Create an account and get 3 free clips per day.
Chapters
Longer-Term Results Of The IMPROVE RCT (EVAR vs. Open Repair [OR]) Finally Shows EVAR Is Better Than OR For Ruptured RAAAs: In Terms Of Late Survival, Cost And Fewer Amputations
Longer-Term Results Of The IMPROVE RCT (EVAR vs. Open Repair [OR]) Finally Shows EVAR Is Better Than OR For Ruptured RAAAs: In Terms Of Late Survival, Cost And Fewer Amputations
amputationaneurysmcrossoversendovascularevarmidtermpatientspercentrandomizedrepairrupturedstrategysurvivaltrialunselectedVeithversus
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
Update On Experience With The Valiant MONA LSA Single Branched TEVAR Device (From Medtronic) To Treat Lesions Involving The Aortic Arch
12mm BSG34 & 26 mm Distal Extentions to Celiac Artery34mm MSGaccessaneurysmangiogramaorticarteryballoonceliaccenterscomorbiditiesDescending Thoracic Aneurysm 55mmdevicedevicesdiametersendovascularenrollenrollmentfeasibilitygrafthelicalinvestigationalischemialeftmainMedtronicnitinolpatientpatientspivotalproximalrevascularizationstentstent graft systemsubclavianTEVARtherapeuticthoracicthrombusValiant Mona LSAwire
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
avmsbleomycincomplicationcomplicationseffectiveeffectivenessethanolfacialfailuremarkedlypatientpatientsratesclerosantssclerotherapyskinstatisticalstatisticallytherapeutictransientvascularversus
Chimney TEVAR (Ch/TEVAR) To Treat Aortic Arch Lesions: Long-Term Good Outcomes And How To Achieve Them
Chimney TEVAR (Ch/TEVAR) To Treat Aortic Arch Lesions: Long-Term Good Outcomes And How To Achieve Them
adenosineanatomiesaneurysmalaorticarchArch ChimneyascendingatrialballooncarotidcentimeterchimneychroniccommondissectionsendograftsendoprosthesesendovascularlyexclusionexpandablefenestratedgraftsleftLSA revascularizationmalperfusionmetachronousoutcomespatientsplacementproximalrepairsrequiringrevascularizationriskseriesstentsubclaviansubsequentTEVARunintendedunplannedvariedventricularzone
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
amputationarteriovenousarterycriticaldiseaseembolizedendoscopicFistulahandhemodialysisischemiaischemicmultiplemyelomaoccludedocclusionpalmarPathophysiologypatientpatientsprosthesesproximalradialradiocephalicshortestthoracictotallytransplantulnarvascular
How Best To Size (Diameter) Endografts For TEVAR: For Treatment Of Aneurysms, TBADs And Traumatic Aortic Injuries
How Best To Size (Diameter) Endografts For TEVAR: For Treatment Of Aneurysms, TBADs And Traumatic Aortic Injuries
accurateanatomyaneurysmaortaarchAssociatesavoidballoonconformable thoracic endoprosthesisdevicesdiameterdissectiongoreimagingincreasedivusnitinoloversizeoversizingpatientpatientsrecognizeretrogradesizingstentTAG conformabletaperingTEVARtrauma
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
anatomiesaneurysmaneurysmsaortobifemoralaortoiliacarterybrachialbranchcatheterizedCHcustomizablecustomizedistallyendovascularevarexcellentFfenestratedFenestrated GraftfenestrationflarefollowupGORE MedicalGore Viabahn VBXgraftgraftshypogastriciliaciliacsmodelingoccludedocclusiveparallelpatencyperfusionproximalpseudoaneurysmPseudoaneurysm of the proximal juxtarenal graft anastomosisptferenalsSelective Catheterization of the Right CIA to Hypogastric Arterystenosisstentstent graft systemstentstherapeuticVBX Stent Graftvesselvesselsvisceral
CMS Policy Update On Nonthermal Ablation
CMS Policy Update On Nonthermal Ablation
ablationanteriorClariVeincompressivecontractorcovercoveragedeterminationsfoamincisionincisionsmedicarementionmicrofoamNonthermal ablationOcclusion catheter systemphlebectomyrefluxsaphenoussclerotherapysystematictherapeutictreatmentsVascular Insights IncvcssVenaSeal (Medtronic - closure system) / Varithena (BTG Interventional Medicine - polidocanol injectable foam) / PhotoDerm VascuLight (ESC - laser device) / Veinlase (Fisma - laser device)venous
Yakes Type IV Infiltrative AVMs Curative Treatment Strategies: A New Entity
Yakes Type IV Infiltrative AVMs Curative Treatment Strategies: A New Entity
arterialarteriolesarteriovenousavmscapillariescapillarycontrastdirectethanolfistulasflowhemodynamicsinfiltratinglesionlowermixturemultiplenormaloccludeoutflowPathophysiologyphysiologicpuncturerefluxtissuetransarterialtreattypeveinveinsvesselsyakes
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
Yakes Type I, IIb, IIIa And IIIb: The Curative Retrograde Vein Approach
alcoholaneurysmalarterialarteryavmsclassificationcoilcoilscombinationcureddirectethanolfillinglesionlesionsmultipleneedlenidusoutflowpredominantpunctureretrogradesingletransvenousveinvenousyakes
