or Fiction
The PREPIC Trial: Fact Or Fiction
anticoagulatedanticoagulationBoston ScientificCardial VCF / LGM filter / Bird's nest filter / Warfarin / LMWHdatadifferenceDVTembolismfilterfiltersgreenfieldincidencemulticenterpatientsprepicpublishedpulmonaryrandomizationrandomizedrecurrentremainedriskstudysymptomatictherapeuticunderpoweredunfractionatedVena Cava Filterversus
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
acuteadvanceanteriorcarotidcerebralcollateralsdeliveryintracranialmechanicalneuroprotection agentsneuroprotectiveofferedpatientpatientsPenumbrapotentpreservestrokethrombectomyThromectomytpatreat
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
aneurysmarterybuttockclaudicationCook ZenithdeployedendograftendoleaksevarevarsexcellentfinalgrafthelicalhypogastriciliacjapaneselandinglimbobservationalocclusionoperativepatencypatientspercentrenalrequiredspiralSpiral Z graftstenosisstentStent graftstentsstudytripleVeithzenith
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
Why Are Carotid Stenoses Under- And Over-Estimated By Duplex Ultrasonography: How To Prevent These Problems
arteriovenousbasicallybrachiocephaliccarotidcommoncontralateraldiameterdiscordancedistalexternalFistulainternallowoccludedocclusionproximalrecanalizedrokestenosistighttumorvelocitiesvelocityvessel
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
How To Treat The Foot Varicose Veins
How To Treat The Foot Varicose Veins
ambulatoryassociateceapfoamlaserliquidpatientphlebectomyphysicalpolidocanolrefluxsatisfactionsclerotherapyspidertransdermaltreattreatmentultrasoundvaricesvaricosevaricose veinsveins
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
anesthesiaanteriorcomplaintsdyspareuniahemorrhageiliacincisionincludelabialLabial Varices + Leg VVligationLocal SclerotherapymalformationpatientpelvicperforatorsperformedphlebectomypolidocanolposteriorpostpartumrefluxrefluxingsaphenofemoralsclerosclerotherapysulfatesuperficialsymptomaticsymptomstetradecylultrasoundvaricositiesveinsVeithvenogramvenousversusvulvar
Transcript

this is a case where we retrieved this filter and as you can see I'll go back to the initial image there is a fractured strut here, and as we were going along the strut moved. So clearly not adherent and in the course of the case we got the filter out and the strut is now in the RV.

So we talked about cardiac surgery. We made our best effort to get this out and we couldn't so we obtained some imaging. And I'll skip to the images it's the most relevant which is this strut is in the tricuspid annulus and milliliters away from the right coronary artery. >> Sorry show [INAUDIBLE]

>> So now let me ask the question. This was a young patient under the age of 30. Had a filter placed for prophylactic reason. We see the strut, and your cardiac surgeon says I think it's okay, let's leave it. >> [LAUGH]

>> Which is true. >> Which is true this is exactly what happened. What would you do next? Find a different surgeon? I'm glad we agree on that. Now in the cause of this case.

The patient actually become symptomatic. They developed sustained SVT. So this patient went to the OR. [BLANK_AUDIO] I'll get my mouse here. There it is. >> What happened to the first surgeon?

>> That was the first surgeon. He called me at night to make his case and I said well I just received information from the cardiologist that this patient now has an arrhythmia. He's like okay, I'll take it up tomorrow. >> I think Kush deserves a lot of credit here,

the surgeon it was a day or two before they even sought in a consult, we tried calling them they weren't calling back, they never returned the pages.

Then they came by the consult was just leave it alone. But there were a little SVT here and there wasn't an ongoing thing but he was able to convince them to proceed it was more than you staying there looking over the patient than really looking to do it. >> [INAUDIBLE]

>> Yeah. >> [INAUDIBLE] >> What about using intravascular ultrasound [INAUDIBLE] >> Intravascular ultrasound or echo? >> [INAUDIBLE] >> Interesting thought.

One of the things when we tried to retrieve it and I'm not sure how many of you have tried to retrieve foreign bodies from the ventricle, I certainly don't have a lot of experience but there's a lot of structures there cordis, trabeculae, all of which can't be seen.

>> It was clear to us pretty early on that we were in over our heads with our standard techniques. We sort of escalated things when this happened. We got anesthesiologists come in and they actually were there monitoring the patient had everything they needed. And we briefly tried but opening up the snare we would get arrhythmias not really certain

what we were grabbing with the snares. It didn't take us long to realize that we shouldn't be doing this and we needed a consult that wasn't us now. Intravascular ultrasound is an interesting idea. We don't have a ton of experience at our institution with it. We could have considered it but I think the young patient that could

handle this surgery, I think that was probably the right way to go. >> I think that's an interesting question, whether you use an ice catheter or if you do transesophageal even, you get one of your cardiology colleagues to come and drop a scope and take a look that way. That's

an interesting idea. Again I'd be extraordinarily nervous about pulling a strut out of somebody's heart. If things go wrong, there's an existing dare I say standard of care here that a cardiothoracic surgeon would remove this fragment. And so I think

you're kind of matching off the reservation a little bit, I think you need to be aware of that. >> [LAUGH] >> Yes? >> The only time I've ever actually retrieved some thing from a ventricle [INAUDIBLE] The surgeon was there.

>> Yeah. >> We got it our successfully with no problem. But every time I pulled [INAUDIBLE] goes what are you doing? [INAUDIBLE] You gotta be prepared. >> I think we're gonna be done pretty soon. I just wanna make one other comment or plug for tonight. I think Cliff Vice from Hopkins with the bariatric embolization

he's gonna be on NBC Nightly News tonight and it sort of plugs the meeting that the results are gonna be done here at the SIR. So those of you who have a chance to see that and show your colleagues and it's pretty exciting for us. I'm sorry. Go ahead.

>> [INAUDIBLE] >> Just to get to the point, interesting thing is we took the filter out and the piece was there. The piece, showered it embolized while we were trying to get it.

It didn't happen at the same time. One of the things we've debated is what is the best tool to go after these fragments? Now they're not usually just free, this one did move a little bit, but many times they are somewhat embedded.

We have often used forceps, but we've also used a snare. We've debated as to what is the best and maybe other people can comment the best tool when you have these fragments like this. Is it a forceps? Is it a snare?

We've had another one it went along. And one of the things we pulled out, that other one he showed, the one that went to the lung, we pulled it, we saw it in the sheath. One of the things that we're using are these bigger sheaths. We hook them up to a pressure bag,

we run saline through them. And we were wondering if potentially if it would let go of it on the accident, or it came free in the sheath and the pressure bag was able to allow it, the flow was what pushed it back into the into the IVC, we're not sure.

Again, if people have any ideas as to which is the best tool, forceps, snare, something else in terms of taking these fragments out I'd love to hear that. >> Is there a question over here? >> Yeah, the question about once you have the forceps on [INAUDIBLE] >> Generally I think the way

all of us do it is, once you grab it you leave the forceps stationary and you let the sheath try and do the work. You don't try and move it too much lest you let go of it while manipulating it. Would you agree with that? >> Yeah.

You kinda just stabilize things with the forceps once you've got the hook or whatever it is, just push your sheath down over it. So it's like you're trying to capture the filter inside the sheath but not really pull the filter into the sheath. Does that answer your question?

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- Thank you, Larry, thank you, Tony. Nice to be known as a fixture. I have no relevant disclosures, except that I have a trophy. And that's important, but also that Prabir Roy-Chaudhury, who's in this picture, was the genesis of some of the thoughts that I'm going to deliver here about predicting renal failure,

so I do want to credit him with bringing that to the vascular access space. You know, following on Soren's talk about access guidelines, we're dealing with pretty old guidelines, but if you look at the 2006 version, you know, just the height--

The things that a surgeon might read in his office. CKD four, patients there, you want a timely referral, you want them evaluated for placement of permanent access. The term "if necessary" is included in those guidelines, that's sometimes forgotten about.

