Create an account and get 3 free clips per day.
Liver Mets (Oesophageal Cancer)|Radioembolization||Female
Liver Mets (Oesophageal Cancer)|Radioembolization||Female
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
acuteangioplastyanteriorballoonBalloon angioplasty systembifurcationcapturecapturedchronicContego MedicaldebrisdevicedistalembolicembolizationlesionlesionslimboccludedocclusionplanarpoplitealreocclusionriskrotationalrunoffstentstentstherapeutictibialtotalulcerationVanguard IEPvessel
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
assessmentbilateralbiomarkersCASCGuardcomparingcontracontralateraldetectabledetecteddifferenceemboliembolicEmbolic Prevention StentembolismenrolledhoursInspireMD)ipsilateralischemiclesionmaximalmicroneuroneurologicaloperativelypatientpatientsperformedperioperativeplaquepostpostoperativepredilationpreoperativeproteinrandomizedratescoresilentstenosisstentstentssubclinicaltesttherapeuticwallstentWALLSTENT (Boston Scientific) - Endoprosthesis / FilterWire (Boston Scientific) - Embolic Protection System
Improper And Suboptimal Antiplatelet Treatment Casts Doubt On All CAS Trials: What Are The Implications
Improper And Suboptimal Antiplatelet Treatment Casts Doubt On All CAS Trials: What Are The Implications
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
Right Axillary Access For Complex EVARs And TEVARs: Advantages, Technical Tips And Preventing Strokes
accessaorticarcharteryaxillaryCHEVARchimneydevicesendovascularextremityfenestratedFEVARFEVARChminimizemortalitypatientRt Axillary Artery ConduitsheathsheathsstrokesutureTEVARvisceralzone
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
12mm BSG34 & 26 mm Distal Extentions to Celiac Artery34mm MSGaccessaneurysmangiogramaorticarteryballoonceliaccenterscomorbiditiesDescending Thoracic Aneurysm 55mmdevicedevicesdiametersendovascularenrollenrollmentfeasibilitygrafthelicalinvestigationalischemialeftmainMedtronicnitinolpatientpatientspivotalproximalrevascularizationstentstent graft systemsubclavianTEVARtherapeuticthoracicthrombusValiant Mona LSAwire
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Single Session Continuous Aspiration Thrombectomy (SSCAT) For All DVT Utilizing Indigo Thrombectomy System
Single Session Continuous Aspiration Thrombectomy (SSCAT) For All DVT Utilizing Indigo Thrombectomy System
Angiojet Power Plus CatheterantegradeaspirationcatheterdaviesdeviceFinal Indigo + Lytics + Wall Stent +Indigo Aspiration System Devices (Pneumbra)Lt Ilio-Femoral DVTlyticsmaximaloccludedPower Pulse Spray Techniquethrombectomyunderlyingutilizedvenous
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Status Of Dual Layer Stents For CAS: Is Acute Occlusion An Issue And How To Avoid It
Status Of Dual Layer Stents For CAS: Is Acute Occlusion An Issue And How To Avoid It
acuteadequateantiplateletappositionarterybridgingcarotidcarotid stentcerebrovascularclopidogreldeploymentdualhighlightintravenouslylayermaneuvermeaningmedicationobservedocclusionpatientpatientsperformedporepredisposingpreparationpublicationsRoadSaverstenosisstentstentingstrokeTerumo interventional systemstherapythrombogenicthrombogenicityVeithwallstent
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
Technical Issues And Experience With MIS2ACE In 50 Patients Undergoing Endo TAAA Repair
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
Surgical Results Of Treating Hepatic Hemangioma And Literature Review
Surgical Results Of Treating Hepatic Hemangioma And Literature Review
adenomaasymptomaticbenignbleedbleedingbloodcapillarycavernouscenterdiagnosisdiagnosticdifferentialexperiencehemangiomahermannlivermalignantmortalityMRIperformsurgeonsurgerysymptomaticsymptomsTherapeutic / Diagnostictransplantationtumorsvessels
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
anatomyangioplastyarterialBaylis MedicalcontrastCVOdefinediagnosticfusedfusiongraftguidewireiliacLeft CIA PTA using Vessel ASSISTocclusionoutlinepatientphasePowerWire RFprettyPTAradialsnarestenosisstentstentstotallyveinsVessel ASSIST (GE Healthcare) - Fusion Imagingvesselswire
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
carotidcarotid stentCASCEAcerebraldemonstratedembolicendovascularincidenceinteractionmicroembolicplaqueprotectionproximalRoadSaverstentstentingstrengthsTerumo interventional systemstherapeuticunprotected
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
amputationangioplastyarteryballoonballoonsBoston ScientificcalcificationclinicalcoatedcompleteconcentrationdegreedistaldiureticdownstreamdrugendpointshealinglesionslimbnecrosispaclitaxelPaclitaxel-Coated PTA Balloon CatheterpatientpatientsPTAs with DCBRangerrutherfordsalvagestenosisstudytherapeuticwound
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
3D medical imagingaortaaugmentedcardiaccatheterCoreValve (Medtronic) - Transcatheter Aortic Valve Delivery Catheter System / TAVIguide (FEops) - Simulation technology / Holoscope (RealView Imaging) - 3D medical imagingDigital Light ShapingdynamicfloatingfocalfocusinteractmitralneedlepatientRealView ImagingsliceTherapeutic / DiagnosticvalveVeith
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
anatomiesaneurysmaneurysmsaortobifemoralaortoiliacarterybrachialbranchcatheterizedCHcustomizablecustomizedistallyendovascularevarexcellentFfenestratedFenestrated GraftfenestrationflarefollowupGORE MedicalGore Viabahn VBXgraftgraftshypogastriciliaciliacsmodelingoccludedocclusiveparallelpatencyperfusionproximalpseudoaneurysmPseudoaneurysm of the proximal juxtarenal graft anastomosisptferenalsSelective Catheterization of the Right CIA to Hypogastric Arterystenosisstentstent graft systemstentstherapeuticVBX Stent Graftvesselvesselsvisceral
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Estimation Of Long-Term Aortic Risk After EVAR: The LEAR Model: How Can It Guide And Modulate Surveillance Protocols
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque

One last case of this kind of communication patient who had the esophagial cancer treated six years earlier, she developed painful liver mets in the right lobe plus one in the left, it was decided to go for radioembo. This is the gastroduodenal with the right gastroepiploic artery which is hypertrophied in that case, and the fellow who did the procedure decided to occlude

it for any reason that I don't clearly understand. But at the end of the day it was occluded. Decided also because the treatment was scheduled to be in two sessions, one for the right lobe with a very high dose of particles to treat that very large lesion and then the left lobe, the second intent

with the lower the dose to protect the liver function. The occluded segment four branch to redistributing two branches instead of three and then this is the result of the injection in the left hepatic branch. And here also, through the ligament that attaches the left lobe

to the cardial area, you have those tiny branches goes up and are actually feeding the stomach. So those branches are not also very easy to see. There are multiples so we decided to cancel the radioembo on the left side and to switch for an ablation.

So standard anatomy must be known that for sure there are many branches that connects the left lobe to the gastric area, and they must be known, they must be recognized. They are not very hard to recognize if you know the standard anatomy. And I would comment about special attention to patient after surgery.

You might have the anatomical landmarks are not the same. They are changed and you might recruit additional vessels from the liver to the stomach. And also from the stomach or from the colon to the liver. So that situation is also at risk when you treat liver tumors.

- Yeah now, I'm talking about another kind of vessel preparation device, which is dedicated to prevent the occurrence of embolic events and with these complications. That's a very typical appearance of an occluded stent with appositional stent thrombosis up to the femur bifurcation.

If you treat such a lesion simply with balloon angioplasty, you will frequently see some embolic debris going downstream, residing in this total occlusion of the distal pocket heel artery as a result of an embolus, which is fixed at the bifurcation of

the anterior tibial and the tibial planar trunk, what you can see over here. So rates of macro embolization have been described as high as 38% after femoral popliteal angioplasty. It can be associated with limb loss.

There is a risk of limb loss may be higher in patients suffering from poor run-off and critical limb ischemia. There is a higher rate of embolization for in-stent restenosis, in particular, in occluded stents and chronic total occlusions.

There is a higher rate of cause and longer lesions. This is the Vanguard IEP system. It's an integrated balloon angioplasty and embolic protection device. You can see over here, the handle. There is a rotational knob, where you can,

a top knob where you can deploy, and recapture the filter. This is the balloon, which is coming into diameters and three different lengths. This is the filter, 60 millimeter in length. The pore size is 150 micron,

which is sufficient enough to capture relevant debris going downstream. The device is running over an 80,000 or 14,000 guide-wire. This is a short animation about how the device does work. It's basically like a traditional balloon.