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
assessmentbilateralbiomarkersCASCGuardcomparingcontracontralateraldetectabledetecteddifferenceemboliembolicEmbolic Prevention StentembolismenrolledhoursInspireMD)ipsilateralischemiclesionmaximalmicroneuroneurologicaloperativelypatientpatientsperformedperioperativeplaquepostpostoperativepredilationpreoperativeproteinrandomizedratescoresilentstenosisstentstentssubclinicaltesttherapeuticwallstentWALLSTENT (Boston Scientific) - Endoprosthesis / FilterWire (Boston Scientific) - Embolic Protection System
Exercise TcPO2 Can Distinguish Buttock IC From The Symptoms Of Spinal Stenosis: How Should Buttock IC Be Treated
Exercise TcPO2 Can Distinguish Buttock IC From The Symptoms Of Spinal Stenosis: How Should Buttock IC Be Treated
arteryaxialbaselinebilateralbuttockcalfclaudicationendarterectomyendovascularetiologiesevaluateextremityglutealiliaciliac arteryimaginginflowinternalinternal iliacintersticesmajoritymoderateneurogenicnormalizedpatencypatientspelvicpoplitealprobesrevascularizations/p L CIA stenting / Unsuccessful R popliteal interventionsaturationstenosisstentstudysymptomsTc PO2treatment
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
The Vanguard IEP Balloon PTA System With An Integrated Embolic Protection Filter: How It Works And When It Should Be Used
acuteangioplastyanteriorballoonBalloon angioplasty systembifurcationcapturecapturedchronicContego MedicaldebrisdevicedistalembolicembolizationlesionlesionslimboccludedocclusionplanarpoplitealreocclusionriskrotationalrunoffstentstentstherapeutictibialtotalulcerationVanguard IEPvessel
"Acquired" AVMs: More Common Than We Think
acquiredarterialarteriogramarteriovenousavmscoilcollateralsconnectionsDeep vein trombosisduralDVTentityepisodeevarextensiveextremityfemoralFistulahistoryiliacinflammatorylesionlesionsocclusionpelvicpriorstentingstimulationswellingthrombosistreatedtreatmentuterineveinvenouswayne
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Tips And Tricks For Thrombo-Embolectomy For Clot Removal From All Arteries Using The Indigo System: How To Measure Success
Aspiration SystemAspiration ThrombectomyCovered stentInjured infa-renal aorta with embolegenic thrombusPenumbraPenumbra’s Indigotherapeutic
New Techniques In Endovascular Aspiration Thrombectomy: The World Has Changed For Treatment And Rescue Clot Extraction With Penumbra Indigo Suction Devices In Various Vascular Beds
New Techniques In Endovascular Aspiration Thrombectomy: The World Has Changed For Treatment And Rescue Clot Extraction With Penumbra Indigo Suction Devices In Various Vascular Beds
Acute Bowel IschemiaAspiration SystemAspiration ThrombectomyOscor Directional Sheath (Oscor) / AngioJet (Boston Scientific) - Thrombectomy SystemPenumbraPenumbra’s IndigoTherapeutic / Diagnostic
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
DEBATE: All ALI Patients Should Be Treated With An Endo First Policy And Over 90% Can Be Treated Entirely Endovascularly
DEBATE: All ALI Patients Should Be Treated With An Endo First Policy And Over 90% Can Be Treated Entirely Endovascularly
ABI 2acuteAcute Limb Ischemia - No DP or PT left legamputationarterialavoidingbypasscatheterchroniccompletedconvertculpritdevicesendovascularFem-peroneal bypass graftfemoralinflowlesionlimbmorbiditymultiplenativeoccludedoutflowpatencypatientspercutaneousperinealremoveremovingrunoffsurgerythrombustreattreatedunderlyingwire
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
Current Management Of Bleeding Hemodialysis Fistulas: Can The Fistula Be Salvaged
accessaneurysmalapproachArtegraftavoidbleedingbovineBovine Carotid Artery Graft (BCA)carotidcentersDialysisemergencyexperiencefatalFistulafistulasflapgraftgraftshemodialysishemorrhageinfectioninterpositionlesionLimberg skin flapnecrosispatencypatientpatientsptfeskinStent graftsubsequentsuturetourniquetulceratedulcerationsvascular
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
Advancing The Science In PE Treatment - What Do We Need To Know, And How Will We Learn
AngioVac (AngioDynamics) / FlowTriever (Inari) / Penumbra device (Penumbra Inc)Argon MedicalCDTCleaner devicePEpressorsRotational thrombectomy systemtherapeutic
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
adjudicatedanchoringbailoutclinicaldissecteddissectionDissection repair devicedissectionsefficacyendovascularenrollenrolledfreedomimplantimprovementIntact MedicallengthlesionlesionsnitinolpatencypatientsPOBAprimaryradiopaqueregardrestenoticstenosisstentTack endovascular systemtargettherapeuticvessel
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
Transcript

