Create an account and get 3 free clips per day.
Chapters
Case- Foreign Body Aspiration | OMG: Interesting Cases in Pediatric Radiology
Case- Foreign Body Aspiration | OMG: Interesting Cases in Pediatric Radiology
atelectasisbronchoscopybronchuschapterchestforeignleftmainstemNonepintopossible LLL atelectasis or pneumoniaradiopaquescan
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
ablationburnschaptercirrhosislivermodalitiespadsradiofrequencyunpredictablezone
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
ablationbiliarybiliary cancercancerchapterchinacirrhosisfactorsgeneticguyshcchepatitisinterventioninterventionalistsInterventionslargestlifestylelunglung cancerneuropiccprevalentproceduresmokingsocietaltrained
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
CME
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Observations working in IR in China | Across the Pond: The state of Interventional Radiology in China
Observations working in IR in China | Across the Pond: The state of Interventional Radiology in China
betadinechapterchinaclinicianfinanceshealthcareinterventionaloncologystent
Case- Ingested Foreign Bodies | OMG: Interesting Cases in Pediatric Radiology
Case- Ingested Foreign Bodies | OMG: Interesting Cases in Pediatric Radiology
abdominalbowelbowel restchapterconstipationdiarrheahistoryingestionIngestion of a piece of wire bristle from BBQIV antibioticslaparoscopic explorationNoneovarianpainPain continuespain palliationpalpationperitonitissurgical removal recommendedsymptomsvomitingwire
Case- Ingested Foreign Bodies- Magnets | OMG: Interesting Cases in Pediatric Radiology
Case- Ingested Foreign Bodies- Magnets | OMG: Interesting Cases in Pediatric Radiology
abdominalchapterday 3 pain reappearsdischarged with instructions that object would pass in stoolendoscopyfeverguardinghandheldingestionIV fluidsmagnetmagnetsmetalmetallicNoneobjectobservationpainpalerebound tendernessrigid abdomensurgicalsurgical consult obtained.typevomiting
Imaging Cryoablation | Ablations: Cryo, Microwave, & RFA
Imaging Cryoablation | Ablations: Cryo, Microwave, & RFA
ablationballchaptercryoablationessentiallylethalmaximalprobe
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
ablationablationschaptercryocryoablationfreezehemorrhagelesionlungLung Noduleminutesnodulepneumothoraxprobesprotocolproximalthawtriple
Cryoablation - What it is and how it works | Ablations: Cryo, Microwave, & RFA
Cryoablation - What it is and how it works | Ablations: Cryo, Microwave, & RFA
ablationablationsargonballchaptercoolcryoablationheliuminfusednitrogenprobeprobessurroundingtissuetissues
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
RFA Probe types | Ablations: Cryo, Microwave, & RFA
RFA Probe types | Ablations: Cryo, Microwave, & RFA
ablationaugmentationbipolarchapterimpedanceincreasesinfuselevineMedtronicosteoOsteoCool RF Ablation Systemprobeprobessalinetemperaturetines
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
Introduction- Foreign body aspiration | OMG: Interesting Cases in Pediatric Radiology
Introduction- Foreign body aspiration | OMG: Interesting Cases in Pediatric Radiology
aspirationasthmabodychaptercomorbidedemaepisodeexpiratoryforeignimagingingestionlaryngealNoneobjectspediatricpylorusradiologicradiologyremovalswallow
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
Case 4a: Renal Trauma | Emoblization: Bleeding and Trauma
angioangiogramangiographyarteriovenouscenterschaptercoilscontrastembolizationembolizeembolizedextravasationFistulagradehematomahemodynamicallyimageinjurieskidneyNoneparenchymapatientspenetratingpictureposteriorrenalRenal Traumaretroperitoneumscanspleensurgicallytrauma
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Transcript

This is a 45-year-old construction worker who comes from abroad, he has been operated five years ago abroad. We do not have any history about his operation. He arrived to the hospital with back pain and the Sciatica L5 an AVS score of seven out of ten, and this is his X-ray.

So in the X-ray you can see there's a metallic object right here but something was put there in the operation probably this is a marker of some kind of disc implant but we do not have any other information. So the simple thing is since the operation has been done after 2000, we ask for an MRI, this is MRI.