So first of all, we have to cross the lesion with a guide-wire. After that, the device can be inserted. It's not necessary to pre-dilate the lesion due to the lower profile of the capture balloon. So first of all, the capture filter,

the filter is exposed to the vessel wall. Then you perform your pre-dilatation or your dilatation. You have to wait a couple of second until the full deflation of the balloon, and then you recapture the filter, and remove the embolic debris.

So when to use it? Well, at higher risk for embolization, I already mentioned, which kind of lesions are at risk and at higher risk of clinical consequences that should come if embolization will occur. Here visible thrombus, acute limb ischemia,

chronic total occlusion, ulceration and calcification, large plaque volume and in-stent reocclusion of course. The ENTRAP Study was just recently finished. Regarding enrollment, more than 100 patients had been enrolled. I will share with you now the results

of an interim analysis of the first 50 patients. It's a prospective multi-center, non-randomized single-arm study with 30-day safety, and acute performance follow-up. The objective was to provide post-market data in the European Union to provide support for FDA clearance.

This is the balloon as you have seen already. It's coming in five and six millimeter diameter, and in lengths of 80, 120 and 200 millimeters. This is now the primary safety end point at 30 days. 53 subjects had been enrolled. There was no event.

So the safety composite end point was reached in 100%. The device success was also 100%. So all those lesions that had been intended to be treated could be approached with the device. The device could be removed successfully. This is a case example with short lesion

of the distal SFA. This is the device in place. That's the result after intervention. That's the debris which was captured inside the filter. Some more case examples of more massive debris captured in the tip of the filter,

in particular, in longer distance total occlusions. Even if this is not a total occlusion, you may see later on that in this diffused long distance SFA lesion, significant debris was captured. Considering the size of this embolus,

if this would have been a patient under CLI conditions with a single runoff vessel, this would have potentially harmed the patient. Thank you very much.

- [Professor Veith] Laura, Welcome. - Thank you Professor Veith, thank you to everybody and good morning. It's a great pleasure, to have the possibility to present the result of this randomized trial we performed near Rome in Italy.

Risk of CAS-related embolism was maximal during the first phases of the second procedure, the filter positioning predilation and deployment and post dilatation. But it continues over time with nithinol expansion so that we have an interaction between the stent struts

and the plaque that can last up to 28 or 30 days that is the so called plaque healing period. This is why over time different technique and devices have been developed in order to keep to a minimum the rate of perioperative neurological embolization.

This is why we have, nowadays, membrane-covered stent or mesh-covered stent. But a question we have to answer, in our days are, "are mesh covered stents able to capture every kind of embolism?" Even the off-table one.

This is why they have been designed. That is to say the embolism that occurs after the patient has left the operating room. This is why we started this randomized trial with the aim of comparing the rate of off-table subclinical neurological events

in two groups of patients submitted to CAS with CGuard or WALLSTENT and distal embolic protection device in all of them. We enrolled patient affected by asymptomatic carotid stenosis more than 70% and no previous brain ischemic lesion

detected at preoperative DW-MRI. The primary outcome was the rate of perioperative up to 72 hour post peri operatively in neurological ischemic events detected by DW-MRI in the two CAS group. And secondary outcome measure were the rise of (mumbles)

neuro biomarker as one on the better protein in NSE and the variation in post procedural mini mental state examination test in MoCA test score We enrolled 29 patients for each treatment group. The study protocol was composed by a preoperative DW-MRI and neuro psychometrics test assessment

and the assessment of blood levels of this two neuro biomarkers. Then, after the CAS procedure, we performed an immediate postoperative DW-MRI, we collect this sample up to 48 hours post operatively to assess the level of the neuro biomarkers

then assess 72 hour postoperatively we perform a new DW-MRI and a new assessment of neuro psychometric tests. 58 patient were randomized 29 per group. And we found one minor stroke in the CGuard group together with eight clinically silent lesion detected at 72 hours DW-MRI.

Seven patient presented in WALLSTENT group silent 72 DW-MRI lesion were no difference between the two groups but interestingly two patients presented immediately postoperatively DW-MRI lesions. Those lesion were no more detectable at 72 hours

this give doubts to what we are going to see with DW-MRI. When analyzing the side of the lesion, we found four ipsilateral lesion in the CGuard patient and four contra or bilateral lesion in this group while four ipsilateral were encountered in WALLSTENT patient and three contra or bilateral lesion

in the WALLSTENT group were no difference between the two groups. And as for the diameter of the lesion, there were incomparable in the two groups but more than five lesion were found in five CGuard patients, three WALLSTENT patient

with no significant difference within the two groups. A rise doubled of S1 of the better protein was observed at 48 hours in 24 patients, 12 of them presenting new DW-MRI lesions. And this was statistically significant when comparing the 48 level with the bars of one.

When comparing results between the two groups for the tests, we found for pre and post for MMSE and MoCA test no significant difference even if WALLSTENT patients presented better MoCA test post operatively and no significant difference for the postoperative score for both the neuro psychometric test between the two groups.

But when splitting patients not according to the treatment group but according to the presence of more or less than 5 lesion at DW-MRI, we found a significant difference in the postoperative score for both MMSE and MoCA test between both group pf patients.

To conclude, WALLSTENT and CGuard stent showed that not significant differences in micro embolism rate or micro emboli number at 72 postoperative hours DW-MRI, in our experience. 72 hour DW-MMRI lesion were associated to an increase in neuro biomarkers

and more than five lesion were significantly associated to a decrease in neuro psychometric postoperative score in both stent groups. But a not negligible number of bilateral or contralateral lesions were detected in both stent groups This is very important.

This is why, probably, (mumbles) are right when they show us what really happened into the arch when we perform a transfer more CAS and this is why, maybe,

the future can be to completely avoid the arch. I thank you for your attention.

- Thank you very much. I'm going to talk on Improper and Suboptimal Antiplatelet Therapy which is probably currently the standard on most carotid angioplasty stent trials and I'm going to show you how it could potentially affect all of the results we have seen so far. I have nothing to disclose.

So introduction, based on the composite end point of stroke/death in our technical trials, they're always, in all randomized trials Endarterectomy always did marginally better than Carotid angioplasty and stenting. However, a small shift, just about a one person shift

could make carotid artery stenting better could shift the results of all these carotid stent trials. Let's just look at CREST. I think it's the gold standard for randomized trial comparing endarterectomy with stenting. You can see the combined death, streak and MI rate.

For endarterectomy, it's 6.8%, for CAS, 7.2%. For stroke, again 2.3, 4.1. Again, it's a one person shift in a direction of making stents better could actually show that stents were favorable, but comparable to it, not just inferior.

Now if you look at the data on CREST, it's very interesting that the majority of the strokes, about 80% of the strokes happened after about 24 hours. In fact, most of them happened on the third day period. So it wasn't a technical issue. You know, the biggest issue with current stenting

that we find is that we have filters, we have floor reversal. They're very worried about the time we place the stent, that we balloon, pre- and post-, but it wasn't a technical issue. Something was happening after 24 hours.

Another interesting fact that no one speaks about is if you look at the CREST data a little bit in more detail, most of the mortality associated with the stenting was actually associated with an access site bleed.

So if you could really decrease the late strokes, if you can decrease the access site bleeds, I think stents can be performed better than endarterectomies. The study design for all stent trials, there was a mandatory dual antiplatelet therapy.

Almost all patients had to be on aspirin and Plavix and on CREST, interestingly, they had to be on 75 milligrams BID for Plavix so they were all on very high dose Plavix. Now here's the interesting thing about Plavix that most people don't know.

Plavix is what is called a pro-drug. It requires to be converted to its active component by the liver for antiplatelet effect. And the particular liver enzyme that converts Plavix to its active metabolic enzyme is very variable patient to patient

and you're born that way. You're either born where you can convert its active metabolite or you can't convert it to its active metabolite and a test that's called 2C19 is actually interesting approved and covered by Medicare and here's the people

that read the black box warning for Plavix, that looked at the package insert. I just cut and paste this on the package that said for Plavix. I'm just showing you a few lines from the package insert. Now next to aspirin, it's the commonest prescribed drug

by vascular specialists, but most people probably have not looked at the package insert that says effectiveness of Plavix depends on activation by a liver enzyme called 2C19 and goes on to say that tests are available to identify to 2C19 genotype.

And then they go on to actually give you a recommendation on the package insert that says consider alternative treatment strategies in patients identified as 2C19 poor metabolizers. Now these are the people who cannot metabolize Plavix and convert them to its active metabolite.

So let's look at the actual incidents. Now we know there is resistance to, in some patients, to aspirin, but the incident is so small it doesn't make worth our time or doesn't make it worth the patient's outcome to be able to test everyone for aspirin resistance,

but look at the incidents for Plavix resistance. Again, this is just a slide explaining what does resistance mean so if you're a normal metabolizer, which we hope that most of us would be, you're going to expect advocacy from Plavix at 75 milligrams once a day.

