Create an account and get 3 free clips per day.
Chapters
Lung Adenocarcinoma, Advanced Emphysema|Cryoablation|75|Female
Lung Adenocarcinoma, Advanced Emphysema|Cryoablation|75|Female
2016ablateablationbiopsybrachialcryodiseaseguyslesionslymphmarginsmetastaticmodalitymonitornavigationalnodenodespatientpatientsplexusSIRtargetedtherapytreat
Why is the Capnography Reading Abnormal- Assess for Equipment Issues | Respiratory Compromise: Use of Capnography During Procedural Sedation
Why is the Capnography Reading Abnormal- Assess for Equipment Issues | Respiratory Compromise: Use of Capnography During Procedural Sedation
accuracyaccurateairwaybreathingcannulachallengeschapterconnectingdeliveringdilutedevaluatelocatedmaskmonitormonitoringnasalNoneoxygenpatientpatientsportsamplesamplingsedationstopcocktubingwaveform
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
General Screening Criteria (specific to bleeding risk) | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
acuityalertanticoagulantanticoagulationbiopsybleedingcardiacchapterchartdysfunctionhematologicalhistoryhypertensivelivermedicationsNonepatientpatientsplavixprocedureprovidersradiologistsriskstablestentthrombocytopenia
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
bleedingcatheterchaptermilligramNonepatientpatientsperiodriskslowersystemictargetedthrombolysistpaversus
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
anticoagulantanticoagulationcatheterchapterclotcoumadindefensesdirectedheparininpatientintermediatelovenoxNonepatientpatientsplasminogenprocessriskrotationalstreptokinasesystemicsystemicallythrombectomythrombolysisthrombustpa
Pulmonary Ablation | Interventional Oncology
Pulmonary Ablation | Interventional Oncology
ablationactivitycancercandidatechaptercolorectalcryodiseaselesionslobelungmetastaticnodulepatientpulmonaryrecurrecurredresectionresidualscansurgical
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
catheterchapterclotmassivemechanicalNonepatientpatientsPig Tail Catheterpigtailpulmonarysurgerythrombolytictpa
Patient Education PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Patient Education PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
assesscervicalchaptercontrastdiabeteslymphMRImrisneuroendocrinenodesNoneoncologypatientpatientspelvicperfusionphysicianreferegimenresumetreatmenttumors
Submassive PE | Pulmonary Emoblism Interactive Lecture
Submassive PE | Pulmonary Emoblism Interactive Lecture
anticoagulationbleedingcategorycathetercatheterschapterclotdecompensatedhemodynamichemorrhagehypoxicinterpretintracraniallobemassivemilligrammortalitypatientsplacebopressorsradiopaqueratesystemicsystolictenecteplasethrombolysistpatrial
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Where do we go from here for submassive PE | Pulmonary Emoblism Interactive Lecture
Where do we go from here for submassive PE | Pulmonary Emoblism Interactive Lecture
catheterchapterdirectedmassivepatientsrandomizedsystemictherapythrombolysistrialtrials
Why Interventional Oncology | Interventional Oncology
Why Interventional Oncology | Interventional Oncology
ablationcenterschapterhccinterventionallivermetastaticoncologypalliationprimaryradiologyresectiontechniquetherapytoleratedtreatmentstumortumors
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
biliarycentimeterchaptercoilcoilscontraindicationscoworkersdiameterexposureimagesimagingimplantskidneyslimitationsmachinemodalityMRINonepatientpelvicpreferredradiationradiofrequencyscannerskinstructuresthoracictissue
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Endovascular AVF creation | Twitter Case Files SIR 2019
Endovascular AVF creation | Twitter Case Files SIR 2019
6fr venous WavelinQ magnetic catheteradvanceadvancesalignarterialbrachialcatheterscenterschaptercreateselectrodeembolizeendovascularengageFistulainsertmaturationpatientpatientsstepultrasoundveinvenavendors
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Q&A- Documentation, Before and After results, Leadership, Culture | Innovation and Application of Real Time Nursing Dashboards
Q&A- Documentation, Before and After results, Leadership, Culture | Innovation and Application of Real Time Nursing Dashboards
accomplishchapterculturedatadocumentationdocumentinginterventionalleadershipmanagermodalityNonenursenursesnursingpatientphysiciansprojectprojectsradiologyroundingteamtechnologisttechnologists
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Q&A Improving Patient Delays | IR Lean Sigma Team Improves Patient Experience and Throughput
Q&A Improving Patient Delays | IR Lean Sigma Team Improves Patient Experience and Throughput
anesthesiabedsidecenterchapterclinicalcoordinatecoordinatordelaysdocumentFellowsfloorguyshopkinshoustoninpatientinpatientsintakejefflabsmanagingmanpowerNonenursenursesoutpatientspackpatientpatientsphasephysicianphysiciansprocedureproceduresradiologyresourcescheduleschedulingsurveystriageturnaround
Summary of Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
Summary of Carotid Interventions | Carotid Interventions: CAE, CAS, & TCAR
applycarotidchapterendovascularmedicalpatientsstentingtherapy
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
CTEPH Studies | Management of Patients with Acute & Chronic PE
CTEPH Studies | Management of Patients with Acute & Chronic PE
acutearterieschapterchroniccpapedemainterdisciplinaryjapanmultidisciplinarymultipleNoneoperatorspatientpatientsperformedpulmonaryreperfusionrequiringthrombolysistreatedtreatmentvascular
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
Practice Guidelines | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
afibarteryaspirinbiopsybridgingchaptercoronarycoumadindirectDVTembolismguidelinesholdholdinginhibitorsknowingliteraturemedicationsmedsNonensaidsosteoarthritispatientpatientspercutaneousphysicianplateletplavixpracticeprocedureprophylaxisreviewedriskthrombinvalvesvectorwarfarin
Transcript

emphysema. As you see the FEV1 is terrible, the DL is terrible, EF is okay. So that's a one positive thing. New left upper lobe lesions she is on home O2, and she is able to walk half a block without any major problems.

Biopsy proven adenocarcinoma. So we haven't talked about this. So negative EBUS. I guess when I started doing this about 11, 12 years ago, I started doing ablations, and I would just go ahead ablate the patient,

hope for the best. Today, you should not be doing that. You should stage every [UNKNOWN] in some way, shape or form. It reduces your probability of having a surprise a few months later when you

have a few mediastinal lymphe nodes showing up. EBUS is gotten to the point where it's pretty quick, pretty safe if you have a good pulmonologist around. They can get in and out in these patients quickly. Very different than navigational bronch. Navigational bronchs are

longer procedures. But I'm a big, big fan of this. I started doing this on all my patients about eight years ago. My recurrent rate drooped through the floor. Don't always trust your PET also. Just a side note.

Anybody else? Did you guys EBUS everybody or stage the mediastinum? >> I always the mediastinum. Agreed. >> So it's a great way to avoid the surprise. Okay. So this is the lesion. Yeah, please.

>> [INAUDIBLE] >> I have not. Have you guys done any of that? No? >> The question becomes shall we treat or not if they have extensive lymphadenopathy. >> So with one, we have considered radiation therapy

occasionally to be honest. >> [INAUDIBLE] >> We haven't. And a lot of times the patient that was the local-regional candidate becomes none and then it starts the whole train of thought, is

there a protocol, is there a targeted therapy, do we need another biopsy and the whole nine yards. >> I think if you have one lymph node involvement the question has to go through your mind how many other lymph node are really involved that you are not seeing. Or the biopsy needle did not go through the right place.

>> [INAUDIBLE] >> It is but if you look at a patient that you are potentially gonna treat with one lymph node positive verses no lymph nodes, you're probably escalating their risk of recurrence much, much greater than without that lymph node.