So this is not a good MRI and of course it's not a non-diagnostic MRI, so what can you do? Well in this case, you can do nothing and go directly for surgery, conservative treatment, injections based on clinical findings, surgery, we prefer to do

a myelogram or an epidurogram depending on which technique you'd like. So in this case, you stick a needle and inject your contrast media in the space and actually you can see the metal artifact it's just irritating the L5 route coming out there. So now you have a pretty precise conception of why it is irritating, this technique is very useful specifically when you have [UNKNOWN] sessions

or surgery in the area that creates metallic artefacts for MRIs and it can help your CT myelo to give you more information.

go through some more cases foreign body aspiration 20 month old has a two-day history of fever fussiness non-productive cough and he's not eating quite so much his Pio intake is

decreased chest x-rays is obtained and it's unsure if it's left lower lobe atelectasis versus pneumonia and his condition gets worse so they decide to do a CT scan of the chest and note that there's a point 5cm by 0.4 cm object

obstructing the left mainstem bronchus so the next step is wrong kosgeb II to see what's in there and you could see on the let's see we could see an uncooked pinto bean was removed on bronchoscopy so so obviously uncooked being a little

harder than it being soft being cooked and softer and these I thought these were very interesting images the one on the left is a CT scan of the paranasal sinuses and you could see on the arrow that there's a button battery which I'm

going to talk about in a few moments button battery in the right NER and a used eraser piece of eraser in the left narrow our middle picture here is a raid there's a radiopaque foreign body in the left mainstem bronchus which is a peanut

right here in the airway and here is a fish bone that's in the hypopharynx and that's just on a plane neck x-ray so you could see all different foreign bodies

- I wanted to discuss this topic because some of us are more sensitive to DNA damage than others. And it's a complicated ethical issue. I have a disclosure in that I developed a formulation to premedicate patients prior to CT and x-ray. We all know that we stand in fields of radiation for most of our careers,

and we also know that many of us have no hair for example on the outside of our left leg. This is a picture that a bunch of us took for fun demonstrating this. But this is in fact radiation dermatitis. We know that the founders of our field

suffered consequences from the chronic high doses that they received in the 1920's. And they lost digits, they lost ears, they lost noses any many of them died of cancers or cardiovascular disease. The mechanism of injury is the x-rays

impinge upon water molecules in our cells. They create free radicals. These free radicals bind with our DNA and then Oxygen binds with that site resulting in an oxidative injury which can be reduced by the use of anti-oxidants.

I studied this over the last eight or nine years and I looked at the issue of chronic low dose radiation. Now this is different from the data that we collect from Nagasaki and Hiroshima and from Chernobyl and elsewhere. There are cancer risks but there

are also cardiovascular risks. And there are risks from chronic inflammation from increased reactive Oxygen species circulating with our system. I've been in touch with the IAEA recently about this and they didn't actually

realize that we don't wear our badges. So they thought the data they were getting on the doses that we were receiving were accurate. So that was a very interesting conversation with them. So cardiologists have been known

to get lifetime doses of of over one Gray. There's a lot of literature on this in public health literature. For example for every 10 milliSieverts of low dose ionizing radiation and received by patients with acute MI's,

there's a 3% increase in age and sex adjusted cancer risk in the follow-up five years. There's an excellent paper from Kings College London demonstrating that when endovascular surgeons were studied with two specific immunofluorescence tests, P53 and H2 alpha,

they were able to demonstrate that some endovascular surgeons are more sensitive to radiation dose than others. So why would that be? Well it's interesting if you look at this genetically and you look at the repair mechanisms

and in this whole thing I think in fact the lens is kind of the canary in the coal mine. When you get radiation induced cataracts, it's in the posterior chamber of the lens not the middle or anterior, which is where age-related injury occurs.

And this is the germinal layer or reproductive layer. The growth layer in the lens itself. And this is where cataracts develop. And this is really kind of a harbinger I think of injury that occurs elsewhere in our system. We know that when we wear DLDs on our chest,

on our bodies, on our arms, that the dose to the left side of our head is six times higher than to the right. In fact they dosed the left lens as higher than the right. And most of us who have lens replacements have it of the left eye.

This literature from adjacent fields that we may no be aware of. In the flight safety literature for pilots and stewardesses. There's extensive literature on cosmic radiation to flight crews who's doses annually are in the same range as ours.

So when you look at medical staff, you have to look at the overall context of the human in the Angio suite. Many of our medical staff will not be well. They may have chronic cardiac disease. They may be on say drugs for auto

immune disease or Methotrexate. They may have other illnesses such as Multiple Myeloma. They may have antibiotics on board that alter the DNA repair ability like Tetracycline. And they have chronic stress and sleep dysfunction. Cigarettes and alcohol use.

All of these things decrease their ability to repair DNA damage. If you look at DNA repair mechanisms, there are constantly the terms BRCA1 and two, PARP, P53, and ATM that show up. And deficiencies in these,

I'm going to skip all this to show you, can result in increased injury from a same dose being received by two different individuals. Now who is at risk from this is well understood in adjacent fields.