Other hand, let's say you're a rapid or ultrarapid metabolizer. You have a much higher risk of bleeding. And then if you go to the other side where you are normal, intermediate or poor metabolizer, you're not going to convert Plavix to its active metabolite

and poor metabolizers, it's like giving a placebo. And interestingly, I'm a poor metabolizer. I got myself tested. If I ever have a cardiac interventionalist give me Plavix, they're giving me a placebo. So let's look at the actual incidents

of all these subsets in patients and see whether that's going to be an issue. So we took this from about 7,000 patients and interestingly in only about 40%, NM stands for nominal metabolizer or normal metabolizers. So only 40% get the expected efficacy of Plavix.

Let's look at just the extremes. Let's just assume people with normal metabolizers, normal intermediate and the subgroup between the ultra rapid, the normals, they're all going to respond well to Plavix. Let's just look at the extremes.

Ultra rapid and poor metabolizers. So these are the people who are going to convert Plavix to a much higher concentration of its active metabolite, but have a much higher risk of bleeding. Ultra rapid metabolizers. Poor metabolizers, Plavix doesn't work.

4%, 3%. That's not a small incidence. Now in no way am I saying that carotid stent trials itselves are totally based on Plavix resistance, but just look at the data from CREST. Let's say the patients with poor metabolizers,

that's 3%, so these people did not get Plavix. Plavix does not affect you in doses of up to 600 milligram for people with poor metabolizers. Incidents of embolic events in CREST trial for carotid stents was 4%. This happened after three days.

I believe it's possibly related to platelet debris occurring in the stent on people who did not receive a liquid anti-platelet therapy. How about the people who had the groin bleed? Remember I told you that access site bleeds were most highly predictable mortality.

If you're the ultra rapid metabolizers, that incidence was 4%. So these were the people that convert Plavix with a very high dose of active metabolite, very high risk of bleeding. Access site bleed rate,

if you look at the major/minor rates, 4.1%, very close to the ultra rapid metabolizers. So fact remains that carotid angioplasty stenting post procedure events are highly dependent on appropriate antiplatelet therapy to minimize embolic events and to decrease groin bleeds.

So in conclusion, if we just included 2C19 normal metabolizers, as was recommended by the packaging insert, so just test the people, include the people on normal metabolizers, exclude the rest, we are probably going to shift the results in favor of carotid angioplasty and stenting.

Results of all carotid angioplasty stent trials need to be questioned as a significant number of patients in the carotid angioplasty stent arm did not receive appropriate antiplatelet therapy. Thank you very much.

- Good morning everybody. Here are my disclosures. So, upper extremity access is an important adjunct for some of the complex endovascular work that we do. It's necessary for chimney approaches, it's necessary for fenestrated at times. Intermittently for TEVAR, and for

what I like to call FEVARCh which is when you combine fenestrated repair with a chimney apporach for thoracoabdominals here in the U.S. Where we're more limited with the devices that we have available in our institutions for most of us. This shows you for a TEVAR with a patient

with an aortic occlusion through a right infracrevicular approach, we're able to place a conduit and then a 22-french dryseal sheath in order to place a TEVAR in a patient with a penetrating ulcer that had ruptured, and had an occluded aorta.

In addition, you can use this for complex techniques in the ascending aorta. Here you see a patient who had a prior heart transplant, developed a pseudoaneurysm in his suture line. We come in through a left axillary approach with our stiff wire.

We have a diagnostic catheter through the femoral. We're able to place a couple cuffs in an off-label fashion to treat this with a technically good result. For FEVARCh, as I mentioned, it's a good combination for a fenestrated repair.

Here you have a type IV thoraco fenestrated in place with a chimney in the left renal, we get additional seal zone up above the celiac this way. Here you see the vessels cannulated. And then with a nice type IV repaired in endovascular fashion, using a combination of techniques.

But the questions always arise. Which side? Which vessel? What's the stroke risk? How can we try to be as conscientious as possible to minimize those risks? Excuse me. So, anecdotally the right side has been less safe,

or concerned that it causes more troubles, but we feel like it's easier to work from the right side. Sorry. When you look at the image intensifier as it's coming in from the patient's left, we can all be together on the patient's right. We don't have to work underneath the image intensifier,

and felt like right was a better approach. So, can we minimize stroke risk for either side, but can we minimize stroke risk in general? So, what we typically do is tuck both arms, makes lateral imaging a lot easier to do rather than having an arm out.

Our anesthesiologist, although we try not to help them too much, but it actually makes it easier for them to have both arms available. When we look at which vessel is the best to use to try to do these techniques, we felt that the subclavian artery is a big challenge,

just the way it is above the clavicle, to be able to get multiple devices through there. We usually feel that the brachial artery's too small. Especially if you're going to place more than one sheath. So we like to call, at our institution, the Goldilocks phenomenon for those of you

who know that story, and the axillary artery is just right. And that's the one that we use. When we use only one or two sheaths we just do a direct puncture. Usually through a previously placed pledgeted stitch. It's a fairly easy exposure just through the pec major.

Split that muscle then divide the pec minor, and can get there relatively easily. This is what that looks like. You can see after a sheath's been removed, a pledgeted suture has been tied down and we get good hemostasis this way.

If we're going to use more than two sheaths, we prefer an axillary conduit, and here you see that approach. We use the self-sealing graft. Whenever I have more than two sheaths in, I always label the sheaths because

I can't remember what's in what vessel. So, you can see yes, I made there, I have another one labeled right renal, just so I can remember which sheath is in which vessel. We always navigate the arch first now. So we get all of our sheaths across the arch

before we selective catheterize the visceral vessels. We think this partly helps minimize that risk. Obviously, any arch manipulation is a concern, but if we can get everything done at once and then we can focus on the visceral segment. We feel like that's a better approach and seems

to be better for what we've done in our experience. So here's our results over the past five-ish years or so. Almost 400 aortic interventions total, with 72 of them requiring some sort of upper extremity access for different procedures. One for placement of zone zero device, which I showed you,

sac embolization, and two for imaging. We have these number of patients, and then all these chimney grafts that have been placed in different vessels. Here's the patients with different number of branches. Our access you can see here, with the majority

being done through right axillary approach. The technical success was high, mortality rate was reasonable in this group of patients. With the strokes being listed there. One rupture, which is treated with a covered stent. The strokes, two were ischemic,

one hemorrhagic, and one mixed. When you compare the group to our initial group, more women, longer hospital stay, more of the patients had prior aortic interventions, and the mortality rate was higher. So in conclusion, we think that

this is technically feasible to do. That right side is just as safe as left side, and that potentially the right side is better for type III arches. Thank you very much.

- Relevant disclosures are shown in this slide. So when we treat patients with Multi-Segment Disease, the more segments that are involved, the more complex the outcomes that we should expect, with regards to the patient comorbidities and the complexity of the operation. And this is made even more complex

when we add aortic dissection to the patient population. We know that a large proportion of patients who undergo Thoracic Endovascular Aortic Repair, require planned coverage of the left subclavian artery. And this also been demonstrated that it's an increase risk for stroke, spinal cord ischemia and other complications.

What are the options when we have to cover the left subclavian artery? Well we can just cover the artery, we no that. That's commonly performed in emergency situations. The current standard is to bypass or transpose the artery. Or provide a totally endovascular revascularization option

with some off-label use , such as In Situ or In Vitro Fenestration, Parallel Grafting or hopefully soon we will see and will have available branched graft devices. These devices are currently investigational and the focus today's talk will be this one,

the Valiant Mona Lisa Stent Graft System. Currently the main body device is available in diameters between thirty and forty-six millimeters and they are all fifteen centimeters long. The device is designed with flexible cuff, which mimics what we call the "volcano" on the main body.

It's a pivotal connection. And it's a two wire pre-loaded system with a main system wire and a wire through the left subclavian artery branch. And this has predominately been delivered with a through and through wire of

that left subclavian branch. The system is based on the valiant device with tip capture. The left subclavian artery branch is also unique to this system. It's a nitinol helical stent, with polyester fabric. It has a proximal flare,

which allows fixation in that volcano cone. Comes in three diameters and they're all the same length, forty millimeters, with a fifteen french profile. The delivery system, which is delivered from the groin, same access point as the main body device. We did complete the early feasibility study

with nine subjects at three sites. The goals were to validate the procedure, assess safety, and collect imaging data. We did publish that a couple of years ago. Here's a case demonstration. This was a sixty-nine year old female

with a descending thoracic aneurysm at five and a half centimeters. The patient's anatomy met the criteria. We selected a thirty-four millimeter diameter device, with a twelve millimeter branch. And we chose to extend this repair down to the celiac artery

in this patient. The pre-operative CT scan looks like this. The aneurysm looks bigger with thrombus in it of course, but that was the device we got around the corner of that arch to get our seal. Access is obtained both from the groin

and from the arm as is common with many TEVAR procedures. Here we have the device up in the aorta. There's our access from the arm. We had a separate puncture for a "pigtail". Once the device is in position, we "snare" the wire, we confirm that we don't have

any "wire wrap". You can see we went into a areal position to doubly confirm that. And then the device is expanded, and as it's on sheath, it does creep forward a bit. And we have capture with that through and through wire

and tension on that through and through wire, while we expand the rest of the device. And you can see that the volcano is aligned right underneath the left subclavian artery. There's markers there where there's two rings, the outer and the inner ring of that volcano.

