Create an account and get 3 free clips per day.
Chapters
4D Ultrasound Evaluation Of AAAs: What Is It; How Can It Help To Predict Growth And Rupture Rates
4D Ultrasound Evaluation Of AAAs: What Is It; How Can It Help To Predict Growth And Rupture Rates
analysisaneurysmassessmentbasedbiomechanicalcontourdatadiagnosticdistalfieldgrowthimagesimaginglimitationslongitudinalmechanicalmergednephrotoxicparametersperformperformedpredictpredictorpropertiesproximalrupturesegmentationstressultrasoundvalidateviewwall
How To Use Endoanchors To Treat Type 1 Endoleaks After TEVAR And EVAR
How To Use Endoanchors To Treat Type 1 Endoleaks After TEVAR And EVAR
aortaarchchannelconicaldilatedendograftendoleakendoleaksevarexcessivegraftinferiorleakmigratedneckssealseriessuccesssuperiorTEVARthoracictypezone
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
adjunctiveaneurysmaorticarterialautologousbleedingcellulitisclosurecomplicationcomplicationsCryopreserved Allograftdeviceetiologyextremityfemoralgraftinfectedinfectioninfectionsinfectiousintraoperativelateligationlimbmycoticpatientspercutaneousperipheralprimaryprofundaprostheticpseudoaneurysmpseudoaneurysmsresectionscanseedingstenttherapeutictreatedulceratedvisceral
2-Year ANCHOR Registry Data Show That Endoanchors Can Prevent Neck Dilatation After EVAR With Self-Expanding Devices
2-Year ANCHOR Registry Data Show That Endoanchors Can Prevent Neck Dilatation After EVAR With Self-Expanding Devices
aneurysmaortaaorticappositionarterydegenerativediameterdilatationdistalEndoanchorEndoanchor systemendograftendoleaksendovascularevargraftHeli-FXlowestMedtronicnecknegligibleoccurredoversizepatientspredictorspresenceprotectiveproximalrenalrenal arterystabilizesuprarenaltherapeuticType 1A endoleackvariables
CMS Policy Update On Nonthermal Ablation
CMS Policy Update On Nonthermal Ablation
ablationanteriorClariVeincompressivecontractorcovercoveragedeterminationsfoamincisionincisionsmedicarementionmicrofoamNonthermal ablationOcclusion catheter systemphlebectomyrefluxsaphenoussclerotherapysystematictherapeutictreatmentsVascular Insights IncvcssVenaSeal (Medtronic - closure system) / Varithena (BTG Interventional Medicine - polidocanol injectable foam) / PhotoDerm VascuLight (ESC - laser device) / Veinlase (Fisma - laser device)venous
Lymphatic Intervention: Thoracic Duct Embolization, Pulmonary Lymphatic Perfusion Syndrome, And Hepatic Lymphatic Disorders
Lymphatic Intervention: Thoracic Duct Embolization, Pulmonary Lymphatic Perfusion Syndrome, And Hepatic Lymphatic Disorders
accesscontrastductembolizationembolizingglueinduceinterventionalInterventionsleakagelipiodolliverlymphlymphangiographylymphaticlymphaticsneedlenodepercutaneousperfusionperiportalrefluxTherapeutic / Diagnosticthoracicultrasoundvariationvenousvesselsvisualize
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
New Developments In Access Site Closure For Small Sheaths; For Large Sheaths
ambulationantegradearteryassessingcalcifiedCardival Medicalcathcath labCelt ACD (Vasorum) - Vascular Closure DeviceclosurecollagencomplicationcomplicationscompressionconsconsecutivedeploymentdevicedevicesdiscembolizationfemoralhemostasismanualminorminutespatientsprosrandomizedrequiringretrogradestainlesssurgicaltherapeutictimetrialVascade VCDvascularVascular Closure Deviceversusvisualize
DEBATE: Not So: Prosthetic Open Bypasses Should Be Used To Treat Most Popliteal Aneurysms: When Are They Mandatory
DEBATE: Not So: Prosthetic Open Bypasses Should Be Used To Treat Most Popliteal Aneurysms: When Are They Mandatory
anastomosisaneurysmarterybypasscollateralsdistalendovascularEPARgraftkneepatientpatientspoplitealprostheticvenous
Off-Label Use Of EVAR Devices For Treating AAAs With Challenging Neck Anatomy Is Safe And Effective Under Certain Conditions: What Are They
Off-Label Use Of EVAR Devices For Treating AAAs With Challenging Neck Anatomy Is Safe And Effective Under Certain Conditions: What Are They
candidateschallengingclampingevarfenestratedfenestrationfenestrationsNot statedOpen rapairOpen repairpatientspercutaneousrenalrepairstentstentingsuprarenalsurgicaltraumatypicallyversus
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
Pitfalls Of Percutaneous EVAR (PEVAR) And How To Avoid Them
AbbottaccessanesthesiaAngio-Seal (Terumo Medical Corporation) - Closure deviceangiogramangiosealanteriorarteriotomybifurcationboreclampclosuredeployedEndologixevarfailedfailurefemoralgelfoamhemostasislengthmicropunctureobservedoperativePerclose ProGlidepercutaneousPEVARpredictorsprogliderandomizescarringSuture-Mediated Closure (SMC) Systemtechniquetherapeuticveitvenousvessel
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
amputationarteriovenousarterycriticaldiseaseembolizedendoscopicFistulahandhemodialysisischemiaischemicmultiplemyelomaoccludedocclusionpalmarPathophysiologypatientpatientsprosthesesproximalradialradiocephalicshortestthoracictotallytransplantulnarvascular
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
Endoscopic vs. Open Vein Harvest For Bypasses: What Are The Advantages And Disadvantages Of Each
advantagesautologousbypasscardiaccomorbidcomplicationsdecreasedecreaseddisadvantagesendoscopicendovascularextremityharvestincisionincreasedinexperiencedlaborligatedlowerpatencypatientspercutaneousperformedprimaryrisksaphenoussurgicalsuturevascularveinVeithwoundwounds
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
Near Infrared Spectrometry (NIRS) Monitoring Of Spinal Muscles To Reflect SCI With TAAA Repairs: How It Works And Early Experience
arteriesBEVARclinicalcollateralcorddopplerdorsalevarexperimentallaserlumbarmentoringmidlineMIS²ACEmonitoringnetworkneurologicocclusionoxygenationpatientreflectssegmentalsetupspectroscopyspinalspinestenttechnologytherapeuticvalidation
Fully Percutaneous EVAR For RAAAs: Advantages, Contraindications And Technical Tips
Fully Percutaneous EVAR For RAAAs: Advantages, Contraindications And Technical Tips
abdominalaccessanesthesiaaneurysmaneurysmsaorticarterybaselinecolorconventionalcREVARcutdowndecreasedendovascularevarexposurefemoralimagingincreasedlengthMicropuncture TechniqueneedleoperativeoutcomespatientspercutaneousPEVARplacingregardrepairrepairsREVARRumel mediated Techniquerupturedsheathstatisticallysurgicalsuturestargettechniqueunderwentutilizing
Modern Compression Stocking Studies (SOX, IDEAL, DVT And OCTAVIA) And Pharmaco-Mechanical Catheter Directed Clot Lysis (ATTRACT) Failed To Prevent Post-Thrombotic Syndrome (PTS): Is There Now No Role For Compression And Interventional Treatment For Patients With Acute DVT
Modern Compression Stocking Studies (SOX, IDEAL, DVT And OCTAVIA) And Pharmaco-Mechanical Catheter Directed Clot Lysis (ATTRACT) Failed To Prevent Post-Thrombotic Syndrome (PTS): Is There Now No Role For Compression And Interventional Treatment For Patients With Acute DVT
acuteblindedcompressionDVTiliofemoralinterventionalpatientspcdtprescribepreventprotectiveproximalquestionrandomizedriskrolestockingsstoppingstudiesstudysymptomssyndrometreatmenttrialversus
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Summary Of Thermal Ablation RCTs
Summary Of Thermal Ablation RCTs
ablationanteriorClosure SystemcollectedcomparingendovenousEVAEVLTexaminefrequencylaserligationMedtronicMOCAolleoutcomeoutcomespaucityproximalqualityradioactiverctsrecurrencereviewsRFAsaphenoussclerotherapystrippingsurgerysystematictherapeuticthermalThermal AblationtrialsUGFSVenaSealvenousversus
The Flex Scoring Catheter (From Ventura Med): A Simple Cost-Effective Method For Lesion Preparation Prior To DCB Use: How It Works, Advantages And Early Results
The Flex Scoring Catheter (From Ventura Med): A Simple Cost-Effective Method For Lesion Preparation Prior To DCB Use: How It Works, Advantages And Early Results
ballooncalcificationcatheterchroniccircumferentialcompliancectosdedicateddevicedissectionsfemoropoplitealFistulaflexincisionsinterventionallengthlesionluminalmoderateocclusionpoplitealscoringScoring catheter for vessel preparationshaftstenttherapeuticVentureMed Groupvessel
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
Update On How To Diagnose And Treat Mixed Arterial And Venous Ulcers
algorithmamputationarterialautogenouscomponentcompressiondataDVTendovascularEVLTextremityhealhealingincisionsisolatedmichiganmixedmoderatepatientspercutaneousperforatorsrefluxrevascularizationrevascularizesummasuperficialtreatmentulcersvenouswoundwounds
DEBATE: Not So: 3 And 4 Branch F/EVARs Should Be Avoided If Possible Because They Result In Higher Complication And Mortality Rates: From The UK GLOBALSTAR Registry
DEBATE: Not So: 3 And 4 Branch F/EVARs Should Be Avoided If Possible Because They Result In Higher Complication And Mortality Rates: From The UK GLOBALSTAR Registry
aneurysmBcalcificationceliaccomparedcomplicationsdevicesdurableendovascularevarevarsFfavorfenestratedfenestrationfenestrationsmortalitymulticenterparaplegiarepairsrisksealseriessimplerstenttechnicallyterumotherapeuticworth
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Can You Predict Venous Severity Based On Reflux Time
Can You Predict Venous Severity Based On Reflux Time
ablatedablationceapclinicalcorrelationdiameterEndovenous Saphenous AblationfillingMixed Venous DiseaseMixed Venous Disease CEAP Class 5patientsplethysmographypoplitealrefluxsaphenousseverityTherapeutic / Diagnosticveinvelocityvenous
New Developments In Radioactive Sodium Fluoride (18F-FBG) Imaging On PET CT To Predict AAA And TAAA Growth And Rupture
New Developments In Radioactive Sodium Fluoride (18F-FBG) Imaging On PET CT To Predict AAA And TAAA Growth And Rupture
aneurysmaneurysmsaorticarthritisatheroscleroticbiomarkerscalcificationcarotidclinicalcohortcolorcoronarydetectionevaluationgrowthimaginginflammationinflammatoryobservedosseouspatientsperformedplaquepredictrupturesodiumspecificstenosisstudythoracictripleuptake
Lower Limb Venous Kinetics And Impact On Venous Drainage
Lower Limb Venous Kinetics And Impact On Venous Drainage
anatomyaspirationcompareddeepdiagnosticdiastolicdorsaldrainagegradientiliacincompetentinsidelimbslowermaneuverspathologicalPhysicsposteriorpotentialsaphenoussegmentsegmentstermstibialtributaryvaluesvelocitiesvelocityvenous
DEBATE: All SFA Lesions Can Be Treated Endovascularly: Should They Be: Open Bypass Should Rarely Be Used
DEBATE: All SFA Lesions Can Be Treated Endovascularly: Should They Be: Open Bypass Should Rarely Be Used
AbbottangiogramballooncanalizationdiameterendovascularevarfemoropoplitealhematomaintroducerlesionsocclusionpatencyperformPeripheral stent systempoplitealpunctureretrogradestentsubintimalSuperatechniquetherapeuticthrombosistotaltreatVeith
Optimal Anticoagulation Regimen For Patients Being Treated For ALI
Optimal Anticoagulation Regimen For Patients Being Treated For ALI
acuteangioplastyanticoagulationaspirinatrialbleedingcategoryclinicalcomorbiditiesefficacyembolismextremityguidelinesheparininfrainguinalintraopintravenousischemiaischemiclimbminoritypatientsperformedpostopproximalrecurrentregardreperfusionstablestentingsystemictherapeuticthrombosisunderwentunfractionatedvascularVeithversusvitamin
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Transcript

rate. There's a 45 year old radiology tech with a back pain and a sciatica of L5 S1 and an AVS of six out of ten. And this is his MRI. Okay, you can see the disc protrusion,

what are we going to do? Nothing? Make him work? Conservative, injectates, percutaneous disc. Well the first thing you should always try is conservative management. This is the first and foremost way of treating for these patients

so conservative management is the first thing one should try. This is one year later, you can see that the hernia has completely disappeared and has completely retracted because the disc has a natural history of resorbing itself. 17 to 19 of all persons will experience low back pain at some point

in their lives, and 80 to 90 will recover by themselves within three months, just physiotherapy, exercise and changing diet. Again disc herniation in time in the cervical level, you can see that's for an MRI and one year later where is that hernia? So the disc can resorb itself given enough time.

