Create an account and get 3 free clips per day.
Chapters
Labral Tear|MR Arthrogram (Fluoroscopic Approach)|25|Female
Labral Tear|MR Arthrogram (Fluoroscopic Approach)|25|Female
2016anestheticsanteriorcapsuledemonstratingdistendedfluoroscopicgadoliniumjointmusculoskeletalneedlepalpatepatientSIR
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
aneurysmanterioraorticarterycoilcoilingcoilscollateralcordembolizationischemicMIS²ACEocclusionPatentpatientperformsegmentalspinalstenotictechniquetherapeuticthoracoabdominal
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
adjuvantaneurysmsaorticapplicabilityarteryBEVARbridgingceliaccorddiameterendograftsendoleakendovascularevarexpandGORE MedicalGore Viabahn VBXgraftsiliacischemialimitationsmajoritymultiorganobservationalOpen AAA repairorificeparaplegiapatientpatientspercutaneouslyperformedprospectiveproximalrenalrenal arteryspinalstemstenosisstentstent graft systemstentedtherapeuticthrombectomythrombocytopeniatreatedvesselvisceralZenith T-Branch (Cook Medical)
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
abdominalangiographyanterioraortaaorticarteriogrambasicallybleedingcarboncatheterceliaccoilcontrastdiaphragmdioxideembolizationholeimaginginjectinjectioninjectionsiodinatedliverlowmultiplepatientpelvicrenalruptureselectivesolublesplenictraumavascularizationveinvesselvesselsvolumes
Summary Of Thermal Ablation RCTs
Summary Of Thermal Ablation RCTs
ablationanteriorClosure SystemcollectedcomparingendovenousEVAEVLTexaminefrequencylaserligationMedtronicMOCAolleoutcomeoutcomespaucityproximalqualityradioactiverctsrecurrencereviewsRFAsaphenoussclerotherapystrippingsurgerysystematictherapeuticthermalThermal AblationtrialsUGFSVenaSealvenousversus
How Accurate Is Ulcer Healing Assessment And What Happens When We Are Wrong
How Accurate Is Ulcer Healing Assessment And What Happens When We Are Wrong
abisangiogramankleanteriorbrachialclevelandcriticalguidelineshemodynamicindicesischemiaischemiclimbmichiganMid-foot ulceration / SFA diseasenormalocclusionocclusion of PT / Diabetic with charcot ArthropathypatientpatientsposteriorRevascularization / Wound Caretibialulcerationupwardswound
Progress In Blunt Thoracic Aortic Injury: Changing Classification Systems And Philosophy Of Treatment: What Is The Aortic Trauma Foundation And What Does It Do
Progress In Blunt Thoracic Aortic Injury: Changing Classification Systems And Philosophy Of Treatment: What Is The Aortic Trauma Foundation And What Does It Do
activelyalgorithmaorticbluntcenterscontroversyemergentlyfoundationgradingguidelinesinjuriesinjuryinterventionallowermedicalmulticentermultispecialtyongoingoptimaloutcomesparaplegiapatientpracticepredictorsprospectiveprovidersregistryTEVARthoracictimingtransitiontraumatraumatictreatingvascular
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
assessmentbilateralbiomarkersCASCGuardcomparingcontracontralateraldetectabledetecteddifferenceemboliembolicEmbolic Prevention StentembolismenrolledhoursInspireMD)ipsilateralischemiclesionmaximalmicroneuroneurologicaloperativelypatientpatientsperformedperioperativeplaquepostpostoperativepredilationpreoperativeproteinrandomizedratescoresilentstenosisstentstentssubclinicaltesttherapeuticwallstentWALLSTENT (Boston Scientific) - Endoprosthesis / FilterWire (Boston Scientific) - Embolic Protection System
The Value Of Hyperbaric Oxygen As A Rescue Treatment For SCI After F/B/EVAR For TAAAs
The Value Of Hyperbaric Oxygen As A Rescue Treatment For SCI After F/B/EVAR For TAAAs
aneurysmanimalanteriorarteryBEVARbloodconventionalcorddissolvedFEVARHBOThyperbaricinjuryischemiamechanismsoxygenpatientsraisingreperfusionsegmentalspinalstudiestherapeuticthoracoabdominal
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
amputationangioplastyarteryballoonballoonsBoston ScientificcalcificationclinicalcoatedcompleteconcentrationdegreedistaldiureticdownstreamdrugendpointshealinglesionslimbnecrosispaclitaxelPaclitaxel-Coated PTA Balloon CatheterpatientpatientsPTAs with DCBRangerrutherfordsalvagestenosisstudytherapeuticwound
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
acuteangioplastyanteriorballoonBalloon angioplasty systembifurcationcapturecapturedchronicContego MedicaldebrisdevicedistalembolicembolizationlesionlesionslimboccludedocclusionplanarpoplitealreocclusionriskrotationalrunoffstentstentstherapeutictibialtotalulcerationVanguard IEPvessel
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
Is Drug Neuroprotection After Thrombectomy For Acute Stroke Or Other Ischemic Cerebral Insults Feasible: Future Prospects
acuteadvanceanteriorcarotidcerebralcollateralsdeliveryintracranialmechanicalneuroprotection agentsneuroprotectiveofferedpatientpatientsPenumbrapotentpreservestrokethrombectomyThromectomytpatreat
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
anteriorarterialarterybasilicbrachialcoexistingcollateralscompartmentdelayeddopplerduplexexplorationfracturefracturesfunctionhumerusinjuryinovaischemiaischemicmediannerveneurovascularnormalobservationpalpablepatientperfusedperfusionpositiveproximalpulsepulselessradialrecommendsurgicalsyndromethrombectomyvascularVeith
DEBATE: Not So: Prosthetic Open Bypasses Should Be Used To Treat Most Popliteal Aneurysms: When Are They Mandatory
DEBATE: Not So: Prosthetic Open Bypasses Should Be Used To Treat Most Popliteal Aneurysms: When Are They Mandatory
anastomosisaneurysmarterybypasscollateralsdistalendovascularEPARgraftkneepatientpatientspoplitealprostheticvenous
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
arteriesBEVARclinicalcollateralcorddopplerdorsalevarexperimentallaserlumbarmentoringmidlineMIS²ACEmonitoringnetworkneurologicocclusionoxygenationpatientreflectssegmentalsetupspectroscopyspinalspinestenttechnologytherapeuticvalidation
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
amputationarteriovenousarterycriticaldiseaseembolizedendoscopicFistulahandhemodialysisischemiaischemicmultiplemyelomaoccludedocclusionpalmarPathophysiologypatientpatientsprosthesesproximalradialradiocephalicshortestthoracictotallytransplantulnarvascular
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
anterioraortobifemoralarteryatheroscleroticbifurcationcarotidcarotid arteryclassiccommondebrisemphasizeendarterectomyexternalexternal carotidfemoropoplitealhoarsenessincisioninternalinternal carotidloopmaneuvermiceminimaloperationpatientpatientsposteriorproximalpullingremovesafelyshuntsutureVeithvesselvisualizationwound
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
aneurysmaorticcentimeterdeviceendoleaksevarlearlowoutcomespatientpatientspredictorsregulatoryriskshrinkagestentsuprarenalSurveillanceVeith
CMS Policy Update On Nonthermal Ablation
CMS Policy Update On Nonthermal Ablation
ablationanteriorClariVeincompressivecontractorcovercoveragedeterminationsfoamincisionincisionsmedicarementionmicrofoamNonthermal ablationOcclusion catheter systemphlebectomyrefluxsaphenoussclerotherapysystematictherapeutictreatmentsVascular Insights IncvcssVenaSeal (Medtronic - closure system) / Varithena (BTG Interventional Medicine - polidocanol injectable foam) / PhotoDerm VascuLight (ESC - laser device) / Veinlase (Fisma - laser device)venous
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
acuteanterioraortaarterycementchroniccommonlycompresseddelayedfractureiliacimaginginflammatoryinjuriesinjuryinstrumentationpatientpositioningposteriorprivilegepronereplacementRt Iliac Massthermalthoracicvascularveinveinsvertebral
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
Long-Term Results Of Carotid Subclavian Bypasses In Conjunction With TEVAR: Complications And How To Avoid Them
anteriorarterybypasscarotidcervicalcirculationcomparisoncomplicationscordcoronarydiaphragmdysfunctionendovasculargraftlandingleftLSCAnerveoriginoutcomespatencypatientsperfusionphrenicposteriorproximalpseudoaneurysmsptferesolvedrevascularizationreviewrisksspinalstentstudysubclaviansupraclavicularTEVARtherapeuticthoracicundergoingvascularvertebral
Pump Speed, Needle Size, And Fistula Flow: Means To What End
Pump Speed, Needle Size, And Fistula Flow: Means To What End
accessachievebloodclearanceDialysisdoseflowneedleparameterspatientsizestriveuremic
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
12mm BSG34 & 26 mm Distal Extentions to Celiac Artery34mm MSGaccessaneurysmangiogramaorticarteryballoonceliaccenterscomorbiditiesDescending Thoracic Aneurysm 55mmdevicedevicesdiametersendovascularenrollenrollmentfeasibilitygrafthelicalinvestigationalischemialeftmainMedtronicnitinolpatientpatientspivotalproximalrevascularizationstentstent graft systemsubclavianTEVARtherapeuticthoracicthrombusValiant Mona LSAwire
Transcript

So here is our companion case demonstrating a fluoroscopic approach to the hip. This is a 25 year old female and she's gonna get an arthrogram to evaluate for labral pathology. And the target here is gonna be superolateral aspect of the head-neck junction.

