Create an account and get 3 free clips per day.
Chapters
Lung Adenocarcinoma, COPD|Microwave Ablation|65|Male
Lung Adenocarcinoma, COPD|Microwave Ablation|65|Male
2016ablationatherosclerosislesionneedlenicepneumothoraxSIR
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
Thermal Ablation In Anticoagulated Patients: Is It Safe And Effective
ablationanticoagulatedanticoagulationantiplateletatrialClosureFastcontralateralcontrolCovidein Cf 7-7-60 2nd generationdatademonstratedduplexdurabilitydurableDVTdvtseffectivenessendothermalendovenousevlafiberlargestlaserMedtronicmodalitiesocclusionpatientspersistentpoplitealproceduresRadiofrequency deviceRe-canalizationrecanalizationrefluxstatisticallystudysystemictherapythermaltreatedtreatmenttumescentundergoingveinvenousvesselswarfarin
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
The Novate Sentry Trial With A Novel Bio-Convertible IVC Filter: Follow-Up At 2 Years
The Novate Sentry Trial With A Novel Bio-Convertible IVC Filter: Follow-Up At 2 Years
adjudicatedanticoagulationarmsbioabsorbableBioconvertible IVC filterBTG Interventional MedicinecavalclinicalcomparescomplicationscontraindicationdeviceDVTendpointfavorablyfilterfilteringfiltersfracturehydrolysisimagedimplantocclusionorthopedicovinepatientspercentperforationretrievalriskSentrysymptomatictherapeuticthrombosistransientvenogramvenograms
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
Value And Limitations Of Cryopreserved Allografts For The Treatment Of Arterial Prosthetic Graft Infections
adjunctiveaneurysmaorticarterialautologousbleedingcellulitisclosurecomplicationcomplicationsCryopreserved Allograftdeviceetiologyextremityfemoralgraftinfectedinfectioninfectionsinfectiousintraoperativelateligationlimbmycoticpatientspercutaneousperipheralprimaryprofundaprostheticpseudoaneurysmpseudoaneurysmsresectionscanseedingstenttherapeutictreatedulceratedvisceral
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
3D medical imagingaortaaugmentedcardiaccatheterCoreValve (Medtronic) - Transcatheter Aortic Valve Delivery Catheter System / TAVIguide (FEops) - Simulation technology / Holoscope (RealView Imaging) - 3D medical imagingDigital Light ShapingdynamicfloatingfocalfocusinteractmitralneedlepatientRealView ImagingsliceTherapeutic / DiagnosticvalveVeith
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
alcoholaneurysmalarterialarteryavmsclassificationcoilcoilscombinationcureddirectethanolfillinglesionlesionsmultipleneedlenidusoutflowpredominantpunctureretrogradesingletransvenousveinvenousyakes
Optimal Anticoagulation Regimen For Patients Being Treated For ALI
Optimal Anticoagulation Regimen For Patients Being Treated For ALI
acuteangioplastyanticoagulationaspirinatrialbleedingcategoryclinicalcomorbiditiesefficacyembolismextremityguidelinesheparininfrainguinalintraopintravenousischemiaischemiclimbminoritypatientsperformedpostopproximalrecurrentregardreperfusionstablestentingsystemictherapeuticthrombosisunderwentunfractionatedvascularVeithversusvitamin
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
aneurysmAneurysm repairaxisBEVARceliacchronicDialysisdraindrainagedrainseliminatedextentFEVARflowFluid / PressorsheadachehematomahemorrhagehypotensionincludingintracranialOccluded SMAoutcomespalliativeparaplegiapatientpatientsplacementpostoperativeprolongedprospectiveprotocolratesevereSevere PancreatitisspinalTEVARtherapeutictreated
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
avmsbleomycincomplicationcomplicationseffectiveeffectivenessethanolfacialfailuremarkedlypatientpatientsratesclerosantssclerotherapyskinstatisticalstatisticallytherapeutictransientvascularversus
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
"Acquired" AVMs: More Common Than We Think
acquiredarterialarteriogramarteriovenousavmscoilcollateralsconnectionsDeep vein trombosisduralDVTentityepisodeevarextensiveextremityfemoralFistulahistoryiliacinflammatorylesionlesionsocclusionpelvicpriorstentingstimulationswellingthrombosistreatedtreatmentuterineveinvenouswayne
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
anatomicanatomyaneurysmaneurysmsaorticarteriesballoonBARDBEVARbranchbranchedbranchesceliaccenterscombinationCoveracovereddeviceendovascularexpandableextremityfenestratedFenestrated EndograftfenestrationfenestrationsFEVARincidencemayoocclusionocclusionsphenotypeproximalproximallyrenalrenal arteriesrenalsreproduciblestentstentstechnicaltherapeutictortuositytypeversusViabah (Gore) / VBX (Gore) / Bentely (Bentely)visceral
Can You Predict Venous Severity Based On Reflux Time
Can You Predict Venous Severity Based On Reflux Time
ablatedablationceapclinicalcorrelationdiameterEndovenous Saphenous AblationfillingMixed Venous Disease CEAP Class 5patientsplethysmographypoplitealrefluxsaphenousseverityTherapeutic / Diagnosticveinvelocityvenous
Summary Of Thermal Ablation RCTs
Summary Of Thermal Ablation RCTs
ablationanteriorClosure SystemcollectedcomparingendovenousEVAEVLTexaminefrequencylaserligationMedtronicMOCAolleoutcomeoutcomespaucityproximalqualityradioactiverctsrecurrencereviewsRFAsaphenoussclerotherapystrippingsurgerysystematictherapeuticthermalThermal AblationtrialsUGFSVenaSealvenousversus
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
Comparative Cost Effectiveness Of DCBs vs. DESs Favor DESs
additionalangioplastybailoutballoonballoonsbasedcentercodescostDCBdecreasedDESdollarsgeometricInterventionslimbmedicalmedicareoutpatientpasspatencyPatentpayerpercentprimaryreimbursementreinterventionreinterventionsrevascularizationstents
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
4D Ultrasound Evaluation Of AAAs: What Is It; How Can It Help To Predict Growth And Rupture Rates
4D Ultrasound Evaluation Of AAAs: What Is It; How Can It Help To Predict Growth And Rupture Rates
analysisaneurysmassessmentbasedbiomechanicalcontourdatadiagnosticdistalfieldgrowthimagesimaginglimitationslongitudinalmechanicalmergednephrotoxicparametersperformperformedpredictpredictorpropertiesproximalrupturesegmentationstressultrasoundvalidateviewwall
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
How To Tailor Activity Recommendations To Patients After Cervical Artery Dissection
How To Tailor Activity Recommendations To Patients After Cervical Artery Dissection
adventitiaaneurysmalarteryatheroscleroticavoidaxialcarotidcervicalcoronaldissectiondissectionsexerciseextracranialextravasationextremeheartincludingintimalmaximumneckPathophysiologypatientspredictedpseudoaneurysmrecurrentrisksystemicsystolictemporaltraumavalsalvavertebral
CMS Policy Update On Nonthermal Ablation
CMS Policy Update On Nonthermal Ablation
ablationanteriorClariVeincompressivecontractorcovercoveragedeterminationsfoamincisionincisionsmedicarementionmicrofoamNonthermal ablationOcclusion catheter systemphlebectomyrefluxsaphenoussclerotherapysystematictherapeutictreatmentsVascular Insights IncvcssVenaSeal (Medtronic - closure system) / Varithena (BTG Interventional Medicine - polidocanol injectable foam) / PhotoDerm VascuLight (ESC - laser device) / Veinlase (Fisma - laser device)venous
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
Elevation Or Retunneling For Second Stage Basilic Vein Transposition
anastomosisarterialbasiliccomparablecomparedcumulativedatafavoredFistulafistulasgraftsjournalmaturationOne & Two Stage procedurespatenciespatencyprimaryrangeratesstagestagedstratifiedSuperficializationsuperiorTrans-positiontransectiontransposedtranspositiontunnelingvascularveinveinsversus
Transcript

Older male, long term history of smoking, not on home oxygen, although how, I don't know.

EF, really, really strong EF, 25% history of atherosclerosis disease, had prior MI treated with stenting, not on any Aspirin anticoagulants, how I don't know. But he is, has a new nodule, right lower robe, EBUS

negative, and then a biopsy proven adnocarcinoma. So what do we wanna use? [BLANK_AUDIO] Lots of people in the audience. >> You can ask the audience, pick votes.

>> Who would use cryo? Okay who would use RF? Microwave? Who would say send it to a surgeon and go home? Actually that might be the right answer but we didn't go with that. So this one actually RF or microwaves. So we go back to the

image for a second. You do have a nice clearing here, you're awfully close to the fissure but you should be able to avoid that. You do have a nice clear zone around the entire tumor. You're not too peripheral you're

not too central so it's a nice example of a good RF for a microwave case. And you should be able to get your nice round destruction here. And here is your probe in place. The pneumothorax was not intentional, it just kind of happened which was happy coincidence for us. And you can see here is our ablation and then here we are after we

took all our needles out and here we are a month later. This is exactly what you'd wanna see at one month follow up. The lesion gets bigger, it cavitates out, it has a nice rounded appearance and those little holes in the center of it have been associated with good outcome. Okay so if you are just starting to do this,

these lesions get bigger, they look like they have little holes in them, this is not a bad thing this is a good thing. And this patient is still alive, this is like six seven years ago. All right.