The question is if we have this time?

- Thank you very much. After these beautiful two presentations a 4D ultrasound, it might look very old-fashioned to you. These are my disclosures. Last year, I presented on 4D ultrasound and the way how it can assess wall stress. Now, we know that from a biomechanical point,

it's clear that an aneurysm will rupture when the mechanical stress exceeds the local strength. So, it's important to know something about the state of the aortic wall, the mechanical properties and the stress that's all combined in the wall.

And that could be a better predictor for growth and potential rupture of the aneurysm. It has been performed peak wall stress analysis, using finite element analysis based on CT scan. Now, there has been a test looking at CT scans with and without rupture and given indication

what wall stress could predict in growth and rupture. Unfortunately, there has been no longitudinal studies to validate this system because of the limitations in radiation and nephrotoxic contrast. So, we thought that we could overcome these problems and building the possibilities for longitudinal studies

to do this similar assessment using ultrasound. As you can see here in this diagram in CT scan, mechanical properties and the wall thickness is fixed data based on the literature. Whereas with 3D ultrasound, you can get these mechanical properties from patient-specific imaging

that could give a more patient-specific mechanical AA model. We're still performing a longitudinal study. We started almost four years ago. We're following 320 patients, and every time when they come in surveillance, we perform a 3D ultrasound. I presented last year that we are able to,

with 3D ultrasound, we get adequate anatomy and the geometry is comparable to CT scan, and we get adequate wall stressors and mechanical parameters if we compare it with CT scan. Now, there are still some limitations in 3D ultrasound and that's the limited field of view and the cumbersome procedure and time-consuming procedures

to perform all the segmentation. So last year, we worked on increased field of view and automatic segmentation. As you can see, this is a single image where the aneurysm fits perfectly well in the field of view. But, when the aneurysm is larger, it will not fit

in a single view and you need multi-perspective imaging with multiple images that should be fused and so create one image in all. First, we perform the segmentation of the proximal and distal segment, and that's a segmentation algorithm that is

based on a well-established active deformable contour that was published in 1988 by Kass. Now, this is actually what we're doing. We're taking the proximal segment of the aneurysm. We're taking the distal segment. We perform the segmentation based on the algorithms,

and when we have the two images, we do a registration, sort of a merging of these imaging, first based on the central line. And then afterwards, there is an optimalisation of these images so that they finally perfectly fit on each other.

Once we've done that, we merge these data and we get the merged ultrasound data of a much larger field of view. And after that, we perform the final segmentation, as you can see here. By doing that, we have an increased field of view and we have an automatic segmentation system

that makes the procedure's analysis much and much less time-consuming. We validate it with CT scan and you can see that on the geometry, we have on the single assessment and the multi assessments, we have good similarity images. We also performed a verification on wall stress

and you can see that with these merged images, compared to CT scan, we get very good wall stress assessment compared to CT scan. Now, this is our view to the future. We believe that in a couple of years, we have all the algorithms aligned so that we can perform

a 3D ultrasound of the aorta, and we can see that based on the mechanical parameters that aneurysm is safe, or is maybe at risk, or as you see, when it's red, there is indication for surgery. This is where we want to go.

I give you a short sneak preview that we performed. We started the analysis of a longitudinal study and we're looking at if we could predict growth and rupture. As you can see on the left side, you see that we're looking at the wall stresses. There is no increase in wall stress in the patient

before the aneurysm ruptures. On the other side, there is a clear change in the stiffness of the aneurysm before it ruptures. So, it might be that wall stress is not a predictor for growth and rupture, but that mechanical parameters, like aneurysm stiffness, is a much better predictor.

But we hope to present on that more solid data next year. Thank you very much.

- These are my disclosures. So we all know the problems with long-term failure of EVAR and TEVAR. Type one endoleak being a particular significant concern. We've heard the results of the three year ANCHOR Registry. We know from this 85% of those cases taken on for type one endoleak were successful

and it's fantastic that these cases are still successful at three years. But I guess it's 15% failures and it's important that we talk about how we get success like this. If we're going to talk about a recipe for success we need to think about first of all the indications

for treatment of endoleaks. This is key. Not all endoleaks are the same. Those endoleaks where there's an inadvertent creation of a leak channel around the graft at the top end because of a hostile landing zone

or excessive oversiding of your graft or noncircular aorta, all can be well treated with endoanchors. Again, migration and loss of seal can also be well treated. But others where there's excessive thrombus or calcium won't work and where there's insufficient apposition between the graft and the aorta, again,

this is not a treatment case for endoanchors. So intraoperative type one endoleaks where there's poor conformability of the graft you can see here this barrel-shaped neck, there's a leak around the aorta, and there's a series of endoanchors

placed in rows circumferentially, do really well to seal up that. You can do the same at the distal end of the thoracic graft as we've just seen in those conical necks when you have a type one endoleak. If you have time to treat your leak channel,

you want to get a CT scan and evaluate where that leak channel is. Or you can do more detailed imaging with triangulation on angiography, but that's difficult. You fix the side away from the endoanchor first,

and then fixing rows of staples along the endoleak channel as you can see here, by moving the C-Arm in 15 degree increments across the aortic wall. This is a good example of a case with a leak channel. This graft is in the angulated aorta

with a channel underneath in the bottom end. There's a big endoleak there. And what we've done is fix the contralateral side first and then you're placing a series or rows of endoanchors underneath the stent graft. You can even zipper that up to change the bird beaking.

And that endoleak stayed sealed for three years. The same is true in the proximal thoracic aorta. This is one of Firas Mussa's cases. There's an endoleak on the underside of the arch and five endoanchors placed on the underside of the arch as we've just seen in JP's talk,

can resolve that endoleak quite successfully. When you are doing it in the arch you do need to plan properly. If you have an endoleak at the end of the case what you can do is put the C-Arm in an LAO position and line up the markers on the graft,

place the superior and inferior endoanchors and then rotate cranially and caudally at 15 degree intervals to put a series of endoanchors at the superior and inferior surfaces. That will fix the graft well. Otherwise, if you've got time and plan the case well,

you can work out dedicated C-Arm angles using one of the CT evaluation softwares. The best example is written by Rousseau, and I would get you to read that article to learn further. And that's how I learnt. There is a learning curve.

And this is necessary for success in treating type one endoleaks. You need some experience to gain good endoanchor placement. That's crucial, we've heard that. Start with the infrarenal segment, doing prophylactic cases,

the conical necks and slightly dilated necks, and then move into the thoracic segment. You need to use different size guides for different parts of the arch. On the upper surface the smaller guide is more useful. On the undersurface a larger guide to place the endoanchors

on the under surfaces of the arch is useful. Place them in rows coming back and have some patience. It's not all as easy as it looks right up there in the arch. For migration it's often an excellent strategy. If you can fix your migrated endograft to the native neck it's a good thing to do.

But remember these grafts have migrated and there's often great tortuosity there. If you can extend to gain a seal zone and then place a series of circumferential endoanchors it will fix that well and usually stay fixed for a good period of time.

There are limitations as I alluded to in the first few slides, excessive thrombus, excessive calcification, and where the aorta is dilated excessively and the endograft has stayed the same size. These will not work with endoanchor placement.

These are my tips, really, for success. There is a learning curve. Start with some easier ones. Think about the endoleak and why you've got an endoleak and don't be tricked into thinking the endoanchors will create a landing zone for you.

It won't. You should treat the type one endoleak immediately if you have it at the end of the case with re-interventions. You need to target that effectively and place multiple rows often cranially and caudally. And if you have one of the 13.4% failures,

remember that the use of endoanchors doesn't preclude you from doing something else so don't be too depressed. Thank you very much.

- So I'm going to be talking about allografts for peripheral graft infections. This is a femoral artery that's been replaced after a closure device infection and complication, and we've bypassed to the SFA and profunda femoris. These are my disclosures. So peripheral arterial infectious processes,

well the etiology either is primary or secondary. Primary can be from bacteremic states and seeding of ulcerated plaque or thrombus. Secondary reasons for infections can be the vast usage of percutaneous closure devices that really have flooded the market these days.

Prosthetic graft infections after either a bypass or patch in the femoral artery. So early onset infections usually are from break in sterility. Secondary infections can be from either wound breakdowns or late seeding of the prosthetic graft.

The presentation for these patients can be relatively minor such as cellulitis or draining sinus, or much more dramatic, such as sepsis or pseudoaneurysm or mycotic aneurysm. On the CT scan we can see infected mycotic aneurysm after infected closure device and bleeding complications.

The treatment is broad in range. Ligation is obviously one option, but it leads to a very high risk of major limb amputation. So ideally some form of reconstruction, either extra-anatomic through clean planes,

antibiotic graft as we heard from the previous speaker, the use of autologous replacement with deep vein, or we become big proponents of the use of cryopreserved arterial allografts for reconstruction. And much of this stems from our work from about 10 years ago, where we looked

at the use of aortic cryopreserved grafts for aortic graft infections. This was published about 10 years ago but we looked at a small series of patients with aortic infections. You can see the CT scan of an infected stent graft

and associated aneurysm. And then the intraoperative photo after we've resected the stent graft and replaced that segment of the aorta with a cryopreserved aortic segment. So using that as a springboard,

we then decided to look at the outcomes using these types of conduits, arterial conduits, for peripheral arterial reconstructions in contaminated or infected surgical fields. So retrospective review at our tertiary care center, we looked at roughly 60 patients over a 15-year period

and excluded any aortic-based reconstructions. So these are all peripheral reconstructions. Mean follow-up was 28 months. As you would expect, the distribution of treatment zones were primarily in the lower extremities, so 51 cases.

As you can see, there's a list of all the different types of cases that we treated. But then there were a few upper extremity visceral and then carotid. I've shown this slide before at this meeting in the past, with a carotid patch infection

that was treated after it had a blow-out, and it's obviously a infected aneurysm, and this was treated with resection and a cryopreserved arterial segment. Looking at our outcomes, the 30-day outcome showed a mortality rate of 9%.