metastatic disease and one or two falci/g are growing. How many can you safely treat? How many would you go about treating? How long would you follow this patient? I'll tell you that this patient with slow growing metastatic leiomyosarcoma, I have been treating every six months for the past three years because

every so often a lesion grows. With that I'm going to step off.

- The main results of the mid-term, I would call it rather than long-term, there were three years of the improved trial, were published almost immediately after the Veith Symposium last year. I have no disclosures other than to say this was a great team effort, and it wasn't just me,

it was all the many contributors to this project. I think the important thing to start with is to understand the design. This was a randomized trial of unselected patients with a clinical diagnosis of ruptured abdominal aortic aneurysm.

The trial was to investigate whether EVAR as a first option, or an endovascular strategy, would save lives compared with open repair. We randomized 613 patients quite quickly across 30 centers, and this comprised 67 percent of those who would have been eligible for this trial, so good external validity.

Survival was the primary outcome for this trial. This was assessed at 30 days, one, and three years. At 30 days as you can see there was no difference between the endovascular strategy group in blue, and the open repair group in red. However, already at 30 days we noticed

that of the discharges in the endovascular strategy group, 97 percent of these went home, versus only 77 percent in the open repair group. No significant difference in survival at one year, but now out at three years, the survival is 56 percent in the endovascular strategy

group versus 48 percent in the open repair group. This is not quite significant. If we look only at the 502 patients who actually had a repair of a rupture, the benefits of the endovascular strategy are much stronger. And a compliance analysis,

because there were some crossovers in this pragmatic trial, shows very similar results. And for the 133 women, these were the real beneficiaries of an endovascular strategy. The cumulative incidence of re-interventions to three years are shown here, and no difference between open

and endovascular strategy. And I'll dwell on these in more detail in a later presentation. But this did mean that there was no additional cost to the endovascular strategy over the three year period. I'd also like to point out to you that

apart from the re-interventions, the need for renal support in the early days was 50 percent more common after open repair. Patients had rather different concerns about their complications to clinicians. And when we discussed this with patients they were most

concerned about limb amputation and possibly unclosed stomas. All of these were relatively uncommon, but we had a great collaboration with the other two ruptured aneurysm trials in Europe, AJAX and ECAR. And we put our data together.

Took 12 months, and here you can see the very consistent results. That amputations are considerably less common after endovascular repair for rupture than open repair. We've just heard about quality of life. In Improve Trial there were real gains in quality of life.

Up to three years in the endovascular strategy group. And since costs were lower, this meant that this strategy was highly cost-effective. So in summary, at three years an endovascular strategy proves to be better than open repair. With better survival, higher qualities for the patients

in the endovascular strategy group, marginally lower costs, and it's cost-effective. And we've heard quite a lot even at this meeting about our new NICE guidelines in the UK. But an endovascular strategy is actually being recommended by them for the repair of ruptures.

And I think the most cogent reasons to recommend endovascular repair are the fact that it has benefits for patients at all time points. It gives them what they want: Getting home quickly, better quality of life, lower rates of amputation and open stoma,

and better midterm survival. Thank you very much.

- Relevant disclosures are shown in this slide. So when we treat patients with Multi-Segment Disease, the more segments that are involved, the more complex the outcomes that we should expect, with regards to the patient comorbidities and the complexity of the operation. And this is made even more complex

when we add aortic dissection to the patient population. We know that a large proportion of patients who undergo Thoracic Endovascular Aortic Repair, require planned coverage of the left subclavian artery. And this also been demonstrated that it's an increase risk for stroke, spinal cord ischemia and other complications.

What are the options when we have to cover the left subclavian artery? Well we can just cover the artery, we no that. That's commonly performed in emergency situations. The current standard is to bypass or transpose the artery. Or provide a totally endovascular revascularization option

with some off-label use , such as In Situ or In Vitro Fenestration, Parallel Grafting or hopefully soon we will see and will have available branched graft devices. These devices are currently investigational and the focus today's talk will be this one,

the Valiant Mona Lisa Stent Graft System. Currently the main body device is available in diameters between thirty and forty-six millimeters and they are all fifteen centimeters long. The device is designed with flexible cuff, which mimics what we call the "volcano" on the main body.

It's a pivotal connection. And it's a two wire pre-loaded system with a main system wire and a wire through the left subclavian artery branch. And this has predominately been delivered with a through and through wire of

that left subclavian branch. The system is based on the valiant device with tip capture. The left subclavian artery branch is also unique to this system. It's a nitinol helical stent, with polyester fabric. It has a proximal flare,

which allows fixation in that volcano cone. Comes in three diameters and they're all the same length, forty millimeters, with a fifteen french profile. The delivery system, which is delivered from the groin, same access point as the main body device. We did complete the early feasibility study

with nine subjects at three sites. The goals were to validate the procedure, assess safety, and collect imaging data. We did publish that a couple of years ago. Here's a case demonstration. This was a sixty-nine year old female

with a descending thoracic aneurysm at five and a half centimeters. The patient's anatomy met the criteria. We selected a thirty-four millimeter diameter device, with a twelve millimeter branch. And we chose to extend this repair down to the celiac artery

in this patient. The pre-operative CT scan looks like this. The aneurysm looks bigger with thrombus in it of course, but that was the device we got around the corner of that arch to get our seal. Access is obtained both from the groin

and from the arm as is common with many TEVAR procedures. Here we have the device up in the aorta. There's our access from the arm. We had a separate puncture for a "pigtail". Once the device is in position, we "snare" the wire, we confirm that we don't have

any "wire wrap". You can see we went into a areal position to doubly confirm that. And then the device is expanded, and as it's on sheath, it does creep forward a bit. And we have capture with that through and through wire

and tension on that through and through wire, while we expand the rest of the device. And you can see that the volcano is aligned right underneath the left subclavian artery. There's markers there where there's two rings, the outer and the inner ring of that volcano.

Once the device is deployed with that through and through wire access, we deliver the branch into the left subclavian artery. This is a slow deployment, so that we align the flair within the volcano and that volcano is flexible. In some patients, it sort of sits right at the level of

the aorta, like you see in this patient. Sometimes it protrudes. It doesn't really matter, as long as the two things are mated together. There is some flexibility built in the system. In this particular patient,

we had a little leak, so we were able to balloon this as we would any others. For a TEVAR, we just balloon both devices at the same time. Completion Angiogram shown here and we had an excellent result with this patient at six months and at a year the aneurysm continued

to re-sorb. In that series, we had successful delivery and deployment of all the devices. The duration of the procedure has improved with time. Several of these patients required an extension. We are in the feasibility phase.

We've added additional centers and we continue to enroll patients. And one of the things that we've learned is that details about the association between branches and the disease are critical. And patient selection is critical.