And, of course, veins should be protected. We already heard a little bit about that, and so out our hospital, with our new dialysis patients, we usually try to butcher both antecubital veins at the same time. And then, before we send them to surgery

after they've been vein-marked, we use that vein to put in their preoperative IV, so that's our vascular access management program at Christiana Care. - [Male Speaker] That's why we mark it for you, Teddy. (laughing)

- So, you know, the other guideline is patients should have a functional permanent access at the initiation of dialysis therapy, and that means we need a crystal ball. How do we know this? A fistula should be placed at least six months

before anticipated start of dialysis, or a graft three to six weeks. Anybody who tells you they actually know that is lying, you can't tell, there's no validated means of predicting this. You hear clinical judgment, you can look at

all sorts of things. You cannot really make that projection. Now there is one interesting study by Tangri, and this is what Premier brought to our attention last year at CIDA, where this Canadian researcher and his team developed a model for predicting

progression of chronic kidney disease, not specifically for access purposes, but for others. They looked at a large number of patients in Canada, followed them through chronic kidney disease to ESRD, and they came up with a model. If you look at a simple model that uses age, sex,

estimated GFR from MDRD equation and albuminuria to predict when that patient might develop end stage renal disease, and there's now nice calculators. This is a wonderful thing, I keep it on my phone, this Qx Calculate, I would recommend you do the same,

and you can put those answers to the questions, in this app, and it'll give you the answer you're looking for. So for instance, here's a case, a 75-year-old woman, CKD stage four, her creatinine's 2.7, not very impressive,

eGFR's 18. Her urine protein is 1200 milligrams per gram, that's important, this is kind of one of the major variables that impacts on this. So she's referred appropriately at that stage to a surgeon for arteriovenous access,

and he finds that she really has no veins that he feels are suitable for a fistula, so an appropriate referral was made. Now at that time, if you'd put her into this equation with those variables, 1200, female, 75-year-old, 18 GFR, at two years, her risk of ESRD is about 30%,

and at five years about 66%, 67%. So, you know, how do you use those numbers in deciding if she needs an access? Well, you might say... A rational person might say perhaps that patient should get a fistula,

or at least be put in line for it. Well, this well-intentioned surgeon providing customer service put in a graft, which then ended up with some steal requiring a DRIL, which then still had steal, required banding, and then a few months, a year later

was thrombosed and abandoned because she didn't need it. And I saw her for the first time in October 2018, at which time her creatinine is up to 3.6, her eGFR's down to 12, her protein is a little higher, 2600, so now she has a two-year risk of 62%, and a five-year risk of 95%,

considerably more than when this ill-advised craft was created. So what do you do with this patient now? I don't have the answer to that, but you can use this information at least to help flavor your thought process,

and what if you could bend the curve? What if you treated this patient appropriately with ACE inhibitors and other methods to get the protein down? Well, you can almost half her two-year risk of renal failure with medical management.

So these considerations I think are important to the team, surgeon, nurses, nephrologists, etc., who are planning that vascular access with the patient. When to do and what to do. And then, you know, it's kind of old-fashioned to look at the trajectory.

We used to look at one over creatinine, we can look at eGFR now, and she's on a trajectory that looks suspicious for progression, so you can factor that into your thought process as well. And then I think this is the other very important concept, I think I've spoken about this here before,

is that there's no absolute need for dialysis unless you do bilateral nephrectomies. Patients can be managed medically for quite a while, and the manifestations of uremia dealt with quite safely and effectively, and you can see that over the years, the number of patients

in this top brown pattern that have been started on dialysis with a GFR of greater than 15 has fallen, or at least, stopped rising because we've recognized that there's no advantage, and there may be disadvantages to starting patients too early.

So if your nephrologist is telling I've got to start this patient now because he or she needs dialysis, unless they had bilateral nephrectomies that may or may not be true. Another case,

64-year-old male, CKD stage four, creatinine about four, eGFR 15, 800 milligrams of proteinuria, referred to a vascular access surgeon for AV access. Interesting note, previous central lines, or AICD, healthy guy otherwise.

So in April 2017 he had a left wrist fistula done, I think that was a very appropriate referral and a very appropriate operation by this surgeon. At that time his two-year risk was 49, 50%, his five-year risk 88%. It's a pretty good idea, I think, to get a wrist fistula

in that patient. Once again, this is not validated for that purpose. I can't point you to a study that says by using this you can make well-informed predictions about when to do vascular access, but I do think it helps to flavor the judgment on this.

Also, I saw him for the first time last month, and his left arm is like this. Amazing, that has never had a catheter or anything, so I did his central venogram, and this is his anatomy. I could find absolutely no evidence of a connection between the left subclavian and the superior vena cava,

I couldn't cross it. Incidentally, this was done with less than 20 CCs of dye of trying to open this occlusion or find a way through, which was unsuccessful. You can see all the edema in his arm. So what do you do with this guy now?

Well, up, go back. Here's his trajectory of CKD four from the time his fistula is done to the time I'm seeing him now, he's been pretty flat. And his proteinuria's actually dropped

with medical management. He's only got 103 milligrams per gram of proteinuria now, and his two-year risk is now 23%, his five-year risk is 56%, so I said back to the surgeon we ligate this damn thing, because we can't really do much to fix it,

and we're going to wait and see when it's closer to time to needing dialysis. I'm not going to subject this guy to a right-arm fistula with that trajectory of renal disease over the past two years. So combining that trajectory with these predictive numbers,

and improved medical care for proteinuria I think is a good strategy. So what do you do, you're weighing factors for timing too early, you've got a burden of fistula failure, interventions you need to use to maintain costs, morbidity, complications,

steal, neuropathy that you could avoid versus too late and disadvantages of initiating hemodialysis without a permanent access. And lastly, I'm going to just finish with some blasphemy. I think the risk of starting dialysis with a catheter is vastly overstated.

If you look at old data and patient selection issues, and catheter maintenance issues, I think... It's not such an unreasonable thing to start a patient with a catheter. We do it all the time and they usually live.

And even CMS gives us a 90-day grace period on our QIP penalties, so... If you establish a surgeon and access plan, I think you're good to go. So who monitors access maturation? I don't know, somebody who knows what they're doing.

If you look at all the people involved, I know some of these individuals who are absolute crackerjack experts, and some are clueless. It has nothing to do with their age, their gender, their training, their field. It's just a matter of whether they understand

what makes a good fistula. You don't have to be a genius, you just can't be clueless. This is not a mature usable fistula, I know that when I see it. Thank you.

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Good morning. I'd like to thank Dr. Veith and Symposium for my opportunity to speak. I have no disclosures. So the in Endovascular Surgery, there is decrease open surgical bypass. But, bypass is still required for many patients with PAD.

Autologous vein is preferred for increase patency lower infection rate. And, Traditional Open Vein Harvest does require lengthy incisions. In 1996 cardiac surgery reported Endoscopic Vein Harvest. So the early prospective randomized trial

in the cardiac literature, did report wound complications from Open Vein Harvest to be as high as 19-20%, and decreased down to 4% with Endoscopic Vein Harvest. Lopes et al, initially, reported increase risk of 12-18 month graft failure and increased three year mortality.

But, there were many small studies that show no effect on patency and decreased wound complications. So, in 2005, Endoscopic Vein Harvest was recommended as standard of care in cardiac surgical patients. So what about our field? The advantages of Open Vein Harvest,

we all know how to do it. There's no learning curve. It's performed under direct visualization. Side branches are ligated with suture and divided sharply. Long term patency of the bypass is established. Disadvantages of the Open Vein Harvest,

large wound or many skip wounds has an increased morbidity. PAD patients have an increased risk for wound complications compared to the cardiac patients as high as 22-44%. The poor healing can be due to ischemia, diabetes, renal failure, and other comorbid conditions.

These can include hematoma, dehiscense, infection, and increased length of stay. So the advantages of Endoscopic Vein Harvest, is that there's no long incisions, they can be performed via one or two small incisions. Limiting the size of an incision

decreases wound complications. It's the standard of care in cardiac surgery, and there's an overall lower morbidity. The disadvantages of is that there's a learning curve. Electro-cautery is used to divide the branches, you need longer vein compared to cardiac surgery.

There's concern about inferior primary patency, and there are variable wound complications reported. So recent PAD data, there, in 2014, a review of the Society of Vascular Surgery registry, of 5000 patients, showed that continuous Open Vein Harvest

was performed 49% of the time and a Endo Vein Harvest about 13% of the time. The primary patency was 70%, for Continuous versus just under 59% for Endoscopic, and that was significant. Endoscopic Vein Harvest was found to be an independent risk factor for a lower one year

primary patency, in the study. And, the length of stay due to wounds was not significantly different. So, systematic review of Endoscopic Vein Harvest data in the lower extremity bypass from '96 to 2013 did show that this technique may reduce

primary patency with no change in wound complications. Reasons for decreased primary patency, inexperienced operator, increased electrocautery injury to the vein. Increase in vein manipulation, you can't do the no touch technique,

like you could do with an Open Harvest. You need a longer conduit. So, I do believe there's a roll for this, in the vascular surgeon's armamentarium. I would recommend, how I use it in my practices is, I'm fairly inexperienced with Endoscopic Vein Harvest,

so I do work with the cardiac PA's. With increased percutaneous procedures, my practice has seen decreased Saphenous Vein Bypasses, so, I've less volume to master the technique. If the PA is not available, or the conduit is small, I recommend an Open Vein Harvest.

The PA can decrease the labor required during these cases. So, it's sometimes nice to have help with these long cases. Close surveillance follow up with Non-Invasive Arterial Imaging is mandatory every three months for the first year at least. Thank you.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- I'll address a recipe for functional and financial success with smoking cessation for our tobacco addicted patients. We're all very acutely aware of the financial, physical and psychological devastation of tobacco. For our vascular patients it's the most important modifiable risk factor.

Most vascular patients have a high level of initial smoking, it's characterized by failed efforts, and there really are very rare evidence-based cessation programs in place. This was confirmed recently by a publication, American Heart or the PORTRAIT Trial.