And I think that's the conversation you have to have with the patient. Each patient situation is individual. But that even though it is just one lymph node, that one lymph node portends a much greater probability that the cats out of the bag and there is more lymph nodes involved. And you treat that one lymph node, well two other pop up, do you

treat those? Where do you stop going down the line? >> Certainly, I'm sorry. >> [INAUDIBLE] >> No it is a question. But I think it's all biology of disease.

So what David says here, it's certainly if you are ready to do a local-regional therapy and you start seeing lymphadenopathy, even if it is one lymph node, the minimum you will do is at least a test of time and wait another couple of months because all you know you're gonna have 25

of those before you know it. So either you're gonna sample it and see there is targeted therapy but certainly it's not an easy pathway that you can decide alone. It requires multidisciplinary discussion with experts of the disease at that point and what does it mean

for each specific tumor because it's very different. >> So I've tried a couple of times to convince somebody to let me do a combined ablation and then chemoregs to the mediastainum or just regs to the mediastinum, every time they say no. So even if it's a peripehral N1 lymph node, no it goes on to chemoradiation,

that's it, we're moving on with our lives. There is a study that we did a few years ago where we looked at the one year follow up of hundreds of my patients who had stage one disease at PET, and those who had a staging mediastinoscopy and former surgical resection, about 17% of those were falsely negative PETs which is why I say the PETs aren't so good,

and their mortality was much higher. And the metastatic rate was almost 100% of those patients had mets elsewhere. >> Right, I think when you're dealing with a field defect and multiple ground glass nodules,

that a different patient and you may have to ablate multiple modules over time. But's that's a very different patient population than metastatic disease already at the primary diagnosis. >> Okay, so we have this lesion. And so the way I'm gonna to do this is,

I will show you the lesion and I will ask questions. So lesion, it's high up there. Here's the fissure. So you know right away, I don't wanna go through that fissure due

to any kind of an ablation. So I'm gonna have to hick a wicked steep angle. I spent ten years of my life in upstate New York so I can say wicked any time I want. Okay, so here's the first rib. I'm gonna probably have to skirting right along that first rib.

So, what will we do? What's the best modality and why? So I am charged with talking about modality. Which modality and why? What do you guys think? [BLANK _AUDIO] I'll ask anybody.

If you guys wanna answer too. >> I mean I don't think it matters as long as you can get it all and give me margins. >> Okay. So we got margins are good. Margins are important, right.

I had a very specific answer for this one and there'a reason why. We actually kinda touched on it earlier. >> Yes so I like, cryo in this particular one. And the reason I like cryo is cause I can actually visualize the ice ball. The way that I would have to come in for this is so steep that I was gonna be very close to the brachial plexus.

So you can actually monitor the brachial plexus while you're doing this, you can monitor how much of your soft tissue was gonna be involved here. So here're our ablation probe in. This is an oblique axial so it's just kind of showing you where we are. Here's what's gonna happen for your freeze zone. Right so

your ice zone is gonna come all the way back. Don't forget cryo typically creates more of an oblong, I think more of a tear drop kind of appearance depending on the device. So you're taking out part of this chest wall. So we are able to actually monitor it at

that point. We were able to see how far it came back and this patient had no issues at all with it. >> And why wouldn't you mobilize this? >> So I actually thought of mobilizing it also. We at this point decided to go with the cryo with the intent of

controlling the chest wall. But absolutely could hydrodissect, could pneumo dissect, did somebody talk about [CROSSTALK]. So I won't talk anymore about that. But yes. That's absolutely another thing we could've done. But with this one, we decided to go with-

>> Which I think it'll be safer, that's why I'm saying that because you are thinking you are safer. Because you're seeing the ice ball, it doesn't mean you are. >> So that's part two.

We actually did EMG during the procedure. >> So you did intraoperative nerve monitoring? >> Correct. >> Okay. >> So another thing that you could do very nicely, you can also

do that with RF but it turns on and off so fast that you don't have an opportunity to stop what you're doing before you do the damage. So it's a cool case. There are some articles on this. 2010 JVIR, it's a shout out to the SIR, where we do have the amount

of injury to the brachial plexus and apical lesions somewhere around 0.3% to 0.5%.

want to look at now third this is the area that I really wanted to get to today did we pass along out no yeah hand me up one if you don't mind

so third let's look for equipment issues anyone in here do yoga a couple hands okay so some of this is from a yoga exercise and it will play into what we're gonna discuss here but on the left here this is an example

of some of there's all different products out there so on the Left we have a nasal cannula that on one side is delivering oxygen and on the other side is monitoring our carbon dioxide so everyone just humor me if you're not

eating take your finger and plug your right nostril and just take a few breaths in and out through your left okay now let's do the other side so plug the other side it's supposed to be calming we do this in yoga anyone having

trouble breathing through one nostril over the other okay I see a quite a bit of hands so physiologically we have deviated septums we have nasal congestion we have you know our blood capillaries getting gorged on one side

you know I know if I sleep on one side I wake up all stuffed up I have to take a nap on the other side to even it out at least that's what I tell myself right but we preferentially breathe through different nostrils so if we have a

patient on a monitor there's only monitoring from one side do you think that's the most effective monitor we can use probably not just take notice right now who's breathing through their mouths because a lot of us breathe through our

mouths especially patients who are respiratory compromise under sedation or are sick and these are the patients we take care of so for monitoring just through the nose are we doing the best job of monitoring we could be doing no

and we found this out I mean there's all different products out there but what we have found that is most effective is using something that is delivering oxygen through both nares but also monitoring exhaled gases from both nares

but also from the mouth and evidence proves us so I'm not just making this up so we're looking at here is a study that was looking at the accuracy of non intubated capnography patients different sampling lines and what we see in the

navy blue on the left is the first is when they had patients just under a mer and then they put patients on a couple liters of oxygen per minute and you can see use the nasal canula with a scoop was pretty

accurate for both those patients who are breathing room air and supplemental oxygen when we look at two different other designs of nasal canula that just had like a little like a little port to kind of hung down the accuracy not as

great okay same patient group but what happens when we add oxygen to those nasal canula they just they dipped in their accuracy so I'm not saying not to use whatever you have you know if you may only have those kind of nasal canula

but just know that you might not be getting a full sample especially if you're adding oxygen if you're just using a nasal cannula port you follow so just knowing the limitations of your equipment so the monitor the little

machine can only evaluate the gas analyzer can only evaluate what's being delivered to it so if the sample line is not receiving an adequate sample it's going to give you an a waveform that is certainly not accurate so we want to

consider a few things are you connecting multiple tubes to get like multiple you know sampling lines together and connecting them with a stopcock yes no I see some nods of heads and sometimes we have to do what we have to

do right to reach the monitor to the patient but if you're connecting those sampling lines is the connector tight I've seen a number of times where I've seen abnormal waveforms and someone stepped on the stopcock that was

connecting two pieces of tubing and then you just correct the stopcock or tighten up the connection and then all of a sudden your waveform improves but also where the sampling port is located on the patient is important so remember

that picture I showed you of the non-invasive ventilation and the person had the oral and nasal scoop on and they also had the port on the mask and the port on the circuit three different locations we're gonna look at that a

little closer but where is the sampling port located doesn't it make sense to have the sampling port located right where the patient's exhaling especially for delivering oxygen and especially if we're delivering oxygen and kind of

higher flow rates right greater than 12 or greater than 8 and P because it's gonna do potentially dilute our samples and these are some of the challenges that when I talk to people that they are bringing to me like it

just doesn't seem accurate when I have patient on oxygen how can I know that it's accurate so that's what we're going to look at a little bit more here so the farther the sampling ports are from where the patient is exhaling the higher

the chance of your sample being diluted and not being completely accurate when you're looking at your exhaled gas and you may see something like this picture here so there's some challenges like I said we can do the exhaled co2 can be

