Create an account and get 3 free clips per day.
Chapters
Labral Tear|MR Arthrogram (Fluoroscopic Approach)|25|Female
Labral Tear|MR Arthrogram (Fluoroscopic Approach)|25|Female
2016anestheticsanteriorcapsuledemonstratingdistendedfluoroscopicgadoliniumjointmusculoskeletalneedlepalpatepatientSIR
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
anticoagulantanticoagulationcatheterchapterclotcoumadindefensesdirectedheparininpatientintermediatelovenoxNonepatientpatientsplasminogenprocessriskrotationalstreptokinasesystemicsystemicallythrombectomythrombolysisthrombustpa
Endovascular AVF creation | Twitter Case Files SIR 2019
Endovascular AVF creation | Twitter Case Files SIR 2019
6fr venous WavelinQ magnetic catheteradvanceadvancesalignarterialbrachialcatheterscenterschaptercreateselectrodeembolizeendovascularengageFistulainsertmaturationpatientpatientsstepultrasoundveinvenavendors
An Overview of PET, MRI and PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
An Overview of PET, MRI and PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
cancerchapterdiagnosticglucosehypermetabolicmodalitiesMRINonepatientpelvicpositronscantomography
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Tarlov Cyst | Gold Medal Lecture - Health of Technologists and Nurses and the Role of Compassion in an AI Focused World
Tarlov Cyst | Gold Medal Lecture - Health of Technologists and Nurses and the Role of Compassion in an AI Focused World
anterioraspiratechaptercystsendometriosisfibrinneurosurgeonsNoneorthopedicpainparavertebralpatientsacrumsciaticatissuesvertebralwomen
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
chapterembolizationfibroidfibroidsgynecologistgynecologyhysterectomyinterventionalNoneobgynPathophysiologypatientpatientsprocedureproceduresprogramsurgicallyworkup
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
bleedingcatheterchaptermilligramNonepatientpatientsperiodriskslowersystemictargetedthrombolysistpaversus
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Lymphatic Imaging Challenges | Lymphatic Imaging & Interventions
Lymphatic Imaging Challenges | Lymphatic Imaging & Interventions
angiogramappearancebreastchaptercontralateraldependentductextremityfluidfluoroscopicfunctionalimageimagesinjectionlymphlymphaticlymphaticsmelanomanodenodespatientpatientsscintigraphyswollentherapythoracictumorvalvesvessels
Q&A PET/MRI  | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Q&A PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
apronsbodychaptercontrastDialysisdischargeinjectinstitutioninstructionslinedminutesMRINonepatientpatientspediatricpediatricsportionprotocolsradiationradiologistrequirescanstechnologist
The Impact of Twitter on Our Specialty | Twitter Case Files: Impact on our specialty and how to expand our reach
The Impact of Twitter on Our Specialty | Twitter Case Files: Impact on our specialty and how to expand our reach
awarenesschaptercollaborationfriendsinterventionalinvasiveminimallymultidisciplinarypatientprocedurespecialtiesspecialtystatswebsite
PV Access | TIPS & DIPS: State of the Art
PV Access | TIPS & DIPS: State of the Art
accessaccessedangulationanterioranteriorlyballoonchaptercirrhosisglidehepatichepatic veinliverneedlepasspintoportalposteriorprolapsesagittalsheathshrinkagestenttractveinvenouswire
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
balloonboluscapsulecatheterchaptercirculationconnectioncontrastcorrelationdiedifferencedistalfattyhepatichepatic veinimageimaginginjectleaklearningocclusionportalrefluxsegmentsteptrappingveinveinsvenogramvisualizewedgewedged
Other Non-invasive Ways to Image the Lymphatics  | Lymphatic Imaging & Interventions
Other Non-invasive Ways to Image the Lymphatics | Lymphatic Imaging & Interventions
basicallychaptercirrhosisdistendedductfluidgadoliniumimageimagesinjectlymphlymphaticsmalformationsnodalnodespediatrictechniquethoracicvenous
MRI Emergency | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
MRI Emergency | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
anteriorartifactbradycardiachapteremergencyheartMRIpacemakerpacingpatienttransthoracicventricular
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
anatomychapterdefensesfailuresinterventionalmistakesNoneoccurringpatientvisible
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
biliarycentimeterchaptercoilcoilscontraindicationscoworkersdiameterexposureimagesimagingimplantskidneyslimitationsmachinemodalityMRINonepatientpelvicpreferredradiationradiofrequencyscannerskinstructuresthoracictissue
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
catheterchapterclotmassivemechanicalNonepatientpatientsPig Tail Catheterpigtailpulmonarysurgerythrombolytictpa
Human Factors That Reduce Situational Awareness | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Human Factors That Reduce Situational Awareness | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
awarenessbluntchaptercommunicationfactorshumaninstrumentMRINoneoverloadpatientpreciselytaskversus
CTEPH Studies | Management of Patients with Acute & Chronic PE
CTEPH Studies | Management of Patients with Acute & Chronic PE
acutearterieschapterchroniccpapedemainterdisciplinaryjapanmultidisciplinarymultipleNoneoperatorspatientpatientsperformedpulmonaryreperfusionrequiringthrombolysistreatedtreatmentvascular
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
arrivesbloodchapterchartcheckcontrastdoseflowgadoliniumglucoseimaginginjectinjectedinjectinginjectionmonitorMRINonenursepatientpatientspneumaticpresencepriorradiologistrobescanscannerscanningscreeningworkflow
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
PET/MRI Case Study #2 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI Case Study #2 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
chaptercontrastfrontalgadoliniumglioblastomalesionlesion located on the left frontal lobelobemalignancyMRINonepatientradiationsurgerytreatmentuptakeviable
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Imaging Examples of Defects | Biliary Intervention
Imaging Examples of Defects | Biliary Intervention
biopsychaptercombodebrisdefectsductfillingfluoroscopicinflammatoryischemialuminalobstructionpatientpolypsresolvescopestonessurgerysurgical
Transcript

So here is our companion case demonstrating a fluoroscopic approach to the hip. This is a 25 year old female and she's gonna get an arthrogram to evaluate for labral pathology. And the target here is gonna be superolateral aspect of the head-neck junction.

Patients can be positioned supine, internal rotation and again a little sandbag outside the foot there can kinda help keep the patient in that position. Here we can see a 22 gauge spinal needle has been advanced pretty much vertically to that target location and we use this anterior

approach, for this will work great for your aspirations or injections. For a fluoroscopy, important to palpate the femoral artery, mark it and make sure you stay lateral from that and you should see nice free flow of contrast like this surrounding that hip joint. You've got images from the MRI for arthrogram here demonstrating

a nicely distended hip joint capsule there. So arthrograms, this is for an example the formula that we use. But that's gonna vary based upon the concentration of gadolinium we're using and the preference that your musculoskeletal radiologists have. But again, we're gonna be careful to avoid any air installation

and listed some typical joint volumes. For shoulder 10 to 12 ml, hip 10 to 15, knee 15 to 20. Now that's a reference range that's gonna be guided based on the resistance you feel with the needle whether you're using ultrasound or fluoroscopy, the patient will start to tell you, yeah, I'm kinda feeling this

tendon, I'm having pain. And then you will go and tell you really feel like you're close to rupturing that capsule as long as you're within these appropriate ranges. Other things, if we're doing knees or hips we don't let the patient walk, afterwards we keep them on the table because that joint is

gonna be very distended so we wanna transport them to the MR scanner on a gurney so they don't potentially rupture that capsule or they don't force any of that to inject it out through the hole that we just created in the joint there. The same thing was seated position,

that can disrupt the hip joint so we don't even let them sit. Occasionally we'll get a request to mix a steroid in with that little cocktail. We don't do that. There's a theoretical consideration for gadolinium may disassociate

when mixed with a steroid. So we don't do that. We will add local anesthetics because commonly local injection into this joints is part of the clinical workout when you're looking at labral pathology, particularly in these young people with hip

pain. So fairly routinely we'll have a local anesthetic, just to see is that the patient's pain generator?