I said to myself, "well if I wanted to do counseling "I should have been a psychologist "but I want to be a surgeon, I like to operate." And operating vascular surgery we do, at the middle point of my career

it felt like a revolving door. The right carotid, the left carotid, the left fem-pop, the right fem-pop. And a little more senior in my career as I started the restenosis I felt like I was doomed to the myth of Sisyphus where I just

have to keep pushing that rock up to the top of the hill, only to have it roll down again. I submit to you that if all we do is operate for our patients, our field will be disrupted the same way our cardiac surgical colleagues

have been disrupted. A few years ago, Medicare and many private insurances assigned a payment to smoking cessation counseling, that a ICD10 diagnosis needs to be linked to a tobacco disorder, like vascular disease. Their time based codes for intermed and extensive--

the 99406 is 3-10 minutes, the 99407 is greater than 10 minutes. Now, if you link that to Medicare dollars, it's pretty meager, at $38 per RVU, that's $9 and $19 at additional, respectively. Say your hospital employ at $50 an RVU,

that ups a bit to $12 and $25, respectively. And that's how before you read the Medicare guidelines they say that you have to document that a patient is mentally competent, it needs to be done by a physician or Advanced Care Provider.

You get two attempts per year, four sessions per attempt, or eight sessions per year. About this point I felt like I was reading out of this book instead of the Medicare guidelines. But there is a recipe, and I think it's an important recipe. What we do is put take-away literature

printed ahead of time, in all the patients' rooms, including our online resources, we have the prescriptions and pads pre-printed, and then we have the templates of electronic documentation so we're able to claim the payment for the work that we do do.

We point out to our patients the benefit of smoking cessation, we rely heavily on the CDC website for resources, and the pharmacotherapy really boils down to three:

you need to be careful that you don't double up on your patients who are smoking. Zyban is mor it's basically an extended-release antidepressant and it works on the craving related chemicals in the brain.

It reduces withdrawal symptoms and cravings. You need to start it a couple weeks in advance. You have to be careful with drinkers or cirrhotics, people who have seizures or prior head injuries, and anyone with a psychiatric history. Chantix is the most successful,

it interferes with the nicotine receptors, it lessens the pleasure, and reduces withdrawal symptoms. You also need to start this in advance of cessation efforts. It has GI, headache, sleep disorders, seizures, mood changes, and it got a black-box warning for

suicidal ideations and suicide. Now, at the Harvard School of Business, professor Christensen pointed out that if all we do is operate, we'll be at risk to be disrupted, and he's done business analysis, so he's successful and he's got collabs, such as

Borders, Detroit Auto, stock brokers, and travel agents, and I submit vascular surgeries on that list. He points out that high achievers are the most vulnerable that's because all we do is focus on the highest ROI, that would be that all we do is operate. So how can we avoid being devoured by the next disruptor,

whether it's a cardiologist, new technology, or an overbearing hospital administrator? And he describes this as he evaluates healthcare by saying "What we need to do is focus on the job to be done." We need to say "What does a patient need from us?", not frame them with our attributes.

So we should say they hire us to fix their broken blood vessels, and we should do this whether it's a scalpel, prolene, a stent, a statin, or Chantix. I have (mumbles), but I submit that if we answer what the patient needs, and not what we do for them

that will leave us in a position of leadership where we can make important contributions for our patients.

- Thanks Fieres. Thank you very much for attending this session and Frank for the invitation. These are my disclosures. We have recently presented the outcomes of the first 250 patients included in this prospective IDE at the AATS meeting in this hotel a few months ago.

In this study, there was no in-hospital mortality, there was one 30-day death. This was a death from a patient that had intracranial hemorrhage from the spinal drain placement that eventually was dismissed to palliative care

and died on postoperative day 22. You also note that there are three patients with paraplegia in this study, one of which actually had a epidural hematoma that was led to various significant and flacid paralysis. That prompted us to review the literature

and alter our outcomes with spinal drainage. This review, which includes over 4700 patients shows that the average rate of complications is 10%, some of those are relatively moderate or minor, but you can see a rate of intracranial hemorrhage of 1.5% and spinal hematoma of 1% in this large review,

which is essentially a retrospective review. We have then audited our IDE patients, 293 consecutive patients treated since 2013. We looked at all their spinal drains, so there were 240 placement of drains in 187 patients. You can see that some of these were first stage procedures

and then the majority of them were the index fenestrated branch procedure and some, a minority were Temporary Aneurysm Sac Perfusions. Our rate of complication was identical to the review, 10% and I want to point out some of the more important complications.

You can see here that intracranial hypotension occurred in 6% of the patients, that included three patients, or 2%, with intracranial hemorrhage and nine patients, or 5%, with severe headache that prolonged hospital stay and required blood patch for management.

There were also six patients with spinal hematomas for a overall rate of 3%, including the patient that I'll further discuss later. And one death, which was attributed to the spinal drain. When we looked at the intracranial hypotension in these 12 patients, you can see

the median duration of headache was four days, it required narcotics in seven patients, blood patch in five patients. All these patients had prolonged hospital stay, in one case, the prolongation of hospital stay was of 10 days.

Intracranial hemorrhage in three patients, including the patient that I already discussed. This patient had a severe intracranial hemorrhage which led to a deep coma. The patient was basically elected by the family to be managed with palliative care.

This patient end up expiring on postoperative day 21. There were other two patients with intracranial hemorrhage, one remote, I don't think that that was necessarily related to the spinal drain, nonetheless we had it on this review. These are some of the CT heads of the patients that had intracranial hemorrhage,

including the patient that passed away, which is outlined in the far left of your slide. Six patients had spinal hematoma, one of these patients was a patient, a young patient treated for chronic dissection. Patient evolved exceptionally well, moving the legs,

drain was removed on postoperative day two. As the patient is standed out of the bed, felt weakness in the legs, we then imaged the spine. You can see here, very severe spinal hematoma. Neurosurgery was consulted, decided to evacuate, the patient woke up with flacid paralysis

which has not recovered. There were two other patients with, another patient with paraplegia which was treated conservatively and improved to paraparesis and continues to improve and two other patients with paraparesis.

That prompted changes in our protocol. We eliminated spinal drains for Extent IVs, we eliminated for chronic dissection, in first stages, on any first stage, and most of the Extent IIIs, we also changed our protocol of drainage

from the routine drainage of a 10 centimeters of water for 15 minutes of the hours to a maximum of 20 mL to a drainage that's now guided by Near Infrared Spectroscopy, changes or symptoms. This is our protocol and I'll illustrate how we used this in one patient.

This is a patient that actually had this actual, exact anatomy. You can see the arch was very difficult, the celiac axis was patent and provided collateral flow an occluded SMA. The right renal artery was chronically occluded.

As we were doing this case the patient experienced severe changes in MEP despite the fact we had flow to the legs, we immediately stopped the procedure with still flow to the aneurysm sac. The patient develops pancreatitis, requires dialysis

and recovers after a few days in the ICU with no neurological change. Then I completed the repair doing a subcostal incision elongating the celiac axis and retrograde axis to this graft to complete the branch was very difficult to from the arm

and the patient recovered with no injury. So, in conclusion, spinal drainage is potentially dangerous even lethal and should be carefully weighted against the potential benefits. I think that our protocol now uses routine drainage for Extent I and IIs,

although I still think there is room for a prospective randomized trial even on this group and selective drainage for Extent IIIs and no drainage for Extent IVs. We use NIRS liberally to guide drainage and we use temporary sac perfusion

in those that have changes in neuromonitoring. Thank you very much.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- Good morning, thank you very much to Dr. Veith and Professor Veith and the organizers. So this is real holography. It's not augmented reality. It's not getting you separated from the environment that you're in. This is actually taking the 3D out of the screen

so the beating heart can be held in the palm of your hand without you having to wear any goggles or anything else and this is live imaging. It can be done intra-procedure. This is the Holoscope-i and the other one is the Holoscope-x

where in fact you can take that actually 3D hologram that you have and you can implant it in the patient and if you co-register it correctly then you can actually do the intervention in the patient

make a needle tract to the holographic needle and I'm going to limit this to just now what we're actually doing at the moment and not necessarily what the future can be. This is ultimate 3D visualization, true volumes floating in the air.

This is a CT scan. So it started working, So we get rid of the auto-segmented and you can just interact. It's floating 45 centimeters away from you and you can just hold the patient's anatomy here and you can slice into the anatomy.

This is for instance a real CT of an aorta with the aortic valve which they wanted to analyze for a core valve procedure. This is done by Phelps. If you take the information

and they've looked at the final element analysis and interaction between the stem and the tissue. So here you can make measurements in real time. So if you did the 3D rotation and geography and you had the aorta and you wanted to put in a stent graft EVAR TVAR, and you would see,

and you could put in a typical tuber that you would do, and you could see how it, and this is a dynamic hologram, so you can see how it would open up, you can mark where your fenestration's chimney is and all that type of stuff would be. And you can move it around, and you have

a complete intuitive understanding of a, can we go to the next slide please, I can't, it seems to be clicking, thank you. So how do we do all this? Well, to create a hologram, what you need to do is just conceptualize it as printing in light.