Here are 37 references from the public health literature related to mutations and SNPs or polymorphisms in DNA structure known to cause increased sensitivity to radiation. So I would propose that in, and here are papers on that topic

in adjacent fields that we don't read. So when we talk about personalized medicine for our patients, we need to also think about personalized career choices based on our DNA repair ability when we decide what we do. This has to be done in the context

of empathetic compassionate approach. It may begin with screening based on family history and personal history, and then advance in the right context to genetic screening through mutations and SNPs that can decrease their ability

to repair DNA damage from our occupational exposure. I'll skip all this because I'm out of time. But one other issue to think about, mitochondrial DNA is inherited purely maternally. So maternal DNA damage, mitochondrial DNA damage could be transmitted across generations

in female interventionalists. Also screening is important. It's emotionally complex. It's ethically complex. But it's an important conversation to begin to have. Thank you.

advantages of radiofrequency ablation or that there's the most research on this

right so if you look up ablation research there's a whole lot of data and research on this as it's been the longest studied so that's always beneficial when you're trying to convince people that they should get an

ablation it's cheap right although some of the problem with that is a lot of manufacturers aren't making some of the devices anymore so to get replacement probes and that sort thing is difficult but it is certainly much cheaper than

the other modalities its gentler than microwave right so it's a slower increase in temperature and you can control it the disadvantages as we mention right so the ablation zone this is probably the worst part about

radiofrequency ablation is that the ablation zone is unpredictable right now we're trying to go towards this idea where we can predict the exact size of the ablation and really with RFA it was more experience related right so if

someone I've been doing them for 20 they can have a good idea how it's gonna it's gonna blade but that ablation zone is very unpredictable it's very tissue dependent right so if you have cirrhosis and the liver is

really scarred down you're gonna get a different ablation as to someone who has a normal appearing liver you have the heatsink effect which as I mentioned can be used as an advantage but usually as a disadvantage and then large large burns

are difficult right so anything greater than 4 centimeters even that is difficult to achieve with RFA it is possible to get skin burns at the grounding pad so if you're gonna do RFA make sure that the patient doesn't have

a hip prosthesis for instance and make sure you know it sometimes patients get sweat underneath the the pads and that can increase skin burns and those pads so that's one of another downside of a radiofrequency ablation so we'll move on

you know the most common procedures in China this is kind of interesting I was blown away by this when I did the research on this I knew when I would go

into the hospitals and I was all over for I've been to Beijing shanghai nanjing to even the smallest little place is up in northern china and the one thing that blew me away I'm looking at the board and I'm seeing neuro case

after neuro case after neuro case I'm like it got 10 Narrows and and a pic line I'm like it's an interesting interesting Dysport of cases and the reason being is in China they consider diagnostic neuro

so neuro angio to be the primary evaluating factor for any type of neurological issue so you're not getting a CT if you come in with a headache you think you're gonna go get that cat scan now it's generally what not what they do

so you're talking about a case and I'll give you the case matrix of the break-up it's just proportionately high for a neuro very well trained in neuro and most of the guys that are trying to neuro very similar to what dr. well Saad

said a lot of the guys in Africa are trained in France so other neuro interventions have trained in France or lipstick in China and have received European training on that so you know the level of what they're doing some of

the stroke interventions some of the ways they're going after these complex APM's they'll Rob well anything you'll see here in the US so it is quite interesting to see and the second

largest is taste hepatocellular carcinoma is on the rise it's the highest level in the world is found in China and Korea for that matter and there's many reasons why we can go into it some of it is genetic factors and a

lot of societal factors alcohol is a very liberally lie baited in China and there is problems with you know cirrhotic disease and other things that we know could be particular factors for HCC so always found that very

interesting like I said I would go into a hospital and I'll see a PICC line a hemodialysis catheter and then 20 tase's on the board in one day so it is quite interesting how they do it and then biliary intervention stents tips and

then lung ablation you know the highest rates of HCC biliary cancer and lung cancer found in China and once again when we talk about lung cancer what are those contributing factors you're talking about certainly a genetic

component but mostly it's lifestyle factors smoking is prevalent in the US and in you know in Europe and in some areas in Asia we've seen obviously a big reduction in smoking which is fantastic China not so much you don't see that

it's a societal thing for them and unfortunately that has led to the the largest rates of cancer in the world in lung cancer so lung ablation is a big procedure for them over there as well so procedure breakdown this is kind of some

of that breakdown I was telling you about that cerebral procedure is some of the most commonly performed and you're talking about at very large numbers they're doing neuro intervention because they do it for die

Gnostic purposes and I would that kind of blew me away when I found out they do have cast scanners and certainly for trauma and things like that they'll do it but the majority of the stuff if you come in you have headaches you might end

up in the neuro suite so it's quite interesting how they can do that tumor intervention very high like I said you have the highest rates of HCC in the world you're getting cases they do have y9t available and in fact China just

made their largest acquisition ever with the by what you guys know a company they bought surtex there's a Chinese company now it got bought by China now the interesting is they don't currently have a whole lot of

y9t over there but they just opened up some of their own generators so they can actually start producing the white room 90 and I think you'll see probably a increase in those numbers of y9t cases but to date the number one procedure for

them is taste and they do a lot of them you know like I said on average a community hospital setting you might find 15 or 20 cases a day with three interventionalists so compared to what you guys do there's probably not many