Once the device is deployed with that through and through wire access, we deliver the branch into the left subclavian artery. This is a slow deployment, so that we align the flair within the volcano and that volcano is flexible. In some patients, it sort of sits right at the level of

the aorta, like you see in this patient. Sometimes it protrudes. It doesn't really matter, as long as the two things are mated together. There is some flexibility built in the system. In this particular patient,

we had a little leak, so we were able to balloon this as we would any others. For a TEVAR, we just balloon both devices at the same time. Completion Angiogram shown here and we had an excellent result with this patient at six months and at a year the aneurysm continued

to re-sorb. In that series, we had successful delivery and deployment of all the devices. The duration of the procedure has improved with time. Several of these patients required an extension. We are in the feasibility phase.

We've added additional centers and we continue to enroll patients. And one of the things that we've learned is that details about the association between branches and the disease are critical. And patient selection is critical.

And we will continue to complete enrollment for the feasibility and hopefully we will see the pivotal studies start soon. Thank you very much

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- And thanks to Dr. Veith for the opportunity to get involved. Here's my disclosures. Like so many in the audience, for years and years we've had awesome results with the AngioJet from Boston Sci. We know that this rheolytic system works quite well.

However it has a black box warning for PE due to the hemolysis and the adenosine that can be extruded out. It's oftentimes not stand alone. It's not used for stroke and there can be some renal issues. But we've had excellent results with it over the years,

but at the end of the day often times you still need lytics. And I think Professor Davies just eluded to the potential problems not only medical, but legal as well of lytics. Therefore for the past four plus years we've utilized this as well as other thrombectomy devices.

This is the Indigo device from Penumbra. I'm certain by now most of your are familiar with it, but if not what it is it's a braided catheter that's very atraumatic and soft at the tip. It can come straight in or torqued so you can have some directionality to it.

And then what it also has is this separator technology which is really just like a glorified pipe cleaner to be honest. You're going to go in and out with this device as I'll show you here in a second, to clear the lumen while you're

allowing for continuous aspiration through this system. We learned from our neurosurgery colleagues who utilized typically the CAT five, sometimes six for their stroke patients, but now there's CAT three, five, six, and eight. And within the next probably three to four months

there's going to be CAT 10 or possibly even 12 out there. This is what you have. It's all pretty simple. You cross your lesion with the wire. You then bring your catheter across. You connect it to this suction device,

hit the green button and away you go. You get maximal aspiration. And what's nice about it is in particular for the CAT eight with the XTORQ, as you can see you can get out to vessel 25 millimeters in diameter.

So essentially a cava. This shows you how powerful this is. This is one of my patient's with a standard nitinol stent. A Zilver PTX was occluded and you can see how powerful this device

is with maximal aspiration. Turn it off and obviously the self expanding stent goes right back to normal. So after our results with the ALI patients, and we presented our data at the Midwest meeting in St. Louis earlier this fall,

we start looking at our DVT patients and here you can see an effort thrombosis. Somebody here. We went eight French basilic. Ultrasound guided. Put an eight French Indigo in and with no lytics,

were able to clean this out. We then went on to, I put him on a DOAC. Today I'd probably use Lovenox for two weeks. And then he went home. He's a 32 year old.

Went to Disney World with his family and then came back later on for is infraclavicular rib excision. Here's another one of my patients, Lena. She's a 19 year old who started her OPCs on the way back to Bellarmine College in Louisville.

And as you can see here, she is a likely underlying May Thurner lesion. Extensive of femoral DVT. As you look over here to the screen left to screen right, you can see that we crossed it, put our catheter up in the common iliac vein,

as as you can see we're twisting it around to get to the edges of the vessel, the whole iliofemoral system. Here's what you get afterwards. You get antegrade flow. Certainly there's no device yet that's perfect at this.

For this particular patient we gave her 14 milligrams of lytics then did our IVUS then did our wallstent. And she's done quite well. We use it for arms. We use it for legs.

We use it for filters as well as you can see here with this occluded filter. And often times the picture you're going to get is an underlying acute on chronic thrombosis here. And we later on came back and took that filter out. So I think there's no question there's less lytics with it.

Earlier this year we presented at the American Venous Forum in Tucson. Our initial experiences with vacuum-assisted thrombectomy for DVT. And what showed is that often times you can get antegrade flow as I'll show you here.

Some of them are single sessions. But more importantly just as efficacious as it is it's safe. You can see here that we had minimal blood loss, low transfusions, and here's our breakdown. As we use it for all venous pathologies as you can see.

So at the time when we looked at our first 20, you can see that there were some that were single session therapy. And that's before. We've now added the turbo pulse technique where you're going to lace it with

14 milligrams of TPA through a unifused catheter, wait 20 minutes, go around get some coffee, whatever you need to do, come back and then use the Indigo. So at the end of the day, I think as Professor Davies eluded to, there are major complications with lytics.

This is not what we need for our patients. So in 2018 we can either continue to load with dangerous lytics or minimize lytics, adopt continuous aspiration thrombectomy. It's your all's choice. So thanks so much.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you very much for the kind introduction, and I'd like to thank the organizers, especially Frank Veith for getting back to this outstanding and very important conference. My duty is now to talk about the acute status of carotid artery stenting is acute occlusion an issue? Here are my disclosures.

Probably you might be aware, for sure you're aware about pore size and probably smaller pore size, the small material load might be a predisposing factor for enhanced thrombogenicity in these dual layer stents, as you're probably quite familiar with the CGUARD, Roadsaver and GORE, I will focus my talk a little bit

on the Roadsaver stent, since I have the most experience with the Roadsaver stent from the early beginning when this device was on the market in Europe. If you go back a little bit and look at the early publications of CGUARD, Roadsaver and GORE stent, then acute occlusion the early reports show that

very clearly safety, especially at 30 days in terms of major cardiac and cerebrovascular events. They are very, very safe, 0% in all these early publications deal with these stents. But you're probably aware of this publication, released end of last year, where a German group in Hamburg

deals with carotid artery stenosis during acute stroke treatment. They used the dual layer stent, the Roadsaver stent or the Casper stent in 20 cases, in the same time period from 2011 to 2016, they used also the Wallstent and the VIVEXX stent,

in 27 cases in total and there was a major difference, in terms of acute stent occlusion, and for the Roadsaver or Casper stent, it was 45%, they also had an explanation for that, potential explanations probably due to the increase of thrombogenic material due to the dual layer

insufficient preparation with antiplatelet medication, higher patient counts in the patients who occluded, smaller stent diameters, and the patients were not administered PTA, meaning Bridging during acute stroke patient treatment, but it was highlighted that all patients received ASA of 500mg intravenously

during the procedure. But there are some questions coming up. What is a small stent diameter? Post-dilatation at what diameter, once the stent was implanted? What about wall apposition of the stent?

Correct stent deployment with the Vicis maneuver performed or not and was the ACT adjusted during the procedure, meaning did they perform an adequate heparinization? These are open questions and I would like to share our experience from Flensburg,

so we have treated nearly 200 patients with the Roadsaver stent from 2015 until now. In 42 patients, we used this stent exclusively for acute stroke treatment and never, ever observed in both groups, in the symptomatic and asymptomatic group and in the group of acute stroke treatment,

we never observed an acute occlusion. How can we explain this kind of difference that neither acute occlusion occurred in our patient group? Probably there are some options how we can avoid stent thrombosis, how we can minimize this. For emergency treatment, probably this might be related

to bridging therapies, though in Germany a lot of patients who received acute stroke treatment are on bridging therapy since the way to the hospital is sometimes rather long, there probably might be a predisposing factor to re-avoid stent thrombosis and so-called tandem lesions if the stent placement is needed.

But we also take care of antiplatelet medication peri-procedurally, and we do this with ASA, as the Hamburg group did and at one day, we always start, in all emergency patients with clopidogrel loading dose after positive CT where we could exclude any bleeding and post-procedurally we go

for dual anti-platelet therapy for at least six months, meaning clopidogrel and ASA, and this is something probably of utmost importance. It's quite the same for elective patients, I think you're quite familiar with this, and I want to highlight the post-procedural clopidogrel

might be the key of success for six months combined with ASA life-long. Stent preparation is also an issue, at least 7 or 8 diameters we have to choose for the correct lengths we have to perform adequate stent deployment and adequate post-dilatation

for at least 5mm. In a lot of trials the Roadsaver concept has been proven, and this is due to the adequate preparation of the stent and ongoing platelet preparation, and this was also highlight in the meta-analysis with the death and stroke rate of .02% in all cases.