diluted the masks we're passing around some masks here some of the masks may allow for rebreathing so when I started and you know in healthcare and especially in anesthesia and such and providing sedation we used to take a

non-rebreather put on the patient and then cut tubing and stick the tubing in one of the little holes okay see a couple of nods of heads here right we make our own and that's how we monitored air going in now but do you think those

non rebreather czar really allowing patients to exhale fully and to get all that co2 out where it's all that carbon dioxide going you you see the mask fog up right now they at risk for rebreathing co2 absolutely so we're

looking at all these challenges right and do you think that little like rigged up mask design was getting a really accurate sample really close to the airway not so much so and you guys are assuming do you guys do T E's and

things where you're putting mouth guards and patients yes no some their sampling issues with that right how do we sample when someone's working in the airway well there are bite blocks now that are integrated and I think we may even have

some here that we can actually capture an accurate sample so knowing the

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

guys do so when we do our screening phone calls and our pre screens before

the actual procedure there's a few factors that we look at for the patients with blood pressure the patient needs to be vitally stable before we do a procedure there may be a slightly increased risk of bleeding for kidney

biopsy if patients are hypertensive although it hasn't been noted to be statistically significant in the literature so we are always aware of patients being hypertensive we do want them to be taking their medications the

day of the procedure we also do a full medication reconciliation with the patient making sure that we're checking on any anti platelets anticoagulant medications and we have a list of our hold times that we use for a reference

we already discussed for those of you who are at this session this morning the issue of liver disease is it stable liver disease they may have adequate he stasis even though their INR is not within the normal range and so we

recommend a stable INR of less than 2.5 for those patients and in our practice a lot of the providers are going away from correcting the INR s for our patients we also screen for hematological disorders do they have some known condition that

makes them more likely to bleed or conversely more likely to clot and that may factor into whether or not anticoagulation can be held do they have a current diagnosis of cancer are they going to be getting one of those

angiogenesis inhibitors might they have thrombocytopenia and we just do a brief review of the patient's chart before we call them to kind of look for those diagnoses do they have a history of bleeding especially if they have no one

platelet dysfunction you know a known history of bleeding can be a reliable predictor of bleeding risk for some patients and do they have a cardiac or a neurological history as we learned this morning patients that have recently had

a cardiac stent placed we can't just say yeah stop your plavix hold off 5 days it'll be fine that could be a very serious risk to the patient did they recently have a stroke have they had a PE why are they on their anticoagulation

if they're on it so we really need to be aware of the whole patient and having that pre-screening phone call with them can allow our nurses to figure out a lot of these problems and then alert the radiologists and try and troubleshoot

before the patient walks in the door and says yeah I took my warfarin this morning I'm all ready for my liver biopsy the radiologists don't like that much in it you know it's really a bad thing for our high volume area to have

that happen and this is just another chart of our oh did I get mixed up here you guys are gonna fire me from running this clicker there we go so the whole times are again based on the half-life and the mechanism of action and this is

pretty similar to what you saw in the the presentation earlier today and specifically that imbruvica that's something that we alert the radiologists who they have a discussion with the patient decide is this something that we

want to continue with and I will say that in our practice with the volume and the the level of acuity of our patients I think that a lot of our providers are fairly comfortable with a certain level of risk because that's just who our

patient population is you know we have a very large hospital two large hospitals and very sick patients so that's something that we you know some of them are more comfortable than others but it's a risk-benefit thing that they have

to decide on themselves with the patient obviously all right so here are our

a little bit more systemic versus catheter directed thrombolysis so once you've decided that a patient needs TPA what are the differences here well if

you give patients systemic TPA you're gonna give them a much more rapid delivery this is for those patients who have high-risk PE they're the ones who are coding for those patients you give them 200 milligrams of IV usually you

get 50 first and then another 150 over a very short time period they have a very high risk of bleeding as a result of that a catheter is much slower you're gonna infuse one milligram maybe which is what I think most people do

over several hours maybe a few maybe a day so it's slower targeted versus non targeted well catheter is much more targeted you're gonna give Pete you're gonna give the TPA right into the

pulmonary arteries that's the whole point in our in our thought process as a result you give a lot less drug so when you give a patient based off of some of the trials 24 milligrams of TPA over a 24-hour period that's a lot less than

200 milligrams in a 10 minute period and then the bleeding risk is very different for these patients catheter based treatments have a high bleeding risk but it's possibly lower than the initial bleeding risk of patients getting

systemic TPA so I wanted to go through a

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

PE the first one of course is

anticoagulation so heparin and bridging the patient to coumadin or now aid a direct oral anticoagulant is really the mainstay of treatment most patients again 55 percent of patients with PE have low risk PE all of those patients

should be on according to the chest guidelines three months of anticoagulation so they're gonna get heparin as an inpatient if they even need it and they're gonna get sent home on lovenox bridge to coumadin or they're

gonna get the one of the new drugs like Xarelto or Eliquis but here's all the other things that we do so these patients that are in the intermediate high risk so I'm gonna try to keep saying those terms to try to kind of put

that in everyone's brain because I think the massive and sub massive PE is what everyone used to talk about but we want to keep up with our colleagues in cardiology who are using the correct terminology we're gonna say high risk

and an intermediate but in those patients - intermediate high risk or Matt or the high risk PE patients we're gonna be treating them with systemic thrombolysis catheter directed thrombolysis ultrasound assisted

thrombolysis and maybe some real lytic and elected me or thrombectomy there's other techniques that we can use for one-time removal of clot like rotational and electa me suction thrombus fragmentation and then of course

surgical mblaq t'me so when anticoagulation is not enough so I like to show this slide because it shows the difference between anticoagulation and thrombolysis they are very different and sometimes I think everybody in this room

understands the difference but I think our referring providers don't and so when we when we get consulted and we recommend anticoagulation they're like yeah TPA well that's not the right thing so anticoagulation stops the clotting

process so when you start a patient on a heparin drip they should theoretically no longer before new thrombus on that thrombus so when you have thrombus in a vessel you get a cannon you get a snowball effect more

and more thrombus is gonna want to form heparin stops that TPA however for thrombolysis actually reverses the clouding process so that tissue plasminogen activator or streptokinase or uro kindness will actually dissolve

clot so there you're stopping new clot forming versus actually dissolving clot anticoagulation allows for natural thrombolysis so your body has its own TPA and so when you put a patient on heparin you're allowing your natural

body defenses to work you're giving it more time TPA accelerates that process so you give TPA either systemically or through a catheter you're really speeding up that process anticoagulation on its own has a

lower bleeding risk you're putting a patient on heparin or Combe it in it's it is less but it is still real thrombolysis however is a very very high bleeding risk patients when I when I consult a patient for thrombolysis I

tell them that we are about to do give them the absolute strongest blood clot thinning agent or an reversal agent which is the TPA and we're gonna just run it through your veins for hours and hours

um and that sort of gives them an idea of what we're doing anticoagulation in and of itself is really not invasive you just give it through an IV or even a pill thrombolysis however is given definitely through an IV through

systemic means and a large volume there thereafter or catheter directed so again

blasian it's well tolerated and folks with advanced pulmonary disease there's a prospective trial that showed that

there are pulmonary function does not really change after an ablation but the important part here is a lot of these folks who are not candidates for surgical resection have bad hearts a bad coronary disease and bad lungs to where

a lot of times that's actually their biggest risk not their small little lung cancer and you can see these two lines here the this is someone who dr. du Puy studied ablation and what happens if you recur and how your survival matches that

and turns out that if you recur and in if you don't actually a lot of times this file is very similar because these folks are such high risk for mortality outside or even their cancer so patient selection is really important for this

where do we use it primary metastatic lesions essentially once we feel that someone is not a good surgical candidate and they have maintained pulmonary function they have a reasonable chance for surviving a long