PE the first one of course is

anticoagulation so heparin and bridging the patient to coumadin or now aid a direct oral anticoagulant is really the mainstay of treatment most patients again 55 percent of patients with PE have low risk PE all of those patients

should be on according to the chest guidelines three months of anticoagulation so they're gonna get heparin as an inpatient if they even need it and they're gonna get sent home on lovenox bridge to coumadin or they're

gonna get the one of the new drugs like Xarelto or Eliquis but here's all the other things that we do so these patients that are in the intermediate high risk so I'm gonna try to keep saying those terms to try to kind of put

that in everyone's brain because I think the massive and sub massive PE is what everyone used to talk about but we want to keep up with our colleagues in cardiology who are using the correct terminology we're gonna say high risk

and an intermediate but in those patients - intermediate high risk or Matt or the high risk PE patients we're gonna be treating them with systemic thrombolysis catheter directed thrombolysis ultrasound assisted

thrombolysis and maybe some real lytic and elected me or thrombectomy there's other techniques that we can use for one-time removal of clot like rotational and electa me suction thrombus fragmentation and then of course

surgical mblaq t'me so when anticoagulation is not enough so I like to show this slide because it shows the difference between anticoagulation and thrombolysis they are very different and sometimes I think everybody in this room

understands the difference but I think our referring providers don't and so when we when we get consulted and we recommend anticoagulation they're like yeah TPA well that's not the right thing so anticoagulation stops the clotting

process so when you start a patient on a heparin drip they should theoretically no longer before new thrombus on that thrombus so when you have thrombus in a vessel you get a cannon you get a snowball effect more

and more thrombus is gonna want to form heparin stops that TPA however for thrombolysis actually reverses the clouding process so that tissue plasminogen activator or streptokinase or uro kindness will actually dissolve

clot so there you're stopping new clot forming versus actually dissolving clot anticoagulation allows for natural thrombolysis so your body has its own TPA and so when you put a patient on heparin you're allowing your natural

body defenses to work you're giving it more time TPA accelerates that process so you give TPA either systemically or through a catheter you're really speeding up that process anticoagulation on its own has a

lower bleeding risk you're putting a patient on heparin or Combe it in it's it is less but it is still real thrombolysis however is a very very high bleeding risk patients when I when I consult a patient for thrombolysis I

tell them that we are about to do give them the absolute strongest blood clot thinning agent or an reversal agent which is the TPA and we're gonna just run it through your veins for hours and hours

um and that sort of gives them an idea of what we're doing anticoagulation in and of itself is really not invasive you just give it through an IV or even a pill thrombolysis however is given definitely through an IV through

systemic means and a large volume there thereafter or catheter directed so again

so this is our MGH page we started it about a year ago check it out if you guys like it some pretty good cases we mostly post cases some policy stuff industry and changing things it's not purely cases but certainly take a look if you like it give us a follow so what

I have today is I have two cases that I picked and you know for all the thousands of cases that all these huge academic medical centers do I tried to pick a couple that might be a little interesting and that aren't being done

in all the different centers across the institution so I'll start off with the first which is an endovascular AVF creation so what's nice about this is that you know what we see so far from this is that the length of stay impact

has been certainly reduced in certainly the maturation times and the Rhian turn re intervention rates have been reduced so I'll go through this and normally wouldn't go step by step for a few things but I think you know not all

institutions are doing this yet I think that you will I do think this is going to be a shift for a lot of the dialysis patients and everybody who works anion knows what a huge impact it is the ESRD patients is just astronomical the

numbers of them it's just continuing to rise so procedural steps the first step is you're going to access the brachial vein advance the guide Y down to the ulna insert a six French sheath and perform a vena Graham and the rationale

for that of course is to make sure you don't have any issues centrally some centers do that in advance some centers don't I will mention also that the ultrasound mapping is absolutely critical to make sure that

you get the right patient you start off by seeing them in the outpatient clinic and then you're going to go and have them have vascular ultrasound to make sure you have a good candidate so the next is you're gonna access the brachial

artery same thing advance your guide wire down to the ulna from there you're gonna insert the venous side now this is one of two approved vendors that will allow you to do an endovascular creation this was a wave link it's a to stick

system and it requires two catheters which is why you see the next step is pretty much repeated but just flipping it to the arterial side so from there there's a magnetic zone it actually has like a little canoe so it's got a

backing of a ceramic sort of a space there if you can think of sort of the older or atherectomy cut home catheters that had that little carro canoe you would actually take the debris out it's very

look into that and I'll show you that in a couple of images once you align that you're gonna sort of engage the little electrode this is an RF ablation RF created type fistula so it creates a little slit between the Adri and the

vein and what happens is is that you know of course don't forget you have to ground the patient just like any RF once you get the magnets and you get the electrode alignment you're going to engage the device for two seconds and

the fistula is created and then from there a lot of centers are actually going in there embolize in one of the brachial veins and this is basically to sum some of that stuff obviously to the superficial system for draining I have

read that there are a few places that actually go back back in through the newly-created fistula like even at the time of the procedure with the 4 millimeter balloon and just sort of open that up I'm not sure that that's 100%

necessary but I'm sure all these fine people on the panel could help us with that so here you see and I skipped all the entry steps but here you can see the Venus in the arterial catheter you know in position here and there's that little

canoe thing pointed out by the arrow that I had talked about and you use fluoro to sort of align these two things when you first start doing these cases take your time the first one was over an hour and a half for us now obviously

it's about a third at that time this is the little electrode this is when it's advanced and pretty much ready to engage can you play the video for me so this is quick so what happens is you suppress the

device the electrode actually advances and as it advances towards the veena side what happens is is that it actually just creates this fistula through the RF sort of energy from there you're gonna do a post vena graph in here you can see

after we did an initial post intagram there was enough sort of flow between the PIAT brachial so we decided to embolize one and this patient was our first patient and is doing very well so far this is done on I'm gonna say just

because you know to dr. brains point I don't want to get on the hook for certain dates and patient identification but this was done in mid-march so we saw them two weeks out and we're gonna see them again another couple weeks so just

there's a couple of trials that you can read into one is the neat one is the flex trial I think the technical success is really promising at 96% the maturation days you can see there's a massive massive comparison where they

could be ready to be dialyzed in 60 days and this could be a game-changer for many patients the six-month patency rate is what I've seen in most of the reports it's around 98% compared to about 50% with the surgical place and then you can

see that this about 3.5 interactions or re interventions that are required in about 0.5 at a year's time out from this so it's really making a big difference for these patients and I think this is what we do in i/o we continue advanced

things innovate and obviously look to do things in a more timely cost-effective minimally invasive way at the beginning when these new procedures come out the devices themselves might be at a higher price point but we'll see how that goes

moving forward as more and more vendors get into the space so the second case

positron emission tomography is the use

of a radioactive tracer in this case FD gee her fluorodeoxyglucose to assess the metabolic activity of ourselves ftg is tagged with glucose and glucose is used by our body for energy cancer cells are thought to be our Armour hypermetabolic

so if we inject FDG to our patients it goes to areas with hyper metabolic activity this area is called a hotspot and when a hotspot is noted in a PET scan its it's thought to be cancerous this is an example of a hyper metabolic

region noted in the pelvic area of the patient this patient is diagnosed of cervical cancer and what is MRI as you all know MRI is the use of radio frequency currents produced by strong magnetic fields to provide detailed

anatomical structures it is the preferred method for imaging soft tissue organs and there's no ionizing radiation present now what is pet MRI pet MRI is a combination of these two modalities instead of going to two scans using two

scanners we have one scanner that is able to obtain pet and MRI images simultaneously so why can't we just call this pet well we run through a few problems we have fdg-pet CT where it's a PET scan with low-dose CT accompanying

it and there's fdg-pet CT with diagnostic CT we're full sequences of CT is coupled with a scan and a pet MRI always has a diagnostic MRI done with it