The 30-day conduit-related complication rate was surprisingly low at 14%. We had four patients that had bleeding complications, four patients with recurrent infectious complications. All eight of those patients required a return back to the operating room for correction.

The late conduit-related complication rate was only 16%. As listed here, you can see there's only one case of reinfection, three cases of graft thrombosis, surprisingly only one major limb amputation, two pseudoaneurysms and one late bleeding complication.

And graphically depicted, you can see here, this area here is looking at the less than 30 days, this is primarily when the complications occur. When you get to six months, fewer complications, and then beyond six months, the primary complications that we would see are either thrombosis of the graft

or the development of late pseudoaneurysms, again relatively low. So in summary, I think peripheral arterial infectious complications can be treated with a cryopreserved arterial allografts. The advantage is it's a single stage operation,

maintains in-line flow, there's a low incidence of repeat infection. I think it's also important to mention that the majority of these patients had adjunctive muscle flap coverage to cover the large soft tissue defect

at the time of the operation. So I think that this is a valuable alternative conduit in a setting of peripheral arterial infections. Thank you.

- These are my disclosures. So aortic neck dilatation is not a new problem. It's been described even before the era of endovascular repair and it's estimated to occur in about 20% of all patients that undergo EVAR two years after the index procedure.

We're seeing more and more cases where patients that survive long enough after EVAR, they develop aortic neck dilatation beyond the nominal diameter of the endograft and like on this patient, this image, large type 1A endoleaks that are difficult to treat.

There's a number of factors that are contributing to aortic neck dilatation including a continuous outward force that is exerted by the endograft. Progression of aortic wall degeneration. Aneurisymal disease is a degenerative procedure.

The presence of endoleaks, particularly type two endoleaks have been implicated in aortic neck dilatation. And then incomplete seal at the proximal neck in the form of microleaks or positional leaks. HeliFX EndoAnchors as you heard were

designed to stabilize and improve the apposition of the endograft to the aortic neck. And as you saw on this video, their presence even when the super no fixation disengages from the wall of the aorta, may help stabilize the graft onto

the aorta and prevent type 1A endoleaks. About three or four years ago we started looking at the anchor registry data, trying to identify predictors of aortic neck dilatation in patients who are undergoing EVAR with EndoAnchors. We published those results about a year ago.

In terms of the one year mark, we had 267 patients in that cohort. We measured the aortic diameter at four different levels. 20 millimeters proximal to the lowest main renal artery and then at the level of the lowest renal artery, five and 10 millimeters distal to that.

We defined the change in diameter that occurred between the pre-implantation EVAR and the first post-implantation EVAR at about one month. As adoptive enlargement due mainly to the effect of endograaft and the interaction with the aortic wall.

And then we defined this dilatation, what occurred between the one month and the 12 month mark, post EVAR. We used 20 different variables and we ran all these variables at the three levels. And what we found in terms of

post-operative neck dilatation is that it occurred in 3.1% of patients at the level of the lowest renal artery. 7.7% five millimeters distal to it and 4.6% at 10 millimeters distal to it. And this is a dilatation with a threshold

of at least three millimeters. We felt that this was much more clinically relevant. In terms of protective factors for adaptive enlargement, the presence of calcium and the aortic diameter of the level of the lowest renal, both of these are easy to understand.

The stiffer the aorta, the lesser the degree of the immediate dilatation. But then when we looked at the true dilatation, we found out that the aortic neck diameter at the lowest renal artery was a significant risk factor as was Endograft oversizing.

So if you started with a large aorta to begin with, these patients were much more likely to develop neck dilatation and if you significantly oversize the endograft that was also an independent risk factor. On the other hand, the neck length as well as the number of EndoAnchors that

were placed in these patients, both appear to have independent protective effects. So the two year preliminary analysis results is what I'm going to present. The analysis is still ongoing, but now we have a larger number of patients, 674.

We performed the same measurements at the same levels. What we found in terms of time course and location of the aortic neck dilatation is that in the suprarenal site, there is negligible dilatation up to 24 months. The largest dilatation occurs at five millimeters,

but more interestingly, a significant number of patients did not even have endograft present in that location. And then at 10 millimeters distal to the lowest renal artery right where most of the aneurysm changes you would expect to occur,

that change in diameter was again negligible. Indirectly suggesting that EndoAnchors have protective effect. So these are our interesting, some interesting insights. Female sex and graft oversize do play a significant role in the post-operative neck dilatation.

With EndoAnchors implanted at the index procedure neck dilatation 10 millimeters distal to the lowest renal artery appears to be negligible both at 12 and at 24 months. But we're working to see a little bit more finer elements at this analysis.

As where exactly the EndoAnchors were placed and how this was associated with the changes in the aortic neck. We hope to have those results later this year. Thank you.

- [Narrator] So my assignment is, CMS policy update on non-thermal ablation techniques, and as most of you know, there is not one National CMS policy, so there are a variety of local cover determinations or policies that we're going to look at. I may bore you for a couple minutes

but I found a surprise at the end. So I went to the website, CMS website, and looked up varicose vein LCDs and these seven came up, interestingly Novitas, everybody's favorite, didn't come. So I looked at separately, we're going to look at all these as well.

And here is Novitas, Novitas and their previous LCD had no mention of non-thermal techniques, but in this proposed LCD, which has a lot of people up in arms, they say that the non-thermal techniques are experimental, investigational, and unproven,

and therefore will not be covered. This is next LCDs, this is two from Medicare contractor Noridian, they go on to talk about sclerotherapy and foam sclerotherapy, but they are not going to cover it. And somewhat bizarrely these codes in red here,

which are for Venaseal and Verithena, are listed as indications for RF or laser ablation, which kind of shows you they don't know what they're talking about. And there is no mention of MOCA or Claravein. Wisconsin Physicians Services and other MAC contractor,

and I looked at their LCD, there is no mention of non-thermal techniques. Next up is First Coast Service Options, with these jurisdictions over here on the right. And they get down to the C-classification, VCSS score, and talk about compressive therapy and conservative therapy.

They do mention Clarivein or MOCA. However, they state that it does not meet the Medicare necessity for coverage, and so they won't. And there's absolutely no mention of Verithena or Venaseal in their LCD. Palmetto GBA is another contractor,

with these jurisdictions on the right, and they actually discuss and approve Varithena, microfoam sclerotherapy. They discuss it here in their LCD, they have some restrictions that the physician needs to be competent and experienced with Varithena,

and ultrasound, there is no mention of Clarivein or Venaseal in their LCD. And these are also the folks that tell us how to do stab phlebectomy with 2 mm incisions and a crochet hook. So don't use a 3 mm incision and a hemostat,

it'd probably get denied. Next is CGS Administrators, and this busy slide, they go on to talk about sclerotherapy quite a bit, and all these in the main body, what they are not going to cover for sclerotherapy. They mention that foam sclerotherapy

is basically the same as liquid sclerotherapy, and therefore will not cover it, and again no mention of other treatments of non-thermal techniques. Which brings us to the last LCD, which is National Government Services,

and amazingly they state that the accepted treatments for eliminating reflux and the great saphenous anterior accessory, and small saphenous vein, include RFA, laser, polidocanol, Venaseal, and Verithena. And even more interestingly, they use their Rationale for Determination for MOCA.

The amount and consistency of the data, in addition to the two recent systematic reviews and the strong recommendation of the American Venous Forum, have convinced NGS that Medicare coverage is met. And for PEM, Varithena, the combination of RCTs, meta-analyses, systematic reviews,

the strong recommendation of the AVF, and endorsements from the SVS, ACP, SCAI, and SIR, have convinced them that coverage is appropriate. And the same for Venaseal, same thing. This is craziness. On one Medicare hand,

you have Novitas saying that, treatment is experimental and unproven, and they won't cover it. And on the other Medicare hand, you have this contractor that says, based on the recommendations of the experts,

that it's appropriate, and will be covered. And this is the reason why we need a National Coverage Determination. So, to find out what your policy is, you have to go to the website, you have to find out who your provider is,

or contractor, and see what the policy cause it differs depending upon where you are. Thank you for your attention.

- Lymphatic, so it's fun, actually, not to talk on venous interventions for once. And, naturally, the two systems are very different. But, on the other hand, they're also related in several ways and I will come back to that later. I have no disclosures, maybe only my gratitude to this man, Dr. Maxim Itkin,

who actually got me started in the field, and was gracious enough to supply me some of his material. And who is also responsible for making our lives way easier over the last years. Because in former times, we needed to do, to visualize the lymphatic system,

we needed to do pedal lymphangiography and that was very, very cumbersome. It took a long time and was very painful for the patient. And he introduced the ultrasound guided intranodal lymphangiography,

and that's fairly easy for most of us. With ultrasound you find a lymph node in the groin, you puncture that and you can control the needle position with contrast enhanced ultrasound and once you establish that position, you might do a MR lymphangiography.

Thereby showing, in this case, a beautiful, normal anatomy of the thoracic duct. I need to say, the variations in lymphatics are extreme. So, you can also visualize, naturally, the pathology, like for example, pulmonary lymphatic perfusion syndrome.

What's going on there. Normally, lymph courses up through thoracic duct, but in this case, you kind of have a reflux in the bronchial tree and lymph leakage. And you can image that again, beautifully with MR, which you can show extensive leakage

of lymph in the lung parenchyma. So you can treat that. How can you treat that? By embolization of the thoracic duct. But first we need to get into there, and that's not a very easy thing to do.

But now, again, with access to a lymph node in the groin, you can push lipiodol, and then visualize the cisterna chyli and access that transcutaneously with a 21/22 gauge needle and then push up a O-18 wire high up in the thoracic duct.

First you deploy some coils to prevent any leakage of glue inside the venous system, and then by microcatheter, you infuse glue all the way down, embolizing the thoracic duct. So, complete different group of lymphatic disorders is oriented in the liver and hepatic lymphatic disorders.

And maybe not everybody knows that, but 80% of the flow in the thoracic duct is caused by the liver and by the intestine. And many times in lymphatic disorders, there needs to be a combination of two factors. One factor is a venous variation of a,

sorry, an anatomical variation in lymph vessels and the other one is that we have an increase in lymph flow. And in the liver, that can be caused by a congestion of the liver, for example, cirrhosis, or a right side, that's congested heart failure.

What happens then is you increase the flow, the lymph flow, tremendously and if you also have a variation like in this case, when the vessels do not directly course towards the cisterna chyli, but in very close contact to the abdomen,

then you can have leakage of the lymph and leakage of proteins, which is a serious problem. So, what is then, to do next? You can access the lymph vessels in the liver by percutaneous access in the periportal space,

and induce some contrast and then later, visualize that one back, visualize that with dye that you can see with an endoscopy, thereby proving your diagnosis, and then, in a similar way,

you can induce lipiodol again with glue, embolizing the lymph vessels in the liver, treating the problem. In summary, popularity of lymphatic interventions really increased over the last years mainly because novel imaging,

novel interventional techniques, new approaches, and we all gained more experience. If you would like, I would guess that, we are at a phase where we were at venous, like 10, 15 years ago. If we are a little bit positive,

then the future is very bright. And within 10, 15 years, we find new indications and probably have much more to tell you. Thank you for your attention.