time we'll convert them to being an ablation candidate here's an example of a young woman who had a metastatic colorectal met that was treated with SPRT and it continued to grow and was avid so you can see the little nodule

and then the lower lobe and we paste the placement prone and we'd Vance a cryo plugs in this case of microwave probe into it and you turn off about three to five minutes and it's usually sufficient to burn it it cavitate s-- afterwards

which is expected but if you follow it over time the lesion looks like this and you say okay fine did it even work but if you do a PET scan you'll see that there's no actually activity in there and that's usually pretty definitive for

those small lesions like that about three centimeters is the most that will treat in a lot of the most attic patients but you can certainly go a little bit larger here's her follow-up actually two years

that had no recurrence so what do you do when you have something like this so this is encasing the entire left upper lobe this patient underwent radiation therapy had a low area of residual activity we followed it and it turns out

that ended up being positive on a biopsy for additional cancer so now we're playing cleanup which is that Salvage I mentioned earlier we actually fuse the PET scan with the on table procedural CT so we know which part of all that

consolidated lung to target we place our probes and this is what looks like afterwards it's a big hole this is what happens when you microwave a blade previously radiated tissue having said that this

was a young patient who had no other options and this is the only side of disease this is probably an okay complication for that patient to undergo so if you follow up with a PET scan three months later there's no residual

activity and that patient actually never recurred at that site so what about

catheter some other things that we can do is mechanical intervention so if you have a patient usually with massive PE

or the inner or the high-risk B you got to do something to help them out so what we do is put a pigtail catheter and inject a little bit of TPA on the table and then twirl the pigtail or put a wire through the side part of the pigtail and

make it sort of a mechanical fragment fragmentation the problem with that is that fragmented clot goes downstream so when it's in a main pulmonary artery it actually has less surface area than it is when it is in a distal pulmonary

capillary so when you break that clot up you have to be careful because it can actually make the patient worse the benefit there there's no thrombolytic so if we're doing this we we generally are doing it in patients who can't either

receive TPA at all frequently we get patients with who have have had recent spine surgery who get a massive PE had brain surgery get a massive PE and you have to try to treat them without any TPA or even heparin the drawbacks are

that again it increases pulmonary vascular resistance by sending all those little pieces of clot into the small pulmonary arteries and capillaries and it makes it actually much worse in some patients again there's no control trials

and sometimes you need to have a bigger

gets pet MRIs right now our main focus are our oncology patients it helps us

determine the type of cancer they have the diagnosis of cancer assess disease progression treatment therapy and treatment planning and some antecessor treatment response so let's say a lesion is FDG avid and

has low blood perfusion that would help our physicians to us to say what kind of treatment they can give to the patient pet MRI is also good for patients who can tolerate longer scans right now it's a very young modality

there's still a lot of research goes on with this and coupled with that is advantage of research right now we actually in the Memorial sloan-kettering we have started using this instead of FDG we've used gallium 68 of to assess

neuroendocrine tumors who have also done cervical lymph Austin Tiger phim where FDG is injected directly at the patient's cervical cavity and that helps map out the lymph nodes in the survey in the pelvic area this can be used by the

surgeon and see what lymph nodes can be sampled during the surgery we provide some education and assessment before during and after the pet MRI we assess for the patient's allergies we tell the patient's they have to be NPO at least

six hours prior to FDG injection as for our anxious patients they often come pre-medicated and this just comes with some care coordination with their physician the physician would prescribe some low-dose anti-anxiety medications

and the patient would take it an hour before their test as for our claustrophobic patients we what we have done is we let them see the Machine we let we let them feel the Machine we put them inside if they would want to and it

would be up to them if they would be tolerating the scan we assess for their diabetes regimen and my refe will speak more about that later we assess for patients pregnancy status on patients loving to fifty years old process for

their breastfeeding status and screen their implants during the pet MRI we tell them about the coil placement we give them an emergency call bell and we tell them to decrease their movement well being is like although our some of

our patients would say I didn't move but then the image so differently there there's a possibility that the magnet can induce some involuntary twitching after the MRI we tell them that they can resume their

diet they can resume their diabetic diabetes regimen and as if they get MRI contrast they can pump and dump for about 24 hours after the test but if they don't get a contrast they can keep their breast milk inside the fridge just

to help to decay just to decay the isotope that was given to the patient it doesn't give any harm to the baby

much more controversial so you it was pretty clear that we have to rescue

massive PD patients from death but with these statistics what are we supposed to do with sub massive PE well are we supposed to prevent mortality it's gonna be hard to do if the mortality is only 2 to 3% because you're trying to really

improvements of a very low statistic are you trying to reduce the rate of hemodynamic deterioration that's a possibility what about long-term disability if you remove clot upfront

will these patients do better six months one year or two years down the road frankly we don't know the answer to any of this and the reason is that the pytho trial made things quite difficult for us to interpret the pytho trial was the

trial that was going to answer all uncertainty this was a trial where it took some massive PD patients in that high-risk intermediate category and randomized them to receive a bolus of tenecteplase which is similar to TPA but

is not the same versus anticoagulation alone what did it show well it showed there was no difference in death between tenecteplase and placebo so they actually gave a placebo drug so that no it was a double blinded

study now if you look at the next line though a lot more patients decompensated if they receive the placebo than that's not to place this is not a bad thing you know it's not it's not great when you have to intubate somebody or initiate

pressors so if you can avoid that outcome that's it that's a pretty good thing so maybe it is the right thing to give systemic thrombolysis in the setting of sub massive PE problem was this the bleeding you look down here

there was an eleven percent rate of major bleeding in the tenecteplase arm there was a two percent rate of intracranial hemorrhage so now we've got this therapeutic window that's hard to interpret so we seem to be improving

outcomes from an efficacy standpoint but then we're also increasing the rate of bleeding so basically what we've sort of coalesced around is that systemic thrombolysis has a questionable risk benefit profile because the rate of

bleeding and the rate of really serious bleeding is makes us nervous so is that an opportunity for catheter director thrombolysis and I'll call this the poster child for Catherine throwing license if this is how it worked every

time we might have a homerun so this is gentleman looked terrible well still in the sub massive category but breathing at 35 times a minute hypoxic had his main PA systolic pressure of 60

millimeters of mercury you look over here and there's this large clot in the right upper lobe go to the left side and then there's all this clot in the left lower lobe as well so what do we do we put in bilateral infusion catheters this

can be an E Coast catheter it can be a standard catheter these areyou nafeez catheters have side holes starting from here and ending it's hard to see but there's another radiopaque marker somewhere down there on this side there

and somewhere over there and between those markers you have multiple side holes and those are put up inside the clot so you're dripping TPA at a rate of about 0.5 to 1 milligram per hour and you're getting it directly into the

clock that's the theory and so after 20 to 24 hours of that you know you're given 20 to 24 milligram of TPA that's compared to 50 or a hundred that you get was sitting with systemic thrombolysis you get something

that looks like this where the pulmonary arteries look pristine the PA still the systolic pressures come down the patient feels great now the skeptic would look at this and say well if you just tried some heparin and you just infuse saline

would you have the same result and frankly if you were to conduct the experiment you might find something interesting or not interesting but we never have conducted that experiment but you know I'll tell you a little bit

about the ultimate trial if I have time I don't want to go to overtime though

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

massive PE well let's remember this at this point including all the trials that preceded the pytho trial almost 1 700 patients have been randomized into systemic lytic trials for some massive p yep all we have on the CDT side is the

ultimate trial of 59 patients non-us single was a single trial that's where this initiative is coming from to improve the data this trial called P track and I have preliminary information that we just made our first breakthrough

in fronting from the NIH so very excited that we have a planning grant to potentially get this thing moving so P tract is basically designed to be a randomized control trial of catheter directed therapy versus no catheter

directed therapy for sub massive PE to really try to answer this question just like the pytho trial tried to do for systemic thrombolysis in the setting of catheter Ida thrombolysis and this time we're not just using surrogate endpoints

we're not you the rvw ratio is probably not even gonna be calculated but what we want to know are these are patients doing better in one arm or the other and we're going to use outcomes that are important to both patients and providers