Like if you had plastic and you took the XYZ data and you just put it into a 3D printer, and it would print it for you in light, then you'd go, Okay, so I understand, if it was printed for you in plastic then you'd understand. But imagine it's printing in light.

So we have every single piece of light focused, each photon is focused so that you can see it with a naked eye, in a particular place, but the difference is that it's totally sterile, you don't have to take off your gloves, you don't have to use a mouse,

you can interact with it directly. And all the XYZ data is 100% in place, so we've just seen a beautiful demonstration of augmented reality, and in augmented reality, you have to wear something, it isolates you from the environment that you're in, and it's based on

stereoscopy, and stereoscopy is how you see 3D movies, and how you see augmented reality, is by taking two images and fusing them in one focal plane. But you can't touch that image, because if you look at me now, you can see me very well, but if you hold your finger up 45 centimeters

and you focus on your finger, I become blurred. And so, you can only focus in one plane, you can't touch that image, because that image is distant from you, and it's a fused image, so you have the focus plane and you have the convergence plane, and this is an illusion

of 3D, and it's very entertaining, and it can be very useful in medical imaging, but in intra-operative procedures it has to be 100% accurate. So you saw a very beautiful example in the previous talk of augmented reality, where you have gesturing, where you can actually gesture with the image,

you can make it bigger, you can make it smaller. But what RealView does by creating real holography, which is all the XYZ data, is having it in the palm of your hand, with having above 20 focal planes, here, very very close to your eye, and that in another way, of having all those focal planes not only actually lets you

do the procedure but prevents nausea and having a feeling of discomfort because the image is actually there as of having the illusion of the images there. So just to go back, all RealView imaging is doing, is it's not changing your 3D RA cone, BMCT, MRI,

we can do all those XYZ datas and we can use them and we can present them, all we're doing, so you use your acquisition, we're just taking that, and we're breaking open the 3D displays and seeing all that 3D data limited in the 2D screen, let's set it free and have it floating in the air.

So we have the holoscope-i for structural cardiology and electrophysiology, and obviously the holoscope-x, which makes the patient x-rayed, completely visible. So its an over the head, this is now, obviously, free-standing when somebody buys us like Phillips or Siemens, it will be integrated into your lab,

come down from the ceiling, it's an independent system, and you just have a visor that you look through, which just goes up and down whenever you want to use it. You can interact with it the same as you do with your iPhone you can visualize, you can rotate, you can mark, you can slice, you can measure, as I showed you

some examples of it, and you can do this by voice as well, you just talk to it, you say slice and you slice it with your hand, it recognizes everybody's hand, there's no delay for whatever you're imaging. So structural cardiac procedures, this is what

a mitral valve will look like, floating in the air in front of you, you can see the anterior leaflet, the posterior leaflet. And once the catheter is inside and you're guiding the catheter inside the procedure, you can turn on your doppler, you'll be able to see that the catheter

movements, so for someone doing a mitral clip, or whatever, this would be very very useful. This is an electrophysiological procedure, and you can see how the catheter moves, when the catheter will move, and obviously, as my previous speaker was saying, you are appreciating 3D in a 2D screen,

so it's very difficult to appreciate, you'll have to take my word for it. But I think you can see dynamic colography at this quality, that you can interact with, that is something that is very special, we've presented at a number of conferences,

including at Veith, and we've already done a first in man, and the most exciting thing for now, is just this week, the first machine was installed at Toronto general, at the Peter Munk Cardiac Center, and they've done their first case, and so now we are launching and clinical trials in 2018, and hopefully,

I'll have something which is more vascular relevant, at the next time, Veith 2019, thank you very much.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you very much and I would like to thank Dr. Veit for the kind invitation, this is really great meeting. Those are my disclosures. Percutaneous EVAR has been first reported in the late 1990's. However, for many reasons it has not been embraced

by the vascular community, despite the fact that it has been shown that the procedure can be done under local anesthesia and it decreases OR time, time to ambulation, wound complication and length of stay. There are three landmark papers which actually change this trend and make PEVAR more popular.

All of these three papers concluded that failure or observed failure of PEVAR are observed and addressed in the OR which is a key issue. And there was no late failures. Another paper which is really very prominent

is a prospective randomize study that's reported by Endologix and published in 2014. Which revealed that PEVAR closure of the arteriotomy is not inferior to open cut down. Basically, this paper also made it possible for the FDA to approve the device, the ProGlide device,

for closure of large bore arteriotomies, up to 26 in the arterial system and 29 in the venous system. We introduced percutaneous access first policy in our institution 2012. And recently we analyzed our results of 272 elective EVAR performed during the 2012 to 2016.

And we attempted PEVAR in 206 cases. And were successful in 92% of cases. But the question was what happened with the patient that failed PEVAR? And what we found that was significantly higher thrombosis, vessel thrombosis,

as well as blood loss, more than 500 cc in the failed PEVAR group. Similarly, there was longer operative time and post-operative length of stay was significantly longer. However, in this relatively small group of patients who we scheduled for cut-down due to different reasons,

we found that actually there was no difference between the PEVAR and the cut-down, failed PEVAR and cut-down in the terms of blood loss, thrombosis of the vessel, operative time and post-operative length of stay. So what are the predictors of ProGlide failure?

Small vessel calcification, particularly anterior wall calcification, prior cut-down and scarring of the groin, high femoral bifurcation and use of large bore sheaths, as well as morbid obesity. So how can we avoid failures?

I think that the key issue is access. So we recommend that all access now or we demand from our fellow that when we're going to do the operation with them, cut-down during fluoroscopy on the ultra-sound guidance, using micropuncture kits and access angiogram is actually mandatory.

But what happened when there is a lack of hemostasis once we've deployed two PEVARs? Number one, we try not to use more than three ProGlide on each side. Once the three ProGlide failed we use the angioseal. There's a new technique that we can have body wire

and deployed angioseal and still have an access. We also developed a technique that we pack the access site routinely with gelfoam and thrombin. And also we use so-called pull and clamp technique, shown here. Basically what it is, we pull the string of the ProGlide

and clamp it on the skin level. This is actually a very very very good technique. So in conclusion, PEVAR first approach strategy successful in more than 90% of cases, reduced operative time and postoperative length of stay, the failure occurred more commonly when the PEVAR

was completed outside of IFU, and there was no differences in outcome between failed PEVAR and planned femoral cut-down. Thank you.

- Thank you and thanks Craig, it's fun to have these debates with good colleagues, thoughtful colleagues. These are my disclosures for the talk. But pry my most important disclosure is I work in academic center with a dedicated Limb Preservation Center, very tertiary practice. And I perform both open and endovascular surgery

and actually my current lower extremity practice is probably about 60 to 65 percent endovascular so, I do both of these procedures. We already saw this slide about how the increase in endovascular intervention has grown. But, I would caution you to look a little more closely

at this outpace of decline in bypass surgery by more than three to one. I don't think this is an epidemic, I think it's a little bit of this, and a little bit of this. Everything looks like a nail when you only have a hammer

or a hammer when you only have a nail. So, what should we really be doing today? We should be trying to select the best thing for the right patient at the right time. And it really comes down to starting not with the lesion, but with the patient.

Start with assessing the patient's risk, what's their perioperative risk, what's their long-term survival, what are their goals for care? And then look at the limb itself, because not all limbs are the same.

There are minor ulcers, there's extensive and severe rest pain and there are large areas of tissue loss. And the WIfI system is good for that. And then let's look at the anatomy last. And when we're looking at it from the standpoint of what all the options are, endovascular we're looking

at what's the likelihood not just of technical success, but of hemodynamic gain and sustained patency for as long as a patient needs it. With bypass, we also have to look at other things. What kind of vein do they have, or what kind of target do they have?

And I think the bottom line here is in today's practice, it's kind of silly to say endo first for all patients, it's certainly not surgery first for all patients because they have complementary roles in contemporary practice. Well what's happening in the world out there,

this is the German CRITISCH registry, I'll just point out 12 hundred patients recently published only a couple of years ago, 24 percent of patients get bypass first. And if you look at who they are, not surprisingly they are the patients

with long occlusions and complex anatomy. They are out there, in fact most of these patients have multi-segment disease, as Craig pointed out. Here's some contemporary data that you haven't seen yet because it's in press, but this is VQI data looking at 2003 to 2017.

I'll point out just in the last 2013 years, still, if you looked at unique patients, not procedures, one-third of the patients are getting a bypass first. And if you define risk groups considering what might be a low risk patient as a three percent mortality and survival greater than 70 percent,

and a high risk patient, you can put these patients into buckets and in fact, of all the patients getting lower extremity revascularization and VQI today, 80 percent of them would be called low risk based on this definition. So, most patients are not high risk patients

who don't have long-term survival. In fact, this is current VQI data. If you're a low risk patient in that cohort, your five year survival actually is over 70 percent. So there's a lot of these patients actually today with better CLO medical therapy that are actually

living longer and are not that high risk. We talked about the BASIL trial already, and he pointed out how the early results were similar, but what we learned also with BASIL, that if you've got a bypass as a secondary procedure, or if you got a bypass with a prosthetic,

you simply did not do as well. That doesn't mean that the initial endovascular revascularization caused the bypass failure, but it means that secondary bypass surgery does not work as well. And when Dr. Bradbury looked at this data

over a longer period of time now going over many more years, there's a consistent inferior outcome to the patients who had their bypass after failed angioplasty in comparison to bypass as the initial strategy. This is not an isolated finding. When we looked in the VSGNE data over a,

more than 3000 patients at the impact of restenosis on subsequent treatment failure, we found that whether patients had a failed previous PVI or bypass, their secondary bypass outcomes were inferior, and the inferiority continued to get worse with time.