- I'd like to thank Dr. Veith for this kind invitation and the committee as well. So these are my disclosures, there's none. So for a quick background regarding closure devices. Vascular closure devices have been around

for almost 20 years, various types. Manual compression in most studies have always been shown to be superior to vascular closure devices mainly because there's been no ideal device that's been innovated to be able

to handle all sorts of anatomies, which include calcified vessels, soft plaque, etc. So in this particular talk we wanted to look at to two particular devices. One is the Vascade vascular closure device

made by Cardiva and the other is the CELT arterial closure device made by Vasorum in Ireland. Both these devices are somewhat similar in that they both use a disc. The Vascade has a nitinol disc

as you can see here that's used out here to adhere to the interior common femoral artery wall. And then once tension is applied, a series of steps is involved to deploy the collagen plug

directly on to the artery which then allows it to expand over a period of time. The CELT is similar in that it also uses a stainless steel disc as you can see here. Requires tension up against the interior wall of the common femoral artery.

Nice and tight and then you screw on the top end of the device on to the interior wall of the artery creating a nice little cylinder that compresses both walls of artery. As far as comparability is concerned between the two devices you can see

here that they're both extravascular, one's nitinol, one's stainless steel. One uses a collagen material, the other uses an external clip in a spindle-type fashion. Both require about, anywhere between three to seven minutes of pressure

to essentially stop the tract ooze. But the key differences between the two devices, is the amount of time it takes for patients to ambulate. So the ambulation time is two hours roughly for Vascade, whereas for a CELT device

it's anywhere from being immediate off the table at the cath lab room to about 20 minutes. The data for Vascade was essentially showing the RESPECT trial which I'll summarize here, With 420 patients that was a randomized trial

to other manual compression or the device itself. The mean points of this is that the hemostasis time was about three minutes versus 21 minutes for manual compression. And time to ambulation was about 3.2 hours versus 5.7 hours.

No major complications were encountered. There were 1.1% of minor complications in the Vascade versus 7% in the manual compression arm. This was actually the first trial that showed that a actual closure devices

had better results than manual compression. The main limitations in the trial didn't involved complex femoral anatomy and renal insufficiency patients which were excluded. The CELT ACD trial involved 207 patients that were randomized to CELT or to manual

compression at five centers. Time to hemostasis was anywhere between zero minutes on average versus eight minutes in the manual compression arm. There was one complication assessed at 30 days and that was a distal embolization that occurred

early on after the deployment with a successfully retrieved percutaneously with a snare. So complication rate in this particular trial was 0.7% versus 0% for manual compression. So what are some pros and cons with the Vascade device?

Well you can see the list of pros there. The thing to keep in mind is that it is extravascular, it is absorbable, it's safe, low pain tolerance with this and the restick is definitely possible. As far as the cons are involved.

The conventional bedrest time is anywhere between two to three hours. It is a passive closure device and it can create some scarring when surgical exploration is necessary on surgical dissections.

The key thing also is you can not visualize the plug after deployment. The pros and cons of the CELT ACD device. You can see is the key is the instant definitive closure that's achieved with this particular device, especially in

calcified arteries as well. Very easy to visualize under fluoroscopy and ultrasound. It can be used in both antegrade and retrograde approaches. The key cons are that it's a permanent implant.

So it's like a star closed devised, little piece of stainless steel that sits behind. There's a small learning curve with the device. And of course there's a little bit of discomfort associated with the cinching under the (mumbles) tissue.

So we looked at our own experience with both devices at the Christie Clinic. We looked at Vascade with approximately 300 consecutive patients and we assessed their time to hemostasis, their time to ambulation,

and their time to discharge, as well as the device success and minor and major complications. And the key things to go over here is that the time to hemostasis was about 4.7 minutes for Vascade, at 2.1 hours for ambulation, and roughly an average

of 2.4 hours for discharge. The device success was 99.3% with a minor complication rate of .02% which we have four hematomas and two device failures requiring manual compression. The CELT ACD device we also similarly did

a non-randomized perspective single center trial assessing the same factors and assessing the patients at seven days. We had 400 consecutive patients enrolled. And you can see we did 232 retrograde. We did a little bit something different

with this one, we did we 168 antegrade but we also did direct punctures to the SFA both at the proximal and the mid-segments of the SFA. And the time to hemostasis in this particular situation was 3.8 minutes,

ambulation was 18.3 minutes, and discharge was at 38.4 minutes. We did have two minor complications. One of which was a mal-deployment of the device requiring manual compression. And the second one was a major complication

which was an embolization of the device immediately after deployment which was done successfully snared through an eighth front sheath. So in conclusion both devices are safe and effective and used for both

antegrade and retrograde access. They're definitely comparable when it comes, from the standpoint of both devices (mumbles) manual compression and they're definitely really cost effective in that they definitely do increase the

throughput in the cath lab allowing us to be able to move patients through our cath lab in a relatively quick fashion. Thank you for your attention.

- Thank you very much and thank you Frank for giving me the opportunity to speak. And I will adapt my talk because I saw some of the slides, I will have to comment of course. So I have no financial disclosures. In many, many papers we know that Endovascular Treatment needs a word

of caution for long-term follow-up and we can see many, many pictures with very good results of viaven or other devices but when you look at the long-term follow-up for this patient, it's quite awful.

So we have late thrombosis just like this, we have curves that goes down and down after 40 or 60 months and much of the patients are very young and so I think it's not a good option. On the contrary, the durability

of open popliteal aneurysm repair has been showed and it's been showed by another of the panelist there and of course I think it's the good way to do and there are several options. The first one, this one, is quite rare

just to make resection with direct anastomosis like this, but it could happen and in this kind of patient, mostly when they are young patients, you don't have to make interposition of any graft.

I mean no vein, no SFA, and no prosthetic grafts. When you have to make some of the conventional open repair just like this, you have to choose between an exclusion graft like this,

I don't like it really much because it can leave a very important aneurysm and it takes a lot of place and it is prone to growing after due to the collaterals

going to the aneurysm sac. Most of the times I like to do something which is a combination of both these two pictures. I mean I like to open the sac to make the aneurysm or if you have the collaterals and then to make a end-to-end

anastomosis at both sides. Of course, when you go to the segment in the gonoral approach you have to make a venous bypass and venous bypass is probably

better when the run-off is awful just like this, but for this patient this was something needing a venous graft and this for me can be treated by synthetic graft because it ends at this level

that mean retroarticular level. So, for the venous graft, I go to venous graft only when I have to make the anastomosis directly on lower-leg vessel just like this and then you mention this

specific paper and if you could read this paper, I'm not one of the first author of this paper because I don't follow this thing because as you say, I think it's not good at all

to section all the muscles and this patient, I know this patient, they can't walk anymore for probably two months, it's not a good option but I'm part of that team and I don't want to defend it for now. Prosthetic bypass is I prefer

because this is very ancient, I agree with you, it's not modern situation, it is very ancient situation but the main thing is that you don't have to cut all the muscles, you have to select patients

with distal neck or retroarticular popliteal artery with good arterial runoff, aminolytic vessels and you have to select the patient and the Angio-CT rather than the angiogram except for

selecting the quality of the run-off. So who should be selected, this kind of patient can be selected because the prosthetic graft will end only here.

And this one could be also, but you can s there is origin of the arteritica artery.

And you have to think at the level of cutting the lower knee popliteal artery. And most of the time you can just externalize the lower knee popliteal artery to make

anastomosis. And then when you make the distal anastomosis, first you can reintegrate after there is the graft. And then the graft in the anastomotic sides goes just below

the level of the endoarticular line just like this. So for me, this is a go even if

you see that it goes just right to the condyles like this. And if you make some pictures with the reflection of the knees, there is no problem for the space. And even when there is a large

length beneath the artery like this. So when (unidentifiable phrase) where there's no vein and no below knee extension. So these are the technique that I expect I already talk about.

This is a small surveys we did I did finally. 20 popliteal arteries, this is the mean diameters. All the patients had good run-off as you can see. And there were only five long bypasses from the common femoral artery.

The other one from the popliteal or distal SFA. This is the mean Length of Stay 4 days only. The limb salvage rate is 100%. Primary patency rates were at one, two and three as 10

and secondary rates were 100% with mean follow-up 2 30 months. So prosthetic bypass is our simple, safe durable options.

I don't cut any muscles for this kind of option. Results compare favorably with our other open and endovascular techniques. And the French survey is going on for now. Thank you very much. (Audience applauds)

- Thank you Frank, it's an honor to be here. This lengthy title, what this is actually about is to make it little shorter is, off-label use of EVAR, typically in challenging neck anatomy, and the question is whether it's safe and if so, under what conditions. And I just want to underline, this is no way

some kind of U.S. legal statement, it's just a physician's perspective on this problem. Here's the title in short and I'll walk you through it. When it comes to the off-label thing, what it's all about is that it's outside of IFU and the IFU, what that means is that something is consistent with the premarket approval.

Outside of IFU, that means that something is not entirely proven. This does not mean that it is forbidden. It does not mean that it is necessarily bad, but it is likely that you will encounter worse outcome. And the question then is, whether this is justifiable.

And this in turn will depend heavily on what the alternatives are, of course. This debate is mostly about challenging necks, when it comes to EVAR, and this is the kind of scenario when the most senior, not to say the oldest colleagues step forward and tell you that

don't do EVAR, this is outside of IFU. Are they right then? Well, it depends on what alternative they can offer. Is the open surgical repair justifiable in this type of scenario? And I have this bad habit of bringing fresh cases and

this is from October, 2018, a ruptured case, 70-year old male patient. Obviously the neck is challenging. Anything you do will be outside of IFU. You could probably do some homemade fenestration or chimney or whatever, but it will be outside of IFU.

And the advice then was to preserve the renal function for sure, do the open surgical repair. The patient was operated on open, not by me, by a very experienced colleague. The operation was extremely smooth. The patient did very well, but he had a minor GI bleed

two weeks post-op and therefore this CT was done, and as you can see, the kidney is not doing very well because those very close to the renal artery stitches had somehow engaged that renal artery, and I do believe that any of those homemade chimneys or fenestrations would have done an equally good job.

So I think that when it comes to the suprarenal clamping, the aorta, above the SMA, above the renal artery, I think that's such a clamp. If this was actually a new device, comparable to a new stent graft, I doubt that it will be inside any IFU actually.

And if you look at the results, the suprarenal clamp is typically used in elderly patients, it's associated with more renal problems, and the mortality is significantly higher. Also, we have to remember that, oh my slides don't show, I'm sorry for that.

They worked when I tested them in the room. What it shows is that it is the unfit patients that have the largest aneurysms, the largest necks, and the most tortuous aortas. So, the worst patients who need the suprarenal clamping are the sickest patients, and I do agree that the

fenestrated branch, chimneys, sandwiches, whatever you use, are outside the IFU, but in my world, the suprarenal clamping in this scenario, probably is also outside of the IFU, if that was the kind of case. So, is it safe?

Well, what you have to compare is the stenting of the branches versus the suprarenal clamp. And the trauma you have to compare is the percutaneous approach versus a major open surgery. I believe that today there is no evidence that open surgical repair is safer in that scenario and

until it has been proven, EVAR is to be preferred. Under what condition? Well, I think that as long as there is an endo solution at all, it should be used because these patients are poor candidates for EVAR and therefore they are high risk candidates for open surgical repair also.

So in conclusion, Mister chairman and ladies and gentlemen, I believe that the off-label-use of EVAR, is it safe? No, of course it's not! But it is justified because in these patients, the alternative, the open surgical repair, is not safe either and it is a much greater trauma to the

patients, thank you for your attention.

- Thank you very much and I would like to thank Dr. Veit for the kind invitation, this is really great meeting. Those are my disclosures. Percutaneous EVAR has been first reported in the late 1990's. However, for many reasons it has not been embraced

by the vascular community, despite the fact that it has been shown that the procedure can be done under local anesthesia and it decreases OR time, time to ambulation, wound complication and length of stay. There are three landmark papers which actually change this trend and make PEVAR more popular.