400 to 500 patients most likely looking at sites all across the so but we are still in this time when

the traditional three pillars are

surgical medical and rad honk which actually was once part of radiology and separated just like interventional radiology has and where is the role for this last column so many patients are not medically operable so if you set the

gold standard you know that the cure for someone has a primary liver mass well about 20 percent of patients who present can undergo resection what you do for the remaining portion so Salvage is what we offer when someone has undergone

standard of care and it didn't work how do we hop back in and try to see how much these folks it's low-risk it's not very expensive at all as compared to things like surgery and the recovery is usually the same date so

this concept here of tests of time is kind of interesting a lot of times when we look at a tumor let's say it's 2 centimeters it's not really the size of the tumor but it's how nasty of a player it is and it's

difficult to find out sometimes so what we do is we'll treat it using an IR technique and watch the patient and if they do well then we can subject them then to the more aggressive therapy and it's more worthwhile because we've found

that that person is going to be someone who's likely going to benefit you can use this in conjunction with other treatments and repeat therapy is well tolerated and finally obviously palliation is very important as we try

to focus on folks quality of life and again this can be done in the outpatient setting so here's a busy slide but if you just look at all the non-surgical options that you have here for liver dominant primary metastatic liver

disease everything that's highlighted in blue is considered an interventional oncology technique this is these the main document that a lot of international centers use to allocate people to treatments when they have

primary liver cancer HCC and if you see if you see at the very bottom corner there in very early-stage HCC actually ablation is a first-line therapy and they made this switch in 2016 but it's the first time that an

intervention illogic therapy was actually recommended in lieu of something like surgery why because it's lesions are very small its tolerated very well and it's the exact same reason why your dermatologists can freeze a

lesion as opposed to having to cut everything off all the time at a certain point certain tumors respond well and it's worth the decrease in morbidity so

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

there are advantages of this modality one there's less radiation exposure for

the patient we receive about three millisieverts of background radiation every year with one PET scan a patient can get up to eight years worth of background radiation in just one skin the only exposure of radiation a patient

gets in a pet MRI is through the isotope pet MRI has a better disease characterization especially for areas in a Patou biliary region the pelvic areas and the kidneys information and the relationship between lesions and

adjacent tissue is better delineated with the pet MRI so it's easier to see which part is cancerous and which partners normal cells there are varying opinions and research studies are being done to make a determination if pet MRI

is a better modality than pet CTS well PET CT is a lower-cost skin has increased accessibility there are more PET scanners available and more more technologists are trained for this modality PET CT is a shorter skin there

are no contraindications for affairs implants pet CTS are preferred method for imaging the lungs of thoracic nodules and bone structures however with a pet MRI it's good for soft tissue organs such as the brain the muscle

delivered the kidneys the pancreas our GYN pelvic structures such as ovaries the uterus and cervix and also the prostate there are limitations of this skin one it is a much longer skin one whole body pet MRI can last at least

about an hour there are contraindications with certain implants due to the magnetic factor of the of this test and is not preferred for imaging air-filled structures because it can give off artifacts there

are weight limitations for our machine our machine holes can hold up to about 500 pounds of weight it is this our machine as smaller bore compared to the white board MRI the MRI whiteboy is about 70 centimeters in diameter

our pet MRI machine is only 60 centimeters in diameter in this picture the difference of the 10 centimeter difference doesn't seem much however if you put a patient in there and this is one of our coworkers

he is 270 pounds and 6 feet tall and the white board MRI his shoulders fit comfortably well inside it in the sky inside the scanner however in this pet MRI machine he said he did feel a little snug and a little tight inside

but you also have to take an account that we have to put coils on top of our patients that 10 centimeters does make a big difference the coils will help us give the good quality images that we like and I also have to note that we

have to put the head coil or the helmet on top of the patient's head to give good images of the brain the reason why the pet MRI scanner is smaller is because we have to make room for the pet detectors we try to make it bigger the

gradient coil on the radiofrequency coil have to be further away from the center of the magnet and that compromises the quality of our images so which patient

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

so this is our MGH page we started it about a year ago check it out if you guys like it some pretty good cases we mostly post cases some policy stuff industry and changing things it's not purely cases but certainly take a look if you like it give us a follow so what

I have today is I have two cases that I picked and you know for all the thousands of cases that all these huge academic medical centers do I tried to pick a couple that might be a little interesting and that aren't being done

in all the different centers across the institution so I'll start off with the first which is an endovascular AVF creation so what's nice about this is that you know what we see so far from this is that the length of stay impact

has been certainly reduced in certainly the maturation times and the Rhian turn re intervention rates have been reduced so I'll go through this and normally wouldn't go step by step for a few things but I think you know not all

institutions are doing this yet I think that you will I do think this is going to be a shift for a lot of the dialysis patients and everybody who works anion knows what a huge impact it is the ESRD patients is just astronomical the

numbers of them it's just continuing to rise so procedural steps the first step is you're going to access the brachial vein advance the guide Y down to the ulna insert a six French sheath and perform a vena Graham and the rationale

for that of course is to make sure you don't have any issues centrally some centers do that in advance some centers don't I will mention also that the ultrasound mapping is absolutely critical to make sure that

you get the right patient you start off by seeing them in the outpatient clinic and then you're going to go and have them have vascular ultrasound to make sure you have a good candidate so the next is you're gonna access the brachial

artery same thing advance your guide wire down to the ulna from there you're gonna insert the venous side now this is one of two approved vendors that will allow you to do an endovascular creation this was a wave link it's a to stick

system and it requires two catheters which is why you see the next step is pretty much repeated but just flipping it to the arterial side so from there there's a magnetic zone it actually has like a little canoe so it's got a

backing of a ceramic sort of a space there if you can think of sort of the older or atherectomy cut home catheters that had that little carro canoe you would actually take the debris out it's very

look into that and I'll show you that in a couple of images once you align that you're gonna sort of engage the little electrode this is an RF ablation RF created type fistula so it creates a little slit between the Adri and the

vein and what happens is is that you know of course don't forget you have to ground the patient just like any RF once you get the magnets and you get the electrode alignment you're going to engage the device for two seconds and

the fistula is created and then from there a lot of centers are actually going in there embolize in one of the brachial veins and this is basically to sum some of that stuff obviously to the superficial system for draining I have

read that there are a few places that actually go back back in through the newly-created fistula like even at the time of the procedure with the 4 millimeter balloon and just sort of open that up I'm not sure that that's 100%

necessary but I'm sure all these fine people on the panel could help us with that so here you see and I skipped all the entry steps but here you can see the Venus in the arterial catheter you know in position here and there's that little

canoe thing pointed out by the arrow that I had talked about and you use fluoro to sort of align these two things when you first start doing these cases take your time the first one was over an hour and a half for us now obviously

it's about a third at that time this is the little electrode this is when it's advanced and pretty much ready to engage can you play the video for me so this is quick so what happens is you suppress the

device the electrode actually advances and as it advances towards the veena side what happens is is that it actually just creates this fistula through the RF sort of energy from there you're gonna do a post vena graph in here you can see

after we did an initial post intagram there was enough sort of flow between the PIAT brachial so we decided to embolize one and this patient was our first patient and is doing very well so far this is done on I'm gonna say just

because you know to dr. brains point I don't want to get on the hook for certain dates and patient identification but this was done in mid-march so we saw them two weeks out and we're gonna see them again another couple weeks so just