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

projects that I care about I've become very involved in the treatment of back pain in women women get back pain for

different reasons than men twenty percent of the time the cause of the back pain is not in the vertebral column of the neural foramina or the disc it's in the paravertebral soft tissues or the soft tissues anterior to the sacrum in

the pelvis so every tuesday i see five to seven women who've been told they're crazy by orthopedic or neurosurgeons because they have sciatica but their MRI is normal because they looked there and they don't look over there

so I just published a paper on gender bias and female back pain and it's taken me 12 years of work this began as you guys remember me doing tarlof cysts and then it's expanded into other causes of sciatica like endometriosis cyclicals

sciatica in women from endometriosis on their lumbosacral plexus now most people have never even heard of that but it's a real thing so and this in the BMJ when you publish there has to be a patient impact statement so the patient in the

case report wrote this wonderful letter so this is a series of six papers that has taken me ten years to write so when you have these ongoing projects it gets you up in the morning it keeps you engaged and so um I've worked very hard

on this area of tart of cysts and it'll take about ten or fifteen years to change medical practice because it takes about that long for physicians to change what they do I'll skip through this but this is how you treated you put in two

needles into the cyst you aspirate fluid from one air goes in the other then you inject fibrin glue and it works about 72 percent of the time it's really easy

patient who did not come from the street so if you've been here for a few years

you've heard me talk about you know some of my friends this is also one of my other friends who has large fibroids but her fibroids were so big and they were not all very vascular and so I sent her to have surgery and she ended up having

a hysterectomy with removal of her cervix because of abnormal pap smears but her ovaries were left in place so our path forward after doing this procedure from 1995 a procedure that is not experimental a procedure that has

had a lot a lot of research done on it more research than most procedures that are done surgically or by interventional radiologists I'd say that it would require a partnership it is true that we can see patients on our own and we can

manage mostly everything but at the end of the day uterine artery embolization is still a palliative procedure because we don't know what causes fibroids to begin with and as long as the uterus is still there there's always a chance that

new fibroids will come back so in your practice and in mind I believe that a path forward is a sustaining program embolization program which is built on a relationship with the gynecologist that yes

I am as aggressive as any other interventionist that is out there but if this were my mom and that is my usual test for things I would say that where we would like to position ourselves is in the business of informing the

patient's as much as possible so that they can make an informed decision and that we're asking our gynecology partners to do the same is that if you're going to have a hysterectomy for a benign disease that you should demand

and we as a society and you as your sisters keeper should be asking for why am I not eligible for an embolization so si R is actually embarking on a major campaign in the next year or so it's called the vision to heal campaign and

it's all around providing education for this disease stage what I like to tell our patients and I'm almost finished here is when I talk to our gynecologist and to techs and nurses as well I said woody woody what should I expect right

that's what they want to know when I send my patient to you what should I expect and I say that what you should expect that Shawn and myself we're gonna tell the patient everything about fibroids we're gonna talk to them about

what the fibroids are the pathophysiology of it the same things I told you we're gonna tell them about the procedures that treat it we tell them about the options to do nothing we talk about all of the risk and the benefits

of the procedures especially of fibroid embolization and we start the workup to see if they're an appropriate candidate when they're an appropriate candidate we communicate with them and their OBGYN and then we schedule them for their

procedure in our practice there are a few of us who send our patients home on the same day and we let our patients know no one is kicking you out of the hospital if you can't go home that day then you'll get to stay but

most of our patients are able to go home that day and then we see our patients back in clinic somewhere between two and four months three months and six months and we own that patient follow-up their visits and after their year we have them

follow back up with their gynecologist and so that we're managing all of these sites and it comes back to that new again may not be so new for some of the people that have been doing clinical IR four years that shift that we own these

patients if you're a nurse in this room these are our patients these questions need to be answered by us in our department we do not believe that these patients should be calling their gynecologist for the answers to that

like what should I be doing right now should I be taking I haven't had a bowel movement and like that is something that we answer we're the ones that are given them the discharge instructions and we set them back up for their follow-up so

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

a little bit more systemic versus catheter directed thrombolysis so once you've decided that a patient needs TPA what are the differences here well if

you give patients systemic TPA you're gonna give them a much more rapid delivery this is for those patients who have high-risk PE they're the ones who are coding for those patients you give them 200 milligrams of IV usually you

get 50 first and then another 150 over a very short time period they have a very high risk of bleeding as a result of that a catheter is much slower you're gonna infuse one milligram maybe which is what I think most people do

over several hours maybe a few maybe a day so it's slower targeted versus non targeted well catheter is much more targeted you're gonna give Pete you're gonna give the TPA right into the

pulmonary arteries that's the whole point in our in our thought process as a result you give a lot less drug so when you give a patient based off of some of the trials 24 milligrams of TPA over a 24-hour period that's a lot less than

200 milligrams in a 10 minute period and then the bleeding risk is very different for these patients catheter based treatments have a high bleeding risk but it's possibly lower than the initial bleeding risk of patients getting

systemic TPA so I wanted to go through a

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

lymphatics you know I have this nice lymph angiogram image on the right side

of the screen here you see a plethora of lymph nodes you see a lot of fine detail not an easy image necessarily to get historically and that's for a few reasons one lymphatic fluid unlike your blood is clear right we can all look at

somebody's hand and you can look at the veins and you can see the hand an IV can go right in you can't see what the lymphatics aren't and beyond that beyond it just having clear fluid it's also has relative to blood not that many cells

which makes it hard to see and the vessels are pretty small so I've magged up on just one lymph node there and you see that one little lymph node has about 28 faire and efferent vessels going to it

so each the size of each one of those vessels is less than a millimeter in size so you can imagine if they just do a surgical biopsy and excise one of these lymph nodes in one patient they've damaged at least 20 different vessels

and if they take out multiple lymph nodes you can imagine the damage to the circulation to that particular extremity and that's why the patients end up having some of these complications the lymphatics are driven by valves

predominantly you see all these little sac you lations inside and that's where the valves are but we don't really have a good grasp for how many valves is normal with the distribution of valves and patients etc there's no central pump

so unlike the circulatory system which is dependent on the heart the lymphatics are dependent on skeletal and smooth muscle to help move things along the first method to image lymphatics historic who's actually limb for

scintigraphy and the first the first actually marker that was used was a gold base did a scintillation camera and they had some images you know it's not something we do commonly now for the purposes of detection we actually use it

as a functional scan to help guide some degree of therapy the spatial resolution is fairly poor particularly compared to fluoroscopic images but the current uses are still there particularly for sentinel lymph node

mapping breast cancer melanoma patients and/or lymphedema this is an example of a patient who had a melanoma on their back or this could easily just as well be a breast cancer patient you do an injection around the tumor and you see

what lymph node the the tracer drains to so this is a functional imaging test which can be very useful in guiding therapy when you compare that to a peripheral lymphedema you see what it looks like in this case you see one

patient in five and sixty minutes and within 60 minutes the tracer has gone from the feet where you inject all the way up to the neck that's actually a normal lymph flow centigram and that patient you look at their extremities

they're fairly symmetric you look at the second patient and you see that one leg the left leg is asymmetrically swollen compared to the right you see that the injection at five hours on that swollen extremity has not gone up above the knee

and you see it really going to the skin surface so that's a typical appearance for somebody who has lymphedema okay so it exaggerated but a fairly typical appearance you see that once the contralateral extremity is actually

traversed and gone all the way up to the thoracic duct up into the neck so we certainly see the that lymphedema is useful but the detail really isn't there