All of these three papers concluded that failure or observed failure of PEVAR are observed and addressed in the OR which is a key issue. And there was no late failures. Another paper which is really very prominent

is a prospective randomize study that's reported by Endologix and published in 2014. Which revealed that PEVAR closure of the arteriotomy is not inferior to open cut down. Basically, this paper also made it possible for the FDA to approve the device, the ProGlide device,

for closure of large bore arteriotomies, up to 26 in the arterial system and 29 in the venous system. We introduced percutaneous access first policy in our institution 2012. And recently we analyzed our results of 272 elective EVAR performed during the 2012 to 2016.

And we attempted PEVAR in 206 cases. And were successful in 92% of cases. But the question was what happened with the patient that failed PEVAR? And what we found that was significantly higher thrombosis, vessel thrombosis,

as well as blood loss, more than 500 cc in the failed PEVAR group. Similarly, there was longer operative time and post-operative length of stay was significantly longer. However, in this relatively small group of patients who we scheduled for cut-down due to different reasons,

we found that actually there was no difference between the PEVAR and the cut-down, failed PEVAR and cut-down in the terms of blood loss, thrombosis of the vessel, operative time and post-operative length of stay. So what are the predictors of ProGlide failure?

Small vessel calcification, particularly anterior wall calcification, prior cut-down and scarring of the groin, high femoral bifurcation and use of large bore sheaths, as well as morbid obesity. So how can we avoid failures?

I think that the key issue is access. So we recommend that all access now or we demand from our fellow that when we're going to do the operation with them, cut-down during fluoroscopy on the ultra-sound guidance, using micropuncture kits and access angiogram is actually mandatory.

But what happened when there is a lack of hemostasis once we've deployed two PEVARs? Number one, we try not to use more than three ProGlide on each side. Once the three ProGlide failed we use the angioseal. There's a new technique that we can have body wire

and deployed angioseal and still have an access. We also developed a technique that we pack the access site routinely with gelfoam and thrombin. And also we use so-called pull and clamp technique, shown here. Basically what it is, we pull the string of the ProGlide

and clamp it on the skin level. This is actually a very very very good technique. So in conclusion, PEVAR first approach strategy successful in more than 90% of cases, reduced operative time and postoperative length of stay, the failure occurred more commonly when the PEVAR

was completed outside of IFU, and there was no differences in outcome between failed PEVAR and planned femoral cut-down. Thank you.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- Good morning. I'd like to thank Dr. Veith and Symposium for my opportunity to speak. I have no disclosures. So the in Endovascular Surgery, there is decrease open surgical bypass. But, bypass is still required for many patients with PAD.

Autologous vein is preferred for increase patency lower infection rate. And, Traditional Open Vein Harvest does require lengthy incisions. In 1996 cardiac surgery reported Endoscopic Vein Harvest. So the early prospective randomized trial

in the cardiac literature, did report wound complications from Open Vein Harvest to be as high as 19-20%, and decreased down to 4% with Endoscopic Vein Harvest. Lopes et al, initially, reported increase risk of 12-18 month graft failure and increased three year mortality.

But, there were many small studies that show no effect on patency and decreased wound complications. So, in 2005, Endoscopic Vein Harvest was recommended as standard of care in cardiac surgical patients. So what about our field? The advantages of Open Vein Harvest,

we all know how to do it. There's no learning curve. It's performed under direct visualization. Side branches are ligated with suture and divided sharply. Long term patency of the bypass is established. Disadvantages of the Open Vein Harvest,

large wound or many skip wounds has an increased morbidity. PAD patients have an increased risk for wound complications compared to the cardiac patients as high as 22-44%. The poor healing can be due to ischemia, diabetes, renal failure, and other comorbid conditions.

These can include hematoma, dehiscense, infection, and increased length of stay. So the advantages of Endoscopic Vein Harvest, is that there's no long incisions, they can be performed via one or two small incisions. Limiting the size of an incision

decreases wound complications. It's the standard of care in cardiac surgery, and there's an overall lower morbidity. The disadvantages of is that there's a learning curve. Electro-cautery is used to divide the branches, you need longer vein compared to cardiac surgery.

There's concern about inferior primary patency, and there are variable wound complications reported. So recent PAD data, there, in 2014, a review of the Society of Vascular Surgery registry, of 5000 patients, showed that continuous Open Vein Harvest

was performed 49% of the time and a Endo Vein Harvest about 13% of the time. The primary patency was 70%, for Continuous versus just under 59% for Endoscopic, and that was significant. Endoscopic Vein Harvest was found to be an independent risk factor for a lower one year

primary patency, in the study. And, the length of stay due to wounds was not significantly different. So, systematic review of Endoscopic Vein Harvest data in the lower extremity bypass from '96 to 2013 did show that this technique may reduce

primary patency with no change in wound complications. Reasons for decreased primary patency, inexperienced operator, increased electrocautery injury to the vein. Increase in vein manipulation, you can't do the no touch technique,

like you could do with an Open Harvest. You need a longer conduit. So, I do believe there's a roll for this, in the vascular surgeon's armamentarium. I would recommend, how I use it in my practices is, I'm fairly inexperienced with Endoscopic Vein Harvest,

so I do work with the cardiac PA's. With increased percutaneous procedures, my practice has seen decreased Saphenous Vein Bypasses, so, I've less volume to master the technique. If the PA is not available, or the conduit is small, I recommend an Open Vein Harvest.

The PA can decrease the labor required during these cases. So, it's sometimes nice to have help with these long cases. Close surveillance follow up with Non-Invasive Arterial Imaging is mandatory every three months for the first year at least. Thank you.

- Now we are delighted that there's apparently two things that we came up with years ago proved useful. This is the Near-Infrared Spectroscopy slide by Joe Bavaria from UPENN providing patient data on delayed paraplegia. That's a problem that we see in open NN (mumbles) very frequently.

How does the NIRS work? And again to this illustrative picture and now imagine the spinal cord sitting here in the spine canal and there's no more blood flow and this is the end result. When you know the oxygenation in the collateral network

and there was the problem with this technology that had been attempted 12 years back already, in Houston, I bet they put the NIRS optodes in the midline and the light cannot penetrate bone so it didn't work. But if you put it on the collateral network

and you measure the oxygen in this area, you obviously know it in the spinal canal. Dorsal view, again, so this is position of the optodes and this is oxygen content way interested in it. This is another cast just to illustrate

how these segmentals are regionally connected into the spinal canal, obviously. Experimental validation and pilot series in the next two minutes. Experimental cross clamping, this is the setup so years mentoring Laser Doppler Flow

to a real time evaluation of what you measure with your infrared setup in the animal lab and we see here, correlation is very nice between the lumbar NIRS, optodes, and the actual lumbar spinal cord oxygenation measured by Laser Doppler which is evaluated

with other techniques. Very nice to see the corelation between the two. So lumbar collateral network NIRS directly reflects spinal cord tissue oxygenation. After we have proven that step, next step was serial segmental artery occlusion.

As this is a technology that we or the strategy that we using, obviously want to know with our monitoring works for that. You see here, experimental setup basically the same. Starts with anesthesia, exposure of the segmentals. Now an open approach

and then you get 120 minutes surveillance period. You got a drop or dip in the NIRS measurements. Interestingly in the experimental setup in the recovery group, you see here that the new logical function comes back after the procedure and the NIRS comes back after the procedure.

Paraplegic group, all segmentals sacrificed NIRS, drops after the procedure in the first couple days, and the neurologic function does not recover. So experimental evidence that actually works. Nice corelation, again, so the experimental validation proves that lumbar NIRS

reflects lumbar spinal cord oxygenation and reacts to occlusion, of segmental arteries in real-time, but careful it's only regional so where ever you put your optodes, this is the area where you can monitor

your collateral network associated dip when you coil or include the segmental arteries. First clinical results published a couple years ago, I think you have all seen this video. Optodes are putting in the back of the patient, same setup for endo and open

and then we take the monitors theory and we have real-time monitoring on oversights midline here, this is (mumbles). Concept validation from 2016 with the first clinical data and now we're working on the clinical evaluation

of the use of this technology in EVAR and in clinical coil-embolization. 11 patients have been included so far for the EVAR group and you see here, it is very sensitive when you put stent in, stent deployment, but we have to still work so to speak

on the area that we have to monitor. There's a lot of work to do and probably also device modifications are necessary. MISACE, last couple words, on this you see pretty stable, NIRS all over the time course and actually this is nothing we wouldn't have expected

because the patient obviously were protected from spine cord anesthesia. So also here but sometimes we see a significant drop and this is when you should be careful and that's when you usually stop the procedure. So in conclusion, minor changes

in Collateral Network oxygenation have been seen in EVAR in this preliminary results using the nearest technology and to establish one very nice ... Nicely how clinical practice is already guided at his institution.

There's no immediate complete occlusion of covered segmental arteries and there's ongoing study in very heterogeneous patient group. There's no relevant changes with the chlorine technology so far,

but that, just to remind you, is the purpose of this technology, that we do not harm the patient during the preparation period. Thank you very much for your attention.

- Thank you very much for the privilege of participating in this iconic symposium. I have no disclosures pertinent to this presentation. The Atelier percutaneous endovascular repair for ruptured abdominal aortic aneurysms is a natural evolution of procedural technique due to the success of fully percutaneous endovascular

aortic aneurysm repair in elective cases. This past year, we had the opportunity to publish our data with regard to 30 day outcomes between percutaneous ruptured aneurysm repairs and surgical cutdown repairs utilizing the American College of Surgeons NSQIP database,

which is a targeted database which enrolls about 800 hospitals in the United States, looking at both the univariate and multivariate analyses comparing preoperative demographics, operative-specific variables and postoperative outcomes. There were 502 patients who underwent

ruptured abdominal aortic aneurysms that were included in this review, 129 that underwent percutaneous repair, whereas 373 underwent cutdown repair. As you can see, the majority were still being done by cutdown.

Over the four years, however, there was a gradual increase in the number of patients that were having percutaneous repair used as their primary modality of access, and in fact a more recent stasis has shown to increase up to 50%,

and there certainly was a learning curve during this period of time. Looking at the baseline characteristics of patients with ruptured aneurysms undergoing both modalities, there was not statistically significant difference

with regard to these baseline characteristics. Likewise, with size of the aneurysms, both were of equal sizes. There was no differences with regard to rupture having hypotension, proximal or distal extension of the aneurysms.

What is interesting, however, that the patients that underwent percutaneous repair tended to have regional anesthesia as their anesthesia of choice, rather than that of having a general. Also there was for some unexplained reason

a more significant conversion to open procedures in the percutaneous group as compared to the cutdown group. Looking at adjusted 30-day outcomes for ruptured endovascular aneurysm repairs, when looking at the 30-day mortality,

the operative time, wound complications, hospital length of stay, that was not statistically significant. However, over that four year period of time, there tended to be decreased hospital length of stay as well as decreased wound complications

over four years. So the summary of this study shows that there was an increased use of fully percutaneous access for endovascular repairs for ruptured aneurysms with noninferiority compared to traditional open femoral cutdown approaches.