there's a couple of trials that you can read into one is the neat one is the flex trial I think the technical success is really promising at 96% the maturation days you can see there's a massive massive comparison where they

could be ready to be dialyzed in 60 days and this could be a game-changer for many patients the six-month patency rate is what I've seen in most of the reports it's around 98% compared to about 50% with the surgical place and then you can

see that this about 3.5 interactions or re interventions that are required in about 0.5 at a year's time out from this so it's really making a big difference for these patients and I think this is what we do in i/o we continue advanced

things innovate and obviously look to do things in a more timely cost-effective minimally invasive way at the beginning when these new procedures come out the devices themselves might be at a higher price point but we'll see how that goes

moving forward as more and more vendors get into the space so the second case

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

about you rolled out the radiant in 2015 and all of this data is great but it's reliant on the nurses documenting it in

all their different areas so how did you did you actually when you built this dashboard did you leave blanks because you just didn't have the data available or did you circle back around and hold the nurses accountable how did you do

that trying to motivate them and engage them rather than it looking like a disciplinary action because you're showing that they're not documenting appropriately yes and that's part of our journey from 2013 we started all these

projects it became evident that document documentation was important when it came to the data and so we actually started training from our technologists and and then to our nurses we created standard work for how they documented time stamps

I'm at different points in the process we audit we audited that for a while to make sure that they were compliant with that documentation so so we embarked on a lot of projects and I did a to greenbelt projects I did one in

interventional radiology and I did one on beginning complete because you really have to start at the ground and if people's reporting is not good you have to fix it so we have a definition for beginning complete for our

technologists which cleaned their data up then we did a project with Jeannie's nurses around and Tommy did some auditing around the time stamps in their system and that took a long time so yes you have to clean your data up first

and that takes projects in order and we also did Tommy led all of us to look at our data and a data validate sort of like Gilbert's thing you know so is it really valid and so we did a lot of work around that as well

the nurses do with themselves and the nursing supervisor did it as well to make sure and the technologists help you with that because what we found is when we handed the data to the nurses and we had them do their audits it was more

impactful than when we did it how would you say your start times improved from pre project pre dashboard to current how did you measure that was the time yes so that was actually interesting especially in interventional radiology because it

it when we started rolling off the Huddle's and the dashboards we had some participation in the with the technologists and the nurses and the providers doing their Huddle's and looking at the information and then

there was a period of time when they stopped doing that and they actually and they actually saw a drop in there on time starts so when we started up they were around maybe 40% on-time start and then when they consistently did their

Huddle's and looked at the - would I use the information they quickly jumped to 60 65 percent so and when they stopped dropped again so it was sort of it proved that that the tools actually worked and now they're actually going

back and owning the work of their own to continue T their Huddle's and use the dashboards in real time yeah rome wasn't built in a day and would you say that this is significantly impacted employee engagement yes I will definitely say it

has previously we had a real sort of segmented nursing work you know silo's and now we have like this cohesive team of nursing and and physicians and technologists working together in IR I will say also part of

our leadership team crisp as part of this as well our senior leaders we did a job we did a change in sort of our leadership structure so before it was like the physicians they led their physicians the technologists led their

technician technologists and the nurses led theirs well we in got a team together so we have a nurse manager the chair of interventional radiology the nursing supervisor and the nursing technologist

and supervisor and we lead as a team now and so we look at volumes together we look at budgets together we look at staffing together so it's not no longer just leading in silos so with that consistency in that that that sort of

got them all together and then so then they see that you can't hit a technologist against a nurse in a physician against a nurse or a technologist because we're all one team and that was a big part of helping this

out yeah sorry before that I was just going to talk about how important leadership was in this so Chris is our operations manager and I would say she made all of this perseverance tommy's the brains I'm the Brawn so I

would like to ask you give more details on the culture like what you were just describing about becoming a multidisciplinary team sure um that's a good vision but practically how did you accomplish so the culture was really

really hard and my Greenbelt project that I did back in 2013 was not successful because of the culture and what we learned was that we had to do something about the culture Jeannie alluded to the fact that our our

department chair dr. chair Toth and our administrative director Karen Buttrey talked to me about this and and they decided it was important that they had leadership teams in each modality so every modality and radiology has a

leader it is the division director the technologists lead and if there's a nurse a nursing lead they meet once a month tommy's does the score cards for them they bring their score cards they bring their a3 reports on

their strategic plan and they sit as a group I sit with them as well and we talk about how they're aligning their strategy to their work what the culture is like and do we need help sometimes we bring HR in if we think we need help

and geney's done a lot of leadership training with the nurses she's very good at it we have Conaty so we've partnered with Dartmouth and we send different teams to Conaty to learn leadership training this

has been really this all started really in 2013 and it continues today and we work just as hard on it as we did in 2013 Neverending yeah and I was part of that Conaty training and it was phenomenal so

it was two of the IR physicians myself the business manager and another radiology technologist supervisor and so really we had to work on a project together and it really brought us together to understand each other's work

and for um I feel like probably the strongest you know asset I have is relationships and and making those connections and nursing wasn't my first career I did practice management and so I worked for a doctor's office and I

kind of know that you have to sort of make sure that everyone understands that we're all trying to get we're all trying to take care of the patient and we all have different responsibilities to do so and there's a crossover if we fight

against each other then nothing's going to work and so that was where I I feel like I probably did the best these again you know brains and brawn and I was just sort of like let's make it all work together people with it so

was that something that you had to work into the amount of hours that it takes to maintain the new task that was being asked for yes so the documentation is part of their work to take care of the patient so for a technologist for

example when they go get the patient from the waiting room they start the beginning the exam in Radian those are things they need to do - as part of the EMR to actually accomplish their work so that was by design already part of their

workflow we just had to make sure that they were all doing it at the same point in time so for example before we standardized the definitions we would have some technologists who would begin the exam when they went to go again the

patient some will do it after they had set up the rooms so we have to standardize all of it so the data was measuring at the same points and for the nurses as well as part of their documentation as they work up the

patient so it's all part of the flow the other thing we do that I want to mention quickly because we're out of time is rounding so rounding is really important so I am the operations manager I probably around three times a day in

every modality and as an example I was just in mr and I saw a red button on their dashboard and I said why aren't we 19 minutes behind and somebody had forgot to complete the exam and everybody was there and they were

talking to me about it and they said yep and they ran back and they you know so I stay engaged the supervisors Jeanne I have two other supervisors tomy rounds you have to keep the conversation going you can't just build these and think

they're gonna take care of themselves because they're not you have to really do that disciplined rounding work so thank you everyone very much yeah thank you and just some related articles that

other other institutions have used for healthcare dashboards I found really really great so I don't know if this is true but I think they're going to send the slides after yeah conference oh yeah yeah afterwards we're happy to stay here

thank you

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

good morning I don't know if this is on oh it is in terms of reducing delays in your department did you have to do any work around realistic scheduling of procedures putting standard procedure times around different procedures or how

to manage when procedures go and you know run long or you have difficulty managing that aspect of the schedule I'm sorry the audio is unclear it's a little fuzzy up here so you scale and we'll repeat it

yes we did a lot a lot of work around scheduling and that's really Monique in there with the intake Center talked in the intake center we are then we actually have the nurses schedule their procedures and then we hand off to the

schedulers to actually put them in but this way the nurse who's doing an intake can actually determine how long the procedure should be so it allows us to have clinical eyes on the length of the procedure so we modified sort of our

basic list of how long procedure should take we roll in 30 minutes of turnaround time and then we add another 30 minutes if it's an anesthesia case now if the case is going to say require a likely intervention and we can tell oh yes

that's gonna need more time than we schedule accordingly we add time so we really worked hard to make sure that we were scheduling accurate case lengths yeah we constantly analyze those case lengths and continuously try to improve

and recognize challenges hello I'm Nikki Jensen I work in a clinical resource mares clinical nurse specialist roll Mayo Clinic Rochester and I'm very curious about two things first thing is routine lab work and read reduction of

unnecessary labs we too have been doing this where we kind of have taken our own clinical practice expertise and compared with us IR guidelines and have reduced drastically our lab work needed have you guys created established guidelines to

help standardize your process or is this a physician to physician now we we do have a list of procedures that require certain labs for certain procedures again we have a nurse performing the intake so if there's a reason we have

sort of some exclusions so end-stage liver disease we are going to get the pt/inr but if it's a routine meta port placement or line placement we're not going to get pre-op labs so we kind of do a quick assessment in advance over

the phone oftentimes and we make a determination as to what's needed if there is any question then we do go to our physicians but yes we have a list of which procedures new labs and we really knocked out most of our PTI in ours and

then my second question is regarding your patient surveys I love those because us too we do not have really great patient satisfaction surveys available for radiology practice how did you find that is it a particular company

that you went through how did you get this yes so and I can give you more details if you'd like to email me but we because I said we had a we have a patient chief patient experience officer at