>> [INAUDIBLE] >> I just couldn't hear you, I'm sorry. >> [INAUDIBLE] >> Correct. Yeah, this is a very small lesion and again that goes back to my very first slide and again I'm a big fan of

if you have a small lesion it's just fine to use a single needle as long as you understand the power that your needle could put out. We'll talk about that one more second, you are leading the

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

Thanks very much, Tom. I'll be talking about thermal ablation on anticoagula is it safe and effective? I have no disclosures. As we know, extensive review of both RF and laser

ablation procedures have demonstrated excellent treatment effectiveness and durability in each modality, but there is less data regarding treatment effectiveness and durability for those procedures in patients who are also on systemic anticoagulation. As we know, there's multiple studies have been done

over the past 10 years, with which we're all most familiar showing a percent of the durable ablation, both modalities from 87% to 95% at two to five years. There's less data on those on the anticoagulation undergoing thermal ablation.

The largest study with any long-term follow up was by Sharifi in 2011, and that was 88 patients and follow-up at one year. Both RF and the EVLA had 100% durable ablation with minimal bleeding complications. The other studies were all smaller groups

or for very much shorter follow-up. In 2017, a very large study came out, looking at the EVLA and RF using 375 subjects undergoing with anticoagulation. But it was only a 30-day follow-up, but it did show a 30% durable ablation

at that short time interval. Our objective was to evaluate efficacy, durability, and safety of RF and EVLA, the GSV and the SSV to treat symptomatic reflux in patients on therapeutic anticoagulation, and this group is with warfarin.

The data was collected from NYU, single-center. Patients who had undergone RF or laser ablation between 2011 and 2013. Ninety-two vessels of patients on warfarin at the time of endothermal ablation were selected for study. That's the largest to date with some long-term follow-up.

And this group was compared to a matched group of 124 control patients. Devices used were the ClosureFast catheter and the NeverTouch kits by Angiodynamics. Technical details, standard IFU for the catheters. Tumescent anesthetic.

And fiber tips were kept about 2.5 centimeters from the SFJ or the SPJ. Vein occlusion was defined as the absence of blood flow by duplex scan along the length of the treated vein. You're all familiar with the devices, so the methods included follow-up, duplex ultrasound

at one week post-procedure, and then six months, and then also at a year. And then annually. Outcomes were analyzed with Kaplan-Meier plots and log rank tests. The results of the anticoagulation patients, 92,

control, 124, the mean follow-up was 470 days. And you can see that the demographics were rather similar between the two groups. There was some more coronary disease and hypertension in the anticoagulated groups, and that's really not much of a surprise

and some more male patients. Vessels treated, primarily GSV. A smaller amount of SSV in both the anticoagulated and the control groups. Indications for anticoagulation.

About half of the patients were in atrial fibrillation. Another 30% had a remote DVT in the contralateral limb. About 8% had mechanical valves, and 11% were for other reasons. And the results. The persistent vein ablation at 12 months,

the anticoagulation patients was 97%, and the controls was 99%. Persistent vein ablation by treated vessel, on anticoagulation. Didn't matter if it was GSV or SSV. Both had persistent ablation,

and by treatment modality, also did not matter whether it was laser or RF. Both equivalent. If there was antiplatelet therapy in addition to the anticoagulation, again if you added aspirin or Clopidogrel,

also no change. And that was at 12 months. We looked then at persistent vein ablation out at 18 months. It was still at 95% for the controls, and 91% for the anticoagulated patients. Still not statistically significantly different.

At 24 months, 89% in both groups. Although the numbers were smaller at 36 months, there was actually still no statistically significant difference. Interestingly, the anticoagulated group actually had a better persistent closure rate

than the control group. That may just be because the patients that come back at 36 months who didn't have anticoagulation may have been skewed. The ones we actually saw were ones that had a problem. It gets harder to have patients

come back at three months who haven't had an uneventful venous ablation procedure. Complication, no significant hematomas. Three patients had DVTs within 30 days. One anticoagulation patient had a popliteal DVT, and one control patient.

And one control patient had a calf vein DVT. Two EHITs. One GSV treated with laser on anticoagulation noted at six days, and one not on anticoagulation at seven days. Endovenous RF and EVLA can be safely performed

in patients undergoing long-term warfarin therapy. Our experience has demonstrated a similar short- and mid-term durability for RF ablation and laser, and platelet therapy does not appear to impact the closer rates,

which is consistent with the prior studies. And the frequency of vein recanalization following venous ablation procedures while on ACs is not worse compared to controls, and to the expected incidence as described in the literature.

This is the largest study to date with follow-up beyond 30 days with thermal ablation procedures on anticoagulation patients. We continue to look at these patients for even longer term durability. Thanks very much for your attention.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- It's my pleasure on behalf of the Sentury Trial investigators to present the two year data on the BTG Novate Sentry filter. These are my disclosures. Well, as we have heard this afternoon, it's no surprise to anyone the topic of IVC filter placement is controversial.

We know that IVC filters can protect patients by preventing PE. We also know that retrievable filters that are not retrieved have been reported to have, be associated with some complications. And we talked about FDA advisory,

obviously that has resulted somewhat in a decrease in filter use in this country. Obviously complication rates we've also heard about increase with implant time and include tilting, migration, fracture, perforation and embolization. And retrieval success reduces with implant time.

What's not controversial, and we have heard also about this, is the frequency of PE in this country and the expense associated with it. Obviously, survival benefits have been shown in appropriate populations, that are selected based on known indications. And existing retrieval technology, unfortunately,

as we've heard from Dr. Askandari, has not met the needs of patients when up to 40 to 50 percent are not coming back for retrieval. That was sort of the impetus behind the design of the Sentry Bioconvertible IVC Filter, which is designed to protect patients at transient risk

from PE and reduce complications of existing technologies. It employs a stable frame with filter arms held together by a bioabsorbable filament and designed to provide PE protection during a transient risk period, reduce IVC filter complications, including tilting, migration, fracture, perforation and embolization.

And this just shows an example in vitro and with a CT scan of the filter in the so-called filtering configuration. The filter then automatically bioconverts after the PE risk period is past. That's guaranteed to be in the

filtering position for at least 60 days. It bioconverts by hydrolysis of the bioabsorbable element, which allows the filter arms to retract to the IVC wall, leaving a patent lumen and reducing the risk for IVC occlusion or thrombosis later on, and obviously, the cost of IFC filter retrieval.

Here you can see filters that are in the bioconverted configuration. This just shows the deployment. It's a simple pin and pull seven French delivery system. These stable arms allow this to be placed almost always without any tilting

and is quite easy and accurate to deploy. This is in an ovine modeled pre-clinical study shows in a bioconverted configuration all of the filter elements become endothelialized and in this angioscopic view, really can't even see any of the filter elements.

This is again sort of predicated on something that I believe we're not all that familiar with and that's when the timing of PE occurs. And you can see here, from the trauma literature, orthopedic literature, other literature, on 500,000 patients and in these groups you can see

that over 90 percent of PEs take place in less than 10 days after an initial event and 99 percent of PEs within 20 days. That led the FDA to write a position decision analysis paper, which recommend filter retrieval between

29 and 54 days after implantation. So, on s, 23 sites, 63 operators. You can see this was a relatively imaging-intense protocol with 24 month CT Venogram and CT Venograms also at one month and six months.

Long term follow up, 94 percent of the eligible subjects were imaged at 24 months. You can see that 67.5 percent of the subjects had current PE and/or DVT at the time of enrollment, and 100 percent had contraindication to anticoagulation for some or all of the protection period.

In terms of the composite primary endpoint, there was a high degree of technical success, 100 percent of the patients received the device. 100 percent freedom from new symptomatic PE to 60 days. Two patients had symptomatic caval thrombosis at 8

by angiojet, one by EKOS. And there was no tilting, migration, embolization, fracture or perforation. At 12 months there were no new symptomatic PEs and there were no device related complications out to 12 months.

And at 24 months, two new symptomatic PEs, days 581 and 632,in patients with fully bioconverted filters. There were no device related out to 24 months. Both of these were adjudicated by a clinical events committee as not being device related.

And again, you can see that the bioconversion rate of 96.5 percent compares favorably to published retrieval rates, and we've talked about that. So, in conclusion, the primary endpoint at six months was met with clinical success of 97.4 percent. No new symptomatic PEs at 12 months.

2.4 new symptomatic PEs at 24 months, but no tilting, migration, perforation, fracture or embolization. And the 96.5 percent bioconversion rate compares favorably to published retrieval rates. Thanks very much.

- So I'm going to be talking about allografts for peripheral graft infections. This is a femoral artery that's been replaced after a closure device infection and complication, and we've bypassed to the SFA and profunda femoris. These are my disclosures. So peripheral arterial infectious processes,

well the etiology either is primary or secondary. Primary can be from bacteremic states and seeding of ulcerated plaque or thrombus. Secondary reasons for infections can be the vast usage of percutaneous closure devices that really have flooded the market these days.

Prosthetic graft infections after either a bypass or patch in the femoral artery. So early onset infections usually are from break in sterility. Secondary infections can be from either wound breakdowns or late seeding of the prosthetic graft.

The presentation for these patients can be relatively minor such as cellulitis or draining sinus, or much more dramatic, such as sepsis or pseudoaneurysm or mycotic aneurysm. On the CT scan we can see infected mycotic aneurysm after infected closure device and bleeding complications.

The treatment is broad in range. Ligation is obviously one option, but it leads to a very high risk of major limb amputation. So ideally some form of reconstruction, either extra-anatomic through clean planes,

antibiotic graft as we heard from the previous speaker, the use of autologous replacement with deep vein, or we become big proponents of the use of cryopreserved arterial allografts for reconstruction. And much of this stems from our work from about 10 years ago, where we looked

at the use of aortic cryopreserved grafts for aortic graft infections. This was published about 10 years ago but we looked at a small series of patients with aortic infections. You can see the CT scan of an infected stent graft

and associated aneurysm. And then the intraoperative photo after we've resected the stent graft and replaced that segment of the aorta with a cryopreserved aortic segment. So using that as a springboard,

we then decided to look at the outcomes using these types of conduits, arterial conduits, for peripheral arterial reconstructions in contaminated or infected surgical fields. So retrospective review at our tertiary care center, we looked at roughly 60 patients over a 15-year period

and excluded any aortic-based reconstructions. So these are all peripheral reconstructions. Mean follow-up was 28 months. As you would expect, the distribution of treatment zones were primarily in the lower extremities, so 51 cases.