These bypasses just don't perform as well. Unfortunately, if we only do bypass after endo has failed, this is what all the results are going to start to look like. So let's be a little bit smarter. Now what about patency?

I think we, even today in the endovascular world, we realize patency is important. After all, that's why we're doing drug elution. Most, but not all patients with advanced limb ischemia will recrudesce their symptoms when their revascularization fails.

I think we all know that. Most CLTI patients have multi-segment disease. I don't want to sit up here and be a high school or elementary school math teacher, but here's the reality. If you look at it above the lesion, you say I'm going to get 70 percent patency there, and you look at

the tibial lesion, you say I'm going to get 50 percent patency there, what do you think your patency is for the whole leg? It's 35 percent folks, it's the product of the two. That is the reality pretty often. Patients with more advanced limb presentations,

such as WIfI stage do not tolerate these failures. They tolerate them poorly. They go on to amputation pretty fast. And patient survival, as I've already shown you has improved. Now, what the all endo-all the time

camp does and doesn't say. He already showed us, many datasets suggest the downstream outcomes are roughly equivalent but, these are not the same patients, we are not operating on the same patients you are doing endo on.

If I told you the results are the same for PCI and CABG without showing you anatomy, you would laugh me off the stage right? So, this is really not an equivalent argument. Endo can be repeated with minimal morbidity, but patients suffer.

Their limb status deteriorates, they come in the hospital often, and they continue to decline in the outcomes of these secondary procedures. CLTI patients are too frail for surgery, I just showed you that's really not true for many patients.

There is really unfortunately, an economic incentive here. Because there is unfortunately, no incentive for durable success. I hate to bring that up, but that's the reality. Now just quickly, some results. This is a large Japanese series

where they were performing endovascular interventions only for advanced limb ischemia. And basically what you can see as you go across the WIfI stages here from stage one to stage four, when you get to these stage four patients, the wound healing rate's only 44 percent,

limb salvage rate drops to 80 percent, repeat EVT rate is encroaching 50 percent. These patients really are not doing well with endovascular intervention. And we found that in our own series too, it's relatively small numbers and not randomized.

But if we look at the stage 4 limbs with bypass versus endo, when these patients failed at revascularization, and they may not have been bypass candidates, but they didn't do well, they went on to amputation very quickly.

So the ESC guidelines that just came out really sort of line up with what I'm telling you. You'll see bypass first. If you have long occlusions in an available vein, is actually currently the favorite approach, with level 1A recommendation.

So in summary, this is how I currently approach it. You look at all these factors, some people should get endo first, but there's still about 20 or 30 percent that I think should get bypass. Some people should go on to amputation earlier, is the bottom line, and I'll go right to the bottom line.

If you don't have access to a skilled open bypass surgeon, you're probably not at a center of excellence, go find one.

- I congratulate Dr. Ken Ouriel for the great presentation, no? And I suppose the most important result of this presentation is the fact that after 15 years of turf battles many US vascular surgeons seems to accept CAS as an alternative to carotid endarterectomy

for the treatment of caro this is, for me, a great deal, a really great and nearly revolutionary news. But it's also unfair news, because using this technology, you try to exclude the interventionalist cardiologists

and radiologists from the CAS procedure without any scientific demonstration. The rationale for transcarotid revascularization is the fact that the main assertion is that advancing guide wires through the arch, you may provoke stroke.

Is this really the real situation? As interventional cardiologists, we have a fact that every day, many thousand of intervention passing the arch at least three times per intervention, and that terrible embolizations

are absolutely a rarity. Of course, if you have problem to manipulate the guide wire, and to navigate the balloons and catheter, guiding catheters, then of course you may have complication,

and you have to be very well-trained. I was asking some vascular surgeons in Germany and in other countries, and Professor Torsello said, if I expose the common carotid artery, then I expose also the internal carotid artery,

and I make a carotid endarterectomy, and Dr. Deloose in Belgium said, the incision is not so easy as described, and there is no evidence that using this technology, you reduce also the complication in comparison to the use of MOMA,

and his conclusion is endo is endo, and open is open. So, if you look through the published data of TCAR in 2018, are really not robust because you don't have only one article in press or a presentation, no more data.

And if you look at the fact that they are using only one stent, you cannot perform, as we are continuously trying to explain that you have to perform a tailored intervention and you have to use different stents, and not only one stent.

And if you look at this presentation of Peter Schneider, you see that you are in a range of complication of 2.7%, and if you look at this interesting slide, you see that the difference between endarterectomy and TCAR is practically minimal,

and to demonstrate a difference of .2%, you will need nearly 60 thousand patients per group, and if you want to make the same study with a transfemoral application of the MoMa system, probably you need 100 thousand patients per group. And we publish and redid in 2010,

in 1300 patients, and we had a complication rate of dissecting any type of arch, predominantly we had more than 50% Type II and III, we didn't have any myocardial infarction, although more than 50% of the patient had coronary artery disease,

and also in octogenarian, the complication rate is in a range of 2%, and all these data have been absolutely confirmed by the ARMOUR study, and you see that in the symptomatic patients, the complication rate was 0%,

and in the meta-analysis, you have a total incidence of 1.7% of complication, and if you look to the PROOF Silk, then you have a little more than 100 patients with a new lesion, 18%, however, only perfusion,

I'm sorry, has been performed only in 10 of 56%, for me it's very difficult to calculate 18% in 10 patients. If you look to our study with the MoMa, we are in a range of 26%, however, performing simultaneously

the diagnostic angiography. So, we do not have an important analysis, it's the fact that we don't have a consideration about the ability of the interventionalist or of the vascular surgeon regarding the reduction of complication,

and looking at the not robust literature, I have the impression that many vascular surgeon are at the moment looking for new application of a vascular knife, this is my final conclusion. Thank you.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you very much, chairman and ladies and gentlemen. The funding of this trial was from The Academy of Medical Sciences and The Royal College of Surgeons of England. AKI due to the influence EVAR is actually more common than we all think. This is being shown by prospective studies and registries.

Why is it important? Well, it's associated with a higher intra or inter hospital mortality, cardiovascular events and also long term cardiovascular events and longterm mortality. As even more common and complex, EVAR, and this can range from 22% up to 32%.

These are some of our cases, some of our first, including FEN astrate EVAR in 2010 Thoraco-Abdominal Branch repair 2016 and Fen astrated TEVAR 2018. These are longer procedures, usually with more contrast and direct ventilation after removing arteries.

What are the mechanisms for acute kidney injuries due to infer-renal EVAR? While this involves use of contrast, systemic inflammatory response syndrome, due to ischemic re-perfusion injury, manipulation of the thrombus, aorta and catheterizations which will ------ alpha

and also from high prophalinemia. There is no high-quality evidence for AKI prevention in EVAR. What about Sodium Bicarbonate? Well it's been well know to reduce what been used commonly to reduce CIN in high risk patients in perrifical and

corona graphy. There are two main mechanisms as to how this works. Firstly, from reducing renal tubular ischemia. Secondly, by reducing oxygen deprived free radical formation in the tubules. What is the evidence?

Well this is a met analysis, comparing Sodium Bicarbonate directly with hydration with normal saline, as shown in the orange box. There is no difference. We can look at the population ll

mostly CKD patients or diabetic patients, certainly Hartmann's patients but they are not EVAR patients. They are coronary patients or peripheral an-graphy patients. In addition, serum bicarbonate and the urine pH was not reported so we do not know how effective the Bicarbonate was in these RCT's.

The authors went on to look other outcomes including needful hemo dialysis, cardiac events, the mortality and they found no difference but they concluded the strength of this evidence was low and insufficient. A further Meta-analysis this time published in BMJ this time comes in favor of bicarbonate

but again this is comparing bicarbonate with saline no use of combination therapy. There are again no use of EVAR patients and these patients all have a low eGFR. The preserved trial, a large trial published earlier this year in the New England Journal again using various

treatments again comparing sodium bicarbonates and saline again no difference. But again this compares bicarbonate direct with saline with no combination therapies. In addition, there were no EVAR patients, and these are low eGFR patients.

The met-analysis also showed that by using bicarbonates as a bolus dose rather than a continuous infusion, which was actually the way they used bicarbonates in most of these patients might be better. And using a higher dose of bicarbonate may also be better as shown in this Japanese paper.

So we come to HYDRA trial. They're using a high dose bicarbonate in combination with hydration to protect renal function. We did a UK wide survey of anesthetists of day to day and they felt the best volume expander they would like to use was Hartmann's solution.