people here unless you're working at a major institution that there's nothing but cancer doing 20 cases a day and I promise you're probably not doing it with only two interventionalists so it's amazing how fast and effective they've

gotten at and below therapy and unfortunately it is necessary because of those elevated HCC levels and like I said when we look at some of these things it's I go over there and I'm looking at the board there are very few

cases for you know PICC lines very few the frosted grams very new bread-and-butter abscess training procedures like we do here in the US they are very it's the prevalence is very simple it's neuro it stays and it's

biopsy and those are some kind of the big three for intervention in China and there it's such a large volume you get to learn a lot when you're over there and CLI PA D even though it's more prevalent in China than it is here

because smoking lifestyle factors certainly westernization of the diet in China which occurred since the 1950s and 60s has led to a lot of McDonald's and and fast food and things that weren't currently available prior to 1950s you

see a lot of PA d but it is very undertreated and certainly talking to some of my colleagues like whom are oh you'll get to see a little bit later on with CLI fighters one of the things that's kind of frustrating for them is

that it is so undertreated it's very common to see amputations in China instead of actually doing pipe in percutaneous intervention they normally like to go too far and you see a lot of amputation certainly above

normal so that's something I think as an interventional initiative when we look at these things coming from a Western perspective it's definitely something we need to pursue a little more aggressively but there it's very little

oh well you're talking about two you know two to three percent you know maybe up to six percent or PID cases very very low levels so equipment in equipment in

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

and these are just my personal observations I'm gonna make this quick because you got a great presenter following me and I don't want to push off dr. rustling too much longer but

compassion and smile are universal I didn't need to speak Mandarin to be able to understand what was going on and certainly when I'm at that scrub table and I'm performing procedures on patients we all could smile and laugh

and figure out what was going on very quickly without too much into discussion and so that's the one thing I would always say when you go smiles contagious wherever you are in this world everyone likes to smile

second thing is everything is your usable what you think it should be or not doesn't matter you can reuse it I found that one out betadine is amazing everything is reusable overseas you'll figure that one out quickly informed

healthcare is at a higher level in China and what I mean by that is when you have to have your patient pay for a $2000 stent yeah informed healthcare is amazing because you're gonna pull the patient's family in and you're gonna

talk to them and they're gonna have to make very important decisions about healthcare which is dependent on what type of finances they have and it's kind of sad unfortunately you know I would hope we

can go into a big long debate about US healthcare and everything else but in the end the sheet you put that Stinton if I need to put that stent in and then we'll worry about the finances later on it's

not that way over in there so that can be very frustrating for a clinician he's trying to do what he feels is best or if she feels is best for their patient and they can't you'll find no better MacGyver's than in china and then in

overseas because they will make it work no it's gonna fit no matter what what size fit you have it doesn't matter we'll make it work so it's it is amazing you will find some macgyvering going over there that's

quite fascinating more tase's and i've ever seen in my life you want to learn interventional oncology and you haven't done a taste procedure go to China for a week you're gonna come back and be an expert whether you want to be or not

that's de-facto and certainly the younger I are physicians strong knowledge base of clinically what's going on and excited to plug into their colleagues overseas they want to know what we're doing here in the US

they want to know what they're doing in Europe they want to know about the latest studies and that's exciting to me as a clinician to be able to share that and see that that future there is a strong and bright future for

interventional radiology and when

a what this is a 16 year old who

presented to the GI clinic with a 2-day history of sharp abdominal pain and I know we all think oh my gosh a teenager with abdominal pain how often do we see that it was accompanied by sweats she'd had one episode of non bloody vomiting

decreased oral intake and some diarrhea although she no longer has vomiting and diarrhea denies fever or trauma she does have a history of irritable bowel and chronic constipation and an ovarian cyst rupture so again you have a lot going on

with the abdomen with this kiddo and you know somewhat broad symptoms so on further examination she describes this pain as clearly different from any of her pain associated with IBS and constipation she specifically said it

feels like there is a bubble that is about to burst it was exacerbated by eating coughing and sneezing her she appeared a mild distress but her vital signs were stable and her tenderness was localized to and to the right upper

quadrant with palpation and percussion so the x-ray shows a your object 13 millimeters in length adjacent to the large bowel and liver she was transferred to the emergency department where her pain continued to

intensify they got a CT the IDI doc dug for some more history this goes just you know history history is important keep digging you know as long as you don't know what's going on keep digging and then

finally when talking about food and anything that she could have eaten different they did figure out they had just gotten the grill out about a week ago and the dad had cleaned it real good and they'd been eating barbecue so they

suspected a wire ingestion from the cleaning brush for the grill surgery was consulted there was no signs or symptoms of sepsis or peritonitis so she was admitted for observation this is the CT so you well it's got a narrow good so