Patients can be positioned supine, internal rotation and again a little sandbag outside the foot there can kinda help keep the patient in that position. Here we can see a 22 gauge spinal needle has been advanced pretty much vertically to that target location and we use this anterior

approach, for this will work great for your aspirations or injections. For a fluoroscopy, important to palpate the femoral artery, mark it and make sure you stay lateral from that and you should see nice free flow of contrast like this surrounding that hip joint. You've got images from the MRI for arthrogram here demonstrating

a nicely distended hip joint capsule there. So arthrograms, this is for an example the formula that we use. But that's gonna vary based upon the concentration of gadolinium we're using and the preference that your musculoskeletal radiologists have. But again, we're gonna be careful to avoid any air installation

and listed some typical joint volumes. For shoulder 10 to 12 ml, hip 10 to 15, knee 15 to 20. Now that's a reference range that's gonna be guided based on the resistance you feel with the needle whether you're using ultrasound or fluoroscopy, the patient will start to tell you, yeah, I'm kinda feeling this

tendon, I'm having pain. And then you will go and tell you really feel like you're close to rupturing that capsule as long as you're within these appropriate ranges. Other things, if we're doing knees or hips we don't let the patient walk, afterwards we keep them on the table because that joint is

gonna be very distended so we wanna transport them to the MR scanner on a gurney so they don't potentially rupture that capsule or they don't force any of that to inject it out through the hole that we just created in the joint there. The same thing was seated position,

that can disrupt the hip joint so we don't even let them sit. Occasionally we'll get a request to mix a steroid in with that little cocktail. We don't do that. There's a theoretical consideration for gadolinium may disassociate

when mixed with a steroid. So we don't do that. We will add local anesthetics because commonly local injection into this joints is part of the clinical workout when you're looking at labral pathology, particularly in these young people with hip

pain. So fairly routinely we'll have a local anesthetic, just to see is that the patient's pain generator?

- Thank you, good morning everybody. Thank you for the kind invitation, Professor Veith, it's an honor for me to be here again this year in New York. I will concentrate my talk about the technical issues and the experience in the data we have already published about the MISACE in more than 50 patients.

So I have no disclosure regarded to this topic. As you already heard, the MISACE means the occlusion of the main stem of several segmental arteries to preserve the capability of the collateral network to build new arteries. And as a result, we developed

the ischemic preconditioning of the spinal cord. Why is this so useful? Because it's an entirely endovascular first stage of a staged approach to treat thoracoabdominal aortic aneurysm in order to reduce the ischemic spinal cord injury.

How do you perform the MISACE? Basically, we perform the procedure in local anesthesia, through a percutaneous trans-femoral access using a small-bore sheath. The patient is awake, that means has no cerebrospinal fluid damage

so we can monitor the patient's neurological for at least 48 hours after the procedure. So, after the puncture of the common femoral artery, using a technique of "tower of power" in order to cannulate the segmental arteries. As you can see here, we started with a guiding catheter,

then we place a diagnosis catheter and inside, a microcatheter that is placed inside the segmental artery. Then we started occlusion of the ostial segment of the segmental artery. We use coils or vascular plugs.

We don't recommend the use of fluids due to the possible distal embolization and the consequences. Since we have started this procedure, we have gained a lot of experience and we have started to ask,

what is a sufficient coilembolization? As you can see here, this artery, we can see densely packed coils inside, but you can see still blood flowing after the coil. So, was it always occluding, or is it spontaneous revascularization?

That, we do not know yet. The question, is it flow reduction enough to have a ischemic precondition of the spinal cord? Another example here, you can see a densely packed coil in the segmental artery at the thoracic level. There are some other published data

with some coils in the segm the question is, which technique should we use, the first one, the second one? Another question, is which kind of coil to use? For the moment, we can only use the standard coils

in our center, but I think if we have 3-D or volume coils or if you have microvascular plugs that are very compatible with the microcatheter, we have a superior packing density, we can achieve a better occlusion of the segmental artery, and we have less procedure time and radiation time,

but we have to think of the cost. We recommend to start embolization of the segmental artery, of course, at the origin of it, and not too far inside. Here, you can see a patient where we have coiled a segmental artery very shortly after the ostium,

but you can see here also the development of the collaterals just shortly before the coils, leading to the perfusion of segmental artery that was above it. As you can see, we still have a lot of open question. Is it every patent segmental artery

a necessary to coil? Should we coil only the large ones? I show you an example here, you can see this segmental artery with a high-grade stenotic twisted ostium due to aortic enlargement.

I can show you this segmental artery, six weeks after coiling of a segmental artery lower, and you can see that the ostium, it's no more stenotic and you can see also the connection between the segmental artery below to the initial segmental artery.

Another question that we have, at which level should we start the MISACE? Here, can see a patient with a post-dissection aneurysm after pedicle technique, so these are all uncovered dissection stent, and you can see very nicely the anterior spinal artery

feeded by the anterior radiculomedullary artery from the segmental artery. So, in this patient, in fact, we start the coiling exactly at the seat of this level, we start to coil the segmental artery that feeds the anterior spinal artery.

So, normally we find this artery of the Th 9 L1, and you can see here we go upwards and downwards. We have some challenges with aneurysm sac enlargement, in this case, we use this technique to open the angle of the catheter, we can use also deflectable steerable sheath

in order to reach the segmental artery. And you can see here our results, again, I just will go fast through those, we have treated 57 patients, most of them were Type II, Type III aortic aneurysms. We have found in median nine patent segmental artery

at the level of the aorta to be treated, between 2 and 26, and we have coiled in multiple sessions with a mean interval of 60 days between the sessions. No sooner than seven days we perform the complete exclusion of the aneurysm

in order to let the collateral to develop, and you can see our result: at 30 days we had no spinal cord ischemia. So I can conclude that our first experience suggest that MISACE is feasible, safe, and effective, but segmental artery coiling in thoracoabdominal aneurysm

can be challenging, it's a new field with many open questions, and I looking forward for the results with PAPA_ARTiS study. Thank you a lot.

- So thank you for the kind introduction and thanks for professor Viet for the invitation again this year. So, if we talk about applicability, of course you have to check the eye views from this device and you're limited by few instructions for users. They changed the lengths between the target vessel

and the orifice and the branch, with less than 50 mm , they used to be less than 25 mm. Also keep in mind, that you need to have a distance of more than 67 mm between your renal artery cuff and your iliac bifurcation. The good thing about branch endografts

is that if you have renal artery which comes ... or its orifice at the same level of the SME, you can just advance and put your endorafts a bit more proximally, of course risking more coverage of your aorta and eventually risking high rate

of paraplegia or spinal cord ischemia. Also if your renal artery on one side or if your target vessel is much lower with longer bridging stent grafts which are now available like the VBX: 79 mm or combination of bridging stem grafts, this can be treated as well.

Proximally, we have short extensions like the TBE which only allows 77 or 81 mm. This can also expand its applicability of this device. The suitability has already been proven in.. or assessed by Gaspar and vistas and it came around plus 60%

of all patients with aortic aneurysms. Majority of them are limitations where the previous EVAR or open AAA repair or the narrow diameter reno visceral segment in case of diabetes sections. So, what about the safety of the T-branch device?

We performed an observational study Mister, Hamburg and Milner group and I can present you here the short term results. We looked at 80 patients in prospective or retro prospective manner with the t-branch as instructed for use.

Majority were aneurysms with the type two or type four Crawford tracheal aneurysms, also a few with symptomatic or ruptured cases. Patient characteristics of course, we have the same of the usual high risk cardiovascular profiling,

this group of patients that has been treated. Majority was performed percutaneously in 55%. The procedure time shows us that there is still a learning curve. I think nowadays we can perform this under 200 minutes. What is the outcome?

We have one patient who died post operative day 30, after experiencing multiorgan failure. These are 30 day results. No rupture or conversion to open surgery. We had one patient with cardiac ischemia, seven patients with spinal cord ischemia

and one patient has early branch occlusion. There was both renal arteries were occluded, he had an unknown heparin induced thrombocytopenia and was treated with endovascular thrombectomy and successfully treated as well. Secondary interventions within 30 days were in one patient

stent placement due to an uncovered celiac stent stenosis In one patient there was a proximal type one endoleak with a proximal extension. One patient who had paraplegia or paraparesis, he had a stenosis of his internal iliac artery which stem was stented successfully,

and the paraparesis resolved later on in this patient. And of course the patient I just mentioned before, with his left and right renal artery occlusion. So to conclude, the T-branch has wide applicability as we've seen also before, up to 80% especially with adjuvant procedures.

Longer, more flexible bridging stent grafts will expand the use of this device. Also the TBE proximal extensions allows aortic treatment of diameters for more than 30 mm and I think the limitations are still the diameter at reno visceral segment,

previous EVAR or open AAA repair and having of course multiple visceral arteries. Thank you.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- Thank you very much for inviting me here again and I'll be talking about thermal ablation RCTs. My coauthor, Michel Perrin from Lyon, in France, the gourmet capital in the world has collected RCTs on operative treatment of CVD since 1990. Today he has 186 collected RCTs

of the which 84 involve thermal ablation. You can find all this data for free in Phlebolymphology.org. Do we need further RCTs? Well systematic reviews and meta-analyses increasingly important in evidence-based medicine. And this development is well-described

by Gurevitch in Nature this year and criticized by Ioannidis two years earlier. Common sense is a good principle when you try to understand meta-analyses. Do most studies point in the same direction?

Is the effect significant? Are the patient-related outcome measures relevant and what happens if you exclude one study? Since 2008, 10 years back, these are the available meta-analyses and the last came from Ireland earlier this year.

It was published in the JVS, endovenous and in fact this is in March. And they found nine RCTs comparing conventional surgery and endovenous therapy with five years or more follow-up that were selected. Primary outcome was recurrence rate.

There is some sole recurrence rate was that there is no significant difference in laser versus surgery, same for radioactive frequency versus surgery and radioactive frequency versus laser. They found an inferiority

of ultrasound guided foam sclerotherapy versus laser and surgery. Their conclusions were that the quality of evidence is poor therefore more trials that are well-powered to examine long-term outcomes are warranted. The new kids on the block,

steam, MOCA, and Venaseal, are not included in the meta-analyses due to lack of more than five years follow-up in their paper. Obsolete RCTs. Endovenous laser in the presented long-term RCTs

were performed by 810-980 nanometer wavelength using a bare fiber. There is a paucity of RCTs comparing open surgery with novel endovenous laser and new RF techniques. Recent criticism against endovenous ablation, is the pendulum swinging towards high ligation

and stripping again? Olle Nelzen from Sweden in an editorial in British Journal of Surgery reconsidering the endovenous revolution, wrote that neovascularization is a dominant finding following high ligation and stripping

but proximal venous stumps and incompetent anterior accessory saphenous veins are the main factor after endovenous ablation. So long-term follow-up suggests that the recurrence rate after endovenous ablation seem to increase over time. A substantial number of patients who have undergone

endovenous ablation will eventually develop symptomatic recurrence requiring repeat therapy. And such scenario would change the equation regarding patient benefit and costs making endovenous ablation less competitive and challenging current guidelines.