So we randomized patients between standard hydration with Hartmann's solution verses standard hydration Hartmann's plus high dose bicarbonate per operatively and low slow intravenous infusion bicarbonate during the surgery. Importantly, with these patients,

we kept the map within 80% of baseline, 90% of the time in contrary to all the RCT's coronary and angeo-porphyry. We're going to skip that slide. This is the inclusion criteria, any patient undergoing infra EVAR, with any renal disfunction,

the primary area you must look at is recruitment and the second area you must look at is AKI. We screened 109 patients of which, 58% were randomized and there were only 2 crossovers. There was a willingness for patients to participate and there was also a willingness for PET 4 Clinitions to

recruit as well. This is the demographics, which is typical of aortic patients they are all on by a few MRSA patients, have normal renal function. Most of the patients wear statins and anti pace agent, only 13% were diabetic.

The patients were matched in terms of hypertension and also fluid hydration pre-operatively measures of via impedance. Here are the results of the trial. The AKI instance in the standard hydration group was like 3% and 7.1% with standard hydration plus bicarbonate. And it was similar in terms of organotrophic support into

and postop and also contrast volume used. It's a safe regime with none of the patients suffering as a result of using bicarbonate. So to conclude, to answer professor Veith's question, about how was this trial different to all the other trials? Well, certainly the previous trials have compared

bicarbonate with saline, there's lack of combination studies that involve mostly coronary an peripheral procedures, not EVAR. And the the most only included patient with low eGFR. HYDRA is different, this is not a regime using high dose bolus of sodium bicarb combined with standard hydration.

It shows promise of reducing AKO. This is an EVAR specific pilot RCT. Again, Unlike previous trials using bicarbonate, 90% of the patients had normal or mild impaired renal function. And unlike previous trials, there's more aggressive management of hypertension intra and postoperatively.

Thank you for listening.

- I want to thank Dr. Veith for the invitation to present this. There are no disclosures. So looking at cost effectiveness, especially the comparison of two interventions based on cost and the health gains, which is usually reported

through disability adjusted life years or even qualities. It's not to be really confused with cost benefit analysis where both paramaters are used, looked at based on cost. However, this does have different implications from different stakeholders.

And we look, at this point, between the medical center or the medical institution and as well as the payers. Most medical centers tend to look at how much this is costing them

and what is being reimbursed. What's the subsequent care interventions and are there any additional payments for some of these new, novel technologies. What does the payers really want to know, what are they getting for the money,

their expenditures and from here, we'll be looking mainly at Medicare. So, background, we've all seen this, but basically, you know, balloon angioplasty and stents have been out for a while and the outcomes aren't bad but they're not great.

They do have continued high reintervention rates and patency problems. Therefore, drug technology has sort of emerged as a possible alternative with better patency rates. And when we look at this, just some, some backgrounds, when you look at any sort of angioplasty,

from the physician's side, we bill under a certain CPT code and it falls under a family of codes for reimbursement in the medical center called an APC. Within those, you can further break it down to the cost of the product.

In this situation, total products cost around 1400 dollars and the balloons are estimated to be 406 dollars in cost. However, in drug-coated balloons, there was an additional payment, which average, because they're such more expensive devices than the allotments and this had an additional payment.

However, this expired in January of this year. When you look at Medicare reimbursement guidelines, you'll see that on an outpatient hospital setting, there's a reimbursement for the medical center as well as for the physican which is, oops sorry, down eight percent from last year.

And they also publish a geometric mean cost, which is quite higher than we expected. And then the office based practice is also the reimbursement pattern and this is slated to go down also by a few percentage points.

When you look at, I'm sorry, when you look at stents, however, it's a different family of CPT codes and APC family also. Here you'll see the supply cost is much higher in the, I'm sorry, the stent in this category is actually 3600 dollars.

The average cost for drug-eluting stents, around 1500 dollars and the only pass through that existed was on the inpatient side of it. Again, looking at Medicare guidelines, the reimbursement will be going down 8 percent

for the outpatient setting and the geometric mean cost is 11,700. So, what we want to look at really is what is the financial impact looking at primary patency, target lesion revascularization based on meta analysis. And the reinterventions are where the real cost

is going to come into effect. We also want to look at, when it doesn't work and we do bailout stenting, what is the cost going to happen there, which is not often looked at in most of these studies. So looking at a hypothetical situation,

you've got 100 patients, any office based practice, the payee will pay about 5145. There's a pass through payment which averages 1700 dollars per stent. Now, if you look at bailout stenting, 18.5 percent at one year,

this is the additional cost that would be associated with that from a payer standpoint. Targeted risk for revascularization was 12 percent of additional costs. So the total one year cost, we estimated, was almost a million dollars

and the cost per primary patency limb at one year was 13 four. In a similar fashion, for drug-eluting stents, you'll see that there's no pass through payment, but although there is a much higher payer expenditure. The reintervention rate was about 8.4 percent

at one year for the additional cost. And you'll see here, at the one year mark, the cost per patent limb is about 12,600 dollars. So how 'about the medical center, looking at Medicare claims data, you'll see the average cost for them is 745,000,

the medical center. Additional costs listed at another 1500. Bailout renting, as previously, with relate to a total cost at one year of 1.2 million or at 16,900 dollars per limb. Looking at the drug-eluting stents,

we didn't add any additional costs because the drug-eluting stents are cheaper than the current system that is in there but the reinterventions still exist for a cost per patent limb at one year of 14 six. So in essence, a few other studies have looked

at some model, both a European model and in the U.S. where the number of reinterventions at two to five years will actually offset the additional cost of drug-eluting stents and make it a financially advantageous process.

And in conclusion, drug-eluting stents do have a better primary patency and a decreased TLR than drug-coated balloons or even other, but they are more expensive than conventional treatment such as balloon angioplasty and bare-metal stents.

There is a decreased reintervention rate and the bailout stenting, which is not normally accounted for in a financial standpoint does have a dramatic impact and the loss of the pass through makes me make some of the drug-coated balloons

a little more prohibitive in process. Thank you.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Afternoon. It's a privilege to be presenting this today. I have no disclosures. If you look at this, this is a picture of the last 10 IVC filters approved by the FDA. You'll notice that they all have some mechanism of removal most commonly hooks.

You may ask yourself, why is that? And the reason for this is basically one or two studies. Basically the PREPIC study which was originally published in 1998 with two-year data, followed by a publication in Circulation with eight-year data.

Now the PREPIC itself, the study itself was the first prospective, randomized trial comparing anticoagulation to IVC filters. It was performed from 1991 to 1995 in France. 400 patients with DVT that were considered at risk for PE were enrolled.

And they were randomized at first either unfractionated versus fractionated heparins, and then IVC filter versus no IVC filter. And the filters used are demonstrated here, the Greenfield, the Cardinal, LGM, and Bird's Nest. And all patients were anticoagulated with warfarin

at the time of discharge whenever possible. Primary outcome was pulmonary embolism. The secondary outcomes were DVT, death, major filter complications, and major bleeding. And again, the data was published at two and eight years. So the two-year results, the PREPIC study,

they presented first some data on unfractionated versus fractionated heparin, but then this table. And this table shows basically that there was no difference in symptomatic PE between groups. But there was a difference in recurrent DVT

with patients having a filter in place having a higher incidence of DVT than those that did not. And the thought was that this presence of the filter increased the risk of DVT. Now the data at eight years, published in Circulation, did show a difference between symptomatic pulmonary embolism

with patients having a filter having a lower incidence of recurrent PE. However, the symptomatic DVT remained elevated in patients that had filters in place. And this was statistically significant. Of note, there was a fairly significant number of patients

that had cable thrombosis in the group that had filters that may have contributed to this number. So if you want to be critical about the study, there are a few things that are a little bit unperfect I guess you could say. It's now thought as a study of filter randomization

in patients with DVT, but it was actually also a study looking at unfractionated and low molecular weight heparins. And this lends itself to be a fairly weak study designed to make conclusions on IVC filters, the performance of IVC filters, and it's underpowered really to make a definitive conclusion.

The other problem with this study is that there's a wide variety of filters, I mean a Bird's Nest and the Greenfield, they're very different filters. And that lack of standardization I think is problematic. These filters both can have different rates

of IVC thrombosis, which can affect the data. So the statistical analysis was less than perfect. They should have corrected for multiple comparisons which they did not. And it also showed that PE can occur remotely, and if you don't have a filter in place,

it's probably not protective, obviously. So a PREPIC study was recently published, the PREPIC 2 in 2015. And this asks the question, do patients with acute PE at high risk of recurrence benefit from IVC filter in addition to anticoagulation?

So it was a multicenter trial in France. They had about 400 patients that were randomized, half into filters, half into no filters. Their risk factors are listed, and they're quite broad. And all filters were removed at three months. And they had follow up at three and six months.

And this is the data. The data at three months shows that there was no difference in recurrent PE between the patients with filters and the patient without filters. And at six months this remained the same. And there was no difference in DVT

between groups at six months. So fact or fiction? Well I think the PREPIC studies are mostly fact with maybe a little bit of fiction thrown in. The data from PREPIC suggests that patients with IVC filters have an increased risk of DVT long term,

but a decreased risk of PE long term. PREPIC 2 suggests that IVC filters may not decrease the risk of PE in high-risk patients, and did not show an association between filters and recurrent DVT at six and three months. Thank you.