you can see and then down here she got to the floor they decided on bowel rest pain control and antibiotics however the pain continued to intensify again feels like a needle poking me she was very specific about the pain where

it was how it felt so surgical removal was recommended and here you see the wire brush or bristle that they removed post-op uneventful discharged after two days with no complications she did continue to be treated for her IBS again

this really just highlights a really common outpatient IDI complaint with a really uncommon diagnosis keep in mind you know we've talked about unwitnessed and kids that you know don't want to tell well this was really you know a

whole different story it was an unknown ingestion take-homes in the last decade there has been a huge increase in reported incidence of this type with wire bristle detailed history preceding the onset of acute and focal

symptoms should prompt physicians to consider unintentional foreign body ingestion and continue digging for that history and

so on to case number two so this is a three-year-old child and you can see

very clearly he comes to the IDI and he said 24 hours of pain vomiting he's a febrile doesn't look like he's ill at all and in this case the mother recognizes this this is a little stick magnetic stick from a construction type

of toy so so it's one single piece so he's admitted for eight hours of observation just to be conservative they give him IV fluids he begins to improve he's not vomiting he's not having any pain anymore he sent home with

instructions letting them know that this should pass eventually through his stool and two days post-op on follow-up he's back at baseline as far as playing he's eating normally and everything seems fine then on day three he started to

have abdominal pain again and you can see his white blood Khaled cell count went up he's now has a rigid abdomen he's guarding and he's having a lot of pain so they decide to do a surgical consult

okay so now we see this same object right it's moved which is what should happen but there's all this free air now all around it which is different so they begin to do some IV fluid resuscitation and he's emergently taken to the or so

he had two perforations in the jejunum and what had happened was those pieces of magnet were actually covered by this outside covering and that piece that looked like it was one piece was actually five individual magnets so

inside of the GI system the whole covering basically II rotate and then these little magnets some of them stuck together but they started moving and you can see how small they are and so that's why he had those major

complications so this is one situation where we thought that there was just one magnet but in reality they were multiple so in a sense you know this has come up as an issue there's not a lot of big Studies on this because it doesn't

happen that frequently but there was one good review that was done and this was done a few years ago where looked at 80 some odd cases and they used to children's hospitals and they just tried to find out so you know what happens in

terms of the progression of the the ingestion so again 56 percent were males not a surprise that that happened and I want you to note the age so about eight years old you know you kind of start thinking maybe they would know better

but I guess not so the age I never really think too much about age as much I had some really bad ingestions with people that were developmentally normal that were 14 and 15 years old and then the other thing you need to note 67% had

multiple magnets or they had a magnet and also ingested another metallic object so there's a CO ingestion there and those definitely were the situations where they were more likely to have to have some surgical type of procedure

because there were difficulties so 39 not many presented with symptoms and the most common one was abdominal pain and that could be just about anything and so 53% initially did not have operative management and of those 38 of them 37

percent failed it and then they've 47% had an endoscopy or they would have endoscopy and surgery combination so the take home the ingestion think about magnet ingestion a lot of people don't just because the magnets are hidden in a

lot of different toys and it is definitely a problem and that could become emergent so based on that study there's now an algorithm that basically has you be somewhat watchful but to go ahead and basically unless you're a

hundred percent certain assume that there's more than one magnet there and they're more likely to actually take them to have a procedure to remove it another thing to think about there's a few articles about

this about using handheld metal detectors not just for magnets but for other metallic objects and this it can be used in the emergency department so this is just a commercial type of handheld detector and this could be

maybe the parent is refusing to have an x-ray or the child is you know really difficult to get you know any sort of cooperation to do it or it's gonna take a really long time to get this x-ray so a few places have used this to be able

to just do a quick identification and localization of whether or not there's a metal object so I don't know if any of your places are using this but if you do some things to know first of all it is not fda-approved for this purpose but

they are medical grade because they're the same ones that are approved to be used when you go through TSA so it's not going to be harmful so you want to put the child in the center of the room away from metal objects they can't have any

zippers or clasp or anything like that and you want to ask them to put their hands up in this way and then we're wandering from the top all the way down to the pubis looking for any type of sounds okay it's bizarro or bizarro

terms of imaging my favorite aspect of cryoablation is the fact that you can see the ice ball very well on CT and most procedures are done with CT guidance right so as you can see this is

a renal ablation the probe has been placed you can see the ice bowl forming around the probe right so that's very predictable you can see exactly where it is the only problem with cryoablation is that that ice bowl is not

necessarily the lethal ice ball right so that maximal ice ball is really your zero Degree and in actual fact the lethal zone is about five millimeters in from that so anytime you do a cryoablation you want to weigh over

freeze essentially to get those margins that you want so that's one important thing to remember the ice ball is not the lethal it's really five millimeters short of that okay so a little more information by cryoablation you don't

have to spend too much time on this but the idea is that the more energy you put in the larger ice ball you can get and so essentially more probes you place can just supplement that energy to increase the size of the ice ball so advantages