So summary of needs for further RCTs. Quality of present RCTs poor in several meta-analyses, no thermal endovenous technique is superior to open surgery, RCTs rapidly obsolete due to change in technology, and more trials that are well-powered to examine long-term outcomes are warranted.

So final point, apparently we need more RCTs to satisfy the quality requirements for clinically important systematic reviews and meta-analyses. And what about the clinical guidelines? Thank you very much.

- Yeah, I am not Mehdi Shishehbor. If you are here to listen to him talk, I'm sorry to disappoint you. He's stuck in Cleveland in the weather. So this is my disclosure. There are several companies, but it's uncompensated consulting.

So, when you look at all the guidelines that are out there, most of the guidelines do recommend ankle brachial index as the central point in terms of management of critical limb ischemia patients, this is the ACC/AHA guidelines from 2016. And the same thing PARC,

Peripheral Academic Research Consortium also talks about using ankle brachial indices in the management of critical limb ischemias. So Mehdi gives this example of a 82 yr old patient of his who came in with a Charcot joint and mid-foot ulceration. The ABI was in the .56 range,

so he takes her to the cath lab and finds SFA disease, PT is occluded. He gets the inflow improved, the anterior tibial also looks better, and the ankle brachial indices are now normalized to 1.12, and even the metatarsal and the digit PPGs are improved.

So he tells the patient to go home and rest, and the wound care is instituted. And the mid-foot ulceration heals, but when the patient comes back there is a heel ulceration, because the patient has been asked to take it easy, and with the non-vascular position,

which is above the level of the heart, or at the level of the heart rather than being down. Now she has sort of a pressure and ischemic ulceration on the heel, despite normal ABIs. So Mehdi goes in and do retro grade pedal axis and gets into the origin, revascularizes the arch,

and gets the PT opened up, and the DP opened up, and has a good arch, complete arch now, as you can see good result, and with good wound healing at 16 weeks it shows improvement and 21 weeks much more better looking, almost healed ulceration with some callous over that.

So the point of this is the clinical examination of the patient and continued follow up closely is very important and not just depend on ABIs. To further this thought, Mehdi looked at the Cleveland Clinic Data and 29% of patients with critical limb ischemia were noted to have, in fact,

ABIs that were almost normal. And then, the IN.PACT DEEP data, which you look at about 350 patients, all CLI patients, they looked at the hemodynamic parameters to diagnose critical limb ischemia. This was one of the trials that sort of lead to

removing ankle brachial index requirement in the critical limb ischemia below knee trials, as well. What they showed is, even though all these patients have critical limb ischemia, upwards of 28% actually had normal ABI and several had ABI greater than 1.4 And remember, all these are critical limb ischemia patients.

So probably ABI's not a good measure to assess critical limb ischemia. Similarly, the Michigan group, the Blue Cross Blue Shield group looked at 4,391 patients with CLI, and only 60% actually had mild to moderate disease,

and 14 had severe disease, and when you look at the number of patients that had normal ABIs, that was a quarter of them. So a quarter of CLI patients have normal ABIs. The other disturbing fact is that, when you look at noncompressible ABIs,

majority, up to 80% of these patients could potentially, especially the posterior tibial artery, could be upwards of 80% occlusion. So basically, if you get noncompressible vessels you could be looking at having a potential occlusion of the below knee vessel.

So in summary, about 30% of patients with CLI will have normal ABIs, or noncompressible ABIs. If they have noncompressible ABIs, upwards of 80% will have potential occlusion of severe stenosis. So at this time, in the absence of better profusion, tissue profusion imaging,

angiogram is probably the best way to assess. We need to consider TBI, pulse volume recordings, in the patients with Rutherford five and six. Thank you.

- Thank you Tal. It's a privilege again to take the podium here. No disclosures. Everyone in here in this audience understands how important Traumatic Aortic Injury is, the second leading cause of death, primarily due to blunt mechanisms,

that are well known to the trauma and vascular community. And, we've learned a lot about how to care for these patient's in the transition in the vascular age. And, that began with the American Association for the Surgery of Trauma Studies in 2008 and 2009, which showed that TEVAR was associated

with an improved mortality and decreased paraplegia compared to older modalities. And, these are the graphs at my old training grounds at UT Houston, which, I'm sure would be the same at most other centers. A gradual transition to almost completely TEVAR

for every patient who has appropriate anatomy. And, we now have over a decade worth of survival data to show the outcome comparisons are the same as the older modalities. But the question has become now, are we over treating some of these injuries?

We need an optimal algorithm and an optimal algorithm requires an optimal grading system. And, that grading system should determine the treatment we utilize, it should guide the timing of the treatment. And, should provide some prediction of the natural history

in those patient's that we do not immediately treat. The SVS in 2011 developed a very nice anatomical based grading system, however, this is a lesionology type algorithm if you will, and not incorporating any of the valuable information that the patient also may possess

in terms of associated injuries. There have been alternative proposals: Vancouver, the Harborview "Minimal Aortic Injuries" is one that is very familiar and commonly utilized in the literature. And, even the Baltimore Classification which includes some physiology elements.

And the reality is, there are also other elements of ongoing issues Blunt Thoracic Aortic Injury, including not only how to manage those Grade 1/Grade 2 injuries but the timing of repair. How do we prioritize repair in the context of other sev

rain Injury and other bleeding solid organs and what's the optimal follow up regimen for these patients? It was with those questions in mind that 3 years ago we developed the Aortic Trauma Foundation. This is a non-profit organization with a Multispecialty

International Medical Advisory Board and a Board of Directors. We really wanted to improve outcomes of patient's with Traumatic Aortic Injury through education and research. We started with several initial, kind of low hanging fruit exercises, the first of which was a practice pattern survey

from members of the SVS, trauma organization, thoracic surgery organizations in interventional radiology and we found that there were some contingents here, and some very interesting findings in this survey. In fact, a majority of providers who care for these injuries don't rely on any guidelines at all.

Just their own personal knowledge of literature and their experience over their practice lifespan. Likewise, these mid-grade injuries represent some significant controversy with almost half the providers thinking that these just need medical therapy and observation as an outpatient.

And the remainder treating them emergently with TEVAR. Or, urgently with TEVAR. And we also conducted a large Retrospective Multicenter Study, 382 patient's from US Level 1 Trauma Centers and we found the at TEVAR compared to Open Repair

was associated with lower transfusion, lower overall mortality, lower aortic related mortality. None of these were surprising findings. But again, this study identified some controversy here, particularly with the, there's no difference in outcomes with those Minimal BTAI patient's if they're treated

with TEVAR or undergo medical non-operative management. Which suggests at least that in some of these patient's we are actually over-treating them. We have, as ongoing effort, our Aortic Trauma Foundation International, Multicenter PROSPECTIVE Blunt Thoracic Aortic Injury Registry

designed to identify predictors of early rupture, develop some multi-specialty consensus guidelines on treatment and management and establish long term outcomes. Anyone in this audience can join this effort, we have always gotten good contribution from VEITH.

We have a region based involvement, mechanism to promote the not only ATF involvement but the prospective registry in the US and abroad. And, we've had some good results. This initial registry went live in 2016, as of 2018, we have 381 patient's

in 23 centers internationally. And we plan to do a feasibility report when we cross the 500 patient threshold. And we invite anyone who seeks to become a member of the Aortic Trauma Foundation and actively contributes to utilize this data.

We all want to as a community, identify and define optimal care practices. We are going to actively solicit and review proposals for use and we hope that this data will produce a foundational platform upon which we can develop some really meaningful multi-specialty guidelines

that are evidence and practice based. Thank you.

- [Professor Veith] Laura, Welcome. - Thank you Professor Veith, thank you to everybody and good morning. It's a great pleasure, to have the possibility to present the result of this randomized trial we performed near Rome in Italy.

Risk of CAS-related embolism was maximal during the first phases of the second procedure, the filter positioning predilation and deployment and post dilatation. But it continues over time with nithinol expansion so that we have an interaction between the stent struts

and the plaque that can last up to 28 or 30 days that is the so called plaque healing period. This is why over time different technique and devices have been developed in order to keep to a minimum the rate of perioperative neurological embolization.

This is why we have, nowadays, membrane-covered stent or mesh-covered stent. But a question we have to answer, in our days are, "are mesh covered stents able to capture every kind of embolism?" Even the off-table one.

This is why they have been designed. That is to say the embolism that occurs after the patient has left the operating room. This is why we started this randomized trial with the aim of comparing the rate of off-table subclinical neurological events

in two groups of patients submitted to CAS with CGuard or WALLSTENT and distal embolic protection device in all of them. We enrolled patient affected by asymptomatic carotid stenosis more than 70% and no previous brain ischemic lesion

detected at preoperative DW-MRI. The primary outcome was the rate of perioperative up to 72 hour post peri operatively in neurological ischemic events detected by DW-MRI in the two CAS group. And secondary outcome measure were the rise of (mumbles)

neuro biomarker as one on the better protein in NSE and the variation in post procedural mini mental state examination test in MoCA test score We enrolled 29 patients for each treatment group. The study protocol was composed by a preoperative DW-MRI and neuro psychometrics test assessment

and the assessment of blood levels of this two neuro biomarkers. Then, after the CAS procedure, we performed an immediate postoperative DW-MRI, we collect this sample up to 48 hours post operatively to assess the level of the neuro biomarkers

then assess 72 hour postoperatively we perform a new DW-MRI and a new assessment of neuro psychometric tests. 58 patient were randomized 29 per group. And we found one minor stroke in the CGuard group together with eight clinically silent lesion detected at 72 hours DW-MRI.

Seven patient presented in WALLSTENT group silent 72 DW-MRI lesion were no difference between the two groups but interestingly two patients presented immediately postoperatively DW-MRI lesions. Those lesion were no more detectable at 72 hours

this give doubts to what we are going to see with DW-MRI. When analyzing the side of the lesion, we found four ipsilateral lesion in the CGuard patient and four contra or bilateral lesion in this group while four ipsilateral were encountered in WALLSTENT patient and three contra or bilateral lesion

in the WALLSTENT group were no difference between the two groups. And as for the diameter of the lesion, there were incomparable in the two groups but more than five lesion were found in five CGuard patients, three WALLSTENT patient

with no significant difference within the two groups. A rise doubled of S1 of the better protein was observed at 48 hours in 24 patients, 12 of them presenting new DW-MRI lesions. And this was statistically significant when comparing the 48 level with the bars of one.