I'm the FDG is have a radio pharmacy located on the second floor no New York State does allow nuclear medicine

technologist and nurses to inject the con the FDG isotope I know in other states one in particular is is New Jersey the the nurses are not allowed to inject isotope and the technologist has to do it also in addition certain

isotopes and certain scans the ducts have to inject the contrast like the the cervical Lin scintigraphy and some so my question has to do with discharge instructions so just like you give them that little card that they keep with

them so they trigger some radiation alarm and a bridge or on a highway do you give them discharge instructions about if there's small children at home that they're not sitting in their lap for extended period what kind of

instructions do you give on discharge after these patients so we when they come in coupled with the screening forms that they fill out we have some instructions attached to it and does that does have

the discharge instructions but we reiterate to them you know if they have small children or babies and pregnant women and just try to keep their distance for the next 12 to 24 hours just to until the really activity has

wear off so the FDG is like two hours almost for the half life FDA FDA has 60 minutes 116 minutes half life and usually by 12 hour by the 12 hour period they're mostly background radiation okay thank you

we had they have a written instruction like it's like a packet that we give into the market that we do to the patient and the patient have accessed to the web portal that they have and they can be the instructions from there

this is correct so betta bar is still investigational for the most part the only way you can build for it is two different scans you build for a pet and you build for our mr so you've got to get approval for both what you are not

going to get reimbursed for is the registration and that's where it gets a little bit challenging because then you need a radiologist who is both certified uncredentialed to read a pet and an mr so right now most institution bill it as

two different procedures so that's why you that's how we get the approvals just a little information on the side I went back to this case study because I forgot to tell you that in order for the PET CT to have as clear image as the pet MRI

the pet portion I mean the city portion and the pet city would have to be done diagnostically and that this would expose the patient to radiation three times that's why they prefer the pet MRI because yeah the reason why we do it if

we do it mostly for for for pediatrics and it's it and it's because of radiation because you know like our my team is saying you you are going to have this patient have constant follow-up so if you can reduce the amount of

radiation they have from a younger age as we all know it work in radiology DNA injuries occur when you're younger then more is more severe than than later our MRI the pet MRI injection they're all lined with lead and our MRI the pet

MRI room is actually lined with lead so we don't really have Needham let aprons we don't know we don't have wear aprons they are allowed to go to other appointments after they are pet MRI usually with the FDG most of the

radiation after the Tessa's finish is gone they're not more than what not more than radioactive than background radiation so they are are safe to be around people yes that's more for precautionary

measures yes no they go straight to the PACU so we our MRI table is detachable we have an area for where we keep our inpatient bay area we have a structured ready for them to go into right after the test and the

anesthesiologist and if they are Pediatrics the pediatric nurse is with them and they go straight to pack you do like probably like probably less than ten a week right now some weeks we are busy we do for how we do that much some

it varies like we'll do three or four but we are trying because the reimbursement that's one of the big issue our institution is actually eaten eating the cost for some of these to provide a patient with less radiation

especially or pediatric population we have one pet MRI machine for the whole institution three at the main campus we have two we have multiple and other regional sites so the yes

no less than 15 GFR except for the EU vist less than 30 then we notified the radiologists eeeh this is harder to so you this is the it's a linear contrast as opposed to the Catalan bettervest which is

macrocyclic so it's easier for the body to get rid of well there yes well they're only they're already getting dialysis so it's really not much of a harm yes we do patients on dialysis but we make sure the dialysis is done within

24 hours after receiving the contrast yes um sometimes you know you just have it to have it we don't require it for all the tests if you have it we have it we check if it's already in the chart we

acknowledge it you know we don't require for outpatient we don't require but in patients we do all right anything okay so Bernie pet/ct the scanning time for pet/ct is about 30 minutes to 45 minutes Patsy pet/ct is about 30 to 45 minutes

with the pet MRI sometimes they they order dedicated pet MRIs so that is a little longer you have to take note that we do a whole body scan whole body scans for even just for a regular MRI is at least an hour so we try to eliminate

just you know having them have to have to or point to different appointments and just one waiting room one waiting time so that cuts down the response for the patient themselves yes we do for adults it's 12 for the

whole body and then for the pet brain it's about 10 if I'm not mistaken and then plus or minus 10% and then the pediatric doses are cultured calculated base of their height and their weight and there are all protocol by a

radiologist because we have a lot of whole-body protocols we have the bone survey actually that's about 30 or 40 minutes and yes that's an hour and then we have longer whole body protocols diseases

specific and sometimes they try to depends on what the patient's diagnosis is we have whole body scans where they have to check the bone marrow and that needs to be from tips of the toes and tips of the fingers and that can be a

challenge especially if the patient is tall because that has to be in sequest sequestered and sequential patient and positioning is also a challenge alright thank you so much thank you thank you so much

[Applause]

hi everyone I'm so excited to be here my name's Michelle mana B's I am a UT Houston fourth-year resident and I'll be headed to Yale for AI our fellowship in the fall and I'm happy to start us off this afternoon with the impact of Twitter on our specialty in how we can

expand our reach and so just a little bit about the platform that we've all chosen Twitter's a micro blog 280 characters for fewer images and short-form videos what this says to me is this is perfectly tailored for our

fast-paced highlights only major learning point objective when sharing about our favorite subject and just to give a little bit of perspective in 2018 206 users had hashtag irad in their bio so they were irad users right and March

of just this year we have over 1400 a few more stats for you so these are from just last week so a total of seven days we have 500 total tweets with hashtag irad and as we are an image-based specialty obviously the text with the

tweets with just attacks are not very many and but what I wanted to point out I'm really proud of there are 78 original contributors and 71 percent of those tweets were retweets so there's 78 people putting the

information out there and the rest of us are doing a really good job supporting them so what is Twitter done for our specialty three major points networking education awareness and collaboration so I'm a little more familiar with

Instagram so I have over a hundred twenty thousand followers on Instagram and so so this is not as familiar to me right and when I joined Twitter last year sar I had one follower and it was my mom and

I so I posted this on my Instagram I said I just have one Twitter follower what could I do help right and just over a year here we are the most recent stats of my page had significantly grown and that just speaks volumes on how much

we've grown together expanded growing evolved as a community and a presence on social media and I have 964 friends now if you're not friends with me let's be friends right now

oh and so next education and awareness so this page the interventional initiative if you are not following I suggest highly suggest you look into it so this is a nonprofit organization that increases awareness for minimally

invasive procedures their graphics are really patient friendly really easy to understand and this is the first thing you see when you go onto their website so if a patient were to just go on and say why how'd you know something my

doctor said something's wrong with my lungs is there a minimally invasive procedure for that most likely yes and all they have to do is just tap on the organ system that they identify with and they have an easy explanation of the

procedure that they're about to get or a procedure that they might be interested in and a finally collaboration and one of my favorite hashtags that really exemplifies this is hashtag leave your specials here at the door and I met dr.