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

so the idea with cryoablation as I mentioned you create ice crystals in this the tissues outside the cells and then the water rushes out of the cell the ice forms then within the cell and when you thaw the water rushes back in

and this is essentially this whole shift of fluid from one to the other it causes the cell to die but the cell doesn't die like it does with microwave it going to go something called apoptosis which essentially means the

cell decides it wants to die right so it dissolves all of its membranes and whatever else the proteins are then left available for your immune system to help clean things up and that's for the immuno genic response that we talked

about earlier other things you worry

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

something some case examples of where I use cryoablation right so this is a

patient who has a nodule in the in the back of their lungs in the right lower lobe and basically I'll place two probes into that notch on either side of Brackett the lesion and then three months later fall up you can see a nice

resolution of that nodule so when it comes to lung a couple things I'll mention is if the nodule is greater than eight millimeters I'll immediately go to two probes I want to make sure that I cover the lesion whereas microwave it's

pretty rare depending on what device you're using for you to put more than one probe in so some people's concern with cryo in the lung is more probes means more risk of pneumothorax but you can also see surrounding and proximal to

where we did the place you can see the hemorrhage that you see so if those of you out there that are doing the lung ablations you probably have physicians that are using something called the triple freeze protocol right so the

double freeze protocol is the idea that you go ten minutes freeze five minutes 30 minutes freeze five minutes thought well what we saw was lung early on in the studies was a very large ablation a freeze to start with caused massive

hemorrhage patients were having very large amounts of hemorrhage so what we do now in lung is something called a triple freeze protocol we'll do a very short freeze about three minutes and that'll cause an ice ball to form and

then we'll thaw that in other three minutes three minutes of thawr and as soon as that starts to thaw we'll freeze it again and we've shown us a substantial decrease in the amount of hemorrhage so if you're doing long and

you and you you're told to do a double freeze protocol perhaps suggest the triple freeze is a better idea so that's three months later so another example

certainly the face of interventional radiology in China is actually a very

good place to be right now you're talking about young physicians that are really getting involved in the field 58% of all Chinese IR physicians are under 40 years of age and status from 2017 you know 40% are under 35 you're talking

about very young doctors who are growing up in the IR you know field and actually you know really building a young base of physicians to carry IR into the next 20 years 41 percent of those physicians also have degrees outside their their

primary medical degree so master's degrees and doctors that's quite high you'll find out here in the US no like I said in China you don't necessarily have a traditional MD you don't you're not an MD actually it's a

bachelor's of Medicine very similar to the European model but a lot of them and majority of them almost have have advanced degrees so you're talking about very intelligent very young very aggressive people trying to carry this

ball and move it forward and try to join the international community of advancing IR and that was very heartwarming for me and made me feel very good to be with those colleagues and realize where the future lies for that kind of tree and

then 72% are bilingual or multilingual which is certainly much better than the u.s. because the Lord knows I can speak anything I can say come by and and Niihau so bottom line is you have very intellectual people that can communicate

very rarely did I have an issue in getting along and communicating with my colleagues in China and in the end we all speak the same universal language which is I are when I'm at a table and I'm scrubbing with those physicians we

didn't have to talk at all okay we knew what we were looking at we knew what needed to be done and we just did it and that's one thing that's always amazing about this field is that we all can speak the same language regardless of

where we come from so my observations

to talk about cryoablation which is very commonly used in a number of organs it can essentially be used anywhere in my opinion with cryoablation as many of you know the different idea is that you have a probe and it creates this ice ball and

that's what's killing the tissues rather than heating the tissue when they first came out with cryoablation they had these really large probes and that really limited what we could do well with technology obviously those probe

size decreased and we were able to do better ablations and safer oblations in patients so it really took off at that point and the general goal once again is to decrease the temperature to about minus 20 degrees Celsius and in doing so

you kill the tissue and we'll talk about the mechanism of how that works the cold spreads Bible directly molecular transfer right so you're starting to cool around the probe and that will propagate to the surrounding tissue

unlike our FA or microwave as the ice ball grows it doesn't impede further ice ball growth right you can continue to build on that ice ball as you increase the amount of argon infused in the increase the number of probes so that's

beneficial and that you can get a massive ablation depending on how many probes you want to place well talk a little bit of how it works so it works by what's called the joule-thompson effect idea here is if any of you've

done cry before you know you have to drag those huge tanks into the room and it just runs through all gone like nothing so when we first started doing cryoablation you had to have an all gone tank and a helium tank they've gone away

with the helium and now you really just need the argon tank which is really nice and that you don't have to drag those tanks around and they're working on actually doing with nitrogen but that hasn't come to fruition yet so the idea

is that you take a high-pressure gas right so it's in the tank it's pressurized it gets run through the center of the probe and then as it comes out the tip will not out the tip of the probe and within