When comparing results between the two groups for the tests, we found for pre and post for MMSE and MoCA test no significant difference even if WALLSTENT patients presented better MoCA test post operatively and no significant difference for the postoperative score for both the neuro psychometric test between the two groups.

But when splitting patients not according to the treatment group but according to the presence of more or less than 5 lesion at DW-MRI, we found a significant difference in the postoperative score for both MMSE and MoCA test between both group pf patients.

To conclude, WALLSTENT and CGuard stent showed that not significant differences in micro embolism rate or micro emboli number at 72 postoperative hours DW-MRI, in our experience. 72 hour DW-MMRI lesion were associated to an increase in neuro biomarkers

and more than five lesion were significantly associated to a decrease in neuro psychometric postoperative score in both stent groups. But a not negligible number of bilateral or contralateral lesions were detected in both stent groups This is very important.

This is why, probably, (mumbles) are right when they show us what really happened into the arch when we perform a transfer more CAS and this is why, maybe,

the future can be to completely avoid the arch. I thank you for your attention.

- Good morning. Thank you very much. I realize the audience is a bit thin, but thank you very much Dr. Veith for the kind invitation to talk about this. As we all know, hyperbaric oxygen is a treatment that most of us

don't use in vascular surgery. However, we've been using it as a rescue treatment for spinal cord ischemia after all types of thoraco repair. These are my disclosures. So as we all know,

any type of thoracoabdominal aneurysm repair can result in interruption of the blood supply of the spinal cord. We know that some patients, about 10% will wake up with an immediate spinal cord injury, or often spinal cord injury can be delayed.

And the rates of spinal cord injury vary by both procedure and series. So open repairs, we all know the large experience published by Coselli, he had about a 9.6% total 30 day deficit rate, but ultimately only 2.9% had permanent paraplegia,

and 2.6 with permanent paraparesis. Now, fenestrated and branched cases, depending on which series you look at, and whether you look at meta-analysis, the rates of spinal cord injury rate between eight and 13%.

Now the spinal cord blood flow is a network of blood supply. We've got the anterior spinal artery which is the key collateral in the front of the spinal cord, which supplies the anterior two-thirds of the cord.

And that's where the important tracts that deliver motor and sensory signals to your legs exist. Now, segmental arteries play a key component of this, and we've all heard many years worth of talk about the Artery of Adamkiewicz,

but we know that's not the only artery that's important, and these small segmental vessels that are coming in to supply the spinal cord that you see in the cartoon on the bottom right, are critical in supplying the spinal cord blood flow. The etiology of cord injury is generally ischemic.

However, this can be potentiated by a systemic hypoperfusion. Some people believe that atheromatous embolic infarction is an important mechanism, and thrombosis of radicular arteries. We also have that mechanism of ischemia reperfusion

where there's ischemia during surgery and during clamp or after a deployment of an aortic graft, and that if you don't get reperfusion this proceeds to infarction. This cartoon on the left-hand side is from a recent article by Wynn and Archer

and it's really quite a good description of the mechanisms that lead to a spinal cord injury. Now, conventional therapy once spinal cord injury is discovered is really about maximizing perfusion to the cord by raising the mean blood pressure, optimizing hemoglobin delivery, CSF drainage,

but there are no proven drugs or adjuncts at the moment. Now why did we get interested in hyperbaric oxygen? Well there are many animal models and a lot of animal literature that suggests that hyperbaric oxygen has significant benefits. Now what are the mechanisms?

Well first of all, it's based on the fact that you can increase oxygen delivery to the cord by increasing the amount of dissolved oxygen. That's a fraction of the oxygen usually delivered by hemoglobin, but if you increase the amount of dissolved oxygen in the blood,

it can enhance diffusion into ischemic areas and that can have salutary effects on spinal cord function. The longer lasting effects have been documented in animal studies on anti-oxidant, oxidant mechanisms including nitric oxide, secretion of growth factors, modified inflammation and decreased

ischemia reperfusion injury. This is a recent article that we published based on our early experience, and basically what we do is patients who are identified as having spinal cord injury after thoracoabdominal aneurysm repair

get conventional therapy, with raising of the hemoglobin, raising of the blood pressure and enhanced spinal cord drainage. But if they don't respond and they're not improving, then we take them to the hyperbaric chamber

where they start out at 2.5 atmospheres and then are down to 2.4 for subsequent treatments. The main risk is oxygen toxicity and the patients are actually breathing 100% oxygen either through a hood or an endotracheal tube, and the other people that are monitoring them

in the chamber are at atmospheric pressure at, above atmospheric pressure, but having just regular 21% oxygen. The goal is to achieve supra physiologic concentrations of oxygen in the soluble in the plasma. And our initial therapy,

and this is described in seven patients, both a mixture of open and endovascular cases, and although not all patients recovered, we felt there was an important signal here. We've subsequently treated 18 patients, total of almost 90 therapies.

Average is five treatments per patient and we give it BID for the first two days. Six patients did not survive, but one of those completely recovered. We had nine patients who recovered from paraplegia and can ambulate, and three non, complete non-responders.

So in conclusion, hyperbaric oxygen is an experimental therapy. It raises the level of dissolved oxygen in the blood, potentially reperfusing the cord, and has about a 50% response rate after unresponsiveness to conventional therapy.

It's supported by limited animal data and it obviously requires larger studies and potentially randomized studies to determine its ultimate effectiveness. Thank you.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- Thank you very much Mr. Chairman. Thank you Frank, for this kind invitation again to this symposium. This is my disclosure. With the drug coated balloons it is important to minimize the drug loss during the balloon transit during the inflation of the balloon.

Because Paclitaxel has a high degree of cytotoxicity that may induce necrosis and increase inflammation in the distal tissue, and we know that even with the best technique, we can loose 70 - 80% of the drop to the distal circulation,

the inference by different factors between them and the calcification of degree of these blood cells. There are adverse events secondary to drug coated balloons that have been reported recently. In animal molders it has shown that Downstream Vascular Changes are more frequent with

Drug Coated Balloons than with Drug-Eluting Stents. In animal molders it has been also shown that there is no evidence of significant downstream emboli or systemic toxicity with DCB's than with patients with controls. This was a study presented yesterday by (mumbles)

with a very nice and elegant study with a good methodology that shows in animals that there are different concentrations of the drug in distal tissue depending on the balloon that you are using. In this case, the range in balloon (mumbles)

those ones have the lowest concentration in the distal tissue. In clinical experience in this meta-analysis amputations and wound healing rate are lower with this series with controls. But there is controversy because

Complete Index Ulcer Healing is higher in this series than with control patients. But there are lower wound healing index in patients compared with drug-eluting stents. In the debate, (mumbles) and also in the dialux which are clinical trials in diuretic patients with CLI,

there we no issues of safety and no impair of the wounds healing. But, remember the negative result of the IN PACT DEEP trial in which there were more amputation at six months that could be influenced, but in all their factors, the lack of standardized

wound care protocols. (mumbles) has also reported recently good survival to 100% in patient treated with DCB's compared with plain balloons and with lutonic balloons. So in our institution, we did a study with the objective to examine

patient outcomes following the use of the drug-coated balloons in patients with CLI and diuretic patients with Complex Real World lesions undergoing endovascular intervention below-the-knee with the Ranger balloon coated with Paclitaxel.

This is a Two-Center Experience that is headed by the National University of Mexico in 30 patients with strict followup. With symptomatic Rutherford four to six. With the Stenosis and occlusion of infrapopliteal vessels and many degrees of calcification.

It was mandatory for all patients to have Pre-dilation before the use of DCB. We studied some endpoints like efficacy. (mumbles) Limb salvage, sustained clinical improvement, wound healing rate

and technical success and some other endpoints of safety. This is an example of multi level disease in a patient that has to be approached by (mumbles) access with a balloon preparation of the artery before the use of the DCB, and after this, we treated the anterior artery

and even to the arch of the foot. This is the way we follow our patient with ultra sound duplex with an index fibular of no more that 2.4. All patients were diabetic with Rutherford 5-6. 77% have a (mumbles) at the initial of the study.

And as you can see there were longer lesions and with higher degree of calcification and stenosis only in two of them we produced (mumbles). There were bailout stent placements in five patients and we did retrograde access in 43 patients.

Subintimal angioplasty was done in 32 patients, and Complete Index Wound Healing was in 93 of our patients. This is our Limb Salvage 94%. The Patency rate was 96% with this Kaplan Meir analysis. And in some patients we did a determination of Paclitaxel concentration in distal tissue

with the High Pressure Liquid Chromatography method. We only did this in five patients because of the lack of financial support, and technical problems. As you can see in three of them we had Complete Wound Healing.

Only one we had major amputation. This was the patient with the higher concentration of Paclitaxel in the distal tissue, and in one patient, we could not determine the concentration of Paclitaxel. This is the way we do this.

They take the sample of the patient at the moment we do the minor amputation. During day 10 after the angioplasty, we also do a (mumbles) analysis of the patient we have a limb salvage we can see arterial and capillar vessel proliferation and hyperplasia of the

arteriole media layer. But, in those patients that have major amputation even when they have a good sterio-graphic result like in this case, we see more fibrinoid necrosis which is a bad determination. So in conclusion,

angioplasty with the (mumbles) balloon maintain clinical efficacy over time is possible. We didn't see No Downstream clinical important or significant effects and high rates of Limb Salvage in complex CLI patients is possible.

Local toxic effects of paclitaxel and significant drug loss on the way to the lesion are theoretical considerations up to now because there is no biological study that can confirm this. Thank you very much.

- Yeah now, I'm talking about another kind of vessel preparation device, which is dedicated to prevent the occurrence of embolic events and with these complications. That's a very typical appearance of an occluded stent with appositional stent thrombosis up to the femur bifurcation.

If you treat such a lesion simply with balloon angioplasty, you will frequently see some embolic debris going downstream, residing in this total occlusion of the distal pocket heel artery as a result of an embolus, which is fixed at the bifurcation of

the anterior tibial and the tibial planar trunk, what you can see over here. So rates of macro embolization have been described as high as 38% after femoral popliteal angioplasty. It can be associated with limb loss.

There is a risk of limb loss may be higher in patients suffering from poor run-off and critical limb ischemia. There is a higher rate of embolization for in-stent restenosis, in particular, in occluded stents and chronic total occlusions.