Sabet I set this year and it unites as more as a disciplinary multidisciplinary group more than just this is my patient it is all of our patient and how can we work together to make sure that our patients have the best outcome and so we

are identifying more as patient centered and not specialty Center and so this is a really good positive aspect of collaboration between specialties and another aspect that I really love collaboration in a way that we get to

break down boundaries geographic boundaries right meet people that we necessary wouldn't get to meet be friends with people we wouldn't be friends with other Hawaiians and have a little fun do we have audio for this oh

darn well pretend Full House is playing in the back and we're are gonna we're gonna watch the whole thing it's so much cooler with the south kid so just you know bringing some fun you are especially doesn't always have

to be cases and always have to be serious and to show that we're humans too and so finally I want to speak a

so this shows you this shows you how so this typically you've accessed the portal vein now and you're in next up you basically pass the wire down this just gives you a little depiction of

what you're what you're what you're doing here this think of this is a sagittal and Deliver okay hepatic vein and portal vein it's the sagittal and what you're trying to do is

and if you're in the right hepatic vein you need to pass your needle anteriorly to hit the right portal vein okay and the right portal vein is usually anterior and interfere to the Patek vein okay so you pass your wire you're you

NEET your needle and when if you're missing the portal vein usually what's happening is that you're scooping behind it okay your posterior to it and sometimes you'll find the operators will actually increase the curve in the

needle so they can actually reach anterior anterior and actually hit the portal vein because usually usually if you if you know you're in the right place that the right hepatic vein not in the middle of petting vain and

you're missing the portal vein you need to reach anterior more so they put a little extra curve in the kelp into needle to actually catch that right portal vein okay with liver cirrhosis you get shrinking shrinkage of the liver

size the liver decreases the portal vein starts moving more anterior and more superior and closer to that paddock vein okay and it becomes more and more difficult to actually hit it so the smaller the liver the harder the liver

the smaller the space and you've got a thick mat piece of metal okay it's very difficult to hit that okay it becomes more and more challenging with with smaller levels to hit to hit the portal vein especially centrally okay this is

an access kit a new access kit by Gore it's basically the similar to the similar to the Cal Pinto needle it's a little longer with a little bit increase angulation compared to the traditional ring kits or the Cole Pinto needle but

once accessed you pass a wire okay into the portal circulation there are two ways of doing this okay there's a traditional old-school way that's my way is that to use a Benson wire okay the youngsters the Millennials are using

glide wires okay so if you're dealing with a millennial physician they're usually going for the glide okay if you're dealing with them with an older you know guy or gal they're using usually using a Benson wire okay the

advantage of the Benson wire is that has a floppy tip it actually you just push it in and hits the wall it prolapses into the main portal vein right away as you can see just prolapse and portal vein if you're using a glide where

you're catching all sorts of things you'll have small branches you don't know where you're going your V's even sometimes dissecting outside of the portal vein they're second-guessing themselves all the time but actually the

good way with a little bit of more different skillset is that you use use actual good old fashioned Benson wire actually goes in prolapses right away into the ends of the main into the main portal vein rarely would I actually use

light or switch to a glare that's usually if I'm coming in in a small in a small branch or an orchid angle where I have to use a glide right to try to get around the angle because I don't have enough room for a Benson to actually hit

the wall and prolapse is very really really tight space so tights Bates funny angles I'll switch to a glide where if it's a straight forward a Benson as very is very straight forward okay try to get the sheath as much into the portal vein

over the over the needle over the wire as possible and then you balloon your tract okay through the sheath okay some people will balloon with a six millimeter boom some people will balloon with an eight millimeter blue eye

balloon with an eight four okay at night and I make sure it's a four so that I actually use the balloon as the measurements for this four centimeters actually you I actually use the balloon to measure my to measure my Viator's

stance okay with the balloon there there'll be two waists there's a portal venous entry site and the Ematic venous entry site so you actually gauge that and take a picture of it so you actually see how long your tract is where's your

hepatic venous access who has your portal venous axis actually gives you a lot of anatomy here been engaging in actually putting where your Viator stent is okay usually high pressure balloon I use it and ate some people will use a

six or even a seven millimeter balloon

technically step by step of how tips are done okay and and the ideal tips with

every step of this procedure I'm gonna show you two ways of doing it okay and the advantages and disadvantages of the two ways in every step okay so first of all the primary thing is to get into the portal vein and how do you visualize the

portal vein okay so one way is to do co2 Vinogradova nog Rafi to hit the portal vein me with experience no I don't need co2 venography to hit the portal vein but I still do it in an in a teaching institution because I have texture that

are learning nurses they're learning and physicians are learning so I actually do the imaging for them so they actually can get the general idea of what we're doing this is our target this is where we're coming off and that's it but in an

experience hands is it necessary absolutely not okay so co2 photography very helpful for in teaching and teaching institutions so everybody and the whole team can actually know exactly what our target is so not essential like

like we discuss and there are two methods of doing this and in a funny way I'm gonna show you that's actually the same method but one is a micro of the other one okay so two ways one way is then wedge a catheter that's the old way

kind of more traditional way than let's not call it always more traditional way of doing a co2 port and the other one is using a balloon of balloon occlusion castra and this is wedging it with a four French five French catheter you

take it all the way to where the catheter is larger than the hepatic vein and now you've wedged it okay and this is kind of a mag up you see that that's a little that's a little wedge okay you wedge you inject contrast the contrast

just sits there it's wedged it's trapped okay and then this is with a balloon to your left is a balloon full of air to the right full of contrast and you basically trapped it again you fill contrast and consciousness it's there

what's the difference between this image and this image no difference the only difference is size that's all it's the same idea you're just trapping a segment of the liver the difference is this is a very

small segment and this is a larger segment okay so essentially it's actually the same technique one is just well technically when it comes to your side all one needs a four or five French calf the other one needs a balloon

occlusion caster okay same image so then you inject co2 the key thing here if you're the type of physician where you put contrasts you have a balloon sitting or a wedge and you have to count contrast there okay

rookie mistake is that they leave the contrast and then they hit the co2 okay what is that you've lost the advantage of the co2 in the beginning of your bolus is actually contrast okay so you need to bleed out the contrast and

replace it completely co2 so your entire bolus okay is co2 and not and not and not the and not the contrast okay that defeats the purpose why is co2 advantageous over contrast contrast is a thick fluid co2 is gas is viscous it's

volatile it actually can squeeze through tight spaces as it's a gas and that's what we want we want to squeeze that co2 which is a contrast through the sinusoids reflux it back into the portal circulation so we're trapping it and

we're trying to push co2 squeezing it through the sinusoids refluxing it back into the portal circulation so you can actually visualize the portal circulation okay and all and the disadvantage of a wedge is what you see

here if you're a wedge and you're immediately sub capsular and you slam you slam that co2 aggressively what you will get is an explosion you get a rip of those of the hepatic capsule scroll the glisten capsule and then you've got

a leak and if the patient is quite low is a quite low path they can actually die from this believe it or not they will die from this and not die from the needle passes okay so that's kind of co2 and that's kind of

a little a little passive air into the perineum nice imaging not a good outcome so one way to avoid this is to still wedge but wedge away from the hepatic capsule so you're out in the periphery in the paddock veins but you're deep

inside the liver you're not you're not right underneath the capsule so that's one way of doing it the other another way is to actually use a balloon okay so this is this is just another wedge here okay and you actually use a balloon I'm

just showing you a correlation with a balloon it's a little safer because you're a little distance away from from the hepatic capsule I'm just showing you a more and more image of the same thing co2 with correlation after you access

since it's a beautiful correlation with with the portal vein venogram okay there are problems with wedges and with balloons is that sometimes you get a gas you know a co2 leak you're wedged but there's hepatic veins at vadik vein