Roadsaver study is performed now planned, I am a member of the steering committee. In 2000 patients, so far 132 patients have been included and I want to rise up once again the question, is acute occlusion and issue? No, I don't think so, since you keep antiplatelet medication

in mind and be aware of adequate stent sizing. I highly appreciated your attention, thank you very much.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- Thank you, good morning everybody. Thank you for the kind invitation, Professor Veith, it's an honor for me to be here again this year in New York. I will concentrate my talk about the technical issues and the experience in the data we have already published about the MISACE in more than 50 patients.

So I have no disclosure regarded to this topic. As you already heard, the MISACE means the occlusion of the main stem of several segmental arteries to preserve the capability of the collateral network to build new arteries. And as a result, we developed

the ischemic preconditioning of the spinal cord. Why is this so useful? Because it's an entirely endovascular first stage of a staged approach to treat thoracoabdominal aortic aneurysm in order to reduce the ischemic spinal cord injury.

How do you perform the MISACE? Basically, we perform the procedure in local anesthesia, through a percutaneous trans-femoral access using a small-bore sheath. The patient is awake, that means has no cerebrospinal fluid damage

so we can monitor the patient's neurological for at least 48 hours after the procedure. So, after the puncture of the common femoral artery, using a technique of "tower of power" in order to cannulate the segmental arteries. As you can see here, we started with a guiding catheter,

then we place a diagnosis catheter and inside, a microcatheter that is placed inside the segmental artery. Then we started occlusion of the ostial segment of the segmental artery. We use coils or vascular plugs.

We don't recommend the use of fluids due to the possible distal embolization and the consequences. Since we have started this procedure, we have gained a lot of experience and we have started to ask,

what is a sufficient coilembolization? As you can see here, this artery, we can see densely packed coils inside, but you can see still blood flowing after the coil. So, was it always occluding, or is it spontaneous revascularization?

That, we do not know yet. The question, is it flow reduction enough to have a ischemic precondition of the spinal cord? Another example here, you can see a densely packed coil in the segmental artery at the thoracic level. There are some other published data

with some coils in the segm the question is, which technique should we use, the first one, the second one? Another question, is which kind of coil to use? For the moment, we can only use the standard coils

in our center, but I think if we have 3-D or volume coils or if you have microvascular plugs that are very compatible with the microcatheter, we have a superior packing density, we can achieve a better occlusion of the segmental artery, and we have less procedure time and radiation time,

but we have to think of the cost. We recommend to start embolization of the segmental artery, of course, at the origin of it, and not too far inside. Here, you can see a patient where we have coiled a segmental artery very shortly after the ostium,

but you can see here also the development of the collaterals just shortly before the coils, leading to the perfusion of segmental artery that was above it. As you can see, we still have a lot of open question. Is it every patent segmental artery

a necessary to coil? Should we coil only the large ones? I show you an example here, you can see this segmental artery with a high-grade stenotic twisted ostium due to aortic enlargement.

I can show you this segmental artery, six weeks after coiling of a segmental artery lower, and you can see that the ostium, it's no more stenotic and you can see also the connection between the segmental artery below to the initial segmental artery.

Another question that we have, at which level should we start the MISACE? Here, can see a patient with a post-dissection aneurysm after pedicle technique, so these are all uncovered dissection stent, and you can see very nicely the anterior spinal artery

feeded by the anterior radiculomedullary artery from the segmental artery. So, in this patient, in fact, we start the coiling exactly at the seat of this level, we start to coil the segmental artery that feeds the anterior spinal artery.

So, normally we find this artery of the Th 9 L1, and you can see here we go upwards and downwards. We have some challenges with aneurysm sac enlargement, in this case, we use this technique to open the angle of the catheter, we can use also deflectable steerable sheath

in order to reach the segmental artery. And you can see here our results, again, I just will go fast through those, we have treated 57 patients, most of them were Type II, Type III aortic aneurysms. We have found in median nine patent segmental artery

at the level of the aorta to be treated, between 2 and 26, and we have coiled in multiple sessions with a mean interval of 60 days between the sessions. No sooner than seven days we perform the complete exclusion of the aneurysm

in order to let the collateral to develop, and you can see our result: at 30 days we had no spinal cord ischemia. So I can conclude that our first experience suggest that MISACE is feasible, safe, and effective, but segmental artery coiling in thoracoabdominal aneurysm

can be challenging, it's a new field with many open questions, and I looking forward for the results with PAPA_ARTiS study. Thank you a lot.

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- (speaks French) liver surgeon I perform hepatobiliary surgery and liver transplantation. Maybe I don't belong here, I so probably more rested than anybody in the room here. But today I will present about liver surgery and hepatectomy. I work at The Royal Free where I have the honor and pleasure to have seen Krassi. We are in the

little island in the North Sea. There is many things going wrong there including Brexit but, the guys uh, we have a major advantage. The NHS favors centralization. Centralization look there: London is bigger than New York Uh, eight million, 50 million greater London

and we drain about six millions of people with our HPB center. In the center we perform about 2,000 operations, of major surgery. In five years, half of them are liver surgery. And most of them have uh, benign, malignant tumor. A very small percentage have benign tumor.

I count here for complications uh, and mortality look there, 3.1% of only the malignant because the benign are young people and we perform a different strategy, they have no mortality. Today Hepatic Hemangioma, look there it is uh, 1898 is a key year. Not only the first description

of the lady that died after bleeding out in an autopsy but also, Hermann Pfannenstiel uh, Professor Pfannenstiel. I will introduce you to him. He described the first operation. Now, we're talking of congenital malformations, they uh, lesions occur in the liver and they may grow,

but only 20% they grow. They have a chaotic network of vessels and they have fibrotic, fibrotic development within it. I introduce you Hermann Pfannenstiel, he was a gynecologist, famous, famous, important incision that we still use today.

Remember him, we'll talk to him later. Microscopically, the microscopic is our well-circumscribed lesion, they're compressible. Important you see down there that they compress the liver that is normal close to it. This has an implication because if you operate,

you fill find a blood duct or a vessel and it will bleed or leak by. Microscopically, they are ectatic blood vessels and they are fed by arteries. This is also an important point, for therapy. Separated by fibrous septa, this is also important

because they become harder and they become bigger. And they have distorted blood vessels. They're more frequent uh, benign tumor. Prevalence up to 7%, they have non-neoplastic this must be clear, they are non-cancer. The proliferation of endothelial cells, women

have more and particularly pregnant women, more pregnancy or contraceptive. We divide them in cavernous and capillary and we'll have a word on that. Symptomatic being half of the cases, multiple in 10%, they rarely bleed and they rarely rupture.

Capillary Hemangiomas cells small, I show you an MRI here. The differential with HCC liver cancer is most important. They both are theorized but they continue to appear on late face. They are asymptomatic please, do not touch them, they do no harm.

And so we will not speak of them. We speak only of the cavernous hemangioma. And here, the cavernous hemangioma bleeds Oh my God, no, it's not true. There are 83 reports of bleeding since the report of Hermann Pfannenstiel. Uh, 97 cases, adenomas bleed more frequently.

Frequently, in the past they were confused. Hemangioma and adenoma, adenoma does bleed. There are only true cases, 46 in the literature. Size is not important and they are very rare in elderly people.

This is what we see when they are giant cavernous hemangiomas, they're serious, they are rather easy to diagnose. Diagnostic criteria, uh, look up typical for uh, cavernous hemangioma. How do you point here? Yep, you stop. If you then see that you have

an atypical hemangioma, you jump over to an MRI. MRI is too nowadays, diagnostic and uh, the important thing is you stop. Once you have the diagnosis with MRI, you stop, do nothing yet, do not follow, bye-bye. Treatment modalities surgery: Selective TAE, Radiotherapy, Medication: two classes,

Propranolol, to decrease the hyper circulation. Bevacizumab as a class of drugs of inhibitors of inferior growths and endories, eventually are cold. This is seminal paper, about 35 years ago "Do not treat asymptomatic patients." This is a key: do not bother with hemangioma.

If you do have the algorithm, you look at complaints that can present incidentally when they have complained, not complained, no treatment of abdominal pain. Unrelated to no treatment, we have to eventually make sure that the pain is not related to the cavernous hemangioma. If there is other futures

like compression giant, you can do surgery. If you have a doubt in diagnosis, today rare with MRI, then you can perform a biopsy. The surgical indication then remain progress, severe, disabling symptoms. Diagnostic uncertainty nowadays not the case, with MRI.