And we will continue to complete enrollment for the feasibility and hopefully we will see the pivotal studies start soon. Thank you very much

- I just like the title 'cuz I think we're in chaos anyway. Chaos management theory. Alright, unfortunately I have nothing to disclose, it really upsets me. I wish I had a laundry list to give you. Gettin' checks from everybody, it would be great. Let's start off with this chaos, what has been published.

Again "Ul Haq et al" is a paper from Hopkins. Bleomycin foam treatment of malformations, a promising agent. And they had 20 patients, 21 Bleomycin procedures. (mumbles) sclerosants in a few other patients, 40% complication rate, 30% minor, 10% major.

On a per procedure basis it was a 29% with about 7% major. All patients had decrease in symptoms. But to say "I use Bleomycin" or "I use X" because a complication (mumbles) is nonsense, you're mentally masturbating. It ain't going to be that way, you're going to have complications.

Alright, the use of Bleomycin should be reserved for locations where post-procedure swelling would be dangerous. Well they used it, and one patient required intubation for four days and another patient 15 days. So, it can happen with any agent.

So I don't know why that statement was made. "Hassan et al", noninvasive management of hemangiomas and vascular malformations using Bleomycin again, this handles the plastic surgery a few years ago. 71% effectiveness rate, 29% failure rate,

14% complication rate, 5 major ulcerations. Ulcerations happen with any agent. You're not going to escape that by saying, "Oh, well I'm not going to use alcohol because (mumbles)." No you're going to get it anyway. You all in the literature.

"Sainsbury", intra-lesional Bleomycin injection for vascular birthmarks five year experience again, 2011. 82% effectiveness, 17.3 for failure. Compli- severe blistering, ulcers, swelling, infections, recurrences. Okay, everybody's reporting it.

"Bai et al" sclerotherapy for lymphatic, oral and facial region, 2009. 43% effectiveness, but they found if they used it with surgery they had a higher effectiveness rate. Good. But again that's their effectiveness.

"Young et al", Bleomycin A5 cervico-facial vascular surgery, 2011. 81% effectiveness rate 19% failure for macrocystic. 37% failure from microcystic disease. Complications: ulcerations, hematoma, bleeding, fevers, soft tissue atrophy.

"Zhang et al." Now this is a study. They're goin' head-to-head alcohol versus Bleo. Oh, isn't that a nice thing to do. Huh, funny how that can happen sometimes. There's another paper out of Canada

that doesn't matter, there's 17 pages and there's no statistical significance for that. 138 patients, you got a lot of statistics. "Zhang et al", 138 children. 71 of 75 patients, which is 95% of that serie, were either cured,

markedly effective, or effective, with alcohol. In the Bleo group 41 of 63, that is 65% of the patients, had effective treatment. That means no cures, no markedly effective, just effective. That's their head-to-head comparison. Difference between Ethanol and

the Bleo group again was statistically significant. Ethanol at 75 patients of 14 cases skin necrosis. Bleo group at 63 patients of 5 cases skin necrosis. And in that group they stated it is statistically superior to Bleo. 95 versus 60, that's a big deal.

Again, cured, disappearance post-treatment without recurrence. Markedly effective, meant that greater than 80% was ablated. Effective means about less that 80% reduction but improved. Ineffective, no change. That was their criterion on that paper.

Again, 30 cases, superficial VMs effective rate was 95% in the Ethanol group and the deep group 94%. Okay. What was in the Bleo group? 68% superficial, 56% of deep group. So that's a statistical significance

of failure, between the two agents, comparing head-to-head in anatomic areas. Ethanol VM papers, let's go on to that, we're goin' to do other stuff. "Lee et al", advanced management, 2003, midterm results. 399 procedures in 87 patients,

95% significant or complete ablation, 12.4% complication. "Johnson et al", Kansas. University of Kansas med center, 2002. 100% success rate in tongues. One patient had a massive tongue and had breathing difficulties prior to treatment

remained intubated 5 days and then uneventfully discharged, that was their only complication. "Su et al", ethanol sclerotherapy, face and neck. Again, these are complex anatomies with complex issues of cranial nerves as well as airway control. 2010, 56 of 60 procedures, 90%, four minimal residual,

no skin necrosis, no nerve injuries. "Orlando", outpatient percutaneous treatment, low doses under local anesthesia. This is a very interesting paper out of Brazil. They did 'em under IV sedation, just a little bit by little bit.

They said they had trouble gettin' general so they had to figure another way. Smart, I like people thinkin' things out. Who here doesn't have a problem with anesthesia? Gettin' 'em not to quit before two o'clock? (laughs)

Alright, used local only 39 patients extremity VMs, main symptoms of pain. Cure or significant improvement in 94%. One ulcer, 3 transient paresthesias. "Lee et al", sclerotherapy craniofacial again, 2009. 87 patients, 75% were reductions.

71 of 87 excellent outcomes. One patient transient, tongue decreased sensation. One transient facial nerve palsy, no skin injuries. "Vogelzang" is a very important paper of a single center. Is that author- anybody here? Again, they did VMs and AVMs in this series

and then a per patient complication rate is 13.3, in AMVs 9.7 per patient, but I think what also is important is to do things with regards to procedures. And they listed both. So we'll just, it's about time to quit. This is our embolization series.

And neck, upper extremity, all the anatomies. And we're about a 10 to three ratio with regards to VM/LMs to AVMs in numbers. I think everybody's pretty much like that, a third of their practice. Again, our minor complications are that.

Major complications are these. Summary, what we found in the literature is that Ethanol publications state its efficacy rate routinely at 90 to 100%. And all other second tier sclerosants are 60 to 80%. So I think that's the take home message.