connections and all you see is a fatty veins you can't force reflux the co2 into the portal circulation so that's one problem okay so what do you do with that you change the sights just change a different different branch okay try to

avoid that connection between the badeck veins and it back veins go somewhere else where there is no connection where you can actually make a true hip wedge and force that co2 into the portal circulation okay another way this is

just a draw a drawing out whether it alone or a catheter you get that you get the escape from the Patek vein to fatty vein is to go distal go beyond that connection so if you can go distal go distal if you can't go distal then

change your branch try to find a place where there is no hepatic vein tip a degree engine attraction preferably but not necessarily not the same branches connected to because that usually goes both ways but not always sometimes

you're lucky and if that connection is kind of like a one-way valve one way street and it's not a two-way street but that's just sheer luck okay this is an example hepatic vein to about a vein connection and what we did was basically

switch to another place another vein and we actually get the portal venogram here okay next up sting crafts Viator's thank

talk about some more non-invasive ways

to image the lymphatics there's non-contrast at Marlon Payne geography this has been around for a greater than a decade we basically do a tea to fats at sequence and we basically really amplify the signal difference between

fluid and soft tissue and we really want to focus on fluid that's very slow moving so this is very good for people of lymphedema cirrhosis venous malformations etc you're gonna get very nice images it's non-invasive gives you

good spatial resolution but you can't see small structures and you don't have an idea of how things are flowing so just to kind of show you an image from my training and right there where the arrow is showing you the thoracic duct

right next to the aorta obviously fairly distended what I did actually in this patient as we were doing research to generate these images actually giving them didn't mr gave him a milkshake put him back in the mo and you see this

little thing plump up and is actually really cute dynamic a Marlon pan geography is a newer technique that's come along where basically we've combined what we do with nodal and faint geography where we put a needle into the

lymph nodes with what we do with regular mr which is to inject gadolinium we dilute the gadolinium we can inject it right into the lymph nodes and now you can have flow dynamics as well as faster mapping of what's going on with the

lymphatics a very useful technique that I use in complicated leaks in pediatric patients etc

So one of the options that can happen is the absence of bradycardia pacing. So your patient's either known or unknown to be pacemaker dependent. They may have turned off their pacing function. And the MRI could sense that artifact

with the patient's heart rate, and it would withhold pacing. So what do you do? If it's even transient, a brady or a pause episode, you abort the scan. You escalate care as needed. You activate your emergency contacts

and you're going to be anticipating transthoracic or external pacing as they're getting your programmer person back to the MRI scanner to set them back on their own programming. So another emergency would be tachy arrhythmias, untreated tachy arrhythmias.

So that can occur because your patience is or has a known or high risk of ventricular fibrillation. They may be set on asynchronous pacing and there's a risk when someone is pacing at the set rate, if the patient starts to override and their heart rate goes up to 100

and you're pacing at 80, that it could hit, a pacemaker spike could hit on the T wave, the vulnerable T wave as we call it, and it could induce R on TVF. So what do you do? That one's pretty easy.

You get them out of the scan, do CPR, call your emergency teams, get your device people back to reprogram it, but you're preparing to defibrillate. You know your defibrillator's ready. So pad placement for devices are two options, either the typical, classic I call it,

right sub clavicular and left lateral or you can do anterior posterior. If the patient has a right-sided device, which sometimes they do, you want to make sure that your pad is placed at least an inch away from that.

The goal will be to sandwich the heart with electricity so that the electricity will traverse the heart, either front to back or here to here. The need for an elective shock or pacing does not change if the patient has a device. They still need to be shocked or paced

if they're having an issue.

riesen comes to us and he talks about

some theories on why we make mistakes so and we're gonna cover these and then we're gonna cover the Swiss cheese model which many of you may be aware of so sorry slips tend to hurt current situations that are so routine that

they've become rote so an example of a slip could be selecting the wrong drug from a drop-down alright so again slips and lapses occur when the correct plan is made but executed incorrectly so we have that drop down of drugs but we just

select the wrong one that's a slip a lapse is generally not visible because it's reflective of a memory failure so for instance we may have a patient who forgets to take their medications or we may have a prescriber that forgets to

take a drug off of a med rec so those are examples of slips or lapses mistakes or judgment failures they're more subtle and they're complex than slips and these can go undetected for a period of time and they're often left to

a difference of opinion well I don't do it the same way that Mary does it who doesn't do it the same way that sue does it so those are mistakes and their knowledge base we know the right thing to do but because we have outside things

that are occurring situations that are occurring we may have to do some workarounds and those workarounds aren't always safe or we're gonna get in and this is part of the anatomy we're gonna get into the anatomy a little bit later

and often mistakes are rule-based so we know the rules we know what we're supposed to do but for factors that are out of our control we bypass those and that's when mistakes can happen active failure failures are highly visible

errors and we usually see these because they have immediate consequences and then the latent failures their processes that are under the radar they come from not following policies and there may be a good reason why we're not following

policies but oftentimes we hear that we've always done it that way and that means they're rooted in culture so that's where the justa culture comes into play all right Swiss cheese model so this is this is probably a graphic

that's very familiar to a lot of people but it does really it's it's at the basis of a patient safety air so organizations have defenses those are the slices of cheese now those defenses although we'd like them to be solid

they're oftentimes not they're filled with holes because of human factors the human condition those active and latent failures the slips lapses and mistakes that happen to all of us it's a part of us so often some of those defenses get

penetrated but then there's another defense that stops let's take for example identifying a patient so a patient comes in and maybe they're not english-speaking they may be

spanish-speaking and so we call their name and they answer the answer yes because it's close enough right it's close just close enough and they come up we don't check anything we don't check don't verify their name and their date

of birth we pass them on to our prep recovery room and then we're getting them ready because we have confidence that Jane at our front desk she doesn't make an error she always identifies the right patient so we have a high level of

confidence in Jane it's not a bad thing that's an OK Fay but here again we're not doing what we know is in our policy so it's rule-based and that we know is the right thing to do so it's knowledge base so it becomes a

mistake that we're not checking our patients identity and date of birth and that patient gets back to let's say the interventional room and boom we stop because now we're doing a timeout and we identify that we have the wrong patient

for our procedure and it stops but sometimes these heirs line up the holes line up and it's just one of those days and we end up with a patient safety event at the end so now we come to the

do anesthesia for some of our cases mostly to our pediatric patients but we are also capable of doing it through the adults they need some anesthesia clearance patient is asked to be NPO

after midnight we have equipment available that are MRI compatible such as the monitors the IV pumps and the anesthesia ventilator machine when we set up the the patient inside the scanner we have to be wary of the lines

the table does move in and out during the test we don't want any of those IV tubing's get snagged we've done pretty good job in securing these lines usually by taping it on top of the coils after the pet MRI with

anesthesia is done they go to the PO 70 anesthesia care unit for recovery and I

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

there are advantages of this modality one there's less radiation exposure for

the patient we receive about three millisieverts of background radiation every year with one PET scan a patient can get up to eight years worth of background radiation in just one skin the only exposure of radiation a patient

gets in a pet MRI is through the isotope pet MRI has a better disease characterization especially for areas in a Patou biliary region the pelvic areas and the kidneys information and the relationship between lesions and

adjacent tissue is better delineated with the pet MRI so it's easier to see which part is cancerous and which partners normal cells there are varying opinions and research studies are being done to make a determination if pet MRI

is a better modality than pet CTS well PET CT is a lower-cost skin has increased accessibility there are more PET scanners available and more more technologists are trained for this modality PET CT is a shorter skin there

are no contraindications for affairs implants pet CTS are preferred method for imaging the lungs of thoracic nodules and bone structures however with a pet MRI it's good for soft tissue organs such as the brain the muscle