Consumptive coagulopathy or Kasabach-Merritt syndrome is a serious, we will see when you perform human transplants. Spontaneous rupture with bleeding as an emergency. Rapid growth in 25%. This is a paper that shows that the size of the cavernous hemangioma is here,

and you can see that operation has been performed for larger size, however, look that even in non-symptomatic or partially asymptomatic patients, you can reach sizes up to 15 centimeters. And this a review of the literature from a Chinese group where they revised a thousand to a hundred cases,

no mortality in the series and enucleation versus the anatomic resection is better. Less complications, less blood less, less time of surgery, and less hospital stay. So please, in this case of surgery, we do enucleation. I was asked by my society the HPBA to speak

about transplantation for liver tumor. You can that an indication is unresectable disease, severe symptoms and mass occupying effects. Pre-cancerous behavior is not for hemangioma only for adenoma differential diagnosis with HCC. And you have to be attentive that you avoid

liver insufficiency during your resection. So, in conclusion, for benign lesions, hemangioma technically is the only indication. And now the systematic review that shows around several emothing United States UNOS and the ELTR Several, several benign tumors but if you break down

for type of tumors you see that most of them are Polycystic disease or partly cavernous hemangioma are very low. 77 in Europe, out of 97,000 operation of transplantation. So, let's get an old paper. The pioneer of transplantation again, extremely low,

one out of 3,200. An extremely low percentage. It's my personal experience I was working at Essen, Germany. Almost a thousand transplants we performed. Unfortunately most of them I did and we never transplanted one hemangioma, my experience for transplantation is zero because it should not be done.

So, my advice for hemangioma. Biopsy not advised, see a liver surgeon in a serious center, diagnosis is done my MRI, observe doubt symptoms and observe. Let the patient beg you for surgery, if significant increase in size and symptoms, we can do surgery. Embolization is possible.

Sometimes it's harmful. The role of the surgeon is to confirm the diagnosis, differentiate it from cancer, exclude causes of other symptoms and avoid unnecessary surgery that's the main thing. Surgery for severe symptoms of Kasabach-Merritt. Only for complicated symptomatic lesions, or where the

diagnosis is uncertain. Ladies and gentleman, I will conclude with a couple of questions. If you have a daughter or son with a liver tumor, would you go to a center or a competent surgeon or to a gynecologist. Professor Pfannenstiel for instance or another doctor. If your car has a problem,

would you go to a good mechanic once for all, or to a small shop for 20-40 times. It is a matter of experience and a matter of costs. And with this, I am ready for your questions. - [Audience Member #1] When have you personally operated on these lesions?

- [Speaker] I am. And the experience that I have in the past I seemed young but I practiced for many years. When I started 25-30 years ago, we were operating many of these because we were not so certain. Then MRI came, and MRI basically made the diagnosis so easy and straight-forward and we started observing

patients. We still do operate today, but they are very large tumors and when I do personally, I avoid the androbolization before because you have more skylotec reaction, just (grainy sound effect) to peel it away from the normal parenchymal.

This is our experience. - [Audience] Thank you. - [Speaker] Thank you very much, yes? - [Audience Member #2] Yes, one question. When you operate, and with all of the experience you have, what are the complications of

(mumbles) - [Speaker] The main, so first of all, there has been also an evolution in the type of operation we don't do anymore the resections where you have some bi-leaks. If you operate correctly, it's bleeding and one infection not one born. If you have to watch bi-leak is the one

that you have to watch and that's because the tissue is pushed away and you may miss something during the enucleation.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- I'd like to share with you our experience using tools to improve outcomes. These are my disclosures. So first of all we need to define the anatomy well using CTA and MRA and with using multiple reformats and 3D reconstructions. So then we can use 3D fusion with a DSA or with a flouro

or in this case as I showed in my presentation before you can use a DSA fused with a CT phase, they were required before. And also you can use the Integrated Registration like this, when you can use very helpful for the RF wire

because you can see where the RF wire starts and the snare ends. We can also use this for the arterial system. I can see a high grade stenosis in the Common iliac and you can use the 3D to define for your 3D roadmapping you can use on the table,

or you can use two methods to define the artery. Usually you can use the yellow outline to define the anatomy or the green to define the center. And then it's a simple case, 50 minutes, 50 minutes of ccs of contrast,

very simple, straightforward. Another everybody knows about the you know we can use a small amount of contrast to define the whole anatomy of one leg. However one thing that is relatively new is to use a 3D

in order to map, to show you the way out so you can do in this case here multiple segmental synosis, the drug-eluting-balloon angioplasty using the 3D roadmap as a reference. Also about this case using radial fre--

radial access to peripheral. Using a fusion of image you can see the outline of the artery. You can see where the high grade stenosis is with a minimum amount of contrast. You only use contrast when you are about

to do your angiogram or your angioplasty and after. And that but all everything else you use only the guide wires and cathers are advanced only used in image guidance without any contrast at all. We also been doing as I showed before the simultaneous injection.

So here I have two catheters, one coming from above, one coming from below to define this intravenous occlusion. Very helpful during through the and after the 3D it can be helpful. Like in this case when you can see this orange line is where

the RF wire is going to be advanced. As you can see the breathing, during the breathing cycle the pleura is on the way of the RF wire track. Pretty dangerous stuff. So this case what we did we asked the anesthesiologist

to have the patient in respiratory breath holding inspiration. We're able to hyperextend the lungs, cross with the RF wire without any complication. So very useful. And also you can use this outline yellow lines here

to define anatomy can help you to define where you need to put the stents. Make sure you're covering everything and having better outcomes at the end of the case without overexposure of radiation. And also at the end you can use the same volt of metric

reconstruction to check where you are, to placement of the stent and if you'd covered all the lesion that you had. The Cone beam CT can be used for also for the 3D model fusion. As you can see that you can use in it with fluoro as I

mentioned before you can do the three views in order to make sure that the vessels are aligned. And those are they follow when you rotate the table. And then you can have a pretty good outcome at the end of the day at of the case. In that case that potentially could be very catastrophic

close to the Supra aortic vessels. What about this case of a very dramatic, symptomatic varicose veins. We didn't know and didn't even know where to start in this case. We're trying to find our way through here trying to

understand what we needed to do. I thought we need to recanalize this with this. Did a 3D recan-- a spin and we saw ours totally off. This is the RFY totally interior and the snare as a target was posterior in the ASGUS.

Totally different, different plans. Eventually we found where we needed to be. We fused with the CAT scan, CT phase before, found the right spot and then were able to use

Integrated registration for the careful recanalization above the strip-- interiorly from the Supraaortic vessels. As you can see that's the beginning, that's the end. And also these was important to show us where we working.

We working a very small space between the sternal and the Supraaortic vessels using the RF wire. And this the only technology would allowed us to do this type of thing. Basically we created a percutaneous in the vascular stent bypass graft.

You can you see you use a curved RF wire to be able to go back to the snare. And that once we snare out is just conventional angioplasty recanalized with covered stents and pretty good outcome. On a year and a half follow-up remarkable improvement in this patient's symptoms.

Another patient with a large graft in the large swelling thigh, maybe graft on the right thigh with associated occlusion of the iliac veins and inclusion of the IVC and occlusion of the filter. So we did here is that we fused the maps of the arterial

phase and the venous phase and then we reconstruct in a 3D model. And doing that we're able to really understand the beginning of the problem and the end of the problem above the filter and the correlation with the arteries. So as you can see,

the these was very tortuous segments. We need to cross with the RF wire close to the iliac veins and then to the External iliac artery close to the Common iliac artery. But eventually we were able to help find a track. Very successfully,

very safe and then it's just convention technique. We reconstructed with covered stents. This is predisposed, pretty good outcome. As you can see this is the CT before, that's the CT after the swelling's totally gone

and the stents are widely open. So in conclusion these techniques can help a reduction of radiation exposure, volume of contrast media, lower complication, lower procedure time.

In other words can offer higher value in patient care. Thank you.

- Thanks Frank, for inviting me again. We know very well that CAS and CEA are, and will remain, emboli-generating. This is an algorithm in which we can see the microembolic profile during unprotected carotid stenting. But I am a vascular surgeon, oriented to an endovascular approach, and I believe strongly

in carotid artery stenting renaissance, when we use tips, tricks and new devices. So the real difference between the two procedures are between 0 and 30 days, and this is demonstrated by the result of 10 year by CREST and by ACT 1. So, but the procedure must be protected.

Because as the Kastrup metanalisys said, the unprotected procedure are three, four-fold increase for cerebral protection embolic. And these are the recommendations from European Society of Cardiology and American Heart Association, regarding

the use of embolic protection devices. But what kind of embolic protection device? We know very well that the cerebral distal protection have some strengths and some weaknesses. And the same is for the cerebral proximal protection with the strengths and weaknesses.