Johns Hopkins she was able to get us in on the ground floor of this little mini pilot the pilot was so hugely successful that we adopted it across much of Hopkins out patience and also 23 our Admissions

were allowed to use these the main sort of national surveys that need to there's a requirement that the inpatients have to receive those first you're not allowed to supersede with your own but this company actually was just recently

purchased by one of the major major Chris Kane these two doctors just invented this and all of a sudden now everybody really Press Ganey and talk by various thank you guys I don't know how they're rolling it out and whatnot but

hi I'm Marissa from Houston Methodist Hospital in your title did you write that phase two it says I our patient experience and throughput lean Sigma and Phase two is that is this your face too in your title is this our face Christo

and what was your face one phase one was reducing our procedure rim downtime the time between cases and interestingly for phase one we assumed that that would also reduce our patient delays but guess what at the end we found out it had

introduced our patient Dilys we had great success with you know getting our rooms running back-to-back better our patients back-to-back better but we were surprised so as the next steps on our phase one that was what we wanted to

work on patient delays okay and what's the approximate the corresponding cost of your project because it seems like it's an interdisciplinary what do you have a cost for the whole project sorry that makes just a little fuzzy on that

side so we really saved money for our department and our hospital by implementing this we are just all frontline staff we happen to have a radiology resident who knew how to write code so wasn't his day job

but he was really great I'm raining code and we ended up creating this delay dashboard so that's what I would say to everyone like you never know the strengths of the people who you have but to just ask questions

and brainstorm it's amazing what you can come up with so the the only thing that we really like spent money on would be the bedside service but that ended up being so the manpower for the Qi team is all in-house so we didn't necessary

invest specific but the projects that required hospital support was embedding a PA in the recovery area plus the bedside service and that totaled about you know seven eight hundred thousands it's a moving target but again if you

show metrics that validate why that that type of large number is validated and we it's find itself now but but strictly speaking a lot of the other initiatives were in-house in other but the East surveys was something the hospital was

going towards we just happened to tap into that so it's amazing how many resources you can get should you put the effort in but manpower wise the Qi entire team within IR what you see on front Chen this is just part of the

group is all in-house and not funded this is just part of our work thank you ask you about your inpatient who them on a daily basis who treats you in patients in patients so we have fellows and our fellows together with the four

coordinator like Jeff and add on the impatience but the fellows there's a ticket the fellows sort of is responsible for basically working up the impatient getting consents and then handing off and assisting the floor

coordinator or they had a conversation to determine where that we are and when that inpatient needs to so Jeff Jeff coordinates through the fellow and triage these cases and another question I have how do you schedule your

inpatient and outpatient s-- together in one day how do you differentiate the scheduling between inpatient and our patients how do we fit them into them so most of our rooms we schedule with outpatients

starting at the beginning of the day at 8 o'clock we have one room reserved for inpatients and sometimes we have another room reserved for inpatient lines that is a PA room so one or two inpatient rooms

the others are scheduled with outpatients and then as there are gaps in the schedule which we actually try to avoid those gaps now in patients can be popped in or can follow I see thank you I mean it strictly speaking if you or I

are inpatient come through in our consult fellow triage is it first once it's identified we're going to do a procedure then coordinates with our charge nurse or resource nurse plus the floor coordinator and then it's made to

happen so then the the mechanisms of appropriateness Labs prep is all done and consent done before the patient is transported down and then like Alison says we have a space a room dedicated for inpatients and then sometimes we'll

squeeze them in if it's more emergent origin if you don't mind Jeff can you can you just extent you know talk more about your role specifically what how do you communicate to the nurses upstairs when you coordinate the cases to come

down well every morning you know we get a list of known inpatients and then throughout the day the fellows will bring an add-on slips with pertinent labs and what we're doing when I know that I've got let me back up in the

morning will actually call all the units and speak to that patients nurse to say hey this is what we're gonna be doing are they NPO do they have an IV what kind of drips are they on so that way if the patient is not able to get their

procedure you know we can kind of head that off as a day goes on if I know I've got a room opening up in half an hour I'll call the nurse and say hey I'm sending transport up to get this patient this is what they're getting can you

and we'll just make sure that the patients ready so that way when transport gets there that the patient's ready to come down do you communicate these information to the a procedure nurse any sort of information that I get

there we do have the option to put notes in our EMR set the nurse can know that and a lot of times if if I'm able to I will walk down to the room and talk to the nurses and techs and whoever else needs to know that information and say

hey this is what we're doing what to prepare for and give them as much information as I can so they can be ready - got it thank you so much you yes I have some questions regarding the bedside service

that you guys offer how do you I guess I would say dictate or document the procedure where we are we used to have patients that we would go up to the floor and pull a line or change a tube or whatever and then our document

documentation system kind of got rid of that because we had to work around the computer system versus what was best for the patient so how do you document for those so part of the building of the team is critical is how you document and

importantly how you bill we need to make it financially viable so actually every procedure at the bedside we put into the radiology information system the accession numbers created and actually a before

those procedures are performed by physician assistants under the auspices of the attending on call and those are signed off as procedures then build in and so in that way we also document as well as make it billing compliant so

there's many advantages of actually doing that step and making sure that you get paid for what you do and not only that it's in the EMR exactly what happened and after they get I'm assuming you do some PICC lines bedside

chest x-ray after is that how they document this is how you verification some if it's our sign be verified or x-ray yep okay thank you hi I'm Heather from Sarasota Memorial I have two questions for your nurse intake person

and then the scheduler have you found that it's decreased your turnaround time and what is your turnaround time from receiving in order to proceed your time can you hear me so we receive there we have electronic

orders or they're in the EMR but when we do we require a lot of the providers to call us directly that communication piece is a big deal to be able to get all those questions answered and to get the patients scheduled appropriately so

as soon as they're putting in the order there a lot of them are calling us even as they're putting in the order so we I mean we receive lots of phone calls on a daily basis it's about five or six of us in the office at the same time answering

these phone calls so you have more than one nurse then that's fielding those yes yeah and the second thing for the bedside service do you send that PA or a mid-level person with a procedural person to assist in the room or is that

an expectation of the bedside nurse that they assist if needed that's a great question so there is you know some teething problems one of the problems you eliminated is doing procedures at the bedside you know how much do you

incorporate the the floor nurse involved with the case it's definitely become a little bit of a bone contention but we are managing it because the analogy the converse is that would be the internal medicine physician doing the procedure

and the nurse would be assisting anyway and sometimes it's just House staff internal medicine House staff doing it we're just doing it safer quicker so we've had to do a lot of Education with floor based nursing nursing leadership

to make everybody align that quickly turn around so we yeah but I think you raise a great point sometimes its resource at their bedside we right now we have one provider who goes with the ultrasound performs a procedure with