There is a higher rate of cause and longer lesions. This is the Vanguard IEP system. It's an integrated balloon angioplasty and embolic protection device. You can see over here, the handle. There is a rotational knob, where you can,

a top knob where you can deploy, and recapture the filter. This is the balloon, which is coming into diameters and three different lengths. This is the filter, 60 millimeter in length. The pore size is 150 micron,

which is sufficient enough to capture relevant debris going downstream. The device is running over an 80,000 or 14,000 guide-wire. This is a short animation about how the device does work. It's basically like a traditional balloon.

So first of all, we have to cross the lesion with a guide-wire. After that, the device can be inserted. It's not necessary to pre-dilate the lesion due to the lower profile of the capture balloon. So first of all, the capture filter,

the filter is exposed to the vessel wall. Then you perform your pre-dilatation or your dilatation. You have to wait a couple of second until the full deflation of the balloon, and then you recapture the filter, and remove the embolic debris.

So when to use it? Well, at higher risk for embolization, I already mentioned, which kind of lesions are at risk and at higher risk of clinical consequences that should come if embolization will occur. Here visible thrombus, acute limb ischemia,

chronic total occlusion, ulceration and calcification, large plaque volume and in-stent reocclusion of course. The ENTRAP Study was just recently finished. Regarding enrollment, more than 100 patients had been enrolled. I will share with you now the results

of an interim analysis of the first 50 patients. It's a prospective multi-center, non-randomized single-arm study with 30-day safety, and acute performance follow-up. The objective was to provide post-market data in the European Union to provide support for FDA clearance.

This is the balloon as you have seen already. It's coming in five and six millimeter diameter, and in lengths of 80, 120 and 200 millimeters. This is now the primary safety end point at 30 days. 53 subjects had been enrolled. There was no event.

So the safety composite end point was reached in 100%. The device success was also 100%. So all those lesions that had been intended to be treated could be approached with the device. The device could be removed successfully. This is a case example with short lesion

of the distal SFA. This is the device in place. That's the result after intervention. That's the debris which was captured inside the filter. Some more case examples of more massive debris captured in the tip of the filter,

in particular, in longer distance total occlusions. Even if this is not a total occlusion, you may see later on that in this diffused long distance SFA lesion, significant debris was captured. Considering the size of this embolus,

if this would have been a patient under CLI conditions with a single runoff vessel, this would have potentially harmed the patient. Thank you very much.

- Well, thank you Frank and Enrico for the privilege of the podium and it's the diehards here right now. (laughs) So my only disclosure, this is based on start up biotech company that we have formed and novel technology really it's just a year old

but I'm going to take you very briefly through history very quickly. Hippocrates in 420 B.C. described stroke for the first time as apoplexy, someone be struck down by violence. And if you look at the history of stroke,

and trying to advance here. Let me see if there's a keyboard. - [Woman] Wait, wait, wait, wait. - [Man] No, there's no keyboard. - [Woman] It has to be opposite you. - [Man] Left, left now.

- Yeah, thank you. Are we good? (laughs) So it's not until the 80s that really risk factors for stroke therapy were identified, particularly hypertension, blood pressure control,

and so on and so forth. And as we go, could you advance for me please? Thank you, it's not until the 90s that we know about the randomized carotid trials, and advance next slide please, really '96 the era of tPA that was

revolutionary for acute stroke therapy. In the early 2000s, stroke centers, like the one that we have in the South East Louisiana and New Orleans really help to coordinate specialists treating stroke. Next slide please.

In 2015, the very famous HERMES trial, the compilation of five trials for mechanical thrombectomy of intracranial middle and anterior cerebral described the patients that could benefit and we will go on into details, but the great benefit, the number needed to treat

was really five to get an effect. Next slide. This year, "wake up" strokes, the extension of the timeline was extended to 24 hours, increase in potentially the number of patients that could be treated with this technology.

Next please. And the question is really how can one preserve the penumbra further to treat the many many patients that are still not offered mechanical thrombectomy and even the ones that are, to get a much better outcome because not everyone

returns to a normal function. Next, so the future I think is going to be delivery of a potent neuroprotection strategy to the penumbra through the stroke to be able to preserve function and recover the penumbra from ongoing death.

Next slide. So that's really the history of stroke. Advance to the next please. Here what you can see, this is a patient of mine that came in with an acute carotid occlusion that we did an emergency carotid endarterectomy

with an neuro interventionalist after passage of aspiration catheter, you can see opening of the middle cerebral M1 and M2 branches. The difference now compared to five, eight, 10 years ago is that now we have catheters in the middle cerebral artery,

the anterior cerebral artery. After tPA and thrombectomy for the super-selective, delivery of a potent neuroprotective agent and by being able to deliver it super-selectively, bioavailability issues can be resolved, systemic side effects could be minimized.

Of course, it's important to remember that penumbra is really tissue at risk, that's progression towards infarction. And everybody is really different as to when this occurs. And it's truly all based on collaterals.

So "Time is brain" that we hear over and over again, at this meeting there were a lot of talks about "Time is brain" is really incorrect. It's really "Collaterals are brain" and the penumbra is really completely based on what God gives us when we're born, which is really

how good are the collaterals. So the question is how can the penumbra be preserved after further mechanical thrombectomy? And I think that the solution is going to be with potent neuroprotection delivery to the penumbra. These are two papers that we published in late 2017

in Nature, in science journals Scientific Reports and Science Advances by our group demonstrating a novel class of molecules that are potent neuroprotective molecules, and we will go into details, but we can discuss it if there's interest, but that's just one candidate.

Because after all, when we imaged the penumbra in acute stroke centers, again, it's all about collaterals and I'll give you an example. The top panel is a patient that comes in with a good collaterals, this is a M1 branch occlusion. In these three phases which are taken at

five second intervals, this patient is probably going to be offered therapy. The patients that come in with intermediate or poor collaterals may or may not receive therapy, or this patient may be a no-go. And you could think that if neuroprotection delivery

to the penumbra is able to be done, that these patients may be offered therapy which they currently are not. And even this patient that's offered therapy, might then leave with a moderate disability, may have a much better functional

independence upon discharge. When one queries active clinical trials, there's nothing on intra arterial delivery of a potent neuroprotection following thrombectomy. These are two trials, an IV infusion, peripheral infusion, and one on just verapamil to prevent vasospasm.

So there's a large large need for delivery of a potent neuroprotection following thrombectomy. In conclusion, we're in the door now where we can do mechanical thrombectomy for intracranial thrombus, obviously concomitant to what we do in the carotid bifurcation is rare,

but those patients do present. There's still a large number of patients that are still not actively treated, some estimate 50 to 60% with typical mechanical thrombectomy. And one can speculate how ideally delivery of a potent neuroprotection to this area could

help treat 50, 60% of patients that are being denied currently, and even those that are being treated could have a much better recovery. I'd like to thank you, Frank for the meeting, and to Jackie for the great organization.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Thank you Dr. Veith for this opportunity again, and, like to show you that I have no disclosures relevant to this talk. The objective is to report the management and outcome of five cases of brachial artery injury in children with supracondylar humerus fractures at our institution over the last few years,

and then emphasize the importance of close observation and low threshold for surgical exploration in these cases. The classification of supracondylar fractures is on the Gartland system, and typically the vascular injuries are associated with Type 3, although there are some reported cases with Type 2.

Supracondylar humerus fractures make up about 70% of elbow fractures in children. Displacement and deformity can injure the median nerve, as well as the brachial artery. And up to 20% of children will present with an abnormal vascular exam, on initial evaluation.

There is no doubt what you do for the ischemic hand, is the exploration of the brachial artery. However, for the perfused, pulseless hand, there is considerable controversy as to what one should do. If this is not recognized, and not appropriately treated, there can be significant complications,

which can affect the child for the rest of his life. Physical examination, including neurovascular examination is crucial. These are high-litigation cases, and just writing on your record that neurovascular status is intact, is totally inadequate.

With reference to this particular fracture, evaluation for median nerve intactness, and function of the anterior interosseous nerve in particular, is very important, as I'll show you in just a slide, where they can be associated with arterial injuries. Ladies and gentlemen, this is why

you have the pink pulseless hand, despite obstruction or interruption of the brachial artery, going to these rich collaterals around the elbow. The hand can still be pink, and pulseless. This is a demonstration of the coexisting injury when you have median nerve and brachial artery

damaged by the anteromedial location. This location of the proximal fracture fragment. And many have suggested routine vascular exploration for this sort of injury. The most common finding that we find when we explore the brachial artery

with supracondylar fractures of the humerus, is the artery is tethered between the fracture fragments. This is yet another example, this is the brachialis sign, where the proximal fragment can buttonhole through the brachialis muscle. Most open fractures will need brachial artery exploration

at the time of reduction of the fracture. So, now I would like to share with you these five cases that I mentioned, at Inova Fairfax Hospital. The average age was 5.4 years, and four of them were male, one was a female, and I described to you my personal experience

in taking care of these patients at the hospital, and then following them closely afterwards. Case one was a perfused hand, a pink perfused hand, without a pulse. And this gentleman, this patient presented the next day with compartment syndrome.

On exploration we found a tethered artery, we released it, patient has normal function at two years. Case two, had a positive pulse, positive Doppler signal, nothing was done, other than reducing the fracture, patient sent home, he represented with severe pain, and was found to have compartment syndrome on day three.

On exploration, the artery was tethered. It was released, no thrombectomy was necessary. Patient has been left with slight deficit in two fingers. Third case, perfused pulse, with no pulse was observed, and the last pulse the next day duplex showed that the brachial artery was obstructed.

It was transected, had a vein interposition, I used the basilic vein, and did thrombectomy, and normal function at four months. Fourth case, there was no pulse, no Doppler signal, immediate exploration, tethered artery, no thrombectomy, normal function restored.

Case five had a normal exam, but lost signal the next day, was found to have a massive hematoma. We evacuated the hematoma, normal function. Based on this, the treatment algorithm is when the patient has a positive pulse, has a palpable pulse,

we obviously would do nothing. When it's pulseless and ischemic, immediate surgical exploration. When it's perfused and there's no radial signal, diminished flow, on duplex ultrasound, we explore surgically,

and when there's a positive radial pulse, we observe for 24 to 48 hours before discharge. I have found pulse oximetry, in addition with duplex ultrasound, to be very helpful in this regard. And ladies and gentlemen, in conclusion,

immediate surgical exploration is mandated for the ischemic hand. We recommend close observation after reduction, despite return of palpable pulse or Doppler signal, due to risk of delayed ischemia or compartment syndrome, especially in young children.