As you can see, there's a list of all the different types of cases that we treated. But then there were a few upper extremity visceral and then carotid. I've shown this slide before at this meeting in the past, with a carotid patch infection

that was treated after it had a blow-out, and it's obviously a infected aneurysm, and this was treated with resection and a cryopreserved arterial segment. Looking at our outcomes, the 30-day outcome showed a mortality rate of 9%.

The 30-day conduit-related complication rate was surprisingly low at 14%. We had four patients that had bleeding complications, four patients with recurrent infectious complications. All eight of those patients required a return back to the operating room for correction.

The late conduit-related complication rate was only 16%. As listed here, you can see there's only one case of reinfection, three cases of graft thrombosis, surprisingly only one major limb amputation, two pseudoaneurysms and one late bleeding complication.

And graphically depicted, you can see here, this area here is looking at the less than 30 days, this is primarily when the complications occur. When you get to six months, fewer complications, and then beyond six months, the primary complications that we would see are either thrombosis of the graft

or the development of late pseudoaneurysms, again relatively low. So in summary, I think peripheral arterial infectious complications can be treated with a cryopreserved arterial allografts. The advantage is it's a single stage operation,

maintains in-line flow, there's a low incidence of repeat infection. I think it's also important to mention that the majority of these patients had adjunctive muscle flap coverage to cover the large soft tissue defect

at the time of the operation. So I think that this is a valuable alternative conduit in a setting of peripheral arterial infections. Thank you.

- Good morning, thank you very much to Dr. Veith and Professor Veith and the organizers. So this is real holography. It's not augmented reality. It's not getting you separated from the environment that you're in. This is actually taking the 3D out of the screen

so the beating heart can be held in the palm of your hand without you having to wear any goggles or anything else and this is live imaging. It can be done intra-procedure. This is the Holoscope-i and the other one is the Holoscope-x

where in fact you can take that actually 3D hologram that you have and you can implant it in the patient and if you co-register it correctly then you can actually do the intervention in the patient

make a needle tract to the holographic needle and I'm going to limit this to just now what we're actually doing at the moment and not necessarily what the future can be. This is ultimate 3D visualization, true volumes floating in the air.

This is a CT scan. So it started working, So we get rid of the auto-segmented and you can just interact. It's floating 45 centimeters away from you and you can just hold the patient's anatomy here and you can slice into the anatomy.

This is for instance a real CT of an aorta with the aortic valve which they wanted to analyze for a core valve procedure. This is done by Phelps. If you take the information

and they've looked at the final element analysis and interaction between the stem and the tissue. So here you can make measurements in real time. So if you did the 3D rotation and geography and you had the aorta and you wanted to put in a stent graft EVAR TVAR, and you would see,

and you could put in a typical tuber that you would do, and you could see how it, and this is a dynamic hologram, so you can see how it would open up, you can mark where your fenestration's chimney is and all that type of stuff would be. And you can move it around, and you have

a complete intuitive understanding of a, can we go to the next slide please, I can't, it seems to be clicking, thank you. So how do we do all this? Well, to create a hologram, what you need to do is just conceptualize it as printing in light.

Like if you had plastic and you took the XYZ data and you just put it into a 3D printer, and it would print it for you in light, then you'd go, Okay, so I understand, if it was printed for you in plastic then you'd understand. But imagine it's printing in light.

So we have every single piece of light focused, each photon is focused so that you can see it with a naked eye, in a particular place, but the difference is that it's totally sterile, you don't have to take off your gloves, you don't have to use a mouse,

you can interact with it directly. And all the XYZ data is 100% in place, so we've just seen a beautiful demonstration of augmented reality, and in augmented reality, you have to wear something, it isolates you from the environment that you're in, and it's based on

stereoscopy, and stereoscopy is how you see 3D movies, and how you see augmented reality, is by taking two images and fusing them in one focal plane. But you can't touch that image, because if you look at me now, you can see me very well, but if you hold your finger up 45 centimeters

and you focus on your finger, I become blurred. And so, you can only focus in one plane, you can't touch that image, because that image is distant from you, and it's a fused image, so you have the focus plane and you have the convergence plane, and this is an illusion

of 3D, and it's very entertaining, and it can be very useful in medical imaging, but in intra-operative procedures it has to be 100% accurate. So you saw a very beautiful example in the previous talk of augmented reality, where you have gesturing, where you can actually gesture with the image,

you can make it bigger, you can make it smaller. But what RealView does by creating real holography, which is all the XYZ data, is having it in the palm of your hand, with having above 20 focal planes, here, very very close to your eye, and that in another way, of having all those focal planes not only actually lets you

do the procedure but prevents nausea and having a feeling of discomfort because the image is actually there as of having the illusion of the images there. So just to go back, all RealView imaging is doing, is it's not changing your 3D RA cone, BMCT, MRI,

we can do all those XYZ datas and we can use them and we can present them, all we're doing, so you use your acquisition, we're just taking that, and we're breaking open the 3D displays and seeing all that 3D data limited in the 2D screen, let's set it free and have it floating in the air.

So we have the holoscope-i for structural cardiology and electrophysiology, and obviously the holoscope-x, which makes the patient x-rayed, completely visible. So its an over the head, this is now, obviously, free-standing when somebody buys us like Phillips or Siemens, it will be integrated into your lab,

come down from the ceiling, it's an independent system, and you just have a visor that you look through, which just goes up and down whenever you want to use it. You can interact with it the same as you do with your iPhone you can visualize, you can rotate, you can mark, you can slice, you can measure, as I showed you

some examples of it, and you can do this by voice as well, you just talk to it, you say slice and you slice it with your hand, it recognizes everybody's hand, there's no delay for whatever you're imaging. So structural cardiac procedures, this is what

a mitral valve will look like, floating in the air in front of you, you can see the anterior leaflet, the posterior leaflet. And once the catheter is inside and you're guiding the catheter inside the procedure, you can turn on your doppler, you'll be able to see that the catheter

movements, so for someone doing a mitral clip, or whatever, this would be very very useful. This is an electrophysiological procedure, and you can see how the catheter moves, when the catheter will move, and obviously, as my previous speaker was saying, you are appreciating 3D in a 2D screen,

so it's very difficult to appreciate, you'll have to take my word for it. But I think you can see dynamic colography at this quality, that you can interact with, that is something that is very special, we've presented at a number of conferences,

including at Veith, and we've already done a first in man, and the most exciting thing for now, is just this week, the first machine was installed at Toronto general, at the Peter Munk Cardiac Center, and they've done their first case, and so now we are launching and clinical trials in 2018, and hopefully,

I'll have something which is more vascular relevant, at the next time, Veith 2019, thank you very much.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Talk to you a little bit about again a major paradigm shift in AVMs which is the retrograde vein approach. I mean I think the biggest benefit and the biggest change that we've seen has been in the Yakes classification the acknowledgment

and understanding that the safety, efficacy and cure rate for AVMs is essentially 100% in certain types of lesions where the transvenous approach is not only safer, but easier and far more effective. So, it's the Yakes classification

and we're talking about a variety of lesions including Yakes one, coils and plugs. Two A the classic nidus. Three B single outflow vein. And we're talking now about these type of lesions. Three A aneurysmal vein single outflow.

Three B multiple outflows and diffuse. This is what I personally refer to as venous predominant lesions. And it's these lesions which I think have yielded the most gratifying and most dramatic results. Close to 100% cure if done properly

and that's the Yakes classification and that's really what it's given us to a great degree. So, Yakes one has been talked about, not a problem put a plus in it it's just an artery to vein.

We all know how to do that. That's pulmonary AVM or other things. Yakes two B however, is a nidus is still present but there is a single outflow aneurysmal vein. And there are two endovascular approaches. Direct puncture, transarterial,

but transvenous retrograde or direct puncture of the vein aneurism with the coil, right. You got to get to the vein, and the way to get to the vein is either by directly puncturing which is increasingly used, but occasionally transvenous. So, here's an example I showed a similar one before,

as I said I think some of these are post phlebitic but they represent the archetype of this type of lesion a two B where coil embolization results in cure, durable usually one step sometimes a little more. In the old days we used to do multiple

arterial injections, we now know that that's not necessary. This is this case I showed earlier. I think the thing I want to show here is the nature of the arteriovenous connection. Notice the nidus there just on this side of the

vein wall with a single venous outflow, and this can of course be cured by puncture, there's the needle coming in. And interestingly these needles can be placed in any way. Wayne and I have talked about this.

I've gone through the bladder under ultrasound guidance, I've gone from behind and whatever access you can get that's safe, as long as you can get a needle into it an 18 gauge needle, blow coils in you get a little tired, and you're there a long time putting in

coils and guide wires and so on. But the cures are miraculous, nothing short of miraculous. And many of these patients are patients who have been treated inappropriately in the past and have had very poor outcomes,

and they can be cured. And that a three year follow-up. The transcatheter retrograde vein is occasionally available. Here's an example of an acquired but still an AVM an acquired AVM

of the uterus where you see the venous filling on the left, lots of arteries. This cannot be treated with the arterial approach folks. So, this one happened to be available

and I was having fun with it as well, which is through the contralateral vein in and I was able to catheterize that coil embolization, cured so. Three A is a slightly different variant but it's important it is different.

Multiple in-flow arteries into an aneurysmal vein wall. And the important identification Wayne has given us is that the vein wall itself is the nidus and there's a single out-flow vein. So, once again, attacking the vein wall by destroying the vein, packing

and thrombosing that nidus. I think it's a combination of compression and thrombosis can often be curative. A few examples of that this was shown earlier, this is from Dr. Yake's experience but it's a beautiful example

and we try to give you the best examples of a singular type of lesion so you understand the anatomy. That's the sequential and now you see single out-flow vein. How do you treat this?