Thank you.

- Good morning, thank you Frank and the entire meeting for the invite. These are my disclosures. I'll be discussing off label use of devices. Clearly significant challenges in the aortic arch. The morbidity of open repairs as eluded to in the previous speakers.

Typically high medical risk patients, urgent/emergent presentations, varied aortic pathologies, lack in this country of any branched or fenestrated off the shelf options. So, can potentially parallel/antegrade chimney options, mitigate some of the risk associated with TEVAR

for maintaining flow to the arch branches. Limited experiences have been reported. Ive' chosen to pool a recent UF experience with a personal consecutive series to get a pretty large number of patients to try and drill down on some of the details here.

This is kind of a general technical details, clearly evolved a little bit over time. And, my technique's a little bit different from the UF experience. I published this, it's a concomitant placement of the TEVAR device,

the ascending branch chimney grafts via retro grade open approaches, rapid ventricular pacing or atrial balloon. And my preference is larger doses of adenosine to produce a stasis in the ascending aorta and the arch through, for period of 15 seconds

to a minute or so. Then TEVAR deployment with subsequent chimney expansions, then kissing balloons techniques. I prefer a tri-lobe balloon over any of the singular compliant balloons. In this pooled cohort, there's 44 patients:

30 males, 15 females. All at prohibitive risk for repair. Half of these patients have prior aortic interventions. A third of these cases being urgent/emergent, requiring just use of devices off the shelf. Varied aortic pathologies roughly 2/3 aneurismal pathologies

and 1/3 dissections, most of those being chronic with a secondary aneurysmal growths. The approximal TEVAR landing zones were predominantly in zone one, with a quarter of the cases being in zone zero. With regards to the specific aortic arch branch management,

left subclavian revascularization with approximal exclusion, was done in 80% of patients and more commonly now probably approaching 90 plus percent of this longer series back to the early 2000's. There was unplanned arch chimney endoprostheses placement in 20% of the cases.

Most of those in the earlier experience were unintended coverage of the left common carotid artery, required the endograft. Now this can be planned a little more carefully, I think with CT imaging. Most of these cases were single vessel chimneys

with a smaller number of dual arch chimneys, both the anemone and left common carotid. Here are the outcomes. I think these are respectable and favorable. A 4.5% early mortality, both emergent cases with ruptured aneurysms.

No spinal cord ischemia. The three strokes occurring in the series were in cases with unplanned arch chimney placements. So, three of those nine unplanned chimneys, down the left common carotid artery were associated with some malperfusion to the brain.

They were non-disabling strokes. Patients did recover. Follow-up here is an average of a year. The arch chimneys remained all patent with three re interventions for self expanding endografts

requiring bare stent placements inside them for stent compression. No late ruptures. 18% re-intervention for the chimney or the aortic grafts was common. As well as, a quarter of patients

requiring subsequent distal or proximal aortic repairs for additional metachronous pathology. A couple final learning points, gutter leaks infrequent but occurred, associated with the chronic type B dissections. One of those treated endovascularly here

where the cul-de-sac of the subclavian stump was fairly large and I had to re-coil this to ameliorate that leak. An open conversion in one case, the rest of those being observed. Three late conversions in the series.

Finally, in conclusion, these are relatively safe outcomes for TEVAR and arch chimney with the left subclavian revascularization. We would prefer two to three centimeter parallel to the aortic device placement of these chimneys with balloon expandable endografts,

being preferred with eye casts currently. A less optimal outcomes for chronic type B dissections for a variety of reasons. These remain difficult anatomies to treat. Thanks.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- Thank you, good morning, no disclosures. Well, we all know that TEVAR can be deceptively complex. We have access issues, we have landing zones to contend with, the subclavian, sometimes visceral debranching. Of course we have new devices with branches, but these are still concerns.

We're always worried about stroke with arch embolization, length of coverage leading to paraplegia, and the ARCH dynamics, as shown here, can be almost violent, and I think all impact on sizing for these cases. Before we talk about sizing, we have to ask ourselves what our goals are.

What is the desired outcome? For aneurysms, we clearly want to exclude the flow to the aneurysm sac, to prevent endoleak and migration. Generally, we want to work on fixation and seal, and this requires a 10-20% oversize. We oftentimes balloon routinely.

In contrary, for dissection or transection, we just simply want to cover the intimal tear. We want to rescaffold the aorta, and this only requires at times 5 or 10% oversizing, and of course we don't want to balloon these acute settings. Success is really dependent on accurate sizing.

We don't want to rely on axial imaging. We want centerline imaging from good 3D software. Length is more variable, we're not going to talk too much about length, but suffice to say that sometimes centerlines are not always accurate and we have to recognize that.

3D imaging is critical, and whether you use the Terarecon, the OsiriX, the Preview, it doesn't matter, you just need familiarity with one of these. And as we can see, based on different pathologies, anatomy can be quite different. In the trauma patient shown on the left,

you can see a very small aorta with a tight arch, whereas the more diseased, older patient with aneurysmal disease on the right is quite different. In this nice paper, Dr. Jordan and his colleagues shown here really outline this very nicely, and show different trauma. The trauma group and the aneurysm group,

quite different anatomy, tighter arches, smaller aortas, more tapering in the trauma patient. All things we have to recognize when we try to size these cases. Again, going back to aneurysms, there's a 10-20% oversizing. These are older patients with more rigid aortas,

larger diameters, increased arch radius, and less healthy aortas. We want to avoid bird-beaking, we want to commit to the arch, and sometimes we can do more exaggerated oversizing when we have tortuosity and we're not going to land orthogonally. Looking at these two, this case up on the right, you can see

the seal zone may actually be along the greater curvature, and so that's also important to recognize when we size cases. Shifting to the trauma patient, the blunt aortic injury shown here, these are different anatomies, they're younger patients,

as we mentioned, smaller aortas with tighter arches. We have to recognize these patients may be severely hypovolemic and volume-contracted, and sometimes diameter can be underestimated by as much as 5-40%. We want to avoid oversizing for a number of reasons.