the tip of the probe it goes to low pressure and that change in pressure allows the temperature of the probe tip to cool right and so if you're using argon or oxygen or nitrogen that'll cool if you're using helium it'll actually

heat the tissues and so that's why we used to have argon and helium to be able to to freeze and then actively Thor so as I mentioned the argon comes from a pressurized tank you have this dual chamber probe that allows the gas to

expand and as it expanded pools heat from the surrounding tissues so as many

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

we're going probes I think many of you have used our FA there's all sorts of different probes right so the most common well one of the most common ones is a probe like a Levine probe and what it does essentially is it increases the

number of tines so you put the probe in and you deploy these tines and it increases your ablation size a lot of companies went towards just a single probe and they infuse saline through the probe which will then decrease the rate

at which the temperature increases so that you get a consistent slow increase in temperature to prevent impedance other probes will actually infuse saline into the tissues so that it propagates the ablation better and then finally

there's by polar probes where you put two probes in next to one another and the the ablation occurs just between the two probes and so that's a very controlled ablation that's the most commonly what you see when you do the

spine augmentation procedures with the osteo cool system or whatever system you're using that's the bipolar probe approach so as I mentioned the

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

good morning everybody and I'm always excited when there's pediatric content anywhere so when Nancy Michelle and I were we're talking we were trying to figure out a topic and I had some experience with some foreign bodies in MRI and such in my experience so we

thought it would be interesting to talk about interesting cases in pediatric radiology okay our objectives for today are to identify potential risk factors that present in Pediatric Radiology patients discuss some pre screening

assessments for common pediatric comorbid conditions using a case base case based methodology and reviews and radiologic images of unique pediatric cases so we know that kids have a tendency to put things into small

objects into their mouths and other or orifices their nose their ears their vaginas so we are going to be discussing some cases throughout this presentation and we know that kids not only ingest objects but they also insert them and

they may actually inhale them as well most of these objects will pass spontaneously 10 to 20 percent of those that they swallow will require removal by endoscopy and about 1% require surgical removal and why is this a

problem with kids we know that kids are in the oral phase of development so they their teeth are not formed so they have inadequate dentition so they can't chew things so those pieces of hotdog those peanuts and and such are difficult for

them to chew which we know is the first phase of digestion their epiglottis is higher so it can make it more difficult for them to swallow and they have immature swallowing coordination so hence things are more likely to get

stuck so the incidence of foreign bodies is about six months to four years of age makes sense there's a slight predominance of males I can tell you I have a son and a daughter my daughter never put anything in her mouth or nose

or whatever but my son was certainly broke that record there's a slight predominance of males the most common objects are coins earrings marbles barrettes and rocks and objects that are typically longer than five centimeters

or greater than two centimeters in diameter are less likely to pass through the pylorus which makes sense and most pass within four to six days but some take up to four weeks of ingestion so why do we need radiologic imaging so

x-rays we know that the object would have to be radio opaque to be visualized on x-ray we know there's a challenge in cooperating for expiratory films and I'll talk about that in a couple of more slides we want to avoid CT scan if

possible because of the radio the exposure but ultrasound is really up and coming in terms of determining the location and the status of the object and provides dynamic imaging when you're thinking about foreign body foreign body

ingestion so ingestion versus aspiration foreign body aspiration is the fifth leading cause of death among one to three year olds and the primary cause of unintentional death in infants so the initial choking episode may be

unwitnessed it doesn't take very long for it for a six-month-old who's sitting up to grab something and put it in his mouth and toys pieces of toys account for ninety percent of these cases there's often a delay in diagnosing

these cases in patients that have a history of asthma croup or pneumonia because they always COFF so when they have an episode of coughing say oh it just must be the start of an asthma flare not thinking about foreign body

aspiration in the mix and of course early and up too late complications maybe it's fixing cardiac arrest dis Nia and laryngeal edema because as I said the epiglottis is high those Airways are narrow so there can be swelling

they swallow or ingest something and not

what I was alluding to before no procedures a slam dunk a breeze a piece of cake or a snap you know you you can't you can't take for granted what you're

doing even though like like oh it's just another g-tube oh it's just another line I'm I'm chairman of the department I'm the chief of her interventional and I do I do the lines because widely in the audience no well one of you want to be

people Wylie I had him put my line in and he's because he was the best two days later it got infected so no no it happens you know it just happens you can't take all this stuff for granted my oncologist sister had dialysis and they

were removing a Quinton and she got an air embolus and died of 32 it was it's like you can't take this stuff for granted every procedure you think it's just a routine procedure but it's to a patient who it's their lifeline or it's

their it's it's the most important thing to them so you can't take any procedure lightly because any procedure can go wrong and then side-effects if sometimes it's not the tumor that gets you it's the it's the it's the side effects like

the massive PE that I had was from one of the drugs I was on so you have to at least alert the patient that they may have side effects and and here's another one of my things to make you laugh but I had my bone marrow transplant

and I thought my side effect was that my flatus didn't smell anymore and I was informed by the people in the room that it wasn't the flatus it was my nose that didn't smell anymore but I got to do all the UM I got I get to do all

the abscesses now because I have I lost my sense of smell right in fact this was an appendiceal abscess and it really everybody left the room but me because I was the only one who couldn't smell it and I got out there and we do in CT and