delivered the kidneys the pancreas our GYN pelvic structures such as ovaries the uterus and cervix and also the prostate there are limitations of this skin one it is a much longer skin one whole body pet MRI can last at least

about an hour there are contraindications with certain implants due to the magnetic factor of the of this test and is not preferred for imaging air-filled structures because it can give off artifacts there

are weight limitations for our machine our machine holes can hold up to about 500 pounds of weight it is this our machine as smaller bore compared to the white board MRI the MRI whiteboy is about 70 centimeters in diameter

our pet MRI machine is only 60 centimeters in diameter in this picture the difference of the 10 centimeter difference doesn't seem much however if you put a patient in there and this is one of our coworkers

he is 270 pounds and 6 feet tall and the white board MRI his shoulders fit comfortably well inside it in the sky inside the scanner however in this pet MRI machine he said he did feel a little snug and a little tight inside

but you also have to take an account that we have to put coils on top of our patients that 10 centimeters does make a big difference the coils will help us give the good quality images that we like and I also have to note that we

have to put the head coil or the helmet on top of the patient's head to give good images of the brain the reason why the pet MRI scanner is smaller is because we have to make room for the pet detectors we try to make it bigger the

gradient coil on the radiofrequency coil have to be further away from the center of the magnet and that compromises the quality of our images so which patient

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

catheter some other things that we can do is mechanical intervention so if you have a patient usually with massive PE

or the inner or the high-risk B you got to do something to help them out so what we do is put a pigtail catheter and inject a little bit of TPA on the table and then twirl the pigtail or put a wire through the side part of the pigtail and

make it sort of a mechanical fragment fragmentation the problem with that is that fragmented clot goes downstream so when it's in a main pulmonary artery it actually has less surface area than it is when it is in a distal pulmonary

capillary so when you break that clot up you have to be careful because it can actually make the patient worse the benefit there there's no thrombolytic so if we're doing this we we generally are doing it in patients who can't either

receive TPA at all frequently we get patients with who have have had recent spine surgery who get a massive PE had brain surgery get a massive PE and you have to try to treat them without any TPA or even heparin the drawbacks are

that again it increases pulmonary vascular resistance by sending all those little pieces of clot into the small pulmonary arteries and capillaries and it makes it actually much worse in some patients again there's no control trials

and sometimes you need to have a bigger

so we have some human factors that reduce situational awareness situational

awareness is our mental model of the world around us so I'm sure you're all very familiar with your interventional radiology rooms your CT rooms your MRI rooms and it may take you a little while because of

different human factors that are going on many of which I have listed here to realize that perhaps over a weekend weekend a blue wall got painted beige so some of these factors are insufficient communication fatigue and stress task

overload tasks under load group mindset press on regardless mentality have you ever had that from some of your Doc's in the IR room it's like you've got three cases to go and you know it's getting time that you know your staff have been

there for a while and they're let's push on we gotta get these cases done we're really opening ourselves up for air so again here's that action versus non action so we could really have some of that non action and maybe reassess those

patients and see if we can't have them wait till the next day it's a little bit safer to do those procedures and degraded operating conditions so I have a little test ready all right so this is actually a commercial that came out of

the UK and the UK was using this to heighten awareness for their drivers for motorcyclists being on the road but what it goes through is that we have a kind of a clue a clue ask type of setting where we have our trench coat detective

and we have a lineup of suspects for the murder of Lord Smythe who unfortunately is there on the floor and he's going to go through his lineup and ask them questions and he's gonna name the question but this is about the

world around you I want you to pay attention not only to what's going on but there are things that are happening in that environment that are changing and I'd like you to see how many you notice while you're watching our

detective go through his inquiry clearly somebody in this room murdered Lord Smythe who at precisely 3:30 4:00 this afternoon was brutally bludgeoned to death with a blunt instrument I want each of you to tell me your whereabouts

and precisely the time that this dastardly deed took place I was polishing the brass in the master bedroom I was buttering his Lordships scones below stairs so what I was planting my petunias in the potting shed

cussed of all a rest lady Smythe but how did you know madam has any horticulturist will tell you one does not plant petunias until May is out take her away it's just a matter of observation the

real question is how observant were you all right so how many changes did you happen to see I was gonna say would it surprise you I hit stop it in time um would it surprise you that there were 21 changes during this little yeah yeah

right yeah so how many caught late about five yeah but yeah right right so that's why communication is important and it is often one of those human factors that we don't pay attention to how key communication is in

preventing patient safety errors so let's take a look at what we what we did or didn't see clearly somebody in this room murdered Lord Smythe who at precisely 3:30 4:00 this afternoon was brutally bludgeoned to death with a

blunt instrument I want each of you to tell me your whereabouts at precisely the time that this dastardly place I was polishing the brass I was buttering his Lordships scones below stairs or something but I was fucking my petunias

in the potting shed touch the ball arrest lady Smythe right right originally yes is to increase that situational awareness where you've got motorcycles coming in from sides or in front or behind you or coming you know

all different directions that's what that was originally done for but there are a lot of those situational videos that are out there the probably the most famous is the one with the gorillas and you've got like I don't know ten people

that have the basketball and they're in different shirts and the task is you're supposed to watch the number of times that the white shirts versus the black shirts catch the ball right and in the middle of it comes this dancing gorilla

and most of the people miss the dancing gorilla because you're so focused on watching the ball well the same thing here you're so busy watching our trench coat detective interview to get to the end who did it

cuz you know they're gonna tell you I told you who's that they're gonna let you know who did it that you've miss all those things that are occurring around you so the reason why I did this is because it does involve a lot of

situational awareness and and situational awareness is around us every day and when we're taking care of our patients so it's those little things that we see when we see those changes in the monitor of our patient those little

things that happen in the room that you know maybe they're doing some reconstruction in your IR lab and your your MRI or something and and you've got to do a little workaround well that's not in your and we're gonna cover this a

little bit later with James riesen but that's not what you're used to and so your situational awareness changes and if you don't realize what's going on you may miss something and that something may be something very significant for

your patient and that's where those human factors come in where we have task overload under load communication factors that press on regardless how dangerous that can actually be so James

that was one example so these are there have a lot of potential complications reperfusion pulmonary edema is a very very big potential complication so you could get through the case patient does

great you open up multiple pulmonary arteries and then they start coughing up blood and then they end up started drowning in their own blood and the ICU so we do not want to push that and the initial papers that you can see down

below on that table they had a very high almost 10% in some cases pulmonary edema requiring treatment requiring patients being put on CPAP or being intubated and that is because they treated too much at one time

and so now as this when this first started in the early 2000s the operators were treating multiple segments at multiple times at one time and they were using large balloons and we figured out that that was what was killing patients

and so we changed our treatment so this is the first study that was ever performed for this it was performed by dr. Feinstein I believe this was published in circulation it was done in Harvard at MGH they had 18 patients with