Coil embolization, direct puncture and ultimately a cure. And that's the arteriogram. Cured. And I think it's a several year follow-up two or three year follow-up on this one.

So a simple lesion, but illustrative of what we're trying to do here. A foot AVM with a single out-flow vein, this is cured by a combination of direct puncture right at the vein. And you know I would say that the beauty of

venous approach is actually something which it isn't widely acknowledged, which is the safety element. Let's say you're wrong, let's say you're treating an AVM and you think okay I'm going to attack

from the vein side, well, if you're not successful from the vein side, you've lost nothing. The risk in all of these folks is, if you're in the artery and you don't understand that the artery is feeding significant tissue,

these are where all the catastrophic, disastrous complications you've heard so much about have occurred. It's because the individuals do not understand that they're in a nutrient artery. So, when in doubt direct puncture

and stay on the venous side. You can't hurt yourself with ethanol and that's why ethanol is as safe as it is when it's used properly. So, three B finally is multiple in-flow arteries/arterioles shunting into an aneurysmal vein

this is multiple out-flow veins. So direct puncture, coils into multiple veins multiple sessions. So, here's an example of that. This is with alcohol this is a gentleman I saw with a bad ulcer,

and this looks impossible correct? But look at the left hand arteriogram, you can see the filling of veins. Look at the right hand in a slight oblique. The answer here is to puncture that vein. Where do we have our coil.

The answer is to puncture here, and this is thin tissue, but we're injecting there. See we're right at the vein, right here and this is a combination arteriogram. Artery first, injection into the vein.

Now we're at the (mumbles), alcohol is repeatedly placed into this, and you can see that we're actually filling the nidus here. See here. There's sclerosis beginning destruction of the vein

with allowing the alcohol to go into the nidus and we see progressive healing and ultimately resolution of the ulcer. So, a very complex lesion which seemingly looks impossible is cured by alcohol in an out-flow vein.

So the Yakes classification of AVMs is the only one in which architecture inform treatment and produces consistent cures. And venous predominant lesions, as I've shown you here, are now curable in a high percentage of cases

when the underlying anatomy is understood and the proper techniques are chosen. Thanks very much.

- I'd like the thank Doctor Veith for inviting me back to speak. I have no disclosures, we will be discussing some slight off-label use of the anitcoagulants. As we all know, acute limb ischemia occurs as a result of acute thrombosis of a native artery or bypass graft or embolism from a proximal

source, dissection, or trauma. The incidence is not insignificant, 15 cases per 100 000 persons per year, or interestingly about 10 to 16% of our vascular workload. Despite the relative frequency of this condition, there are relatively few guidelines to

guide us for anticoagulation therapy. The last set of guidelines for the American College of Chest Physicians regarding PAD gives some very brief, generic recommendations from 2012. They state, suggest immediate systemic anticoagulation with unfractionated heparin.

We suggest reperfusion over no reperfusion, which seems pretty obvious to an audience of vascular specialists. One of the challenges with acute limb ischemia is that it is a fairly heterogenous group. It can be thrombosis or embolism to the aorticiliac segments to the infrainguinal segments, and

there's also the patients who develop ALI from trauma. So we actually looked at the various phases of anticoagulation for acute limb ischemia and then we do, as with many institutions, utilize intravenous heparin at the time of the diagnosis, as well as obviously at the time of surgery,

but we found that there was a significant variation with regard to the early, post-operative anticoagulation regimens. One option is to give therapeutic intravenous heparin on an adjusted dose, but what we found in a significant minority of patients across the country actually,

is that people are giving this fixed mini-dose 500 unit an hour of heparin without any standardization or efficacy analysis. Then, obviously you go the long-term anticoagulation. We reviewed 123 patients who had ALI at our institution, who underwent surgical revascularization.

And they had the typical set of comorbidities you might expect in someone who has PAD or atheroembolism. In these patients, the Rutherford Classification was viable or marginally threatened in the majority, with about 25% having immediately threatened limb.

Various procedures were performed for these patients, including thromboembolectomy in the majority, bypass operations, angioplasty and stenting was performed in the significant minority and then primary amputation in the various selects few. We divided these patients into

the first four days of anticoagulation. Therapeutic with unfractionated heparin early on versus subtherapeutic or this mini-dose unfractionated heparin and we found that 29% of our patients were receiving the mini-dose unfractionated heparin, again without much efficacy analysis.

We used the International Society for Thrombosis and Haemostasis Anticoagulation Outcome Guidelines to look at the ischemic complications, as well as major and minor bleeding for these patients, and we identified actually not a significant rate of difference between the

subtherapeutic category and the therapeutic category of patients, with regard to mortality, with regard to recurrent limb ischemia, MI, VTE, or stroke, major amputation, and we actually didn't find because it's a fairly small study, any significant difference in major or minor bleeding for these patients.

So, we do feel that this small study did justify some efficacy of mini-dose unfractionated heparin because we didn't find that it was causing recurrent lower extremity thromboembolsim in these patients. Now on to long-term anticoagulation, for these patients, after that first three or four days

after the surgery, the options are long-term vitamin K antagonists, the DOAC's or vitamin K antagonists if you have atrial arrhythmia, or in the patients who had no other comorbidities, there really is not much guidance until recently. The compass trial was recently published in 2018

in stable PAD and carotid disease patients, identifying that rivaroxaban plus aspirin had a significant benefit over aspirin alone in patients who had stable PAD. And then, an upcoming trial, which is still ongoing currently in patients who underwent recent

revascularization, whether open or endo, is hopefully going to demonstrate that rivaroxaban, again has a role in patients with lower extremity ischemia. So in conclusion, there is relatively a scarcity of clinical data to help guide anticoagulation after acute limb ischemia.

Unfractionated heparin pre and intraop are standardized, but postop anticoagulation is quite variable. The mini-dose, we consider to be a reasonable option in the first few days to balance bleeding versus rethrombrosis, and fortunately we are having larger randomized clinical trials to help demonstrate the benefit of the DOACs and

aspirin in patients who are stable or post-revascularization for PAD, thank you.

- Thanks Fieres. Thank you very much for attending this session and Frank for the invitation. These are my disclosures. We have recently presented the outcomes of the first 250 patients included in this prospective IDE at the AATS meeting in this hotel a few months ago.

In this study, there was no in-hospital mortality, there was one 30-day death. This was a death from a patient that had intracranial hemorrhage from the spinal drain placement that eventually was dismissed to palliative care

and died on postoperative day 22. You also note that there are three patients with paraplegia in this study, one of which actually had a epidural hematoma that was led to various significant and flacid paralysis. That prompted us to review the literature

and alter our outcomes with spinal drainage. This review, which includes over 4700 patients shows that the average rate of complications is 10%, some of those are relatively moderate or minor, but you can see a rate of intracranial hemorrhage of 1.5% and spinal hematoma of 1% in this large review,

which is essentially a retrospective review. We have then audited our IDE patients, 293 consecutive patients treated since 2013. We looked at all their spinal drains, so there were 240 placement of drains in 187 patients. You can see that some of these were first stage procedures

and then the majority of them were the index fenestrated branch procedure and some, a minority were Temporary Aneurysm Sac Perfusions. Our rate of complication was identical to the review, 10% and I want to point out some of the more important complications.

You can see here that intracranial hypotension occurred in 6% of the patients, that included three patients, or 2%, with intracranial hemorrhage and nine patients, or 5%, with severe headache that prolonged hospital stay and required blood patch for management.

There were also six patients with spinal hematomas for a overall rate of 3%, including the patient that I'll further discuss later. And one death, which was attributed to the spinal drain. When we looked at the intracranial hypotension in these 12 patients, you can see

the median duration of headache was four days, it required narcotics in seven patients, blood patch in five patients. All these patients had prolonged hospital stay, in one case, the prolongation of hospital stay was of 10 days.

Intracranial hemorrhage in three patients, including the patient that I already discussed. This patient had a severe intracranial hemorrhage which led to a deep coma. The patient was basically elected by the family to be managed with palliative care.

This patient end up expiring on postoperative day 21. There were other two patients with intracranial hemorrhage, one remote, I don't think that that was necessarily related to the spinal drain, nonetheless we had it on this review. These are some of the CT heads of the patients that had intracranial hemorrhage,

including the patient that passed away, which is outlined in the far left of your slide. Six patients had spinal hematoma, one of these patients was a patient, a young patient treated for chronic dissection. Patient evolved exceptionally well, moving the legs,

drain was removed on postoperative day two. As the patient is standed out of the bed, felt weakness in the legs, we then imaged the spine. You can see here, very severe spinal hematoma. Neurosurgery was consulted, decided to evacuate, the patient woke up with flacid paralysis

which has not recovered. There were two other patients with, another patient with paraplegia which was treated conservatively and improved to paraparesis and continues to improve and two other patients with paraparesis.

That prompted changes in our protocol. We eliminated spinal drains for Extent IVs, we eliminated for chronic dissection, in first stages, on any first stage, and most of the Extent IIIs, we also changed our protocol of drainage

from the routine drainage of a 10 centimeters of water for 15 minutes of the hours to a maximum of 20 mL to a drainage that's now guided by Near Infrared Spectroscopy, changes or symptoms. This is our protocol and I'll illustrate how we used this in one patient.

This is a patient that actually had this actual, exact anatomy. You can see the arch was very difficult, the celiac axis was patent and provided collateral flow an occluded SMA. The right renal artery was chronically occluded.