There is a trending advantage over conventional surgical exposure with decreased access-related complications, as well as decreased hospital length of stay. Now, I'm going to go through some of the technical tips, and this is really going to be focused upon

the trainees in the room, and also perhaps those clinicians who do not do percutaneous access at this time. What's important, I find, is that the utility of duplex ultrasonography, and this is critical to delineate the common

femoral artery access anatomy. And what's important to find is the common femoral artery between the inguinal ligament and this bifurcation to the profunda femoral and superficial femoral arteries. So this is your target area. Once this target area is found,

especially in those patients presenting with ruptured aneurysm, local anesthesia is preferred over general anesthesia with permissive hypotension. This is a critical point that once you use ultrasound, that you'd want to orient your probe to be

90 degrees to the target area and measure the distance between the skin and the top of that artery. Now if you hold that needle at equidistance to that same distance between the skin and the artery and angle that needle at 45 degrees,

this will then allow you to have the proper trajectory to hit the target absolutely where you're imaging the vessel, and this becomes important so you're not off site. Once micropuncture technique is used, it's always a good idea just to use

a quick fluoroscopic imaging to show that your access is actually where you want it to be. If it's not, you can always re-stick the patient again. Once you have the access in place, what can then happen is do a quick angio to show in fact you have reached the target vessel.

This is the routine instructions for use by placing the percutaneous suture-mediated closure system at 45 degree angles from one another, 90 degrees from one another. Once the sheath is in place for ruptured aneurysm, the placement of a ballon occlusion

can be done utilizing a long, at least 12 French sheath so that they'll keep that balloon up in place. What's also good is to keep a neat operative field, and by doing so, you can keep all of these wires and sutures clean and out of the way and also color code the sutures so that you have

ease and ability to close them later. Finally, it's important to replace the dilator back in the sheath prior to having it removed. This is important just so that if there are problems with your percutaneous closure, you can always very quickly replace your sheath back in.

Again, we tend to color code the sutures so we can know which ones go with which. You can also place yet a third percutaneous access closure device if need be by keeping the guide wire in place. One other little trick that I actually learned

from Ben Starnes when visiting his facility is to utilize a Rumel mediated technique by placing a short piece of IV tubing cut length, running the suture through that, and using it like a Rumel, and that frees up your hand as you're closing up

the other side and final with closure. The contraindications to pREVAR. And I just want to conclude that there's increased use of fully percutaneous access for endovascular repair. There's trending advantages over conventional surgical exposure with decreased

access related complications, and improved outcomes can be attributed to increased user experience and comfort with percutaneous access, and this appears to be a viable first option. Thank you very much.

- Here are my disclosures, none are relevant to today's talks. So what is the role of compressions stockings to prevent Postthrombotic Syndrome for patients with acute DVT? Well it's become rather complicated because as shown by recent studies,

it depends on what question is being asked. Question one is do compression stockings started at the time of DVT diagnosis prevent PTS, such as the Socks trial and other similar trials? Or question two, if you're already worn compression stockings for a period of time after DVT

and have not developed PTS, does stopping them increase the risk of developing PTS, such as the recent OCTAVIA and IDEAL trials? This is a meta-analysis that was done to address question one, namely the role of compression stockings started at the time of DVT diagnosis,

and this meta-analysis considered unblinded studies. The one blinded study, which was the Socks trial, and then attempted to combine that data, and you can see that if one looks at the unblinded studies there's suggestion of a 30% protective effect, or, excuse me, 40% protective effect.

The blinded study showed no effect of compression stockings. And combining all the studies together seemed to show about a 30% protective effect, however the confidence interval crossed one. There's very low confidence in this total estimate because of the substantial heterogeneity across studies.

And indeed, in their discussion, the authors point out the following: "We have very serious concerns about the unblinded studies because such designs may inflate treatment effects". And also, "differing results across studies suggest that the decision to use compression stockings

may be value and preference dependent for our patients". And we'll come back to that shortly. What about question two, if you've already worn compression stockings for a period of time after DVT, and you haven't developed PTS, does stopping them increase the risk of getting PTS?

There've been two new trials. One is the OCTAVIA study, of 518 proximal DVT patients. All wore compression stockings for one year after their DVT. If they were free of PTS at one year, they were randomized to continue for an additional year, or to stop.

And the results of this trial showed that stopping after one year was inferior to continuing for two years for the PTS outcome. On the other hand, we have the IDEAL study, of 865 proximal DVT patients. In this study, all patients wore compression stockings

for six months after proximal DVT, and if they were free of PTS at six months, they were randomized to continue for an additional 18 months, or to tailor continued use of stockings according to the Villalta score that was assessed every three months

at study follow-up visits. And the results of this trial showed that tailoring use after six months, which was the experimental arm, was actually non-inferior to continuing for 18 more months. So these results are interesting but somewhat conflicting. So how do I use compression stockings in 2018?

I don't routinely prescribe stockings to all of my proximal DVT patients. They can be difficult to apply, uncomfortable, expensive, and they need to be replaced every few months. And we all know that many patients won't wear them

in real life, especially if they have no symptoms whatsoever. And also, it's really not clear to me whether stockings prevent Postthrombotic Syndrome versus merely palliate symptoms of Postthrombotic Syndrome that has already developed.

And it may simply be as effective and more convenient and we may achieve better compliance if we ask our patients to start compression stockings at the time they develop symptoms of Postthrombotic Syndrome. I do however prescribe a trial of stockings

to any DVT patient, whether they have proximal or distal DVT who has residual symptoms after their DVT, and I'd continue them for as long as the patient derives symptomatic benefit or is able to tolerate them, and I certainly take patients' values and preferences into account

in making this decision. Moving on to the role of interventional treatment for patients with acute DVT. We have all heard and seen the results of the ATTRACT trial. Just very briefly, we know that the primary study outcome, any Postthrombotic Syndrome was not different

in the PCDT arm versus the No-PCDT arm. However, it did appear that PCDT reduced the risk of developing moderate or severe Postthrombotic Syndrome, and this was driven primarily by the subgroup with Iliofemoral DVT. In terms of short-term results, PCDT caused more

bleeding, major and any bleeding, and it caused statistically significant but clinically modest improvements in leg pain and leg swelling. Based on these results, what's the role of interventional treatment for patients with acute DVT? I would say that it's not indicated for routine use

in proximal DVT, it doesn't prevent Postthrombotic Syndrome, it does increase bleeding, and older patients above the age of 60 to 65 or more appear to be particularly poor candidates because of more bleeding and less efficacy. And further study in clinical use of these modalities

should be targeted. One would still consider PCDT in patients with severe symptoms, Iliofemoral DVT, and the other factors shown here on the slide. And finally, always remember that it's always an option to anticoagulate first for the initial

five to seven days if the limb is not acutely threatened. Thank you very much.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Thank you very much for inviting me here again and I'll be talking about thermal ablation RCTs. My coauthor, Michel Perrin from Lyon, in France, the gourmet capital in the world has collected RCTs on operative treatment of CVD since 1990. Today he has 186 collected RCTs

of the which 84 involve thermal ablation. You can find all this data for free in Phlebolymphology.org. Do we need further RCTs? Well systematic reviews and meta-analyses increasingly important in evidence-based medicine. And this development is well-described

by Gurevitch in Nature this year and criticized by Ioannidis two years earlier. Common sense is a good principle when you try to understand meta-analyses. Do most studies point in the same direction?

Is the effect significant? Are the patient-related outcome measures relevant and what happens if you exclude one study? Since 2008, 10 years back, these are the available meta-analyses and the last came from Ireland earlier this year.

It was published in the JVS, endovenous and in fact this is in March. And they found nine RCTs comparing conventional surgery and endovenous therapy with five years or more follow-up that were selected. Primary outcome was recurrence rate.

There is some sole recurrence rate was that there is no significant difference in laser versus surgery, same for radioactive frequency versus surgery and radioactive frequency versus laser. They found an inferiority

of ultrasound guided foam sclerotherapy versus laser and surgery. Their conclusions were that the quality of evidence is poor therefore more trials that are well-powered to examine long-term outcomes are warranted. The new kids on the block,

steam, MOCA, and Venaseal, are not included in the meta-analyses due to lack of more than five years follow-up in their paper. Obsolete RCTs. Endovenous laser in the presented long-term RCTs

were performed by 810-980 nanometer wavelength using a bare fiber. There is a paucity of RCTs comparing open surgery with novel endovenous laser and new RF techniques. Recent criticism against endovenous ablation, is the pendulum swinging towards high ligation

and stripping again? Olle Nelzen from Sweden in an editorial in British Journal of Surgery reconsidering the endovenous revolution, wrote that neovascularization is a dominant finding following high ligation and stripping

but proximal venous stumps and incompetent anterior accessory saphenous veins are the main factor after endovenous ablation. So long-term follow-up suggests that the recurrence rate after endovenous ablation seem to increase over time. A substantial number of patients who have undergone

endovenous ablation will eventually develop symptomatic recurrence requiring repeat therapy. And such scenario would change the equation regarding patient benefit and costs making endovenous ablation less competitive and challenging current guidelines.

So summary of needs for further RCTs. Quality of present RCTs poor in several meta-analyses, no thermal endovenous technique is superior to open surgery, RCTs rapidly obsolete due to change in technology, and more trials that are well-powered to examine long-term outcomes are warranted.

So final point, apparently we need more RCTs to satisfy the quality requirements for clinically important systematic reviews and meta-analyses. And what about the clinical guidelines? Thank you very much.

- The FLEX Scoring Catheter is one of the new tools, which is dedicated to vessel preparation, either as a stent, as a therapy followed by plain balloon angioplasty, or preparing the vessel for drug-eluting balloons and stents. So, the background basically is that

we're more and more tackling chronic total occlusions, and these kind of lesions, they have an increased risk of being calcium-containing, creating dissections, perforations, embolization, and poor luminal gain. And for that purpose, this device, which is more or less

a kind of surgical device, was developed. It's a interventional tool which can be introduced via a six-French sheath. It's an over-the-wire system, running over a 14 or 18 thousandths guide wire. It's common in shaft lengths of

40 centimeters dedicated to AV, fistula treatment and 120 centimeters, and the device is exposed to the vessel wall with three atherotomes, with the indication for femoropopiliteal and AV fistula excess treatment. One size fits all is really the right description

of this device, except having two different shaft lengths, the device itself is coming in one size only. What does it result in? Well, it results in micro-incisions, as you can see it over here, also over here in an OCT image, and the depths of these incisions

is about 0.5 millimeters, the pressure which is applied to the surface is about one atmosphere, independent on the vessel size. So, the idea and the rationale for this device is to facilitate and increase the vessel compliance and to create an controlled environment for angioplasty.

There are, just recently, some specimen analysis performed by CBSET, what you can see over here, marked by arrows, these arrows indicate the FLEX-induced micro-incisions, and you can see that these incisions are really circumferential with controlled,

uniform depths of those incisions into the plaque or the vessel wall. This is a 150 times magnification and you can see these longitudinal micro-incisions, which are very much parallel, it's like using a cutting balloon,

the advantage, however, is that this device can be applied to even longer lesions, the limitation of a cutting balloon is the balloon length of 20 centimeters only. So what are the early results? I can present you the acute outcomes

of 100 patients' sample size, with chronic total femoropopliteal occlusions. We can see that the average lesion length was really significant, 191 millimeters, the range was up to 35 centimeters, and there was moderate to severe calcification

in almost 50% of those cases. The luminal gain post FLEX application was about 31%, and the following balloon opening pressure, which was documented within this registry, was four atmospheres only, which is a signal that really the vessel compliance

is significantly improved, considering the almost 50% of moderate to severe calcification of those lesions. There had been no emboli, there had been no flow-limiting dissections, nevertheless, the provisional stent use was still high with 19%.

This is one of two case examples I would like to share with you. This was an instant re-occlusion of the popliteal artery, 10 centimeters in length, this was passed with an 18 thousandths guide wire, three passes with the FLEX catheter had been performed,

as you can see over here. And this was then, this was the result after FLEX catheter application and this is post additional drug-coated balloon angioplasty, there was no dissection, there was no significant residual stenosis.