We don't want to have device collapse or compression, which can occur, and we've all seen pictures of these cases, and these are more common in those patients with small lumens. For this reason, IVUS I think can hold special utility. It's an interoperative modality which can give time

for the patient to be resuscitated, and the diameter of the aorta may become more accurately enlarged. It does tend to undersize, though. Dissection, similar to transection. We don't want to oversize more than 5-10%. IVUS can also help here in visualizing the tear.

We will have to recognize there's some distalate tapering of the lumen. What's our dreaded complication? Well, it's the type retrograde dissection, as shown here. And this is, again, based on pathology. This is why we don't want to oversize more than 5-10%,

and this nice paper out of the Mother Registry, Matt Thompson and his group, shows that for every 1% oversize above 9% and we have an increased risk of retrograde dissection. And this group shows that perhaps even 10% is too much. 5% shows, in this group, when you oversize more than 5%,

that's when you lead to this retrograde dissection complication shown here. So, what about the arch makes it so difficult? I think that we have to recognize these devices we're implanting have a springlike component to them, and they want to straighten out.

We have to choose devices that are conformable and will work in the arch, and for this reason, we want to avoid this stent-induced new entry. This paper here talks about risk factors for stent-induced new entry, and you see then that the connecting bar or the shorter stents are the ones

that tend to induce this stent-induced new entry phenomenon. Interestingly, there is no increased significant difference between the proximal bare stent and the non-proximal bare stent groups, but the greater oversizing did in fact lead to this complication.

Currently, we have these available devices for us to use, different range of diameters and tapering, but all of them are common in that they're nitinol stents, and of course, as we compress a nitinol stent more, we're going to have more of that spring effect, and more radial force with oversizing.

And you can see here, a nice chart showing that for one 29 mm aorta, we have three choices available to us: a 31, a 34, a 37. They would all work, and we have to recognize the anatomy we're treating. The aneurysm in tortuous anatomy,

we may want to oversize more aggressively, whereas a straight anatomy might be a 34 in this case, and of course the trauma or dissection patient, we want to be very careful and perhaps choose a 31. So in conclusion, TEVAR has now become the treatment of choice for a variety of different pathologies.

Accurate sizing with appropriate imaging is critical for a thorough understanding of different pathologies as well as what our goals are for repair is equally important, when we want to achieve success, thank you.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- I'm going to take it slightly beyond the standard role for the VBX and use it as we use it now for our fenestrated and branch and chimney grafts. These are my disclosures. You've seen these slides already, but the flexibility of VBX really does give us a significant ability to conform it

to the anatomies that we're dealing with. It's a very trackable stent. It doesn't, you don't have to worry about it coming off the balloon. Flexible as individual stents and in case in a PTFE so you can see it really articulates

between each of these rings of PTFE, or rings of stent and not connected together. I found I can use the smaller grafts, the six millimeter, for parallel grafts then flare them distally into my landing zone to customize it but keep the gutter relatively small

and decrease the instance of gutter leaks. So let's start with a presentation. I know we just had lunch so try and shake it up a little bit here. 72-year-old male that came in, history of a previous end-to-side aortobifemoral bypass graft

and then came in, had bilateral occluded external iliac arteries. I assume that's for the end-to-side anastomosis. I had a history of COPD, coronary artery disease, and peripheral arterial disease, and presented with a pseudoaneurysm

in the proximal juxtarenal graft anastomosis. Here you can see coming down the thing of most concern is both iliacs are occluded, slight kink in the aortofemoral bypass graft, but you see a common iliac coming down to the hypogastric, and that's really the only blood flow to the pelvis.

The aneurysm itself actually extended close to the renal, so we felt we needed to do a fenestrated graft. We came in with a fenestrated graft. Here's the renal vessels here, SMA. And then we actually came in from above in the brachial access and catheterized

the common iliac artery going down through the stenosis into the hypogastric artery. With that we then put a VBX stent graft in there which nicely deployed that, and you can see how we can customize the stent starting with a smaller stent here

and then flaring it more proximal as we move up through the vessel. With that we then came in and did our fenestrated graft. You can see fenestrations. We do use VBX for a good number of our fenestrated grafts and here you can see the tailoring.

You can see where a smaller artery, able to flare it at the level of the fenestration flare more for a good seal. Within the fenestration itself excellent flow to the left. We repeated the procedure on the right. Again, more customizable at the fenestration and going out to the smaller vessel.

And then we came down and actually extended down in a parallel graft down into that VBX to give us that parallel graft perfusion of the pelvis, and thereby we sealed the pseudoaneurysm and maintain tail perfusion of the pelvis and then through the aortofemoral limbs

to both of the common femoral arteries, and that resolved the pseudoaneurysm and maintained perfusion for us. We did a retrospective review of our data from August of 2014 through March of 2018. We had 183 patients who underwent endovascular repair

for a complex aneurysm, 106 which had branch grafts to the renals and the visceral vessels for 238 grafts. When we look at the breakdown here, of those 106, 38 patients' stents involved the use of VBX. This was only limited by the late release of the VBX graft.