As we were doing this case the patient experienced severe changes in MEP despite the fact we had flow to the legs, we immediately stopped the procedure with still flow to the aneurysm sac. The patient develops pancreatitis, requires dialysis

and recovers after a few days in the ICU with no neurological change. Then I completed the repair doing a subcostal incision elongating the celiac axis and retrograde axis to this graft to complete the branch was very difficult to from the arm

and the patient recovered with no injury. So, in conclusion, spinal drainage is potentially dangerous even lethal and should be carefully weighted against the potential benefits. I think that our protocol now uses routine drainage for Extent I and IIs,

although I still think there is room for a prospective randomized trial even on this group and selective drainage for Extent IIIs and no drainage for Extent IVs. We use NIRS liberally to guide drainage and we use temporary sac perfusion

in those that have changes in neuromonitoring. Thank you very much.

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- I just like the title 'cuz I think we're in chaos anyway. Chaos management theory. Alright, unfortunately I have nothing to disclose, it really upsets me. I wish I had a laundry list to give you. Gettin' checks from everybody, it would be great. Let's start off with this chaos, what has been published.

Again "Ul Haq et al" is a paper from Hopkins. Bleomycin foam treatment of malformations, a promising agent. And they had 20 patients, 21 Bleomycin procedures. (mumbles) sclerosants in a few other patients, 40% complication rate, 30% minor, 10% major.

On a per procedure basis it was a 29% with about 7% major. All patients had decrease in symptoms. But to say "I use Bleomycin" or "I use X" because a complication (mumbles) is nonsense, you're mentally masturbating. It ain't going to be that way, you're going to have complications.

Alright, the use of Bleomycin should be reserved for locations where post-procedure swelling would be dangerous. Well they used it, and one patient required intubation for four days and another patient 15 days. So, it can happen with any agent.

So I don't know why that statement was made. "Hassan et al", noninvasive management of hemangiomas and vascular malformations using Bleomycin again, this handles the plastic surgery a few years ago. 71% effectiveness rate, 29% failure rate,

14% complication rate, 5 major ulcerations. Ulcerations happen with any agent. You're not going to escape that by saying, "Oh, well I'm not going to use alcohol because (mumbles)." No you're going to get it anyway. You all in the literature.

"Sainsbury", intra-lesional Bleomycin injection for vascular birthmarks five year experience again, 2011. 82% effectiveness, 17.3 for failure. Compli- severe blistering, ulcers, swelling, infections, recurrences. Okay, everybody's reporting it.

"Bai et al" sclerotherapy for lymphatic, oral and facial region, 2009. 43% effectiveness, but they found if they used it with surgery they had a higher effectiveness rate. Good. But again that's their effectiveness.

"Young et al", Bleomycin A5 cervico-facial vascular surgery, 2011. 81% effectiveness rate 19% failure for macrocystic. 37% failure from microcystic disease. Complications: ulcerations, hematoma, bleeding, fevers, soft tissue atrophy.

"Zhang et al." Now this is a study. They're goin' head-to-head alcohol versus Bleo. Oh, isn't that a nice thing to do. Huh, funny how that can happen sometimes. There's another paper out of Canada

that doesn't matter, there's 17 pages and there's no statistical significance for that. 138 patients, you got a lot of statistics. "Zhang et al", 138 children. 71 of 75 patients, which is 95% of that serie, were either cured,

markedly effective, or effective, with alcohol. In the Bleo group 41 of 63, that is 65% of the patients, had effective treatment. That means no cures, no markedly effective, just effective. That's their head-to-head comparison. Difference between Ethanol and

the Bleo group again was statistically significant. Ethanol at 75 patients of 14 cases skin necrosis. Bleo group at 63 patients of 5 cases skin necrosis. And in that group they stated it is statistically superior to Bleo. 95 versus 60, that's a big deal.

Again, cured, disappearance post-treatment without recurrence. Markedly effective, meant that greater than 80% was ablated. Effective means about less that 80% reduction but improved. Ineffective, no change. That was their criterion on that paper.

Again, 30 cases, superficial VMs effective rate was 95% in the Ethanol group and the deep group 94%. Okay. What was in the Bleo group? 68% superficial, 56% of deep group. So that's a statistical significance

of failure, between the two agents, comparing head-to-head in anatomic areas. Ethanol VM papers, let's go on to that, we're goin' to do other stuff. "Lee et al", advanced management, 2003, midterm results. 399 procedures in 87 patients,

95% significant or complete ablation, 12.4% complication. "Johnson et al", Kansas. University of Kansas med center, 2002. 100% success rate in tongues. One patient had a massive tongue and had breathing difficulties prior to treatment

remained intubated 5 days and then uneventfully discharged, that was their only complication. "Su et al", ethanol sclerotherapy, face and neck. Again, these are complex anatomies with complex issues of cranial nerves as well as airway control. 2010, 56 of 60 procedures, 90%, four minimal residual,

no skin necrosis, no nerve injuries. "Orlando", outpatient percutaneous treatment, low doses under local anesthesia. This is a very interesting paper out of Brazil. They did 'em under IV sedation, just a little bit by little bit.

They said they had trouble gettin' general so they had to figure another way. Smart, I like people thinkin' things out. Who here doesn't have a problem with anesthesia? Gettin' 'em not to quit before two o'clock? (laughs)

Alright, used local only 39 patients extremity VMs, main symptoms of pain. Cure or significant improvement in 94%. One ulcer, 3 transient paresthesias. "Lee et al", sclerotherapy craniofacial again, 2009. 87 patients, 75% were reductions.

71 of 87 excellent outcomes. One patient transient, tongue decreased sensation. One transient facial nerve palsy, no skin injuries. "Vogelzang" is a very important paper of a single center. Is that author- anybody here? Again, they did VMs and AVMs in this series

and then a per patient complication rate is 13.3, in AMVs 9.7 per patient, but I think what also is important is to do things with regards to procedures. And they listed both. So we'll just, it's about time to quit. This is our embolization series.

And neck, upper extremity, all the anatomies. And we're about a 10 to three ratio with regards to VM/LMs to AVMs in numbers. I think everybody's pretty much like that, a third of their practice. Again, our minor complications are that.

Major complications are these. Summary, what we found in the literature is that Ethanol publications state its efficacy rate routinely at 90 to 100%. And all other second tier sclerosants are 60 to 80%. So I think that's the take home message.

Thank you.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- This talk is a brief one about what I think is an entity that we need to be aware of because we see some. They're not AVMs obviously, they're acquired, but it nevertheless represents an entity which we've seen. We know the transvenous treatment of AVMs is a major advance in safety and efficacy.

And we know that the venous approach is indeed very, very favorable. This talk relates to some lesions, which we are successful in treating as a venous approach, but ultimately proved to be,

as I will show you in considerable experience now, I think that venous thrombosis and venous inflammatory disease result in acquired arteriovenous connections, we call them AVMs, but they're not. This patient, for example,

presented with extensive lower extremity swelling after an episode of DVT. And you can see the shunting there in the left lower extremity. Here we go in a later arterial phase. This lesion we found,

as others, is best treated. By the way, that was his original episode of DVT with occlusion. Was treated with stenting and restoration of flow and the elimination of the AVM.

So, compression of the lesion in the venous wall, which is actually interesting because in the type perivenous predominant lesions, those are actually lesions in the vein wall. So these in a form, or in a way, assimilate the AVMs that occur in the venous wall.

Another man, a 53-year-old gentleman with leg swelling after an episode of DVT, we can see the extensive filling via these collaterals, and these are inflammatory collaterals in the vein wall. This is another man with a prior episode of DVT. See his extensive anterior pelvic collaterals,

and he was treated with stenting and success. A recent case, that Dr. Resnick and I had, I was called with a gentleman said he had an AVM. And we can see that the arteriogram sent to me showed arterial venous shunting.

Well, what was interesting here was that the history had not been obtained of a prior total knee replacement. And he gave a very clear an unequivocal history of a DVT of sudden onset. And you can see the collaterals there

in the adjacent femoral popliteal vein. And there it is filling. So treatment here was venous stenting of the lesion and of the underlying stenosis. We tried an episode of angioplasty,

but ultimately successful. Swelling went down and so what you have is really a post-inflammatory DVT. Our other vast experience, I would say, are the so-called uterine AVMs. These are referred to as AVMs,

but these are clearly understood to be acquired, related to placental persistence and the connections between artery and veins in the uterus, which occurs, a part of normal pregnancy. These are best treated either with arterial embolization, which has been less successful,

but in some cases, with venous injection in venous thrombosis with coils or alcohol. There's a subset I believe of some of our pelvic AVMs, that have histories of DVT. I believe they're silent. I think the consistency of this lesion

that I'm showing you here, that if we all know, can be treated by coil embolization indicates to me that at least some, especially in patients in advanced stage are related to DVT. This is a 56-year-old, who had a known history of prostate cancer

and post-operative DVT and a very classic looking AVM, which we then treated with coil embolization. And we're able to cure, but no question in my mind at least based on the history and on the age, that this was post-phlebitic.

And I think some of these, and I think Wayne would agree with me, some of these are probably silent internal iliac venous thromboses, which we know can occur, which we know can produce pulmonary embolism.

And that's the curative final arteriogram. Other lesions such as this, I believe are related, at least some, although we don't have an antecedent history to the development of DVT, and again of course,

treated by the venous approach with cure. And then finally, some of the more problematic ones, another 56-year-old man with a history of prior iliofemoral DVT. Suddenly was fine, had been treated with heparin and anticoagulation.

And suddenly appeared with rapid onset of right lower extremity swelling and pain. So you see here that on an arteriogram of the right femoral, as well as, the super selective catheterization of some of these collaterals.

We can see the lesion itself. I think it's a nice demonstration of lesion. Under any other circumstance, this is an AVM. It is an AVM, but we know it to be acquired because he had no such swelling. This was treated in the only way I knew how to treat

with stenting of the vein. We placed a stent. That's a ballon expanded in the angiogram on your right is after with ballon inflation. And you can see the effect that the stenting pressure, and therefore subsequently occlusion of the compression,

and occlusion of the collaterals, and connections in the vein wall. He subsequently became asymptomatic. We had unfortunately had to stent extensively in the common femoral vein but he had an excellent result.