So, but this is rarely used, both in the rest of Europe and in Italy. But what about dissent? We are four studies with only prospective, including a population cohort larger than 100 patients. From Italy, from Germany, from Piotr Michalik,

from Poland, again from Italy. As these are the results that are near with the rod centered stent, with very satisfactory results. With very low rate of... This is the CLEAR-ROAD study, with very low rate of complication.

This is a total of 556 patients who underwent stenting with the new generation of stent. This is the incidence of adverse events at 30 days. So, how we can apply the benefit to our procedures with OCT? And OCT demonstrated the safety of new stent design. And why I use OCT in carotids?

With two main issues. A high definition of carotid plaque, and the correct interaction between plaque and stent. With the high definition of carotid dark in order to identify the plaque type. The degree and area of stenosis,

the presence of ulceration, and the thrombus. I study the interaction between plaque and stent. In order to study the stent apposition, the stent malapposition, the fibrous cap rupture, and the plaque micro-prolaps. So this data I published last year on

EuroIntervention, with the conclusion that in relation to the slice-based analysis, we have the correct comparison with conventional stents, and the incidence of plaque prolapse was absolutely lower. So in conclusion, why I strongly believe in a reinvigoration of carotid stenting?

For the use of better embolic protection device. For the use of newer mesh covered stents, and definitively, OCT proves it as shown. Thank you for your attention.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- Thank you very much Mr. Chairman. Thank you Frank, for this kind invitation again to this symposium. This is my disclosure. With the drug coated balloons it is important to minimize the drug loss during the balloon transit during the inflation of the balloon.

Because Paclitaxel has a high degree of cytotoxicity that may induce necrosis and increase inflammation in the distal tissue, and we know that even with the best technique, we can loose 70 - 80% of the drop to the distal circulation,

the inference by different factors between them and the calcification of degree of these blood cells. There are adverse events secondary to drug coated balloons that have been reported recently. In animal molders it has shown that Downstream Vascular Changes are more frequent with

Drug Coated Balloons than with Drug-Eluting Stents. In animal molders it has been also shown that there is no evidence of significant downstream emboli or systemic toxicity with DCB's than with patients with controls. This was a study presented yesterday by (mumbles)

with a very nice and elegant study with a good methodology that shows in animals that there are different concentrations of the drug in distal tissue depending on the balloon that you are using. In this case, the range in balloon (mumbles)

those ones have the lowest concentration in the distal tissue. In clinical experience in this meta-analysis amputations and wound healing rate are lower with this series with controls. But there is controversy because

Complete Index Ulcer Healing is higher in this series than with control patients. But there are lower wound healing index in patients compared with drug-eluting stents. In the debate, (mumbles) and also in the dialux which are clinical trials in diuretic patients with CLI,

there we no issues of safety and no impair of the wounds healing. But, remember the negative result of the IN PACT DEEP trial in which there were more amputation at six months that could be influenced, but in all their factors, the lack of standardized

wound care protocols. (mumbles) has also reported recently good survival to 100% in patient treated with DCB's compared with plain balloons and with lutonic balloons. So in our institution, we did a study with the objective to examine

patient outcomes following the use of the drug-coated balloons in patients with CLI and diuretic patients with Complex Real World lesions undergoing endovascular intervention below-the-knee with the Ranger balloon coated with Paclitaxel.

This is a Two-Center Experience that is headed by the National University of Mexico in 30 patients with strict followup. With symptomatic Rutherford four to six. With the Stenosis and occlusion of infrapopliteal vessels and many degrees of calcification.

It was mandatory for all patients to have Pre-dilation before the use of DCB. We studied some endpoints like efficacy. (mumbles) Limb salvage, sustained clinical improvement, wound healing rate

and technical success and some other endpoints of safety. This is an example of multi level disease in a patient that has to be approached by (mumbles) access with a balloon preparation of the artery before the use of the DCB, and after this, we treated the anterior artery

and even to the arch of the foot. This is the way we follow our patient with ultra sound duplex with an index fibular of no more that 2.4. All patients were diabetic with Rutherford 5-6. 77% have a (mumbles) at the initial of the study.

And as you can see there were longer lesions and with higher degree of calcification and stenosis only in two of them we produced (mumbles). There were bailout stent placements in five patients and we did retrograde access in 43 patients.

Subintimal angioplasty was done in 32 patients, and Complete Index Wound Healing was in 93 of our patients. This is our Limb Salvage 94%. The Patency rate was 96% with this Kaplan Meir analysis. And in some patients we did a determination of Paclitaxel concentration in distal tissue

with the High Pressure Liquid Chromatography method. We only did this in five patients because of the lack of financial support, and technical problems. As you can see in three of them we had Complete Wound Healing.

Only one we had major amputation. This was the patient with the higher concentration of Paclitaxel in the distal tissue, and in one patient, we could not determine the concentration of Paclitaxel. This is the way we do this.

They take the sample of the patient at the moment we do the minor amputation. During day 10 after the angioplasty, we also do a (mumbles) analysis of the patient we have a limb salvage we can see arterial and capillar vessel proliferation and hyperplasia of the

arteriole media layer. But, in those patients that have major amputation even when they have a good sterio-graphic result like in this case, we see more fibrinoid necrosis which is a bad determination. So in conclusion,

angioplasty with the (mumbles) balloon maintain clinical efficacy over time is possible. We didn't see No Downstream clinical important or significant effects and high rates of Limb Salvage in complex CLI patients is possible.

Local toxic effects of paclitaxel and significant drug loss on the way to the lesion are theoretical considerations up to now because there is no biological study that can confirm this. Thank you very much.

- Good morning, thank you very much to Dr. Veith and Professor Veith and the organizers. So this is real holography. It's not augmented reality. It's not getting you separated from the environment that you're in. This is actually taking the 3D out of the screen

so the beating heart can be held in the palm of your hand without you having to wear any goggles or anything else and this is live imaging. It can be done intra-procedure. This is the Holoscope-i and the other one is the Holoscope-x

where in fact you can take that actually 3D hologram that you have and you can implant it in the patient and if you co-register it correctly then you can actually do the intervention in the patient

make a needle tract to the holographic needle and I'm going to limit this to just now what we're actually doing at the moment and not necessarily what the future can be. This is ultimate 3D visualization, true volumes floating in the air.

This is a CT scan. So it started working, So we get rid of the auto-segmented and you can just interact. It's floating 45 centimeters away from you and you can just hold the patient's anatomy here and you can slice into the anatomy.

This is for instance a real CT of an aorta with the aortic valve which they wanted to analyze for a core valve procedure. This is done by Phelps. If you take the information

and they've looked at the final element analysis and interaction between the stem and the tissue. So here you can make measurements in real time. So if you did the 3D rotation and geography and you had the aorta and you wanted to put in a stent graft EVAR TVAR, and you would see,

and you could put in a typical tuber that you would do, and you could see how it, and this is a dynamic hologram, so you can see how it would open up, you can mark where your fenestration's chimney is and all that type of stuff would be. And you can move it around, and you have

a complete intuitive understanding of a, can we go to the next slide please, I can't, it seems to be clicking, thank you. So how do we do all this? Well, to create a hologram, what you need to do is just conceptualize it as printing in light.

Like if you had plastic and you took the XYZ data and you just put it into a 3D printer, and it would print it for you in light, then you'd go, Okay, so I understand, if it was printed for you in plastic then you'd understand. But imagine it's printing in light.

So we have every single piece of light focused, each photon is focused so that you can see it with a naked eye, in a particular place, but the difference is that it's totally sterile, you don't have to take off your gloves, you don't have to use a mouse,

you can interact with it directly. And all the XYZ data is 100% in place, so we've just seen a beautiful demonstration of augmented reality, and in augmented reality, you have to wear something, it isolates you from the environment that you're in, and it's based on

stereoscopy, and stereoscopy is how you see 3D movies, and how you see augmented reality, is by taking two images and fusing them in one focal plane. But you can't touch that image, because if you look at me now, you can see me very well, but if you hold your finger up 45 centimeters

and you focus on your finger, I become blurred. And so, you can only focus in one plane, you can't touch that image, because that image is distant from you, and it's a fused image, so you have the focus plane and you have the convergence plane, and this is an illusion

of 3D, and it's very entertaining, and it can be very useful in medical imaging, but in intra-operative procedures it has to be 100% accurate. So you saw a very beautiful example in the previous talk of augmented reality, where you have gesturing, where you can actually gesture with the image,

you can make it bigger, you can make it smaller. But what RealView does by creating real holography, which is all the XYZ data, is having it in the palm of your hand, with having above 20 focal planes, here, very very close to your eye, and that in another way, of having all those focal planes not only actually lets you

do the procedure but prevents nausea and having a feeling of discomfort because the image is actually there as of having the illusion of the images there. So just to go back, all RealView imaging is doing, is it's not changing your 3D RA cone, BMCT, MRI,

we can do all those XYZ datas and we can use them and we can present them, all we're doing, so you use your acquisition, we're just taking that, and we're breaking open the 3D displays and seeing all that 3D data limited in the 2D screen, let's set it free and have it floating in the air.