Another case example, unfortunately, the video will not run, this was a long distance flush occlusion of the SFA, and you can see the calcium here in the entire length of the lesion, this lesion was treated, again, with the FLEX catheter, here, the video is not running,

this is the final result after DCB application. So, in summary, there's a high degree of technical success in achieving consistent luminal gain post FLEX, there's a low opening balloon pressure, and the re-canalization of CTOs was possible with a low rate, zero rate of significant dissections

and the low provisional stent rate. Thank you very much.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- Thank you, thanks for the opportunity to present. I have no disclosures. So, we all know that wounds are becoming more prevalent in our population, about 5% of the patient population has these non-healing wounds at a very significant economic cost, and it's a really high chance of lower extremity amputation

in these patients compared to other populations. The five-year survival following amputation from a foot ulcer is about 50%, which is actually a rate that's worse than most cancer, so this is a really significant problem. Now, even more significant than just a non-healing wound

is a wound that has both a venous and an arterial component to it. These patients are about at five to seven times the risk of getting an amputation, the end patients with either isolated venous disease or isolated PAD. It's important because the venous insufficiency component

brings about a lot more inflammation, and as we know, this is associated with either superficial or deep reflux, a history of DVT or incompetent perforators, but this adds an increasing complexity to these ulcers that refuse to heal.

So, it's estimated now about 15% of these ulcers are more of a mixed etiology, we define these as anyone who has some component of PAD, meaning an ABI of under point nine, and either superficial or deep reflux or a DVT on duplex ultrasound.

So we're going to talk for just a second about how do we treat these. Do we revascularize them first, do we do compression therapy? It has been shown in many, many studies, as with most things, that a multi-disciplinary approach

will improve the outcome of these patients, and the first step in any algorithm for these patients involves removing necrotic and infected tissue, dressings, if compression is feasible, based on the PAD level, you want to go ahead and do this secondary, if it's not, then you need to revascularize first,

and I'm going to show you our algorithm at Michigan that's based on summa the data. But remember that if the wounds fail to heal despite all of this, revascularization is a good option. So, based on the data, the algorithm that we typically use is if an ABI is less than point five

or a toe pressure is under 50, you want to revascularize first, I'll talk for a minute about the data of percutaneous versus open in these patients, but these are the patients you want to avoid compression in as a first line therapy.

If you have more moderate PAD, like in the point five to point eight range, you want to consider compression at the normal 40 millimeters of mercury, but you may need to modify it. It's actually been shown that that 40 millimeter of mercury

compression actually will increase flow to those wounds, so, contrary to what had previously been thought. So, revascularization, the data's pretty much equivocal right now, for these patients with these mixed ulcers, of whether you want to do endovascular or open. In diabetics, I think the data strongly favors

doing an open bypass if they have a good autogenous conduit and a good target, but you have to remember, in these patients, they have so much inflammation in the leg that wound healing from the surgical incisions is going to be significantly more difficult

than in a standard PAD patient, but the data has shown that about 60% of these ulcers heal at one year following revascularization. So, compression therapy, which is the mainstay either after revascularization in the severe PAD group or as a first line in the moderate group,

is really important 'cause it, again, increases blood flow to the wound. They've shown that that 40 millimeters of mercury compression is associated with a significant healing rate if you can do that, you additionally have to be careful, though,

about padding your bony areas, also, as we know, most patients don't actually keep their compression level at that 40, so there are sensors and other wearable technologies that are coming about that help patients with that, keeping in mind too, that the venous disease component

in these patients is really important, it's really important to treat the superficial venous reflux, EVLT is kind of the standard for that, treatment of perforators greater than five, all of that will help.

And I'm not going to go into any details of wound dressings, but there are plenty of new dressings that are available that can be used in conjunction with compression therapy. So, our final algorithm is we have a patient with these mixed arterial venous ulcers, we do woundcare debridement, determine the degree of PAD,

if it's severe, they go down the revascularization pathway, followed by compression, if it's moderate, then they get compression therapy first, possible treatment of venous disease, if it still doesn't heal at about 35 weeks, then you have to consider other things,

like biopsy for cancer, and then also consider revacularization. So, these ulcers are on a rise, they're a common problem, probably we need randomized control trials to figure out the optimal treatment strategies.

Thank you.

- Thank you very much indeed, Chairman. Ladies and gentleman, thank you very much for the podium. Right, my opponent Professor Hogan, has just given his statement asking you to abandon two fenestrated endovascular repairs in favor of three and four fenestrations, but this picture proves to you that during his spare time,

he's actively promoting single fenestration devices, actually. Just keep that in mind. My contention is that three and four branch fenestrated EVARs result in higher complications and higher mortality, which means that they should be avoided if at all possible.

What exactly are the critical issues that are at question here? Do four fenestrated endovascular repairs carry higher risk of complications compared to simpler devices? If they do, are the worth it? However, my opponent is also one of the world's

experts in this area. We've definitely learned quite a lot from him in the early stage of our program about 10-13 years ago. So, he usually has something sensible to say, has he got a point? My plan for this debate is to give you a very balanced view

based on multicenter data. Don't forget, the very compelling data Eric showed you are his single-center series. It is not easy to replicate his results in most other centers. I also would like to keep the debate clean.

Now, coming to the facts, four fenestrated repairs, beyond a doubt, just take more operating time than simpler devices. They're also technically one of the most challenging of aneurysm repairs that you do. They do test your center and team's experience.

Definitely in extricating oneself from intra-operator difficulties, and also, experience gives you the confidence through the operation that you will see the day through. It's also the case that the greater length of aorta is covered by stent graft fabric,

the more lumbars are taken, compromising the spinal cord blood supply further, which is a significant factor. This is a multicenter series from UK, from Terumo Aortic, their Anaconda Fenestrated platform multicenter series of their first 101 devices.

You notice that when the seals are extended to above celiac axis, which means four fenestrated devices, they had a much higher mortality compared to simpler devices. There's also the British Society of Endovascular Therapies Globalstar registry, which I run, currently has got

just over 850 patients registered, and we had data adequate for analysis in 533 patients. Being a much more spread out multicenter series, the results are worse. And you notice that three and four fenestrated devices in this pragmatic multicenter nationwide series

have got a much higher, substantially higher, death rate compared to simpler devices, which is statistically significant. In the long run, up to about four to five years, you notice that four fenestrated do carry a higher, slightly higher risk of re-intervention,

but the overall mortality is not hugely different. The numbers do dwindle. There are very few numbers up to ten years. So, it's not worth looking after 40 years of research. Paraplegia, the Globalstar registry had a total of six paraplegia occurrences reported.

Five of those are in patients who had four fenestrated devices put in. This is definitely worth remembering. It is a complication that really sinks you hard. So, in conclusion, the complexity of device should actually not be compared

without the context of anatomy. Frequently, to get an adequate and durable seal, you do need four fenestrations. However, remember, multicenter series do conclusively show that four fenestrateds are definitely more dangerous compared to the simpler of the devices.

However, this increased risk has to be compared against the perceived risk of alternative treatments such as open repair. So to conclude, Chairman, ladies and gentlemen, the primary aim of fenestrated repair is actually to achieve satisfactory seal zone, which I would say,

which I would say probably at least 20 millimeters of aorta, which is relatively free from calcification or thrombus. That is the bare minimum we should be looking at to get a durable seal. While that is the primary concern, and we need to incorporate as many number of fenestrations

as are technically required depending on your platform that you wish to use. The number of fenestrations themselves are, in fact, secondary and less important. However, if you are able to achieve such a good durable seal without using three or four fenestrations,

more complex devices are certainly not worth it. Thank you very much for your attention.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- [Bill] Thank you Vikay. I think this is an interesting topic for many reasons but one of the key ones is that if you look at our health care policies by insurers, this tends to define our practice. So I looked at BlueCross BlueShield's policy and they say that treatment of the GSV or SSV

is medically necessary when there is demonstrated saphenous reflux and I looked for more and there was no more. That's all they said so they must think that reflux a time correlates with venous severity. So is this true?

I think, personally, that there are other things that are involved and that volume is really the key. Time, velocity and the diameter of the vein are likely all part of the process and we all know that obstruction

is also critically important as well and probably the worse patients are those that have both reflux and obstruction. Probably reflux is worse in the deep system but we know that large GSV and SSV patients can develop CEAP four to six symptoms

and do very well with saphenous ablations. And I think this is a nice analogy. I love this guy, it looks like he came off of his lawn chair to help the firefighters out but he's probably not going to do so much with his little garden hose now, is he?

So I think size and velocity do matter. What does the literature tell us? Chris Lattimer and his group have done an elegant set of studies looking at how various parameters correlate to air plethysmography and venous filling times. They did show that there is a correlation

between venous filling time and reflux time. However, other things were probably more correlated such as GSV diameter and reflux velocity. And in this nice study of 300 patients they found that there was a relatively weak correlation between reflux time and clinical severity

and their conclusion was that it was a good parameter to identify reflux but not for quantifying the severity. So here's how we use this clinically in my practice. So you see many patients such as this that have mixed venous disease.

53-year-old female, severe edema. You do her studies and she's got reflux in the deep and the superficial system. So how to we decide if saphenous ablation is going to help this patient or not and correct these symptoms, prevent further ulcerations?

So all reflux is not created equal. The top is a popliteal tracing where the maximum reflux velocity is about five centimeters per second versus the bottom one that's about thirty to forty centimeters per second

so these probably aren't going to behave similarly in when we look at them. So we studied this in 75 patients and reported this back in 2008. We look at the maximum reflux velocity in the popliteal vein to tell if these patients

would improve after we ablated their saphenous or not. We found that this was a significant predictor of both improvement in venous filling index and the venous clinical severity score so we think velocity really does matter. And this is where we're seeing this clinically.

This is a patient that was referred to me for a second opinion concerning whether she would need ablation of her great saphenous vein. And this is the reflux tracing and you can see the scale here is turned up so that this is a measurement of reflux at about two centimeters per second.

This was used to document abnormal reflux and to justify ablation of the saphenous. So I checked one of our tracings. This is what it looks like.

- Frank, thank you very much for your invitation. This is my disclosure. I think that all vascular surgeons are asking ourself following question. Is diameter of triple A the sole indicator for surgery? To ask for this question since about 20 years, we are interesting with function in aging with a PET CT

using 18F-FDG which allows the evaluation of the regional glucose metabolisms. And shows the presence of an inflammatory reaction at the level of atherosclerotic tissue infiltrated by the inflammatory cells. During our pilot study, we observed that

the uptake of the FDG was also stated with the unstable triple A. And during several studies, we were observed that FDG uptake not only show of predicted rupture but it predict also the site of the rupture

in triple A patients in Thoracic Aortic Aneurysms as well as Aortic Arch Aneurysm as you can see. Here is very easily we are find, you can observe FDG uptake and this patient we performed MRI and you can see here, free iron particles, it's same area of every velope. Starting increase FDG uptake

and this patient refused operation and come back three months later to rupture. Of course FDG is not specific for aneurysm or disease. We can found FDG uptake in cancer disease, infection or arthritis or arthritis and reason why several authors interested with different kind of biomarkers

and sodium fluoride F 18 each one of those one. And it's injections indicated for diagnostic PET imaging of bone to define areas of altered osteogenic activity. The primary clinical use of sodium fluoride PET is in detection of osseous prostate cancer metastasis. But some authors, all of them start to use it for

evaluation of the plaque metabolism in high cardiovascular risk subjects. One group from United Kingdom and leaded by a Dr. Newby from Cambridge, they performed several very nice studies using this marker in coronary artery disease for plaque rupture

and for evaluate aortic stenosis to accumulation of the calcification in the aortic leaflets. And also for carotid stenosis and they, during this several studies, they demonstrated that 18F sodium fluoride, selectively binds to microcalcification coronary

and carotid atherosclerotic plaques and that are associated with plaque vulnerability and rupture. More essentially he interested, they interest also the triple A and they called this study the SoFIA study and it concern about 72 cohort patients

and 20 study population. And it is very nice picture of the patients with positive 18F sodium fluoride uptake. It is specific for one and reason why it is left right in red color here, but anyways, very easy to show the infusion images uptake

at the symptomatic aneurysms. And they divided their cohort study in three levels of Tertile 1, Tertile 2, Tertile 3 according to sodium fluoride uptake from low uptake to increase uptake and they observed that the growth rate,

increased growth rate, aneurysm repair and rupture and aneurysm repair alone, it was significantly higher in the patients in Tertile 3 group. And they concluded that Fluorine-18 sodium PET-CT

is a novel and promising approach to the identification of disease activity in patients with triple A and is an additive predictor of aneurysm growth and future clinical events. My conclusion is 18F-FDG and 18F Sodium Fluoride however,

not specific for inflammation. Therefore, new imaging tracer for a more accurate inflammation detection and therapy evaluation are needed. We need specific markers of angiogenesis and inflammation to predict the triple A evolution and potential rupture.