Based on our experience, perfused pulseless hand is a consequence of arterial injury or spasm. And, if you use duplex ultrasound, as if we had done, we may have been able to avoid delayed care in three out of the five cases. We recommend immediate exploration, obviously for,

for absent pulse and ischemic hand. And we do recommend that early recognition of ischemia and compartment syndrome is paramount, and patient should be closely observed, even if they have a normal perfusion on reduction of the fracture site. Thank you so much.

- Thank you very much and thank you Frank for giving me the opportunity to speak. And I will adapt my talk because I saw some of the slides, I will have to comment of course. So I have no financial disclosures. In many, many papers we know that Endovascular Treatment needs a word

of caution for long-term follow-up and we can see many, many pictures with very good results of viaven or other devices but when you look at the long-term follow-up for this patient, it's quite awful.

So we have late thrombosis just like this, we have curves that goes down and down after 40 or 60 months and much of the patients are very young and so I think it's not a good option. On the contrary, the durability

of open popliteal aneurysm repair has been showed and it's been showed by another of the panelist there and of course I think it's the good way to do and there are several options. The first one, this one, is quite rare

just to make resection with direct anastomosis like this, but it could happen and in this kind of patient, mostly when they are young patients, you don't have to make interposition of any graft.

I mean no vein, no SFA, and no prosthetic grafts. When you have to make some of the conventional open repair just like this, you have to choose between an exclusion graft like this,

I don't like it really much because it can leave a very important aneurysm and it takes a lot of place and it is prone to growing after due to the collaterals

going to the aneurysm sac. Most of the times I like to do something which is a combination of both these two pictures. I mean I like to open the sac to make the aneurysm or if you have the collaterals and then to make a end-to-end

anastomosis at both sides. Of course, when you go to the segment in the gonoral approach you have to make a venous bypass and venous bypass is probably

better when the run-off is awful just like this, but for this patient this was something needing a venous graft and this for me can be treated by synthetic graft because it ends at this level

that mean retroarticular level. So, for the venous graft, I go to venous graft only when I have to make the anastomosis directly on lower-leg vessel just like this and then you mention this

specific paper and if you could read this paper, I'm not one of the first author of this paper because I don't follow this thing because as you say, I think it's not good at all

to section all the muscles and this patient, I know this patient, they can't walk anymore for probably two months, it's not a good option but I'm part of that team and I don't want to defend it for now. Prosthetic bypass is I prefer

because this is very ancient, I agree with you, it's not modern situation, it is very ancient situation but the main thing is that you don't have to cut all the muscles, you have to select patients

with distal neck or retroarticular popliteal artery with good arterial runoff, aminolytic vessels and you have to select the patient and the Angio-CT rather than the angiogram except for

selecting the quality of the run-off. So who should be selected, this kind of patient can be selected because the prosthetic graft will end only here.

And this one could be also, but you can s there is origin of the arteritica artery.

And you have to think at the level of cutting the lower knee popliteal artery. And most of the time you can just externalize the lower knee popliteal artery to make

anastomosis. And then when you make the distal anastomosis, first you can reintegrate after there is the graft. And then the graft in the anastomotic sides goes just below

the level of the endoarticular line just like this. So for me, this is a go even if

you see that it goes just right to the condyles like this. And if you make some pictures with the reflection of the knees, there is no problem for the space. And even when there is a large

length beneath the artery like this. So when (unidentifiable phrase) where there's no vein and no below knee extension. So these are the technique that I expect I already talk about.

This is a small surveys we did I did finally. 20 popliteal arteries, this is the mean diameters. All the patients had good run-off as you can see. And there were only five long bypasses from the common femoral artery.

The other one from the popliteal or distal SFA. This is the mean Length of Stay 4 days only. The limb salvage rate is 100%. Primary patency rates were at one, two and three as 10

and secondary rates were 100% with mean follow-up 2 30 months. So prosthetic bypass is our simple, safe durable options.

I don't cut any muscles for this kind of option. Results compare favorably with our other open and endovascular techniques. And the French survey is going on for now. Thank you very much. (Audience applauds)

- Now we are delighted that there's apparently two things that we came up with years ago proved useful. This is the Near-Infrared Spectroscopy slide by Joe Bavaria from UPENN providing patient data on delayed paraplegia. That's a problem that we see in open NN (mumbles) very frequently.

How does the NIRS work? And again to this illustrative picture and now imagine the spinal cord sitting here in the spine canal and there's no more blood flow and this is the end result. When you know the oxygenation in the collateral network

and there was the problem with this technology that had been attempted 12 years back already, in Houston, I bet they put the NIRS optodes in the midline and the light cannot penetrate bone so it didn't work. But if you put it on the collateral network

and you measure the oxygen in this area, you obviously know it in the spinal canal. Dorsal view, again, so this is position of the optodes and this is oxygen content way interested in it. This is another cast just to illustrate

how these segmentals are regionally connected into the spinal canal, obviously. Experimental validation and pilot series in the next two minutes. Experimental cross clamping, this is the setup so years mentoring Laser Doppler Flow

to a real time evaluation of what you measure with your infrared setup in the animal lab and we see here, correlation is very nice between the lumbar NIRS, optodes, and the actual lumbar spinal cord oxygenation measured by Laser Doppler which is evaluated

with other techniques. Very nice to see the corelation between the two. So lumbar collateral network NIRS directly reflects spinal cord tissue oxygenation. After we have proven that step, next step was serial segmental artery occlusion.

As this is a technology that we or the strategy that we using, obviously want to know with our monitoring works for that. You see here, experimental setup basically the same. Starts with anesthesia, exposure of the segmentals. Now an open approach

and then you get 120 minutes surveillance period. You got a drop or dip in the NIRS measurements. Interestingly in the experimental setup in the recovery group, you see here that the new logical function comes back after the procedure and the NIRS comes back after the procedure.

Paraplegic group, all segmentals sacrificed NIRS, drops after the procedure in the first couple days, and the neurologic function does not recover. So experimental evidence that actually works. Nice corelation, again, so the experimental validation proves that lumbar NIRS

reflects lumbar spinal cord oxygenation and reacts to occlusion, of segmental arteries in real-time, but careful it's only regional so where ever you put your optodes, this is the area where you can monitor

your collateral network associated dip when you coil or include the segmental arteries. First clinical results published a couple years ago, I think you have all seen this video. Optodes are putting in the back of the patient, same setup for endo and open

and then we take the monitors theory and we have real-time monitoring on oversights midline here, this is (mumbles). Concept validation from 2016 with the first clinical data and now we're working on the clinical evaluation

of the use of this technology in EVAR and in clinical coil-embolization. 11 patients have been included so far for the EVAR group and you see here, it is very sensitive when you put stent in, stent deployment, but we have to still work so to speak

on the area that we have to monitor. There's a lot of work to do and probably also device modifications are necessary. MISACE, last couple words, on this you see pretty stable, NIRS all over the time course and actually this is nothing we wouldn't have expected

because the patient obviously were protected from spine cord anesthesia. So also here but sometimes we see a significant drop and this is when you should be careful and that's when you usually stop the procedure. So in conclusion, minor changes

in Collateral Network oxygenation have been seen in EVAR in this preliminary results using the nearest technology and to establish one very nice ... Nicely how clinical practice is already guided at his institution.

There's no immediate complete occlusion of covered segmental arteries and there's ongoing study in very heterogeneous patient group. There's no relevant changes with the chlorine technology so far,

but that, just to remind you, is the purpose of this technology, that we do not harm the patient during the preparation period. Thank you very much for your attention.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- Ladies and gentlemen, I would like to thank Professor Veith for his kind invitation. A minimally invasive carotid endarterectomy. I have nothing to disclose. Here you can see the same patient operating with the classic carotid endarterectomy with normal incision and on the other side,

you will see the patient, the same patient after the minimal incision carotid endarterectomy. So ladies and gentlemen, if one can safely perform carotid endarterectomy by minimal incision, let's do it routinely. The technique of minimal incision carotid endarterectomy.

The incision must be done over a carotid bifurcation. In slim patient, it is easy to determine the location just by the palpation. By routinely, I advise to mark bifurcation by using ultrasound. Reaching the artery by tissue separation

along the border of sternocleidomastoid muscle. Once the artery is visualized, apply the vessel loop on the external carotid artery. If it is needed, on the thyroid artery. Pulling the external carotid artery vessel loop up to the opposite side,

and releasing posterior part of bifurcation enables visualization and applying vessel loop on the common carotid artery, about 15 millimeter down the bifurcation. Pulling the external carotid artery vessel loop down into the opposite side reveals anterior and posterior

portion of internal carotid artery. What is the most important? The vessel loop on the internal carotid artery must be located above atherosclerotic plague. Temporary clamping of internal carotid artery for 30 seconds should show if the shunt is needed.

If there is no neurological signs, we continue pulling all vessel loops to elevate the artery to the level of the skin. Typically, longitudinal incision from common carotid artery to internal carotid artery is performed. The main important maneuver

that led to perform this operation correctly and safely, this is eversion-like movement. After arteriotomy, I squeeze the artery, internal carotid artery, usually on the level of the end of the atherosclerotic plague, usually using the forceps.

I make eversion-like movement. This led me easily and safely remove that atherosclerotic plague from the internal carotid artery. Always allow one two second backflow from internal carotid artery

to remove potential debris by the blood flow. The same, unclamping common carotid artery for a short period of time to remove potential debris from the proximal part. Should a shunt be indicated, it is easy and quick to insert.

As a first step, the shunt is inserted into internal carotid artery. It is necessary to slightly loosen internal carotid vessel loop. In the same way, I put the shunt into the common carotid artery if it is needed.

Continued suture usually close the arteriotomy. If the diameter of the internal carotid artery is smaller than two millimeter, artificial patch can be easily used. Redon drainage is always used. I make another small incision for the Redon drain

due to very, very small incision for endarterectomy. And continued suture usually closes the wound for good cosmetical effort. Here, you can see the operation step-by-step. What I will now emphasize this group of patient.