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Well, thank you Frank and Enrico for the privilege of the podium and it's the diehards here right now. (laughs) So my only disclosure, this is based on start up biotech company that we have formed and novel technology really it's just a year old

but I'm going to take you very briefly through history very quickly. Hippocrates in 420 B.C. described stroke for the first time as apoplexy, someone be struck down by violence. And if you look at the history of stroke,

and trying to advance here. Let me see if there's a keyboard. - [Woman] Wait, wait, wait, wait. - [Man] No, there's no keyboard. - [Woman] It has to be opposite you. - [Man] Left, left now.

- Yeah, thank you. Are we good? (laughs) So it's not until the 80s that really risk factors for stroke therapy were identified, particularly hypertension, blood pressure control,

and so on and so forth. And as we go, could you advance for me please? Thank you, it's not until the 90s that we know about the randomized carotid trials, and advance next slide please, really '96 the era of tPA that was

revolutionary for acute stroke therapy. In the early 2000s, stroke centers, like the one that we have in the South East Louisiana and New Orleans really help to coordinate specialists treating stroke. Next slide please.

In 2015, the very famous HERMES trial, the compilation of five trials for mechanical thrombectomy of intracranial middle and anterior cerebral described the patients that could benefit and we will go on into details, but the great benefit, the number needed to treat

was really five to get an effect. Next slide. This year, "wake up" strokes, the extension of the timeline was extended to 24 hours, increase in potentially the number of patients that could be treated with this technology.

Next please. And the question is really how can one preserve the penumbra further to treat the many many patients that are still not offered mechanical thrombectomy and even the ones that are, to get a much better outcome because not everyone

returns to a normal function. Next, so the future I think is going to be delivery of a potent neuroprotection strategy to the penumbra through the stroke to be able to preserve function and recover the penumbra from ongoing death.

Next slide. So that's really the history of stroke. Advance to the next please. Here what you can see, this is a patient of mine that came in with an acute carotid occlusion that we did an emergency carotid endarterectomy

with an neuro interventionalist after passage of aspiration catheter, you can see opening of the middle cerebral M1 and M2 branches. The difference now compared to five, eight, 10 years ago is that now we have catheters in the middle cerebral artery,

the anterior cerebral artery. After tPA and thrombectomy for the super-selective, delivery of a potent neuroprotective agent and by being able to deliver it super-selectively, bioavailability issues can be resolved, systemic side effects could be minimized.

Of course, it's important to remember that penumbra is really tissue at risk, that's progression towards infarction. And everybody is really different as to when this occurs. And it's truly all based on collaterals.

So "Time is brain" that we hear over and over again, at this meeting there were a lot of talks about "Time is brain" is really incorrect. It's really "Collaterals are brain" and the penumbra is really completely based on what God gives us when we're born, which is really

how good are the collaterals. So the question is how can the penumbra be preserved after further mechanical thrombectomy? And I think that the solution is going to be with potent neuroprotection delivery to the penumbra. These are two papers that we published in late 2017

in Nature, in science journals Scientific Reports and Science Advances by our group demonstrating a novel class of molecules that are potent neuroprotective molecules, and we will go into details, but we can discuss it if there's interest, but that's just one candidate.

Because after all, when we imaged the penumbra in acute stroke centers, again, it's all about collaterals and I'll give you an example. The top panel is a patient that comes in with a good collaterals, this is a M1 branch occlusion. In these three phases which are taken at

five second intervals, this patient is probably going to be offered therapy. The patients that come in with intermediate or poor collaterals may or may not receive therapy, or this patient may be a no-go. And you could think that if neuroprotection delivery

to the penumbra is able to be done, that these patients may be offered therapy which they currently are not. And even this patient that's offered therapy, might then leave with a moderate disability, may have a much better functional

independence upon discharge. When one queries active clinical trials, there's nothing on intra arterial delivery of a potent neuroprotection following thrombectomy. These are two trials, an IV infusion, peripheral infusion, and one on just verapamil to prevent vasospasm.

So there's a large large need for delivery of a potent neuroprotection following thrombectomy. In conclusion, we're in the door now where we can do mechanical thrombectomy for intracranial thrombus, obviously concomitant to what we do in the carotid bifurcation is rare,

but those patients do present. There's still a large number of patients that are still not actively treated, some estimate 50 to 60% with typical mechanical thrombectomy. And one can speculate how ideally delivery of a potent neuroprotection to this area could

help treat 50, 60% of patients that are being denied currently, and even those that are being treated could have a much better recovery. I'd like to thank you, Frank for the meeting, and to Jackie for the great organization.

- Thank you, Ulrich. Before I begin my presentation, I'd like to thank Dr. Veith so kindly, for this invitation. These are my disclosures and my friends. I think everyone knows that the Zenith stent graft has a safe and durable results update 14 years. And I think it's also known that the Zenith stent graft

had such good shrinkage, compared to the other stent grafts. However, when we ask Japanese physicians about the image of Zenith stent graft, we always think of the demo version. This is because we had the original Zenith in for a long time. It was associated with frequent limb occlusion due to

the kinking of Z stent. That's why the Spiral Z stent graft came out with the helical configuration. When you compare the inner lumen of the stent graft, it's smooth, it doesn't have kink. However, when we look at the evidence, we don't see much positive studies in literature.

The only study we found was done by Stephan Haulon. He did the study inviting 50 consecutive triple A patients treated with Zenith LP and Spiral Z stent graft. And he did two cases using a two iliac stent and in six months, all Spiral Z limb were patent. On the other hand, when you look at the iliac arteries

in Asians, you probably have the toughest anatomy to perform EVARs and TEVARs because of the small diameter, calcification, and tortuosity. So this is the critical question that we had. How will a Spiral Z stent graft perform in Japanese EIA landing cases, which are probably the toughest cases?

And this is what we did. We did a multi-institutional prospective observational study for Zenith Spiral Z stent graft, deployed in EIA. We enrolled patients from June 2017 to November 2017. We targeted 50 cases. This was not an industry-sponsored study.

So we asked for friends to participate, and in the end, we had 24 hospitals from all over Japan participate in this trial. And the board collected 65 patients, a total of 74 limbs, and these are the results. This slide shows patient demographics. Mean age of 77,

80 percent were male, and mean triple A diameter was 52. And all these qualities are similar to other's reporting in these kinds of trials. And these are the operative details. The reason for EIA landing was, 60 percent had Common Iliac Artery Aneurysm.

12 percent had Hypogastric Artery Aneurysm. And 24 percent had inadequate CIA, meaning short CIA or CIA with thrombosis. Outside IFU was observed in 24.6 percent of patients. And because we did fermoral cutdowns, mean operative time was long, around three hours.

One thing to note is that we Japanese have high instance of Type IV at the final angio, and in our study we had 43 percent of Type IV endoleaks at the final angio. Other things to notice is that, out of 74 limbs, 11 limbs had bare metal stents placed at the end of the procedure.

All patients finished a six month follow-up. And this is the result. Only one stenosis required PTA, so the six months limb potency was 98.6 percent. Excellent. And this is the six month result again. Again the primary patency was excellent with 98.6 percent. We had two major adverse events.

One was a renal artery stenosis that required PTRS and one was renal stenosis that required PTA. For the Type IV index we also have a final angio. They all disappeared without any clinical effect. Also, the buttock claudication was absorbed in 24 percent of patients at one month, but decreased

to 9.5 percent at six months. There was no aneurysm sac growth and there was no mortality during the study period. So, this is my take home message, ladies and gentlemen. At six months, Zenith Spiral Z stent graft deployed in EIA was associated with excellent primary patency

and low rate of buttock claudication. So we have most of the patients finish a 12 month follow-up and we are expecting excellent results. And we are hoping to present this later this year. - [Host] Thank you.

- [Nicos] Thanks so much. Good afternoon everybody. I have no disclosures. Getting falsely high velocities because of contralateral tight stenosis or occlusion, our case in one third of the people under this condition, high blood pressure, tumor fed by the carotid, local inflammation, and rarely by arteriovenous fistula or malformation.

Here you see a classic example, the common carotid, on the right side is occluded, also the internal carotid is occluded, and here you're getting really high velocity, it's 340, but if you visually look at the vessel, the vessel is pretty wide open. So it's very easy to see this discordance

between the diameter and the velocity. For occasions like this I'm going to show you with the ultrasound or other techniques, planimetric evaluation and if I don't go in trials, hopefully we can present next year. Another condition is to do the stenosis on the stent.

Typically the error here is if you measure the velocity outside the stent, inside the stent, basically it's different material with elastic vessel, and this can basically bring your ratio higher up. Ideally, when possible, you use the intra-stent ratio and this will give you a more accurate result.