So I think pelvic AVMs are very similar in location and appearance. We've had 13 cases. Some with a positive history of DVT. I believe many are acquired post-DVT, and the treatment is the same venous coiling and or stent.

Wayne has seen some that are remarkable. Remember Wayne we saw at your place? A guy was in massive heart failure and clearly a DVT-related. So these are some of the cases we've seen

and I think it's noteworthy to keep in mind, that we still don't know everything there is to know about AVMs. Some AVMs are acquired, for example, pelvic post-DVT, and of course all uterine AVMs. Thanks very much.

(audience applause) - [Narrator] That's a very interesting hypothesis with a pelvic AVMs which are consistently looking similar. - [Robert] In the same place right? - [Narrator] All of them are appearing at an older age. - [Robert] Yep.

Yep. - This would be a very, very good explanation for that. I've never thought about that. - Yeah I think-- - I think this is very interesting. - [Robert] And remember, exactly.

And I remember that internal iliac DVT is always a silent process, and that you have this consistency, that I find very striking. - [Woman] So what do you think the mechanism is? The hypervascularity looked like it was primarily

arterial fluffy vessels. - [Robert] No, no, no it's in the vein wall. If you look closely, the arteriovenous connections and the hypervascularity, it's in the vein wall. The lesion is the vein wall,

it's the inflammatory vein. You remember Tony, that the thing that I always think of is how we used to do plain old ballon angioplasty in the SFA. And afterwards we'd get this

florid venous filling sometimes, not every case. And that's the very tight anatomic connection between those two. That's what I think is happening. Wayne? - [Wayne] This amount is almost always been here.

We just haven't recognized it. What has been recognized is dural fistula-- - Yep. - That we know and that's been documented. Chuck Kerber, wrote the first paper in '73 about the microvascular circulation

in the dural surface of the dural fistula, and it's related to venous thrombosis and mastoiditis and trauma. And then as the healing process occurs, you have neovascular stimulation and fistulization in that dural reflection,

which is a vein wall. And the same process happens here with a DVT with the healing, the recanalization, inflammation, neovascular stimulation, and the development of fistulas. increased vascular flow into the lumen

of the thrombosed area. So it's a neovascular stimulation phenomenon, that results in the vein wall developing fistula very identical to what happens in the head with dural fistula had nothing described of in the periphery.

- [Narrator] Okay, very interesting hypothesis.

- Thank you and thanks again Frank for the kind invitation to be here another year. So there's several anatomic considerations for complex aortic repair. I wanted to choose between fenestrations or branches,

both with regards to that phenotype and the mating stent and we'll go into those. There are limitations to total endovascular approaches such as visceral anatomy, severe angulations,

and renal issues, as well as shaggy aortas where endo solutions are less favorable. This paper out of the Mayo Clinic showing that about 20% of the cases of thoracodynia aneurysms

non-suitable due to renal issues alone, and if we look at the subset that are then suitable, the anatomy of the renal arteries in this case obviously differs so they might be more or less suitable for branches

versus fenestration and the aneurysm extent proximally impacts that renal angle. So when do we use branches and when do we use fenestrations? Well, overall, it seems to be, to most people,

that branches are easier to use. They're easier to orient. There's more room for error. There's much more branch overlap securing those mating stents. But a branch device does require

more aortic coverage than a fenestrated equivalent. So if we extrapolate that to juxtarenal or pararenal repair a branched device will allow for much more proximal coverage

than in a fenestrated device which has, in this series from Dr. Chuter's group, shows that there is significant incidence of lower extremity weakness if you use an all-branch approach. And this was, of course, not biased

due to Crawford extent because the graft always looks the same. So does a target vessel anatomy and branch phenotype matter in of itself? Well of course, as we've discussed, the different anatomic situations

impact which type of branch or fenestration you use. Again going back to Tim Chuter's paper, and Tim who only used branches for all of the anatomical situations, there was a significant incidence of renal branch occlusion

during follow up in these cases. And this has been reproduced. This is from the Munster group showing that tortuosity is a significant factor, a predictive factor, for renal branch occlusion

after branched endovascular repair, and then repeated from Mario Stella's group showing that upward-facing renal arteries have immediate technical problems when using branches, and if you have the combination of downward and then upward facing

the long term outcome is impaired if you use a branched approach. And we know for the renals that using a fenestrated phenotype seems to improve the outcomes, and this has been shown in multiple trials

where fenestrations for renals do better than branches. So then moving away from the phenotype to the mating stent. Does the type of mating stent matter? In branch repairs we looked at this

from these five major European centers in about 500 patients to see if the type of mating stent used for branch phenotype grafts mattered. It was very difficult to evaluate and you can see in this rather busy graph

that there was a combination used of self-expanding and balloon expandable covered stents in these situations. And in fact almost 2/3 of the patients had combinations in their grafts, so combining balloon expandable covered stents

with self expanding stents, and vice versa, making these analyses very very difficult. But what we could replicate, of course, was the earlier findings that the event rates with using branches for celiac and SMA were very low,

whereas they were significant for left renal arteries and if you saw the last session then in similar situations after open repair, although this includes not only occlusions but re-interventions of course.

And we know when we use fenestrations that where we have wall contact that using covered stents is generally better than using bare stents which we started out with but the type of covered stent

also seems to matter and this might be due to the stiffness of the stent or how far it protrudes into the target vessel. There is a multitude of new bridging stents available for BEVAR and FEVAR: Covera, Viabahn, VBX, and Bentley plus,

and they all seem to have better flexibility, better profile, and better radial force so they're easier to use, but there's no long-term data evaluating these devices. The technical success rate is already quite high for all of these.

So this is a summary. We've talked using branches versus fenestration and often a combination to design the device to the specific patient anatomy is the best. So in summary,

always use covered stents even when you do fenestrated grafts. At present, mix and match seems to be beneficial both with regards to the phenotype and the mating stent. Short term results seem to be good.

Technical results good and reproducible but long term results are lacking and there is very limited comparative data. Thank you. (audience applauding)

- [Bill] Thank you Vikay. I think this is an interesting topic for many reasons but one of the key ones is that if you look at our health care policies by insurers, this tends to define our practice. So I looked at BlueCross BlueShield's policy and they say that treatment of the GSV or SSV

is medically necessary when there is demonstrated saphenous reflux and I looked for more and there was no more. That's all they said so they must think that reflux a time correlates with venous severity. So is this true?

I think, personally, that there are other things that are involved and that volume is really the key. Time, velocity and the diameter of the vein are likely all part of the process and we all know that obstruction

is also critically important as well and probably the worse patients are those that have both reflux and obstruction. Probably reflux is worse in the deep system but we know that large GSV and SSV patients can develop CEAP four to six symptoms

and do very well with saphenous ablations. And I think this is a nice analogy. I love this guy, it looks like he came off of his lawn chair to help the firefighters out but he's probably not going to do so much with his little garden hose now, is he?

So I think size and velocity do matter. What does the literature tell us? Chris Lattimer and his group have done an elegant set of studies looking at how various parameters correlate to air plethysmography and venous filling times. They did show that there is a correlation

between venous filling time and reflux time. However, other things were probably more correlated such as GSV diameter and reflux velocity. And in this nice study of 300 patients they found that there was a relatively weak correlation between reflux time and clinical severity

and their conclusion was that it was a good parameter to identify reflux but not for quantifying the severity. So here's how we use this clinically in my practice. So you see many patients such as this that have mixed venous disease.

53-year-old female, severe edema. You do her studies and she's got reflux in the deep and the superficial system. So how to we decide if saphenous ablation is going to help this patient or not and correct these symptoms, prevent further ulcerations?

So all reflux is not created equal. The top is a popliteal tracing where the maximum reflux velocity is about five centimeters per second versus the bottom one that's about thirty to forty centimeters per second

so these probably aren't going to behave similarly in when we look at them. So we studied this in 75 patients and reported this back in 2008. We look at the maximum reflux velocity in the popliteal vein to tell if these patients

would improve after we ablated their saphenous or not. We found that this was a significant predictor of both improvement in venous filling index and the venous clinical severity score so we think velocity really does matter. And this is where we're seeing this clinically.

This is a patient that was referred to me for a second opinion concerning whether she would need ablation of her great saphenous vein. And this is the reflux tracing and you can see the scale here is turned up so that this is a measurement of reflux at about two centimeters per second.

This was used to document abnormal reflux and to justify ablation of the saphenous. So I checked one of our tracings. This is what it looks like.

- Thank you very much for inviting me here again and I'll be talking about thermal ablation RCTs. My coauthor, Michel Perrin from Lyon, in France, the gourmet capital in the world has collected RCTs on operative treatment of CVD since 1990. Today he has 186 collected RCTs

of the which 84 involve thermal ablation. You can find all this data for free in Phlebolymphology.org. Do we need further RCTs? Well systematic reviews and meta-analyses increasingly important in evidence-based medicine. And this development is well-described

by Gurevitch in Nature this year and criticized by Ioannidis two years earlier. Common sense is a good principle when you try to understand meta-analyses. Do most studies point in the same direction?

Is the effect significant? Are the patient-related outcome measures relevant and what happens if you exclude one study? Since 2008, 10 years back, these are the available meta-analyses and the last came from Ireland earlier this year.

It was published in the JVS, endovenous and in fact this is in March. And they found nine RCTs comparing conventional surgery and endovenous therapy with five years or more follow-up that were selected. Primary outcome was recurrence rate.