And so we had 68 patients who were treated with non-VBX grafts. Their other demographics were very similar. We then look at the use, we were able to use some of the smaller VBXs, as I mentioned, because we can tailor it more distally

so you don't have to put a seven or eight millimeter parallel graft in, and with that we found that we had excellent results with that. Lower use of actual number of grafts, so we had, for VBX side we only had one graft

per vessel treated. If you look at the other grafts, they're anywhere between 1.2 and two grafts per vessel treated. We had similar mortality and followup was good with excellent graft patency for the VBX grafts.

As mentioned, technical success of 99%, mimicking the data that Dr. Metzger put forward to us. So in conclusion, I think VBX is a safe and a very versatile graft we can use for treating these complex aneurysms for perfusion of iliac vessels as well as visceral vessels

as we illustrated. And we use it for aortoiliac occlusive disease, branch and fenestrated grafts and parallel grafts. It's patency is equal to if not better than the similar grafts and has a greater flexibility for modeling and conforming to the existing anatomy.

Thank you very much for your attention.

- [Narrator] So my assignment is, CMS policy update on non-thermal ablation techniques, and as most of you know, there is not one National CMS policy, so there are a variety of local cover determinations or policies that we're going to look at. I may bore you for a couple minutes

but I found a surprise at the end. So I went to the website, CMS website, and looked up varicose vein LCDs and these seven came up, interestingly Novitas, everybody's favorite, didn't come. So I looked at separately, we're going to look at all these as well.

And here is Novitas, Novitas and their previous LCD had no mention of non-thermal techniques, but in this proposed LCD, which has a lot of people up in arms, they say that the non-thermal techniques are experimental, investigational, and unproven,

and therefore will not be covered. This is next LCDs, this is two from Medicare contractor Noridian, they go on to talk about sclerotherapy and foam sclerotherapy, but they are not going to cover it. And somewhat bizarrely these codes in red here,

which are for Venaseal and Verithena, are listed as indications for RF or laser ablation, which kind of shows you they don't know what they're talking about. And there is no mention of MOCA or Claravein. Wisconsin Physicians Services and other MAC contractor,

and I looked at their LCD, there is no mention of non-thermal techniques. Next up is First Coast Service Options, with these jurisdictions over here on the right. And they get down to the C-classification, VCSS score, and talk about compressive therapy and conservative therapy.

They do mention Clarivein or MOCA. However, they state that it does not meet the Medicare necessity for coverage, and so they won't. And there's absolutely no mention of Verithena or Venaseal in their LCD. Palmetto GBA is another contractor,

with these jurisdictions on the right, and they actually discuss and approve Varithena, microfoam sclerotherapy. They discuss it here in their LCD, they have some restrictions that the physician needs to be competent and experienced with Varithena,

and ultrasound, there is no mention of Clarivein or Venaseal in their LCD. And these are also the folks that tell us how to do stab phlebectomy with 2 mm incisions and a crochet hook. So don't use a 3 mm incision and a hemostat,

it'd probably get denied. Next is CGS Administrators, and this busy slide, they go on to talk about sclerotherapy quite a bit, and all these in the main body, what they are not going to cover for sclerotherapy. They mention that foam sclerotherapy

is basically the same as liquid sclerotherapy, and therefore will not cover it, and again no mention of other treatments of non-thermal techniques. Which brings us to the last LCD, which is National Government Services,

and amazingly they state that the accepted treatments for eliminating reflux and the great saphenous anterior accessory, and small saphenous vein, include RFA, laser, polidocanol, Venaseal, and Verithena. And even more interestingly, they use their Rationale for Determination for MOCA.

The amount and consistency of the data, in addition to the two recent systematic reviews and the strong recommendation of the American Venous Forum, have convinced NGS that Medicare coverage is met. And for PEM, Varithena, the combination of RCTs, meta-analyses, systematic reviews,

the strong recommendation of the AVF, and endorsements from the SVS, ACP, SCAI, and SIR, have convinced them that coverage is appropriate. And the same for Venaseal, same thing. This is craziness. On one Medicare hand,

you have Novitas saying that, treatment is experimental and unproven, and they won't cover it. And on the other Medicare hand, you have this contractor that says, based on the recommendations of the experts,

that it's appropriate, and will be covered. And this is the reason why we need a National Coverage Determination. So, to find out what your policy is, you have to go to the website, you have to find out who your provider is,

or contractor, and see what the policy cause it differs depending upon where you are. Thank you for your attention.

- This is a little bit more detailed explanation of the pathophysiology behind Type IV AVM's. Medical disclosures are none. And this is the Yakes classification and this is Type IV lesion we are going to talk about now. So, this angioarchitecture has not been described before, and was first described in the Yakes classification.

What is so unique? It has multiple arteries, arterioles, but these arterioles form innumerable fistulas that are of a microsize, and they infiltrate the affected tissue. So, this is, this can affect every kind of tissue,

skin involvement and muscle involvement, and other than brain AVM, bleeding occurs if mucosa involvement is present or if an ulcer is present. So, we have to think about the definition of an AVM, which is an artery to vein connection

without an intervening capillary bed. But, what applies in Type IV? As you can see here, very nice example of this infiltrating type is that the tissue where the AVM is located is also viable, so the assumption is that

normal capillary beds are interspersed into these innumerable AVMs existing next to the malformed AVM fistulas, and this is a new definition of AVM. So, how to access this lesion? Of course, transarterial is possible

with a catheter or micro catheter. If anatomy doesn't allow transarterial approach, direct puncture is an option. Also, as you can see, in the direct puncture in the lower video, you can see the venus drainage of these fistulas,

and direct puncture of the vein compressed to reflux ethanol into the fistulas is also an approach. But, what is the challenge here? If you want to treat this lesion, you have to keep in mind

that you don't want to occlude the capillaries that are supplying the tissue. So, to find the right treatment approach, the physiologic concept is often important to understand that the arteriovenous fistulas drain into multiple veins and arterialize these veins

so we have a high pressure on this venus outflow site. The normal capillaries have a normal outflow too but this is of lower pressure, and this comes to competition between the arterialized veins and the normal venus outflow, which is, which is inferior to the normal capillary outflow.