36 month follow-up they all improved in their ability to walk as well as their lifestyle but many of them 11 out of 18 patients had reperfusion injury so this was the first paper and at that time it became the last paper because so many

patients did poorly but here's what they're sort of what they did and the ones that did okay they you could see that they had an improvement in the New York Heart Association classification again that just means they can walk

further they're not less short of breath and that they could walk further in 6 minutes which is again our sort of first test outcomes over time whence this has become increased so you can see that study was in 2001 and then

it kind of went away for a long time and it came back in 2012 in Japan where the most operators are there they've treated up to 255 procedures now since this slide was made we're up to a thousand in Japan and those patients are doing very

well but you'll notice that they have multiple procedures so again you don't try to one-and-done these patients they come back four to six times we've treated a couple patients where I work and we've treated that was patients four

times already and so they do much better but it's a slow slow and steady treatment so I want to wrap up with saying that the IR team is very critical to patients who are getting treated for PE we're involved in the diagnosis as

the radiology team acute and chronic PE it's very important to know as I've shown you in some of the examples and some of the images which when it's acute and versus chronic doing thrombolysis on a patient with chronic PE is useless all

you're doing is putting them at a risk you're not going to be able to break up that clot it's very important to have inter and multidisciplinary approach to patient care so interdisciplinary meaning everybody in this room nurses

technologists and physicians working together to take care of that patient that's on your table right now and multi-disciplinary because you have to work with cardiology vascular medicine the ICU teams and the

referring providers whether it's neurosurgery vascular surgery whomever it is who's Evers patient gets a PE you have to work together and it's very important again to have collaborative care in these patients if we're doing a

procedure and somebody notices that the patient is desaturating that's very very important when you're working in the pulmonary arteries if somebody notices that the patient's groin is bleeding you have to speak up so it's very important

that everybody is working together which is really what we need to do for these patients so there's my references and there's my kid so thank you guys very much hopefully this was helpful I'd be

workflow for pet MRI upon arrival the patient have to fill out questionnaires the MRI screening for contrast and allergy assessment pet screening form

the RT will review MRI screening for after he checked that the patients at MRI safe and no presence of a Mia Ferris fragments or anything he would give the paper to the RN the patient then will be escorted through the change room and

asked to put on robe and non slip shots this is these are the responsibilities of the nurse in our clinical workflow for pet MRI RN to review pet screening form and contrast questionnaire if patient have to receive gadolinium check

kidney function EGFR below 15 you notify the radiologist except for a of s below 30 you notify the radiologist check for allergies if allergic make sure patients is properly pre-medicated

check for Medicaid presence of medication patches and implanted infusion pumps now also you have to check for patient's blood glucose monitoring I have one but I would but I don't go inside the scanner so I'm safe

check for pregnancy status with pediatric patients we have a special process to follow the iron then obtains blood glucose and record if blood glucose is 70 to 199 we proceed with the scan anything above 200 we follow the

glycemic management with PET imaging flow chart and here's how our PET imaging flow chart looks like it looks complicated by its color coded it's three pages but I would like to show you some key points like the administration

of insulin is also based on the level of BMI you see on the arrow says BMI below 25 and there's another flow chart is if it's above 25 after that the patient will be brought back to the pet designated injection room

remember our pet MRI is located in zone three of the MRI area so prior to that the RT would the screen the patient again the patient would pass through the wall-mounted metal detector and nobody could go into song free without escorted

by the IRT or a nurse you have to swipe your ID to open the door mission when the patients in the hot room are in would obtain the height in centimeters and weight in kilos after that the RN now could do IV access once

secured you call the range of pharmacists that you're ready to inject so we wait until and the FDG dose would come up through the pneumatic children this is how our hot lab looks like the pneumatic tube to your left above is the

shower and we have the hoop to prepare for the dose or check for the dose and the wash station and once the those arrives the nurse injecting and the RT is scanning or the RT assisting just always two artists in one machine in our

MRI Department we have four magnets and only one is for MRI PET MRI it's always two artists in each machine so one RT is assisting you and with the patient so once the FDG arrives we do a patient identification using two patient

identifiers we check the label and the dose if it's correct the FDG then will be injected to the patient once injected we tell the patient they have to wait for 40 minutes during this time we instruct them to stay still not stay

still but limit movement and stimulation and inform them that we have a camera inside that room and the nurses in a and the nurses could monitor them in the nurse's station one RT will set up the scanner and computer

and patient will be screen and wondered prior to so on for so you get wandered twice check for ferrous presence patient then will be positioned on the scanner table by the pet mr technologies it takes 15

to 20 minutes for setup you have seen how the patient is position the whole body is covered by the coils and head is covered by another coil as anybody among he works in the institution who requires time out prior to injection raise your

hand please at ms KCC we do this is done by the injecting nurse and the RT is scanning the RT is reading information directly from the monitor not anywhere in the monitor while the nurse is comparing and listening into the using

the documents on hand this is done to ensure the five rights the right patient the right scan the right area your scanning the right contrast those and rate and method of administration as you all know is either given IV push or by

the dynamic or the injector timeout will be done if patient will be receiving gadolinium once the scan is finished IV access will be removed our artists are trying to remove and inject also so they are capable of removing the IV the

radiation card will be handed to the patient and paste after that patient would be assisted to the change room and discharge there is good thing when you change the patient into the robe and the non-skid

sucks because just in case there's a spill you're not sending that patient into the paper outfit they're not gonna be happy at all now I'm gonna bring you

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

year old patient diagnosed with

glioblastoma lesion is located on the left frontal lobe this is done after radiation and surgery the image to your left is just a regular MRI with contrast gadolinium is the one used this time we always be the drum in the context of

choice is gadolinium in our institution you could notice the big size of the glioblastoma lesion onto the left frontal lobe of the patient as indicated in the round ring patient went for treat radiation and surgery look at the two

images to your right the one in the middle is done Pet MRI without the contrast take a note on the area where the lesion was before there is normal uptake but you don't notice any abnormal uptake and on to your right is post

treatment MRI is that those two are done the same day and with gadolinium the deletion the area where the the ring it is enhanced by the contrast but look at it there is no hypermetabolic uptake that means that the lesion is not viable

so the malignancy is not viable this time this scan is done to evaluate the effectiveness of the treatment it's a good sign before I go to the third case

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

sometimes even you can see things that you would never be able to see in this card sorry fluoroscopic e with the PTC this is a patient after surgery somehow had I'm on going obstruction that we

couldn't resolve with the tube we put the scope in you can see how much debris there is in the CBDs wall or stones and when you look they they are black white black and orange stones but then we saw the sort of blue structure we obviously

that wasn't unnatural so we actually use the biopsy forceps to grab it and pull it out and then we put it on the table it actually happened to be the surgeon had accidentally hired the CBD off and so we actually resolve the blurry

obstruction by pulling this surgical ligature which had not been intended completely out the body so with the hardest scrub I don't think we ever would have known we would have never been able to diagnose it and probably

would have had to go into a fairly difficult surgery to have that resolved and so not only had the surgical bit literature being tied around the combo duct but it eroded right through the wall and that's why

see in on the in the luminal side so it's interesting that you would be able to see this and for IR to be doing this from the flank from the side in fact real close to where the pathologies versus GI going from the mouth through

the stomach up the room up through the CBD and so you can imagine how much more mechanic advantage in how close we are to the pathology and this is a natural extension what we do certainly the GI you know fight us sometimes for even as

using scopes but I think much as Vassar surgery GI and surgeons use the techniques and and equipment that we have I think it's time that we used to do the same with them and you can see it just happens to be another type of

structure and see the debris is from ischemia and then you can resolve a completely and get rid of all the stones and ultimately if this patient got his tubes removed filling defects from other benign sources so you would never know

that these are polyps because on filling defects or filling defects and we try biopsy these sometimes they tell us you don't have a you know cancer it would be hard to know if these are inflammatory polyps and you only see them when you do

a scope and you can see these fronds and causing a filling defect and it would be impossible probably to manage this until the patient is open and biopsy taken and even more bizarre is other inflammatory masses so this is a pseudo mess really

by inflammation you can see this scope image of this crazy paving and I told you biopsy it you would never know so just really just in the context of time I just want to summarize I know time is up but thank you very much for

opportunity to speak to you but I think I are and I are sweets are now doing more more Ballou interventions of increasing complexity thanks very much [Applause]

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.