I asked the tech I said what the hell does the appendix do anyway and she said oh it hangs there and does nothing I said well after my bone marrow biopsy I have two of those now so waiting for

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

so a couple a couple of ground rules first of all I'm a fish out of water I'm not your stereotypical position and I always say that uh that that's how I ended up in New Orleans because you can get lost in New Orleans if you're crazy and I said I didn't get I didn't go to

that course where they inserted this stick in your rectum in medical school so I am not politically correct okay and I don't know if any of you know the Jimmy Valvano story but um you know he got up there in front of everybody and

said I got a hundred and fifty holes in my bone so I want to see a little red light blinking what are you gonna do to me and well I'm similar to that if I'm not politically correct and you're offended I would please leave now

because there's nothing you can do to me because I'm on my way out anyway so it doesn't matter but and it's really funny that I just walked in when Vicki marks was talking and I think I'm a product of the early days of interventional because

we would do cases for eight hours and get eight hours of flora back to back it was that when we learned in tips when we were learning and after you read oral and we just take our badge and throw it and and I swear that that's the reason

why I ended up with myeloma anyway so some of this stuff I'm going to talk about I always like to insert humor so it does so it's not morbid and there are slides sometimes I'm you know being Italian I'm

kind of a wuss I cry at raindrops and and some sometimes I cannot get through the slide because it brings back kind of kind of crummy memories but anyway so I entitled this from the other side of the glass and I actually Photoshop that's me

looking at me getting treated in CT so I

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

let's move on here is another patient who took a fall skiing we see a lot of these patients up in upstate New York and they presented with severe left-sided abdominal pain and here's the cat scan

all right who's up for it what do you think what looks bad you look like you're into it what do you think yeah the right the bottom right-hand side of the picture should be spleen and it just looks like a big pool of blood that's

pretty good you did pretty good spleens a little higher so we're gonna presume spleen is there Graham this is just one image one slice through the picture through the body so we're just not at the level of the spleen but that's the

kidney that's exactly right that white thing on the right side of the image of the patient's left side is the kidney and the one thing I'd like everyone who appreciates that doesn't look at all like the other side all right so when

you look at a cat-scan like this you want to look for symmetry that's really important all right that's the cool thing is we're kind of meant to be similar looking on both sides of our body and in this particular

case you can see that the left kidney has been pushed way forward in the body compared to the right side and there is a kind of a hematoma sitting in the retroperitoneum posterior behind the kidney that's bad

the other thing you should notice is if you look at that left kidney you notice that white squiggly line that doesn't belong there okay that's contrast that's not really constrained inside an artery that's extravagant of

contrast that's bad all right we don't want to see that all right again there's a grading system for renal trauma and you're gonna hear people talk about grade 1 2 3 4 injuries all right obviously as the number gets higher the

extents of the injury gets more significant all right so again here's that picture think you can appreciate that it's at least a grade 4 laceration of the kidney so we went in and we did an angiogram now we can watch these

patients we can surgically manage them by taking out their kidney in some ways that's the easy part excuse me it's a lot more elegant to try and embolize these patients if they're hemodynamically stable and can take you

know getting to angio and doing the case now in general we do embolization for patients with lower grade injuries and usually penetrating injuries a penetrating trauma that's seen on CT I think this is something that's changing

I if any of you work at high-volume trauma centers the reality is that we're doing more and more renal angiography for trauma than we used to because it's just becoming a more accepted thing for us to

be doing that all right so here's the angiogram and again I think you can notice it really correlates very well to what we saw on the CT scan you see that first image on the left and on the delayed image you see that that kind of

poorly constrained contrast going out into space now we were never really quite sure what this was if it was extravasation or if it was potentially an arteriovenous fistula with early filling of a renal vein regardless of

which it's not normal all right so what we did was we went in and we embolized and I only included this picture because I'm a big drawer during cases so when I'm working with a resident or a fellow I like to really

lay out our plan on a piece of paper and try and stick to the plan and this particular picture look really good so I included on the lecture but basically you can see that the coils the goal here for any embolization procedure

when it comes to trauma is to preserve as much of the normal organ as we can and to simply get you know to the source of the bleeding and to get it to stop and that's what we did there so what you can appreciate on this is kind of the

renal parenchyma or the tissue of the kidney is largely maintained you can see the dark black kind of blush within the kidney and all that really stands for properly working kidney all right and yet we embolize the pathology so that's

our goal here's a similar patient not

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.