This is symptomatic patient with a very soft atherosclerotic plague. In this series, our experience. This is 165 patients allocated into two groups. 122 patients in the minimal incision carotid endarterectomy group,

and 43 patients in classic endarterectomy group. Patients randomly allocated. Here, you can see the results three months, up to three months results. I will like to emphasize there were no nerve injury. Hoarseness and shunt was used in 12%

in minimal incision carotid endarterectomy group. Here, you can see in the first and second column, the results up to September 2017. Third and fourth column, the results up to September 2018. Here you can see some examples. Here you will see some more examples.

Here you will see the scar that is after the operation. So nearly no limitation in neck movement, quick wound healing, short hospital stay, and perfect cosmetic effect. So to conclude, ladies and gentlemen, this is the low risk operation.

This is the operation of quick recovery. Precautions and contraindication, according to my experience seems to be same as for classic carotid endarterectomy. Of course, further study is required. Minimal incision, I also used during the

aortobifemoral and femoropopliteal operations. I hope to show it next year. Ladies and gentlemen, when I was a young surgeon, it was said that big surgeon, big incision. I'd rather suggest, good surgeon should try to make the smallest incision possible.

Data and presented technique will be published. Thank you very much for your attention.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- [Narrator] So my assignment is, CMS policy update on non-thermal ablation techniques, and as most of you know, there is not one National CMS policy, so there are a variety of local cover determinations or policies that we're going to look at. I may bore you for a couple minutes

but I found a surprise at the end. So I went to the website, CMS website, and looked up varicose vein LCDs and these seven came up, interestingly Novitas, everybody's favorite, didn't come. So I looked at separately, we're going to look at all these as well.

And here is Novitas, Novitas and their previous LCD had no mention of non-thermal techniques, but in this proposed LCD, which has a lot of people up in arms, they say that the non-thermal techniques are experimental, investigational, and unproven,

and therefore will not be covered. This is next LCDs, this is two from Medicare contractor Noridian, they go on to talk about sclerotherapy and foam sclerotherapy, but they are not going to cover it. And somewhat bizarrely these codes in red here,

which are for Venaseal and Verithena, are listed as indications for RF or laser ablation, which kind of shows you they don't know what they're talking about. And there is no mention of MOCA or Claravein. Wisconsin Physicians Services and other MAC contractor,

and I looked at their LCD, there is no mention of non-thermal techniques. Next up is First Coast Service Options, with these jurisdictions over here on the right. And they get down to the C-classification, VCSS score, and talk about compressive therapy and conservative therapy.

They do mention Clarivein or MOCA. However, they state that it does not meet the Medicare necessity for coverage, and so they won't. And there's absolutely no mention of Verithena or Venaseal in their LCD. Palmetto GBA is another contractor,

with these jurisdictions on the right, and they actually discuss and approve Varithena, microfoam sclerotherapy. They discuss it here in their LCD, they have some restrictions that the physician needs to be competent and experienced with Varithena,

and ultrasound, there is no mention of Clarivein or Venaseal in their LCD. And these are also the folks that tell us how to do stab phlebectomy with 2 mm incisions and a crochet hook. So don't use a 3 mm incision and a hemostat,

it'd probably get denied. Next is CGS Administrators, and this busy slide, they go on to talk about sclerotherapy quite a bit, and all these in the main body, what they are not going to cover for sclerotherapy. They mention that foam sclerotherapy

is basically the same as liquid sclerotherapy, and therefore will not cover it, and again no mention of other treatments of non-thermal techniques. Which brings us to the last LCD, which is National Government Services,

and amazingly they state that the accepted treatments for eliminating reflux and the great saphenous anterior accessory, and small saphenous vein, include RFA, laser, polidocanol, Venaseal, and Verithena. And even more interestingly, they use their Rationale for Determination for MOCA.

The amount and consistency of the data, in addition to the two recent systematic reviews and the strong recommendation of the American Venous Forum, have convinced NGS that Medicare coverage is met. And for PEM, Varithena, the combination of RCTs, meta-analyses, systematic reviews,

the strong recommendation of the AVF, and endorsements from the SVS, ACP, SCAI, and SIR, have convinced them that coverage is appropriate. And the same for Venaseal, same thing. This is craziness. On one Medicare hand,

you have Novitas saying that, treatment is experimental and unproven, and they won't cover it. And on the other Medicare hand, you have this contractor that says, based on the recommendations of the experts,

that it's appropriate, and will be covered. And this is the reason why we need a National Coverage Determination. So, to find out what your policy is, you have to go to the website, you have to find out who your provider is,

or contractor, and see what the policy cause it differs depending upon where you are. Thank you for your attention.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- I'd like to thank Dr. Veith and the committee for the privilege of presenting this. I have no disclosures. Vascular problems and the type of injuries could be varied. We all need to have an awareness of acute and chronic injuries,

whether they're traumatic, resulting with compression, occlusion, tumoral and malformation results, or vasospastic. I'd like to present a thoracoscopic manipulation of fractured ribs to prevent descending aortic injury

in a patient with chest trauma. You know, we don't think about this but they can have acute or delayed onset of symptoms and the patient can change and suddenly deteriorate with position changes or with mechanical ventilation,

and this is a rather interesting paper. Here you can see the posterior rib fracture sitting directly adjacent to the aorta like a knife. You can imagine the catastrophic consequences if that wasn't recognized and treated appropriately.

We heard this morning in the venous session that the veins change positions based on the arteries. Well, we need to remember that the arteries and the whole vascular bundle changes position based on the spine

and the bony pieces around them. This is especially too when you're dealing with scoliosis and scoliotic operations and the body positioning whether it's supine or prone the degree of hypo or hyperkyphosis

and the vertebral angles and the methods of instrumentation all need to be considered and remembered as the aorta will migrate based on the body habits of the patient. Screws can cause all kinds of trouble.

Screws are considered risky if they're within one to three millimeters of the aorta or adjacent tissues, and if you just do a random review up to 15% of screws that are placed fall into this category.

Vertebral loops and tortuosity is either a congenital or acquired anomaly and the V2 segment of the vertebral is particularly at risk, most commonly in women in their fifth and sixth decades,

and here you can see instrumentation of the upper cervical spine, anterior corpectomy and the posterior exposures are all associated with a significant and lethal, at times, vertebral artery injuries.

Left subclavian artery injury from excessively long thoracic pedicle screws placed for proximal thoracic scoliosis have been reported. Clavicular osteosynthesis with high neurovascular injury especially when the plunge depth isn't kept in mind

in the medial clavicle have been reported and an awareness and an ability to anticipate injury by looking at the safe zone and finding this on the femur

with your preoperative imaging is a way to help prevent those kinds of problems. Injuries can be from stretch or retraction. Leave it to the French. There's a paper from 2011 that describes midline anterior approach

from the right side to the lumbar spine, interbody fusion and total disc replacement as safer. The cava is more resistant to injury than the left iliac vein and there's less erectile dysfunction reported. We had a patient present recently

with the blue bumps across her abdomen many years after hip complicated course. She'd had what was thought to be an infected hip that was replaced, worsening lower extremity edema, asymmetry of her femoral vein on duplex

and her heterogeneous mask that you can see here on imaging. The iliac veins were occluded and compressed and you could see in the bottom right the varicosities that she was concerned about. Another case is a 71-year-old male who had a post-thrombotic syndrome.

It was worsened after his left hip replacement and his wife said he's just not been the same since. Initially imaging suggests that this was a mass and a tumor. He underwent biopsy

and it showed ghost cells. Here you can see the venogram where we tried to recanalize this and we were unsuccessful because this was actually a combination of bone cement and inflammatory reaction.

Second patient in this category, bless you, is a 67-year-old female who had left leg swelling again after a total hip replacement 20 plus years ago. No DVTs but here you can see the cement compressing the iliac vein.

She had about a 40% patency when you put her through positioning and elected not to have anything done with that. Here you could see on MR how truly compressed this is. IVA suggested it was a little less tight than that.

So a vascular injury occurs across all surgical specialties. All procedures carry risk of bleeding and inadvertent damage to vessels. The mechanisms include tearing, stretching, fracture of calcific plaques,

direct penetration and thermal injury. The types of injuries you hear are most common after hip injuries, they need to be recognized in the acute phase as looking for signs of bleeding or ischemia. Arterial lesions are commonly prone then.

Bone cement can cause thermal injury, erosion, compression and post-implant syndrome. So again, no surgery is immune. You need to be aware and especially when you look at patients in the delayed time period

to consider something called particle disease. This has actually been described in the orthopedic literature starting in the 70s and it's a complex interaction of inflammatory pathways directed at microparticles that come about

through prosthetic wear. So not only acute injury but acute and chronic symptoms. Thank you for the privilege of the floor.

- Our group has looked at the outcomes of patients undergoing carotid-subclavian bypass in the setting of thoracic endovascular repair. These are my obligatory disclosures, none of which are relevant to this study. By way of introduction, coverage of the left subclavian artery origin

is required in 10-50% of patients undergoing TEVAR, to achieve an adequate proximal landing zone. The left subclavian artery may contribute to critical vascular beds in addition to the left upper extremity, including the posterior cerebral circulation,

the coronary circulation if a LIMA graft is present, and the spinal cord, via vertebral collaterals. Therefore the potential risks of inadequate left subclavian perfusion include not only arm ischemia, but also posterior circulation stroke,

spinal cord ischemia, and coronary insufficiency. Although these risks are of low frequency, the SVS as early as 2010 published guidelines advocating a policy of liberal left subclavian revascularization during TEVAR

requiring left subclavian origin coverage. Until recently, the only approved way to maintain perfusion of the left subclavian artery during TEVAR, with a zone 2 or more proximal landing zone, was a cervical bypass or transposition procedure. As thoracic side-branch devices become more available,

we thought it might be useful to review our experience with cervical bypass for comparison with these newer endovascular strategies. This study was a retrospective review of our aortic disease database, and identified 112 out of 579 TEVARs

that had undergone carotid subclavian bypass. We used the standard operative technique, through a short, supraclavicular incision, the subclavian arteries exposed by division of the anterior scalene muscle, and a short 8 millimeter PTFE graft is placed

between the common carotid and the subclavian arteries, usually contemporaneous with the TEVAR procedure. The most important finding of this review regarded phrenic nerve dysfunction. To exam this, all pre- and post-TEVAR chest x-rays were reviewed for evidence of diaphragm elevation.