There is some sole recurrence rate was that there is no significant difference in laser versus surgery, same for radioactive frequency versus surgery and radioactive frequency versus laser. They found an inferiority

of ultrasound guided foam sclerotherapy versus laser and surgery. Their conclusions were that the quality of evidence is poor therefore more trials that are well-powered to examine long-term outcomes are warranted. The new kids on the block,

steam, MOCA, and Venaseal, are not included in the meta-analyses due to lack of more than five years follow-up in their paper. Obsolete RCTs. Endovenous laser in the presented long-term RCTs

were performed by 810-980 nanometer wavelength using a bare fiber. There is a paucity of RCTs comparing open surgery with novel endovenous laser and new RF techniques. Recent criticism against endovenous ablation, is the pendulum swinging towards high ligation

and stripping again? Olle Nelzen from Sweden in an editorial in British Journal of Surgery reconsidering the endovenous revolution, wrote that neovascularization is a dominant finding following high ligation and stripping

but proximal venous stumps and incompetent anterior accessory saphenous veins are the main factor after endovenous ablation. So long-term follow-up suggests that the recurrence rate after endovenous ablation seem to increase over time. A substantial number of patients who have undergone

endovenous ablation will eventually develop symptomatic recurrence requiring repeat therapy. And such scenario would change the equation regarding patient benefit and costs making endovenous ablation less competitive and challenging current guidelines.

So summary of needs for further RCTs. Quality of present RCTs poor in several meta-analyses, no thermal endovenous technique is superior to open surgery, RCTs rapidly obsolete due to change in technology, and more trials that are well-powered to examine long-term outcomes are warranted.

So final point, apparently we need more RCTs to satisfy the quality requirements for clinically important systematic reviews and meta-analyses. And what about the clinical guidelines? Thank you very much.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- I want to thank Dr. Veith for the invitation to present this. There are no disclosures. So looking at cost effectiveness, especially the comparison of two interventions based on cost and the health gains, which is usually reported

through disability adjusted life years or even qualities. It's not to be really confused with cost benefit analysis where both paramaters are used, looked at based on cost. However, this does have different implications from different stakeholders.

And we look, at this point, between the medical center or the medical institution and as well as the payers. Most medical centers tend to look at how much this is costing them

and what is being reimbursed. What's the subsequent care interventions and are there any additional payments for some of these new, novel technologies. What does the payers really want to know, what are they getting for the money,

their expenditures and from here, we'll be looking mainly at Medicare. So, background, we've all seen this, but basically, you know, balloon angioplasty and stents have been out for a while and the outcomes aren't bad but they're not great.

They do have continued high reintervention rates and patency problems. Therefore, drug technology has sort of emerged as a possible alternative with better patency rates. And when we look at this, just some, some backgrounds, when you look at any sort of angioplasty,

from the physician's side, we bill under a certain CPT code and it falls under a family of codes for reimbursement in the medical center called an APC. Within those, you can further break it down to the cost of the product.

In this situation, total products cost around 1400 dollars and the balloons are estimated to be 406 dollars in cost. However, in drug-coated balloons, there was an additional payment, which average, because they're such more expensive devices than the allotments and this had an additional payment.

However, this expired in January of this year. When you look at Medicare reimbursement guidelines, you'll see that on an outpatient hospital setting, there's a reimbursement for the medical center as well as for the physican which is, oops sorry, down eight percent from last year.

And they also publish a geometric mean cost, which is quite higher than we expected. And then the office based practice is also the reimbursement pattern and this is slated to go down also by a few percentage points.

When you look at, I'm sorry, when you look at stents, however, it's a different family of CPT codes and APC family also. Here you'll see the supply cost is much higher in the, I'm sorry, the stent in this category is actually 3600 dollars.

The average cost for drug-eluting stents, around 1500 dollars and the only pass through that existed was on the inpatient side of it. Again, looking at Medicare guidelines, the reimbursement will be going down 8 percent

for the outpatient setting and the geometric mean cost is 11,700. So, what we want to look at really is what is the financial impact looking at primary patency, target lesion revascularization based on meta analysis. And the reinterventions are where the real cost

is going to come into effect. We also want to look at, when it doesn't work and we do bailout stenting, what is the cost going to happen there, which is not often looked at in most of these studies. So looking at a hypothetical situation,

you've got 100 patients, any office based practice, the payee will pay about 5145. There's a pass through payment which averages 1700 dollars per stent. Now, if you look at bailout stenting, 18.5 percent at one year,

this is the additional cost that would be associated with that from a payer standpoint. Targeted risk for revascularization was 12 percent of additional costs. So the total one year cost, we estimated, was almost a million dollars

and the cost per primary patency limb at one year was 13 four. In a similar fashion, for drug-eluting stents, you'll see that there's no pass through payment, but although there is a much higher payer expenditure. The reintervention rate was about 8.4 percent

at one year for the additional cost. And you'll see here, at the one year mark, the cost per patent limb is about 12,600 dollars. So how 'about the medical center, looking at Medicare claims data, you'll see the average cost for them is 745,000,

the medical center. Additional costs listed at another 1500. Bailout renting, as previously, with relate to a total cost at one year of 1.2 million or at 16,900 dollars per limb. Looking at the drug-eluting stents,

we didn't add any additional costs because the drug-eluting stents are cheaper than the current system that is in there but the reinterventions still exist for a cost per patent limb at one year of 14 six. So in essence, a few other studies have looked

at some model, both a European model and in the U.S. where the number of reinterventions at two to five years will actually offset the additional cost of drug-eluting stents and make it a financially advantageous process.

And in conclusion, drug-eluting stents do have a better primary patency and a decreased TLR than drug-coated balloons or even other, but they are more expensive than conventional treatment such as balloon angioplasty and bare-metal stents.

There is a decreased reintervention rate and the bailout stenting, which is not normally accounted for in a financial standpoint does have a dramatic impact and the loss of the pass through makes me make some of the drug-coated balloons

a little more prohibitive in process. Thank you.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you very much. After these beautiful two presentations a 4D ultrasound, it might look very old-fashioned to you. These are my disclosures. Last year, I presented on 4D ultrasound and the way how it can assess wall stress. Now, we know that from a biomechanical point,

it's clear that an aneurysm will rupture when the mechanical stress exceeds the local strength. So, it's important to know something about the state of the aortic wall, the mechanical properties and the stress that's all combined in the wall.

And that could be a better predictor for growth and potential rupture of the aneurysm. It has been performed peak wall stress analysis, using finite element analysis based on CT scan. Now, there has been a test looking at CT scans with and without rupture and given indication

what wall stress could predict in growth and rupture. Unfortunately, there has been no longitudinal studies to validate this system because of the limitations in radiation and nephrotoxic contrast. So, we thought that we could overcome these problems and building the possibilities for longitudinal studies

to do this similar assessment using ultrasound. As you can see here in this diagram in CT scan, mechanical properties and the wall thickness is fixed data based on the literature. Whereas with 3D ultrasound, you can get these mechanical properties from patient-specific imaging

that could give a more patient-specific mechanical AA model. We're still performing a longitudinal study. We started almost four years ago. We're following 320 patients, and every time when they come in surveillance, we perform a 3D ultrasound. I presented last year that we are able to,

with 3D ultrasound, we get adequate anatomy and the geometry is comparable to CT scan, and we get adequate wall stressors and mechanical parameters if we compare it with CT scan. Now, there are still some limitations in 3D ultrasound and that's the limited field of view and the cumbersome procedure and time-consuming procedures

to perform all the segmentation. So last year, we worked on increased field of view and automatic segmentation. As you can see, this is a single image where the aneurysm fits perfectly well in the field of view. But, when the aneurysm is larger, it will not fit

in a single view and you need multi-perspective imaging with multiple images that should be fused and so create one image in all. First, we perform the segmentation of the proximal and distal segment, and that's a segmentation algorithm that is

based on a well-established active deformable contour that was published in 1988 by Kass. Now, this is actually what we're doing. We're taking the proximal segment of the aneurysm. We're taking the distal segment. We perform the segmentation based on the algorithms,

and when we have the two images, we do a registration, sort of a merging of these imaging, first based on the central line. And then afterwards, there is an optimalisation of these images so that they finally perfectly fit on each other.

Once we've done that, we merge these data and we get the merged ultrasound data of a much larger field of view. And after that, we perform the final segmentation, as you can see here. By doing that, we have an increased field of view and we have an automatic segmentation system

that makes the procedure's analysis much and much less time-consuming. We validate it with CT scan and you can see that on the geometry, we have on the single assessment and the multi assessments, we have good similarity images. We also performed a verification on wall stress

and you can see that with these merged images, compared to CT scan, we get very good wall stress assessment compared to CT scan. Now, this is our view to the future. We believe that in a couple of years, we have all the algorithms aligned so that we can perform

a 3D ultrasound of the aorta, and we can see that based on the mechanical parameters that aneurysm is safe, or is maybe at risk, or as you see, when it's red, there is indication for surgery. This is where we want to go.

I give you a short sneak preview that we performed. We started the analysis of a longitudinal study and we're looking at if we could predict growth and rupture. As you can see on the left side, you see that we're looking at the wall stresses. There is no increase in wall stress in the patient

before the aneurysm ruptures. On the other side, there is a clear change in the stiffness of the aneurysm before it ruptures. So, it might be that wall stress is not a predictor for growth and rupture, but that mechanical parameters, like aneurysm stiffness, is a much better predictor.

But we hope to present on that more solid data next year. Thank you very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Thank you very much. It's an hono ou to the committee for the invitation. So, I'll be discussing activity recommendations for our patients after cervical artery dissection. I have no relevant disclosures.

And extracranial cervical artery dissection is an imaging diagnosis as we know with a variety of presentations. You can see on the far left the intimal flap and double lumen in the left vertebral artery

on both coronal and axial imaging, a pseudoaneurysm of the internal carotid artery, aneurysmal degeneration in an older dissection, and an area of long, smooth narrowing followed by normal artery, and finally a flame-tipped occlusion.