Thank you very much for your attention.

- [Sergio] Good morning everybody. I really do thank you for the opportunity to reason with you about the lower limbs venous kinetics and the consequent impact on drainage direction. I have no conflicts of interest to declare, particularly because this talk is all about physics and about those laws of physics

that rule the venous drainage. We could say that the drainage occurs along our Italian leg, along a deep venous highway, a saphenous freeway and along several tributary and perforated roads.

But we could also say that we could divide the anatomy of our lower limb into three different compartments. So the tributary one's above the fascia, the saphenous one in between the fascia layers, and the deep venous one below the fascia. In this kind of network, talking about physics,

we could apply the Bernoulli's principle which, to make it simple, states that whenever there is an acceleration, a lateral pressure drop occurs. Which introduces the Venturi's effect as a potential aspiration of blood

from a slowest toward a fastest vessel. But actually, up to now, we couldn't say this for sure and say that venous network because we have really few data on the literature about the velocity values that we have in the different segments of the different compartments.

So the aim of this investigation, in the first physiological part, was to evaluate the different velocity values of different segments, understanding if the Venturi's effect could be applied inside this network, and then looking at the pathological cases.

So we have 36 lower limbs of healthy controls, and we assess all the velocity segments in the different segments of the three different compartments, evoking the flow both by active dorsal flection maneuvers of the foot, and by compression/relaxation

of the calf of course. So we compared all the different values of all the different velocities with the two different maneuvers, and we created several tables and we performed several statistical tests to see

how these velocities were behaving in the different compartments. So it's pretty interesting to notice that there are segments of our venous networks in which if we are performing the vocation of the flow with two different maneuvers, we are going to have

significantly different values of velocity. So for example, this happened in the external iliac vein, in the femoral vein, in the posterior tibial vein, and the tributary veins. If you look at the graph, we realize that there is a gradient of velocities

that is decreasing in physiology. While we are moving from the deepest, toward the most superficial compartment. And if we take all these velocities we assess together, we see that there are three different groups of velocities basically, statistically speaking,

that almost totally overlap the anatomical compartments, with some exception. So if you look over here for example, you have the posterior tibial vein that belongs to the deep venous system of course, in terms of anatomy, but not in terms of velocities.

Which means that the velocity we reported were significantly different from the ones belonging to the deep venous compartment. The same thing for the short saphenous vein, which demonstrated to of course belong to the saphenous compartment in terms of anatomy

but not in terms of velocities. If we move toward the pathological part of this, and we look at the 40 chronic venous disease patients we assessed in a model in which we considered incompetent tributary as the segment you see over there, depicted as C.

Compared to the adjacent GSV trunk, A and B. It's interesting to notice how the peak diastolic velocity and the diastolic time average velocity are actually significantly higher in the tributary compared to the GSV in pathological cases.

And if we look at the resistance index, it's interesting to notice how the segment in B, so the GSV trunk below the confluence, is actually higher. Like indicating a sort of preferential road of drainage toward the incompetent tributary.

This introduced the Venturi's effect, so now we can see the Venturi's effect could play a role inside the venous network. In physiology with a gradient that is increasing in terms of velocity, so potential aspiration while we are going toward the deepest compartment.

And the gradient that is subverted in pathology, where we have tributaries that are going faster when they are incompetent, compared to the GSV trunk, so leading to potential aspiration. But our blood is not a newtonian fluid, our vessels are not ideal conduits,

so we have to admit some things we know that we know, and that's of course the newtonian physics. Kn we know that we don't know,

and that's the application of the newtonian physics inside the human body. And then unkn things we don't even know that we don't know. That's the in-vivo validation

of these physical models. Independently by what we know and by what we don't know, I totally agree with profe tters and starting from today we know that Venturi's effect could play a role inside the venous network. Thank you.

- Thank you very much, Mr. Chairman. Thank you Frank Veith for the invitation, talking about, "SFA lesions can be treated endovascularly: "Should they be?" I do not have any potential conflict of interest for this presentation, and I would like to share with you. We have two ways: Is it technically feasible

to perform always reverse canalization by endovascular technique, and the SFA, and should we do it? And I would like to immediately conclude by it's possible for me to treat all the lesions by endovascular technique in the SFA and popliteal lesion, and for me, I think, for us it's always the first choice.

So, next: What we do to really need an SFA re-canalization and a SFA repair? To be well armed with guides and catheter to perform re-canalization, and it's necessary how to get by unusual ways:

retrograde puncture of each over. And the difficulty is to know if we perform subintimal re-canalization or not, and the success of this technique is always the reentry. So for me, I think it's very important to have a right and clear process when

you perform a re-canalization, and to treat by endovascular therapy, SFA, and popliteal lesion, and I think we can perform a first dilation with POVAR with a balloon superior of 1 mm, compared to the diameter of the SFA.

And it's very important to perform an inflation during three minutes and to follow with a slow deflation and a gentle removal. And stent to the diameter of the SFA, and maybe it's important to use, in certain cases of the DEB.

So the success keys: Is a good experience of re-canalization, a good knowledge of the devices, and a preparation of the vessel. For me, it's very important and the quality of the angiogram tube,

so I would like to share you some example. Here is the example, and a thrombosis occlusion of the whole SFA, and for me you can see on the angiogram the results and it's very important to have a disparation of the decrease of the collateral injection

on the angiogram. This is a case with a total occlusion of SFA in the stent And you can see on the angiogram thrombosis of the stent at the anterior, and I performed for this patient retrograde puncture inside the stent,

and I take the guide wire with the retrograde puncture with the snare and I treat the artery. So, to avoid an hematoma at the puncture it's necessary to inflate before the balloon inside the stent

after the re-canalization, and to remove the introducer and to let the inflation during five minutes. And so, another cases with the total occlusion of the SFA and a very good result, and a very difficult case with a lot of calcification, and it's possible to perform SFA endovascular repair with these techniques.

Okay, and a case, total occlusion SFA, popliteal artery, and the leg artery, and we perform a re-canalization and we use a third-generation stent, Supera, and to have a very good result. And in terms of results, what do the studies say? Analysis of endovascular therapy for femoropopliteal disease

with the Supera stent in Journal of Vascular Surgery shows primary patency is very good, at 90% at one year. Another study, the study with my colleagues, we've used a third-generation of stent with a very good result at 24 months. And open surgery and the estimated

five-year primary patency was 64%. Okay, and in conclusion: For me, "There is no impregna "There are only badly attacked citadels." Thank you very much for your attention.

- I'd like the thank Doctor Veith for inviting me back to speak. I have no disclosures, we will be discussing some slight off-label use of the anitcoagulants. As we all know, acute limb ischemia occurs as a result of acute thrombosis of a native artery or bypass graft or embolism from a proximal

source, dissection, or trauma. The incidence is not insignificant, 15 cases per 100 000 persons per year, or interestingly about 10 to 16% of our vascular workload. Despite the relative frequency of this condition, there are relatively few guidelines to

guide us for anticoagulation therapy. The last set of guidelines for the American College of Chest Physicians regarding PAD gives some very brief, generic recommendations from 2012. They state, suggest immediate systemic anticoagulation with unfractionated heparin.

We suggest reperfusion over no reperfusion, which seems pretty obvious to an audience of vascular specialists. One of the challenges with acute limb ischemia is that it is a fairly heterogenous group. It can be thrombosis or embolism to the aorticiliac segments to the infrainguinal segments, and

there's also the patients who develop ALI from trauma. So we actually looked at the various phases of anticoagulation for acute limb ischemia and then we do, as with many institutions, utilize intravenous heparin at the time of the diagnosis, as well as obviously at the time of surgery,

but we found that there was a significant variation with regard to the early, post-operative anticoagulation regimens. One option is to give therapeutic intravenous heparin on an adjusted dose, but what we found in a significant minority of patients across the country actually,

is that people are giving this fixed mini-dose 500 unit an hour of heparin without any standardization or efficacy analysis. Then, obviously you go the long-term anticoagulation. We reviewed 123 patients who had ALI at our institution, who underwent surgical revascularization.

And they had the typical set of comorbidities you might expect in someone who has PAD or atheroembolism. In these patients, the Rutherford Classification was viable or marginally threatened in the majority, with about 25% having immediately threatened limb.

Various procedures were performed for these patients, including thromboembolectomy in the majority, bypass operations, angioplasty and stenting was performed in the significant minority and then primary amputation in the various selects few. We divided these patients into

the first four days of anticoagulation. Therapeutic with unfractionated heparin early on versus subtherapeutic or this mini-dose unfractionated heparin and we found that 29% of our patients were receiving the mini-dose unfractionated heparin, again without much efficacy analysis.

We used the International Society for Thrombosis and Haemostasis Anticoagulation Outcome Guidelines to look at the ischemic complications, as well as major and minor bleeding for these patients, and we identified actually not a significant rate of difference between the

subtherapeutic category and the therapeutic category of patients, with regard to mortality, with regard to recurrent limb ischemia, MI, VTE, or stroke, major amputation, and we actually didn't find because it's a fairly small study, any significant difference in major or minor bleeding for these patients.

So, we do feel that this small study did justify some efficacy of mini-dose unfractionated heparin because we didn't find that it was causing recurrent lower extremity thromboembolsim in these patients. Now on to long-term anticoagulation, for these patients, after that first three or four days

after the surgery, the options are long-term vitamin K antagonists, the DOAC's or vitamin K antagonists if you have atrial arrhythmia, or in the patients who had no other comorbidities, there really is not much guidance until recently. The compass trial was recently published in 2018

in stable PAD and carotid disease patients, identifying that rivaroxaban plus aspirin had a significant benefit over aspirin alone in patients who had stable PAD. And then, an upcoming trial, which is still ongoing currently in patients who underwent recent

revascularization, whether open or endo, is hopefully going to demonstrate that rivaroxaban, again has a role in patients with lower extremity ischemia. So in conclusion, there is relatively a scarcity of clinical data to help guide anticoagulation after acute limb ischemia.

Unfractionated heparin pre and intraop are standardized, but postop anticoagulation is quite variable. The mini-dose, we consider to be a reasonable option in the first few days to balance bleeding versus rethrombrosis, and fortunately we are having larger randomized clinical trials to help demonstrate the benefit of the DOACs and

aspirin in patients who are stable or post-revascularization for PAD, thank you.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.