Another mistake that is being done is that you can confuse the external with the internal, particularly also we found out that only one-third of the people internalized the external carotid, but here you should not make this mistake because you can see the branches obviously, but really, statistically speaking, if you take 100

consecutively occluded carotids, by statistical chance 99% of the time or more it will be not be an issue, that's common sense. And of course here I have internalization of the external, let's not confuse there too, but here we don't have any

stenosis, really we have increased velocity of the external because a type three carotid body tumor, let's not confuse this from this issue. Another thing which is a common mistake people say, because the velocity is above the levels we put, you see it's 148 and 47, this will make you with a grand criteria

having a 50% stenosis, but it's also the thing here is just tortuosity, and usually on the outer curve of a vessel or in a tube the velocity is higher. Then it can have also a kink, which can produce the a mild kink like this

on here, it can make the stenosis appear more than 50% when actually the vessel does have a major issue. This he point I want to make with the FMD is consistently chemical gradual shift, because the endostatin velocity is higher

than people having a similar degree of stenosis. Fistula is very rare, some of our over-diligent residents sometimes they can connect the jugular vein with roke last year because of this. Now, falsely low velocities because of proximal stenosis of

the Common Carotid or Brachiocephalic Artery, low blood pressure, low cardiac output, valve stenosis efficiency, stroke, and distal ICA stenosis or occlusion, and ICA recanalization. Here you see in a person with a real tight stenosis, basically the velocity is very low,

you don't have a super high velocity. Here's a person with an occlusion of the Common Carotid, but then the Internal Carotid is open, it flooded vessels from the external to the internal, and that presses a really tight stenosis of the external or the internal, but the velocities are low just because

the Common Carotid is occluded. Here is a phenomenon we did with a university partner in 2011, you see a recanalized Carotid has this kind of diameter, which goes all the way to the brain and a velocity really low but a stenosis really tight. In a person with a Distal dissection, you have low velocity

because basically you have high resistance to outflow and that's why the velocities are low. Here is an occlusion of the Brachiocephalic artery and you see all the phenomena, so earlier like the Common Carotid, same thing with the Takayasu's Arteritis, and one way I want to finish

this slide is what you should do basically when the velocity must reduce: planimetric evaluation. I'll give you the preview of this idea, which is supported by intracarotid triplanar arteriography. If the diameter of the internal isn't two millimeters, then it's 95% possible the value for stenosis,

regardless of the size of the Internal Carotid. So you either use the ICAs, right, then you're for sure a good value, it's a simple measurement independent of everything. Thank you very much.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- [Presenter] Thanks again, Laurel, for this kind invitation. We're going to discuss about how I do the treatment for varicose veins for the foot. And we're going to show you our experience for that. I have no disclosure. I came from Natal, Brazil.

There's our wonderful beach that we have there, but we don't have time to go there, unfortunately. This is our hospital, and these are the people that worked with us. To do this treatment we have to pay attention of the history and the physical examination.

It's very important to decide what you can do to these patients, because we have to associate some tools to do this kind of treatment. So phleboscopy, transillumination is very important to define the feeder veins,

so it's very important in this case to show us where is the veins that we feed these spider veins to treat that. And of course, the ultrasound associated with all the physical examinations of course and then the black scan. You can see in this case, a patient does not have any

varicose veins on the thigh, of the leg. They have only varicose veins by the foot. If you can see, the reflux of there, comes from the junction to the foot. If you don't have the good ultrasound

or duplex scan it can have a mistake and treat wrong way these patients. So, what are the tools we have to do to treat these patients? A lot of tools, you can see the liquid sclerotherapy with a low concentration of 75%.

Foam polidocanol for these two concentrations. Of course, transdermal laser, hooks that we can apply in the surgery and polidocanol laser. How about this procedure? This paper from the Netherlands, show us patient satisfaction after ambulatory phlebectomy

of varicose veins, what they conclude about that. The most important factors that influence the patient satisfaction is: discoloration, persistent pain, and the perception of varices after surgery. This last one is very important for us,

because the patient comes to us to be cleaning off veins of the foot, if we miss that everything we did, the patient will complain about after their surgery. We have two kinds of treatment, ambulatory treatment being the option

and the hospital we can do the procedures. We have separate patients with CO grade, CEAP classifications and C2 classifications. When we have a C1 grade classification we use transdermal laser and liquid sclerotherapy. You can see one case is a cosmetic

and one is a severe one. A C2 case we have ambulatory treatment, we have transdermal laser and we associate all this with foam sclerotherapy. But the concentrations are 0.5% and 0.25%, you can see its low concentrations.

At the hospital we have can do almost everything nearly in the same day. Transdermal laser, liquid sclerotherapy, foam sclerotherapy. Yes, we can associate liquid sclerotherapy, sometimes the people say that you cannot do that, but we do that.

In case like this, we also say transdermal laser in spider veins, phlebectomy and you can see in this case we have a use for sclerotherapy and is this is the result of 60 days. This other case that we use phlebectomy and we have to be careful because you

can take nerves, the patient will complain about after surgery. And these are the results. Polidocanol with laser tool, yes, but it's not our routine to use that. In conclusion:

Physical exam and a precise diagnosis of the feet varicose veins is essential to do a good surgery. With all these tools, that we have, the treatment of varicose veins of the foot is safe and effective. This is my fugu in Natal, Brazil.

Thank you.

- Like to thank Dr. Veith and the committee for asking me to speak. I have no conflicts related to this presentation. Labial and vulvar varicosities occur in up to 10% of pregnant women, with the worst symptoms being manifested in the second half of the pregnancy.

Symptoms include genital pressure and fullness, pruritus, and a sensation of prolapse. These generally worsen with standing. Management is usually conservative. Between compression hose, cooling packs, and exercise, most women can make it through to the end of the pregnancy.

When should we do more than just reassure these women? An ultrasound should be performed when there's an early presentation, meaning in the first trimester, as this can be an unmasking of a venous malformation. If there are unilateral varicosities,

an ultrasound should be performed to make sure that these aren't due to iliac vein thrombosis. If there's superficial thrombosis or phlebitis, you may need to rule out deep venous extension with an ultrasound. When should we intervene?

You may need to intervene to release trapped blood in phlebitis, or to give low molecular weight heparin for comfort. When should a local phlebectomy or sclerotherapy be performed? Should sclerotherapy be performed during pregnancy?

We know very little. Occasionally, this is performed in a patient who is unknowingly pregnant, and there have been no clear complications from this in the literature. The effectiveness of sclero may also

be diminished in pregnancy, due to hormones and increased venous volume. Both polidocanol and sodium tetradecyl sulfate say that there is no support for use during pregnancies, and they advise against it. So what should you do?

This following case is a 24 year old G2P1, who was referred to me at 24 weeks for disabling vaginal and pelvic discomfort. She couldn't go to work, she couldn't take care of her toddler, she had some left leg complaints, but it was mostly genital discomfort and fullness,

and her OB said that he was going to do a pre-term C-section because he was worried about the risk of hemorrhage with the delivery. So this is her laying supine pre-op, and this is her left leg with varicosities visible in the anterior and posterior aspects.

Her ultrasound showed open iliac veins and large refluxing varicosities in the left vulvar area. She had no venous malformation or clot, and she had reflux in the saphenofemoral junction and down the GSV. I performed a phlebectomy on her,

and started with an ultrasound mapping of her superficial veins and perforators in the labial region. I made small incision with dissection and tie ligation of all the varicosities and perforators, and this was done under local anesthesia

with minimal sedation in the operating room. This resulted in vastly improved comfort, and her anxiety, and her OB's anxiety were both decreased, and she went on to a successful delivery. So this diagram shows the usual location of the labial perforators.

Here she is pre-op, and then here she is a week post-op. Well, what about postpartum varicosities? These can be associated with pelvic congestion, and the complaints can often be split into local, meaning surface complaints, versus pelvic complaints.

And this leads into a debate between a top down treatment approach, where you go in and do a venogram and internal coiling, versus a bottom up approach, where you start with local therapy, such as phlebectomy or sclero.

Pelvic symptoms include aching and pressure in the pelvis. These are usually worse with menstruation, and dyspareunia is most pronounced after intercourse, approximately an hour to several hours later. Surface complaints include vulvar itching, tenderness, recurrent thrombophlebitis, or bleeding.

Dyspareunia is present during or at initiation of sexual intercourse. I refer to this as the Gibson Algorithm, as Kathy Gibson and I have talked about this problem a lot, and this is how we both feel that these problems should be addressed.

If you have an asymptomatic or minimally symptomatic patient who's referred for varicosities that are seen incidentally, such as during a laparoscopy, those I don't treat. If you have a symptomatic patient who has pelvic symptoms, then these people get a venogram with coils and sclerotherapy as appropriate.

If they are not pregnant, and have no pelvic symptoms, these patients get sclero. If they are pregnant, and have no pelvic symptoms, they get a phlebectomy. In conclusion, vulvar varicosities are a common problem, and usually conservative management is adequate.

With extreme symptoms, phlebectomy has been successful. Pregnancy-related varicosities typically resolve post-delivery, and these can then be treated with local sclerotherapy if they persist. Central imaging and treatment is successful for primarily pelvic complaints or persistent symptoms.

Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.