Now, this affects our younger patients with really opposity of atherosclerotic risk factors. So, cervical artery dissection accounts for up to 25% of stroke in patients under the age of 45. And, other than hypertension, it's not associated with any cardiovascular risk factors.

There is a male predominance, although women with dissections seem to present about five years younger. And there is an indication that there may be a systemic ateriopathy contributing to this in our patients, and I'll show you some brief data regarding that.

So, in studies that have looked at vessel redundancy, including loops, coils, and in the video image, an S curve on carotid duplex. Patients with cervical artery dissection have a much higher proportion of these findings, up to three to four times more than

age and sex matched controls. They also have findings on histology of the temporal artery when biopsied. So one study did this and these patients had abnormal capillary formation as well as extravasation of blood cells between the median adventitia

of the superficial temporal artery. And there is an association with FMD and a shared genetic polymorphism indicating that there may be shared pathophysiology for these conditions. But in addition, a lot of patients report minor trauma around the time or event of cervical artery dissection.

So this data from CADISP, and up to 40% of cases had minor trauma related to their dissection, including chiropractic neck manipulation, extreme head movements, or stretching, weight lifting, and sports-related injuries. Thankfully, the majority of patients do very well after

they have a dissection event, but a big area of concern for the patient and their provider is their risk for recurrence. That's highest around the original event, about 2% within the first month, and thereafter, it's stable at 1% per year,

although recurrent pain can linger for many years. So what can we tell our patients in terms of reducing their risk for a recurrent event? Well, most of the methods are around reducing any sort of impulse, stress, or pressure on the arteries, both intrinsically and extrinsically,

including blood pressure control. I advise my patients to avoid heavy lifting, and by that I mean more than 30 pounds, and intense valsalva or isometric exercise. So shown here is a photo of the original World's Strongest Man lifting four

adult-sized males in addition to weights, but there's been studies in the physiology literature with healthy, younger males in their 20s, and they're asked to do a double-leg press, or even arm-curls, and with this exercise and repetitions, they can get mean systolic pressures,

or mean pressures up into the 300s, as well as heart rate into the 170s. I also tell my patients to avoid any chiropractic neck manipulation or deep tissue massage of the neck, as well as high G-force activities like a roller coaster.

There are some case reports of cervical artery dissection related to this. And then finally, what can they do about cardio? A lot of these patients are very anxious, they're concerned about re-incorporating exercise after they've been through something like this,

so I try to give them some kind of guidelines and parameters that they can follow when they re institute exercise, not unlike cardiac rehabilitation. So initially, I tell them "You can do light walking, but if you don't feel well,

or something's hurting, neck pain, headache, don't push it." Thereafter, they can intensify to a heart rate maximum of 70-75% of their maximum predicted heart rate, and that's somewhere between months zero and three, and then afterwards when they're feeling near normal,

I give them an absolute limit of 90% of their maximum predicted heart rate. And I advise all of my patients to avoid extreme exercise like Orange Theory, maybe even extreme cycling classes, marathons, et cetera. Thank you.

- [Narrator] So my assignment is, CMS policy update on non-thermal ablation techniques, and as most of you know, there is not one National CMS policy, so there are a variety of local cover determinations or policies that we're going to look at. I may bore you for a couple minutes

but I found a surprise at the end. So I went to the website, CMS website, and looked up varicose vein LCDs and these seven came up, interestingly Novitas, everybody's favorite, didn't come. So I looked at separately, we're going to look at all these as well.

And here is Novitas, Novitas and their previous LCD had no mention of non-thermal techniques, but in this proposed LCD, which has a lot of people up in arms, they say that the non-thermal techniques are experimental, investigational, and unproven,

and therefore will not be covered. This is next LCDs, this is two from Medicare contractor Noridian, they go on to talk about sclerotherapy and foam sclerotherapy, but they are not going to cover it. And somewhat bizarrely these codes in red here,

which are for Venaseal and Verithena, are listed as indications for RF or laser ablation, which kind of shows you they don't know what they're talking about. And there is no mention of MOCA or Claravein. Wisconsin Physicians Services and other MAC contractor,

and I looked at their LCD, there is no mention of non-thermal techniques. Next up is First Coast Service Options, with these jurisdictions over here on the right. And they get down to the C-classification, VCSS score, and talk about compressive therapy and conservative therapy.

They do mention Clarivein or MOCA. However, they state that it does not meet the Medicare necessity for coverage, and so they won't. And there's absolutely no mention of Verithena or Venaseal in their LCD. Palmetto GBA is another contractor,

with these jurisdictions on the right, and they actually discuss and approve Varithena, microfoam sclerotherapy. They discuss it here in their LCD, they have some restrictions that the physician needs to be competent and experienced with Varithena,

and ultrasound, there is no mention of Clarivein or Venaseal in their LCD. And these are also the folks that tell us how to do stab phlebectomy with 2 mm incisions and a crochet hook. So don't use a 3 mm incision and a hemostat,

it'd probably get denied. Next is CGS Administrators, and this busy slide, they go on to talk about sclerotherapy quite a bit, and all these in the main body, what they are not going to cover for sclerotherapy. They mention that foam sclerotherapy

is basically the same as liquid sclerotherapy, and therefore will not cover it, and again no mention of other treatments of non-thermal techniques. Which brings us to the last LCD, which is National Government Services,

and amazingly they state that the accepted treatments for eliminating reflux and the great saphenous anterior accessory, and small saphenous vein, include RFA, laser, polidocanol, Venaseal, and Verithena. And even more interestingly, they use their Rationale for Determination for MOCA.

The amount and consistency of the data, in addition to the two recent systematic reviews and the strong recommendation of the American Venous Forum, have convinced NGS that Medicare coverage is met. And for PEM, Varithena, the combination of RCTs, meta-analyses, systematic reviews,

the strong recommendation of the AVF, and endorsements from the SVS, ACP, SCAI, and SIR, have convinced them that coverage is appropriate. And the same for Venaseal, same thing. This is craziness. On one Medicare hand,

you have Novitas saying that, treatment is experimental and unproven, and they won't cover it. And on the other Medicare hand, you have this contractor that says, based on the recommendations of the experts,

that it's appropriate, and will be covered. And this is the reason why we need a National Coverage Determination. So, to find out what your policy is, you have to go to the website, you have to find out who your provider is,

or contractor, and see what the policy cause it differs depending upon where you are. Thank you for your attention.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you so much. We have no disclosures. So I think everybody would agree that the transposed basilic vein fistula is one of the most important fistulas that we currently operate with. There are many technical considerations

related to the fistula. One is whether to do one or two stage. Your local criteria may define how you do this, but, and some may do it arbitrarily. But some people would suggest that anything less than 4 mm would be a two stage,

and any one greater than 4 mm may be a one stage. The option of harvesting can be open or endovascular. The option of gaining a suitable access site can be transposition or superficialization. And the final arterial anastomosis, if you're not superficializing can either be

a new arterial anastomosis or a venovenous anastomosis. For the purposes of this talk, transposition is the dissection, transection and re tunneling of the basilic vein to the superior aspect of the arm, either as a primary or staged procedure. Superficialization is the dissection and elevation

of the basilic vein to the superior aspect of the upper arm, which may be done primarily, but most commonly is done as a staged procedure. The natural history of basilic veins with regard to nontransposed veins is very successful. And this more recent article would suggest

as you can see from the upper bands in both grafts that either transposed or non-transposed is superior to grafts in current environment. When one looks at two-stage basilic veins, they appear to be more durable and cost-effective than one-stage procedures with significantly higher

patency rates and lower rates of failure along comparable risk stratified groups from an article from the Journal of Vascular Surgery. Meta-ana, there are several meta-analysis and this one shows that between one and two stages there is really no difference in the failure and the patency rates.

The second one would suggest there is no overall difference in maturation rate, or in postoperative complication rates. With the patency rates primary assisted or secondary comparable in the majority of the papers published. And the very last one, again based on the data from the first two, also suggests there is evidence

that two stage basilic vein fistulas have higher maturation rates compared to the single stage. But I think that's probably true if one really realizes that the first stage may eliminate a lot of the poor biology that may have interfered with the one stage. But what we're really talking about is superficialization

versus transposition, which is the most favorite method. Or is there a favorite method? The early data has always suggested that transposition was superior, both in primary and in secondary patency, compared to superficialization. However, the data is contrary, as one can see,

in this paper, which showed the reverse, which is that superficialization is much superior to transposition, and in the primary patency range quite significantly. This paper reverses that theme again. So for each year that you go to the Journal of Vascular Surgery,

one gets a different data set that comes out. The final paper that was published recently at the Eastern Vascular suggested strongly that the second stage does consume more resources, when one does transposition versus superficialization. But more interestingly also found that these patients

who had the transposition had a greater high-grade re-stenosis problem at the venovenous or the veno-arterial anastomosis. Another point that they did make was that superficialization appeared to lead to faster maturation, compared to the transposition and thus they favored

superficialization over transposition. If one was to do a very rough meta-analysis and take the range of primary patencies and accumulative patencies from those papers that compare the two techniques that I've just described. Superficialization at about 12 months

for its primary patency will run about 57% range, 50-60 and transposition 53%, with a range of 49-80. So in the range of transposition area, there is a lot of people that may not be a well matched population, which may make meta-analysis in this area somewhat questionable.

But, if you get good results, you get good results. The cumulative patency, however, comes out to be closer in both groups at 78% for superficialization and 80% for transposition. So basilic vein transposition is a successful configuration. One or two stage procedures appear

to carry equally successful outcomes when appropriate selection criteria are used and the one the surgeon is most favored to use and is comfortable with. Primary patency of superficialization despite some papers, if one looks across the entire literature is equivalent to transposition.

Cumulative patency of superficialization is equivalent to transposition. And there is, appears to be no apparent difference in complications, maturation, or access duration. Thank you so much.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.