assistance of a clinic or the owners thank you last question please Fernando from Houston VA Medical Center can you hear me I have two questions so first question is do you guys see

schedule the same start time on all your I'd you sweets it can vary a little bit but we mostly start at 8 o'clock we have one day where we start at nine o'clock we sometimes start a room at eight o'clock except one day of the week which

is Thursday we start at 9:00 with education of anaesthesia our front land tech nurse physicians we all have our weekly education process from eight to nine so every day at eight except Thursdays at 9:00 standardized so then

we look at our first starts in that relation but so how many ones do you guys start all at the same time all the rooms and we start at 8 o'clock Oh second question so since the guys insert multiple drains in they are do you guys

primarily manage this drains including discharge instructions when patients are discharged can you apologize most of the time that would be yes there'd be a consult the primary team

would manage the patient's care be you know after the procedure going forward because they're usually managing their care for whatever problem there is for the abscess train or biliary drain now we our patients do pass through a pack

you the patients who are outpatients who are going to be going home or prior to admission oftentimes and the pack you will give basic instructions to ensure that the patient knows what to do with their drain before they go home

same thing with the intake so know as patient care coordinator nurses we're talking to the patient we're making sure that they have what they need or else we will help coordinate to make sure that they're getting what they need they know

what the plan is in patient often times they'll go back to the procedure room but it depends on whether they are have had anesthesia if they're off the sedation protocol they could go to pack you and then to their bed same-day

admission if the that's not ready pack you okay well thank you so much everyone and please feel free to contact us if you have additional and on behalf of Aaron avir I would like

I think it's important to understand what options we have in in treating patients with carotid disease or those

in our practice medical therapy is a mainstay so all these patients regardless that they get t'car carotid stenting or otherwise need to get the best medical therapy there is a role though for each of these surgical

endovascular or a hybrid such as t'car and hopefully you have a better understanding of that option and ultimately if you understand the different techniques then we can apply the best ones depending on the patient's

anatomy or current clinical scenario and and apply that to that patient thank you [Applause]

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

that was one example so these are there have a lot of potential complications reperfusion pulmonary edema is a very very big potential complication so you could get through the case patient does

great you open up multiple pulmonary arteries and then they start coughing up blood and then they end up started drowning in their own blood and the ICU so we do not want to push that and the initial papers that you can see down

below on that table they had a very high almost 10% in some cases pulmonary edema requiring treatment requiring patients being put on CPAP or being intubated and that is because they treated too much at one time

and so now as this when this first started in the early 2000s the operators were treating multiple segments at multiple times at one time and they were using large balloons and we figured out that that was what was killing patients

and so we changed our treatment so this is the first study that was ever performed for this it was performed by dr. Feinstein I believe this was published in circulation it was done in Harvard at MGH they had 18 patients with

36 month follow-up they all improved in their ability to walk as well as their lifestyle but many of them 11 out of 18 patients had reperfusion injury so this was the first paper and at that time it became the last paper because so many

patients did poorly but here's what they're sort of what they did and the ones that did okay they you could see that they had an improvement in the New York Heart Association classification again that just means they can walk

further they're not less short of breath and that they could walk further in 6 minutes which is again our sort of first test outcomes over time whence this has become increased so you can see that study was in 2001 and then

it kind of went away for a long time and it came back in 2012 in Japan where the most operators are there they've treated up to 255 procedures now since this slide was made we're up to a thousand in Japan and those patients are doing very

well but you'll notice that they have multiple procedures so again you don't try to one-and-done these patients they come back four to six times we've treated a couple patients where I work and we've treated that was patients four

times already and so they do much better but it's a slow slow and steady treatment so I want to wrap up with saying that the IR team is very critical to patients who are getting treated for PE we're involved in the diagnosis as

the radiology team acute and chronic PE it's very important to know as I've shown you in some of the examples and some of the images which when it's acute and versus chronic doing thrombolysis on a patient with chronic PE is useless all

you're doing is putting them at a risk you're not going to be able to break up that clot it's very important to have inter and multidisciplinary approach to patient care so interdisciplinary meaning everybody in this room nurses

technologists and physicians working together to take care of that patient that's on your table right now and multi-disciplinary because you have to work with cardiology vascular medicine the ICU teams and the

referring providers whether it's neurosurgery vascular surgery whomever it is who's Evers patient gets a PE you have to work together and it's very important again to have collaborative care in these patients if we're doing a

procedure and somebody notices that the patient is desaturating that's very very important when you're working in the pulmonary arteries if somebody notices that the patient's groin is bleeding you have to speak up so it's very important

that everybody is working together which is really what we need to do for these patients so there's my references and there's my kid so thank you guys very much hopefully this was helpful I'd be

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

now that you all have an overview and a refresher of nursing school and how these medications work in our body I want to now go over our practice

guidelines and the considerations that we take into place so as you know I'm not going to go over into detail the patient populations that are prescribed these meds but kind of knowing that these are the

patients that we see in our practice that for example are on your direct direct vector 10a inhibitors patients with afib or artificial valves or patients with a clock er sorry a factor v clotting disorder these oral direct

thrombin inhibitors patients with coronary artery thrombosis or patients who are at risk for hit in even patients with percutaneous coronary intervention or even for prophylaxis purposes your p2 y12 inhibitors or your platelet

inhibitors are your cabbage patients or your patients with coronary artery disease or if your patients have had a TI AR and mi continued your Cox inhibitors rheumatoid arthritis patients osteoarthritis vitamin K antagonists a

fib heart failure patients who have had heart failure mechanical valves placed pulmonary embolism or DVT patients and then your angiogenesis inhibitors kind of like Kerry said these are newer to our practice these are things that we

had just recently really kind of get caught up with these cancer agents because there really aren't any monitoring factors for these and there is not a lot of established literature out there knowing that granted caring I

did our literature review almost two years ago now so 18 months ago there is a lot more literature and obviously we learned things this morning so our guidelines are reviewed on a by yearly basis so we will be reviewing these too

so there is more literature out there for these thank goodness so now we want to kind of go into two hold or not to hold these medications so knowing that we have these guidelines and we'll be sharing you with you the tables that

tell us hold for five days for example hold for seven days some of these medications depending on why the patient is taking them are not safe to hold so some of the articles that we reviewed showed that for sure there's absolutely

an identified risk with holding aspirin for example a case study found that a patient was taking aspirin for coronary artery disease and had an MI that was associated with holding aspirin for a

radiology procedure they found that this happened in 2% of patients so 11 of 475 patients that sounds small number but in our practice we do about 400 procedures in a week so that would be 11 patients in one week that would have had possibly

an adverse reaction to holding their aspirin and then your Cox inhibitors or your NSAIDs as Carrie already mentioned it's just really important to know that some of those the Cox inhibitors have no platelet effects and then your NSAIDs

can be helped because their platelet function is normalized within 24 to 48 hours Worf Roman coumadin so depending on the procedure type and we'll go into that to here where we have low risk versus moderate to high risk

we do recommend occasionally holding warfarin however we need to verify why the patient is absolutely on their warfarin and if bridging is an option because as you learn bridging is not always on the most appropriate thing for

your patient so when patients on warfarin and they do not have any lab values available that's when you really need to step outside of guidelines and talk with your radiologists your procedure list and potentially have a

physician to physician discussion to determine what's best for a particular patient this just kind of goes into your adp inhibitors and plavix a few of the studies that we showed 50 are sorry 63 patients who took Plex within five days

of their putt biopsy they found that there was of those one bleeding complication during a lung biopsy so minimal so that's kind of why we have created our guidelines the way we did and here's just more information

regarding your direct thrombin inhibitors as cari alluded to products is something that we see very commonly in our practice and then your direct vector 10a inhibitors this is what we found in the literature

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.