The study population was typical for patients undergoing TEVAR. The most frequent indication for bypass was for spinal cord protection, and nearly 80% of cases were elective. We found that 25 % of patients had some evidence

of phrenic nerve dysfunction, though many resolved over time. Other nerve injury and vascular graft complications occurred with much less frequency. This slide illustrates the grading of diaphragm elevation into mild and severe categories,

and notes that over half of the injuries did resolve over time. Vascular complications were rare, and usually treated with a corrective endovascular procedure. Of three graft occlusions, only one required repeat bypass.

Two pseudoaneurysms were treated endovascularly. Actuarial graft, primary graft patency, was 97% after five years. In summary then, the report examines early and late outcomes for carotid subclavian bypass, in the setting of TEVAR. We found an unexpectedly high rate

of phrenic nerve dysfunction postoperatively, although over half resolved spontaneously. There was a very low incidence of vascular complications, and a high long-term patency rate. We suggest that this study may provide a benchmark for comparison

with emerging branch thoracic endovascular devices. Thank you.

- Thank you. No relevant disclosures to this presentation. The means to the end is removing Uremic toxins. That's what we want to do. That's what this is all about. We don't really know all the Uremic toxins and how they inter-relate, but there are a bunch

of compounds that have been identified. Urea obviously being one of them, although not necessarily being a particularly toxic compound. It's a small molecular weight marker of Uremia, which is convenient to use

if not clinically meaningful. We've developed, or Frank Gotch and Sargent developed this dimensionless concept of the Kt/V, an index of the body volume water space, which has been cleared fully of Urea and this index has been the standard for comparing dosing of dialysis for about 30 years now.

Since the National Cooperative Dialysis Study in the 80's. And the most recent iteration of this study has been the HEMO study in 2002, I believe this was published. Where they compared a high dose of Kt/V of 1.71 versus standard dose Kt/V of 1.3 and looked at patient outcomes and they were

concluding that the higher dose of dialysis wasn't beneficial. But this 1.3 was certainly better than we were seeing in the old days of 0.9 out of the NKDS studies, so 1.3 or that range has been accepted as the target dose

for dialysis and KDOQI guidelines now suggest that we strive to achieve a single pool Kt/V of 1.4, so we have a little cushion with a minimum delivery of 1.2, and that has been adopted now by CMS and the payers.

That's in our conditions for coverage that we achieve or we strive for a Kt/V 1.2 and now we have this quality incentive program, which might relate a little bit to the question earlier about saving access as we get penalized or incentivized

for doing certain things, and right in our penalty methodology in the top categories Kt/V, if we don't hit that target we get dinged up to 2% of the total payment for dialysis on that.

So it's something that's being identified, monitored, and if you like ... Not negatively incentivized. It's not a reward. It's a penalty for failing to achieve. And also you can go to dialysiscompare.gov now.

You login your unit. Here's my little unit in Hockessin. We got four stars. A nearby unit got three stars. They're really just as good as us, but somebody thinks those stars mean something,

and one of the components in those stars is hitting your Kt/V target, so if I want to get stars and not be seen as a poor performing unit, I need to hit these performance parameters, so that's why the Kt/V is the holy grail for Nephrologist. We need to get that number.

It's a very simple concept. Mathematically, you've got two items in the numerator and one in the denominator, and you want to maximize that parameter. Number one we can dispense with the volume of distribution

of Urea is pretty much determined by the patient. It's total body of water times the fraction. It varies a lot depending on the age, weight, gender, obesity, etc. You can put it in the calculator and same qx metal to deliver that number for you.

But we can't really change that, unless somebody has an amputation, or a large amount of weight loss or gain, then it changes. Time we have complete control over. We can dialyze theoretically as long as we want and in the U.S. we sort of like

to believe four hours has been adopted as a standard. There are some recommendations that wouldn't do that. Patient acceptance of that is variable. I can sit in front of a patient and tell them they need four and half hours, and they may look at me askance,

because they know they don't want it, and if you look at dialysis times in different countries, you can see certain countries like Germany, typically dialyzes closer to three hours. Typical dialysis time in the United States is more like... Did I say three hours?

I meant five hours. And typical dialysis time in the United States is about three and a half hours. There are also resource limitations and cost involved in that. So the third variable is the one we have

the most control over, which is the clearance of Urea. And that's depending on the dialyze of the blood, in the blood, out. the dialyze of that... capacity of that filter to remove the solute of interest, Urea in this case in a dialysate flow,

and there are specs for each kidney. Here is a Optiflux F160 at a blood flow of 300 and a dialysate flow of 500. It predicts we should get a Urea clearance of 271 mL per minute, or conversely a larger kidney, an F180 had a blood flow of 500, a dialysate flow of 800.

We should get a Urea clearance of 412. Obviously, none of these are perfect clearances. The maximum theoretical clearance would be that of the blood speed, but it's impossible to clear it 100% of the blood. So when your asked as a surgeon or a provincialist

to make a functional access what your Nephrologist is really asking for in a customer service world is give me a fistula that flows 150% higher. 150% of my intended pump speed and we're good to go. Need a little cushion on that as well.

And here's how it translates into action. Here's an example on a calculator. Here's a patient, who's a 70 kilogram female, dialysis time three and a half hours, 210 minutes. Her Kt/V calculates at 1.77. All good.

Same parameters three and a half hours, 120 kilogram, 40 year old male. His Kt/V is 0.96, clearly below the target. You're not going to get that guy's clearance with those parameters. If you goose him up to 500 mL per minute

on a minute on a bigger kidney and you achieve a clearance of 410, then the same male with the same treatment parameters will get 1.45, so you've met their target. If you want to do better than targets just put him on four hours and you only get 1.66,

so these are very easily definable, measurable, predictable quantities that you can achieve. And then you've got limiting factors. What is the pump speed? Well, hemolysis through needles is really an overstated concern.

This arterial negative pressure alarm won't let you go below 250 on this machine and if-- 300 is it Debbie? 250, 300 and at that point it will cut off, so you won't be able to drive the negative pressure that high,

and so you've got parameters for each needle, which are fairly fixed, a little latitude in it, but with 17-gauge needle you can go up to 300 and so on. With a 14-gauge needle you can go up to 500 or more, and it's a pretty si le higher flow.

And here's a case where you've got a 2 millimeter radial artery, a small fistula. The access flow measures at 450. You can dialyze at a blood speed of 300 with a 17-gauge needle and you're good to go. Where as you got a huge brachial artery here.

This access flow is greater than 2000. You can run the blood speed at whatever you want. And you can use a needle size of 14-gauge. You can put whatever needle size you want in this fistula. So the point is that one size doesn't fit all. Dialysis dose, and dialysis needles,

and dialysis fistulas need to be scaled to the size of the patient. You got a neonate. You got Shaquille O'Neal. Somewhere in between is our patient. Thank you.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Relevant disclosures are shown in this slide. So when we treat patients with Multi-Segment Disease, the more segments that are involved, the more complex the outcomes that we should expect, with regards to the patient comorbidities and the complexity of the operation. And this is made even more complex

when we add aortic dissection to the patient population. We know that a large proportion of patients who undergo Thoracic Endovascular Aortic Repair, require planned coverage of the left subclavian artery. And this also been demonstrated that it's an increase risk for stroke, spinal cord ischemia and other complications.

What are the options when we have to cover the left subclavian artery? Well we can just cover the artery, we no that. That's commonly performed in emergency situations. The current standard is to bypass or transpose the artery. Or provide a totally endovascular revascularization option

with some off-label use , such as In Situ or In Vitro Fenestration, Parallel Grafting or hopefully soon we will see and will have available branched graft devices. These devices are currently investigational and the focus today's talk will be this one,

the Valiant Mona Lisa Stent Graft System. Currently the main body device is available in diameters between thirty and forty-six millimeters and they are all fifteen centimeters long. The device is designed with flexible cuff, which mimics what we call the "volcano" on the main body.

It's a pivotal connection. And it's a two wire pre-loaded system with a main system wire and a wire through the left subclavian artery branch. And this has predominately been delivered with a through and through wire of

that left subclavian branch. The system is based on the valiant device with tip capture. The left subclavian artery branch is also unique to this system. It's a nitinol helical stent, with polyester fabric. It has a proximal flare,

which allows fixation in that volcano cone. Comes in three diameters and they're all the same length, forty millimeters, with a fifteen french profile. The delivery system, which is delivered from the groin, same access point as the main body device. We did complete the early feasibility study

with nine subjects at three sites. The goals were to validate the procedure, assess safety, and collect imaging data. We did publish that a couple of years ago. Here's a case demonstration. This was a sixty-nine year old female

with a descending thoracic aneurysm at five and a half centimeters. The patient's anatomy met the criteria. We selected a thirty-four millimeter diameter device, with a twelve millimeter branch. And we chose to extend this repair down to the celiac artery

in this patient. The pre-operative CT scan looks like this. The aneurysm looks bigger with thrombus in it of course, but that was the device we got around the corner of that arch to get our seal. Access is obtained both from the groin

and from the arm as is common with many TEVAR procedures. Here we have the device up in the aorta. There's our access from the arm. We had a separate puncture for a "pigtail". Once the device is in position, we "snare" the wire, we confirm that we don't have

any "wire wrap". You can see we went into a areal position to doubly confirm that. And then the device is expanded, and as it's on sheath, it does creep forward a bit. And we have capture with that through and through wire

and tension on that through and through wire, while we expand the rest of the device. And you can see that the volcano is aligned right underneath the left subclavian artery. There's markers there where there's two rings, the outer and the inner ring of that volcano.

Once the device is deployed with that through and through wire access, we deliver the branch into the left subclavian artery. This is a slow deployment, so that we align the flair within the volcano and that volcano is flexible. In some patients, it sort of sits right at the level of

the aorta, like you see in this patient. Sometimes it protrudes. It doesn't really matter, as long as the two things are mated together. There is some flexibility built in the system. In this particular patient,

we had a little leak, so we were able to balloon this as we would any others. For a TEVAR, we just balloon both devices at the same time. Completion Angiogram shown here and we had an excellent result with this patient at six months and at a year the aneurysm continued

to re-sorb. In that series, we had successful delivery and deployment of all the devices. The duration of the procedure has improved with time. Several of these patients required an extension. We are in the feasibility phase.

We've added additional centers and we continue to enroll patients. And one of the things that we've learned is that details about the association between branches and the disease are critical. And patient selection is critical.

And we will continue to complete enrollment for the feasibility and hopefully we will see the pivotal studies start soon. Thank you very much

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.