So we have the holoscope-i for structural cardiology and electrophysiology, and obviously the holoscope-x, which makes the patient x-rayed, completely visible. So its an over the head, this is now, obviously, free-standing when somebody buys us like Phillips or Siemens, it will be integrated into your lab,

come down from the ceiling, it's an independent system, and you just have a visor that you look through, which just goes up and down whenever you want to use it. You can interact with it the same as you do with your iPhone you can visualize, you can rotate, you can mark, you can slice, you can measure, as I showed you

some examples of it, and you can do this by voice as well, you just talk to it, you say slice and you slice it with your hand, it recognizes everybody's hand, there's no delay for whatever you're imaging. So structural cardiac procedures, this is what

a mitral valve will look like, floating in the air in front of you, you can see the anterior leaflet, the posterior leaflet. And once the catheter is inside and you're guiding the catheter inside the procedure, you can turn on your doppler, you'll be able to see that the catheter

movements, so for someone doing a mitral clip, or whatever, this would be very very useful. This is an electrophysiological procedure, and you can see how the catheter moves, when the catheter will move, and obviously, as my previous speaker was saying, you are appreciating 3D in a 2D screen,

so it's very difficult to appreciate, you'll have to take my word for it. But I think you can see dynamic colography at this quality, that you can interact with, that is something that is very special, we've presented at a number of conferences,

including at Veith, and we've already done a first in man, and the most exciting thing for now, is just this week, the first machine was installed at Toronto general, at the Peter Munk Cardiac Center, and they've done their first case, and so now we are launching and clinical trials in 2018, and hopefully,

I'll have something which is more vascular relevant, at the next time, Veith 2019, thank you very much.

- I'm going to take it slightly beyond the standard role for the VBX and use it as we use it now for our fenestrated and branch and chimney grafts. These are my disclosures. You've seen these slides already, but the flexibility of VBX really does give us a significant ability to conform it

to the anatomies that we're dealing with. It's a very trackable stent. It doesn't, you don't have to worry about it coming off the balloon. Flexible as individual stents and in case in a PTFE so you can see it really articulates

between each of these rings of PTFE, or rings of stent and not connected together. I found I can use the smaller grafts, the six millimeter, for parallel grafts then flare them distally into my landing zone to customize it but keep the gutter relatively small

and decrease the instance of gutter leaks. So let's start with a presentation. I know we just had lunch so try and shake it up a little bit here. 72-year-old male that came in, history of a previous end-to-side aortobifemoral bypass graft

and then came in, had bilateral occluded external iliac arteries. I assume that's for the end-to-side anastomosis. I had a history of COPD, coronary artery disease, and peripheral arterial disease, and presented with a pseudoaneurysm

in the proximal juxtarenal graft anastomosis. Here you can see coming down the thing of most concern is both iliacs are occluded, slight kink in the aortofemoral bypass graft, but you see a common iliac coming down to the hypogastric, and that's really the only blood flow to the pelvis.

The aneurysm itself actually extended close to the renal, so we felt we needed to do a fenestrated graft. We came in with a fenestrated graft. Here's the renal vessels here, SMA. And then we actually came in from above in the brachial access and catheterized

the common iliac artery going down through the stenosis into the hypogastric artery. With that we then put a VBX stent graft in there which nicely deployed that, and you can see how we can customize the stent starting with a smaller stent here

and then flaring it more proximal as we move up through the vessel. With that we then came in and did our fenestrated graft. You can see fenestrations. We do use VBX for a good number of our fenestrated grafts and here you can see the tailoring.

You can see where a smaller artery, able to flare it at the level of the fenestration flare more for a good seal. Within the fenestration itself excellent flow to the left. We repeated the procedure on the right. Again, more customizable at the fenestration and going out to the smaller vessel.

And then we came down and actually extended down in a parallel graft down into that VBX to give us that parallel graft perfusion of the pelvis, and thereby we sealed the pseudoaneurysm and maintain tail perfusion of the pelvis and then through the aortofemoral limbs

to both of the common femoral arteries, and that resolved the pseudoaneurysm and maintained perfusion for us. We did a retrospective review of our data from August of 2014 through March of 2018. We had 183 patients who underwent endovascular repair

for a complex aneurysm, 106 which had branch grafts to the renals and the visceral vessels for 238 grafts. When we look at the breakdown here, of those 106, 38 patients' stents involved the use of VBX. This was only limited by the late release of the VBX graft.

And so we had 68 patients who were treated with non-VBX grafts. Their other demographics were very similar. We then look at the use, we were able to use some of the smaller VBXs, as I mentioned, because we can tailor it more distally

so you don't have to put a seven or eight millimeter parallel graft in, and with that we found that we had excellent results with that. Lower use of actual number of grafts, so we had, for VBX side we only had one graft

per vessel treated. If you look at the other grafts, they're anywhere between 1.2 and two grafts per vessel treated. We had similar mortality and followup was good with excellent graft patency for the VBX grafts.

As mentioned, technical success of 99%, mimicking the data that Dr. Metzger put forward to us. So in conclusion, I think VBX is a safe and a very versatile graft we can use for treating these complex aneurysms for perfusion of iliac vessels as well as visceral vessels

as we illustrated. And we use it for aortoiliac occlusive disease, branch and fenestrated grafts and parallel grafts. It's patency is equal to if not better than the similar grafts and has a greater flexibility for modeling and conforming to the existing anatomy.

Thank you very much for your attention.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- Thank you very much and thank you Dr. Veith for the kind invite. Here's my disclosures, clearly relevant to this talk. So we know that after EVAR, it's around the 20% aortic complication rate after five years in treating type one and three Endoleaks prevents subsequent

secondary aortic rupture. Surveillance after EVAR is therefore mandatory. But it's possible that device-specific outcomes and surveillance protocols may improve the durability of EVAR over time. You're all familiar with this graph for 15 year results

in terms of re-intervention from the EVAR-1 trials. Whether you look at all cause and all re-interventions or life threatening re-interventions, at any time point, EVAR fares worse than open repair. But we know that the risk of re-intervention is different

in different patients. And if you combine pre-operative risk factors in terms of demographics and morphology, things are happening during the operations such as the use of adjuncts,

or having to treat intro-operative endoleak, and what happens to the aortic sac post-operatively, you can come up with a risk-prediction tool for how patients fare in the longer term. So the LEAR model was developed on the Engage Registry and validated on some post-market registries,

PAS, IDE, and the trials in France. And this gives a predictive risk model. Essentially, this combines patients into a low risk group that would have standard surveillance, and a higher risk group, that would have a surveillance plus

or enhanced surveillanced model. And you get individual patient-specific risk profiles. This is a patient with around a seven centimeter aneurysm at the time of repair that shows sac shrinkage over the first year and a half, post-operatively. And you can see that there's really a very low risk

of re-intervention out to five years. These little arrow bars up here. For a patient that has good pre-operative morphology and whose aneurysm shrinks out to a year, they're going to have a very low risk of re-intervention. This patient, conversely, had a smaller aneurysm,

but it grew from the time of the operation, and out to two and a half years, it's about a centimeter increase in the sac. And they're going to have a much higher risk of re-intervention and probably don't need the same level of surveillance as the first patient.

and probably need a much higher rate of surveillance. So not only can we have individualized predictors of risk for patients, but this is the regulatory aspect to it as well.

Multiple scenario testing can be undertaken. And these are improved not only with the pre-operative data, but as you've seen with one-year data, and this can tie in with IFU development and also for advising policy such as NICE, which you'll have heard a lot about during the conference.

So this is just one example. If you take a patient with a sixty-five millimeter aneurysm, eighteen millimeter iliac, and the suprarenal angle at sixty degrees. If you breach two or more of these factors in red, we have the pre-operative prediction.

Around 20% of cases will be in the high risk group. The high risk patients have about a 50-55% freedom from device for related problems at five years. And the low risk group, so if you don't breach those groups, 75% chance of freedom from intervention.

In the green, if you then add in a stent at one year, you can see that still around 20% of patients remain in the high risk group. But in the low risk group, you now have 85% of patients won't need a re-intervention at five years,

and less of a movement in the high risk group. So this can clearly inform IFU. And here you see the Kaplan-Meier curves, those same groups based pre-operatively, and at one year. In conclusion, LEAR can provide

a device specific estimation of EVAR outcome out to five years. It can be based on pre-operative variables alone by one year. Duplex surveillance helps predict risk. It's clearly of regulatory interest in the outcomes of EVAR.

And an E-portal is being developed for dissemination. Thank you very much.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.