So, what follows is a restriction of normal tissue flow with back-up to the capillaries, and backing up into the arterial inflow. So, we have the situation that the arterial venus fistulas have a lower pressure, lower resistance, and an increased arterial flow

compared to the normal capillaries, and this has to be taken into advantage for treatment. How can this be achieved? Thicken the fluid and dilute the ethanol by creating a mixture of 50/50 contrast and ethanol. So, this mixture will follow the preferential flow

into the arteriovenous fistulas in transarterial injections bearing the normal capillaries. So, if it's possible to puncture into the fistulas, pure ethanol can be used, but especially in transarterial access where normal nutrient vessels can be filled,

50:50 mixture contrast is the key to treat a Type IV AVM, Type IV Yates AVM, and here, you can see, using this approach, how this AVM can partly be treated in many several treatment sessions. And here you can see the clinical result. So, this huge ulcer, after seven treatments, healed

because of the less venus hypertension in the lesion. So the additional benefit of 50/50% ethanol contrast mixture is that your injection is visible on flouroscopy so you can see if which vessels you are including. You can react and adjust the pressure you're injecting. So, it also has to be considered

that the more you give diluted, the more total ethanol can be needed, but it's not efficient in larger vessels. This is also the advantage that you just treat the microfistulas. It's of importance that you use non-ionic contrast

as ionic contrast precipitates in the mixture. So here, you can see again, see the Type IV AVM of the arm and hand, which I already showed in my first talk, and here, you see the cured result after multiple sessions showing good arterial drum without fistulas remaining.

So, the conclusion is that Yakes Type IV is a new entity. It's crucial to understand the hemodynamics and the concept of 50/50 contrast ethanol mixture to treat this lesion with also a curative approach. Thank you very much.

- Talk to you a little bit about again a major paradigm shift in AVMs which is the retrograde vein approach. I mean I think the biggest benefit and the biggest change that we've seen has been in the Yakes classification the acknowledgment

and understanding that the safety, efficacy and cure rate for AVMs is essentially 100% in certain types of lesions where the transvenous approach is not only safer, but easier and far more effective. So, it's the Yakes classification

and we're talking about a variety of lesions including Yakes one, coils and plugs. Two A the classic nidus. Three B single outflow vein. And we're talking now about these type of lesions. Three A aneurysmal vein single outflow.

Three B multiple outflows and diffuse. This is what I personally refer to as venous predominant lesions. And it's these lesions which I think have yielded the most gratifying and most dramatic results. Close to 100% cure if done properly

and that's the Yakes classification and that's really what it's given us to a great degree. So, Yakes one has been talked about, not a problem put a plus in it it's just an artery to vein.

We all know how to do that. That's pulmonary AVM or other things. Yakes two B however, is a nidus is still present but there is a single outflow aneurysmal vein. And there are two endovascular approaches. Direct puncture, transarterial,

but transvenous retrograde or direct puncture of the vein aneurism with the coil, right. You got to get to the vein, and the way to get to the vein is either by directly puncturing which is increasingly used, but occasionally transvenous. So, here's an example I showed a similar one before,

as I said I think some of these are post phlebitic but they represent the archetype of this type of lesion a two B where coil embolization results in cure, durable usually one step sometimes a little more. In the old days we used to do multiple

arterial injections, we now know that that's not necessary. This is this case I showed earlier. I think the thing I want to show here is the nature of the arteriovenous connection. Notice the nidus there just on this side of the

vein wall with a single venous outflow, and this can of course be cured by puncture, there's the needle coming in. And interestingly these needles can be placed in any way. Wayne and I have talked about this.

I've gone through the bladder under ultrasound guidance, I've gone from behind and whatever access you can get that's safe, as long as you can get a needle into it an 18 gauge needle, blow coils in you get a little tired, and you're there a long time putting in

coils and guide wires and so on. But the cures are miraculous, nothing short of miraculous. And many of these patients are patients who have been treated inappropriately in the past and have had very poor outcomes,

and they can be cured. And that a three year follow-up. The transcatheter retrograde vein is occasionally available. Here's an example of an acquired but still an AVM an acquired AVM

of the uterus where you see the venous filling on the left, lots of arteries. This cannot be treated with the arterial approach folks. So, this one happened to be available

and I was having fun with it as well, which is through the contralateral vein in and I was able to catheterize that coil embolization, cured so. Three A is a slightly different variant but it's important it is different.

Multiple in-flow arteries into an aneurysmal vein wall. And the important identification Wayne has given us is that the vein wall itself is the nidus and there's a single out-flow vein. So, once again, attacking the vein wall by destroying the vein, packing

and thrombosing that nidus. I think it's a combination of compression and thrombosis can often be curative. A few examples of that this was shown earlier, this is from Dr. Yake's experience but it's a beautiful example

and we try to give you the best examples of a singular type of lesion so you understand the anatomy. That's the sequential and now you see single out-flow vein. How do you treat this?

Coil embolization, direct puncture and ultimately a cure. And that's the arteriogram. Cured. And I think it's a several year follow-up two or three year follow-up on this one.

So a simple lesion, but illustrative of what we're trying to do here. A foot AVM with a single out-flow vein, this is cured by a combination of direct puncture right at the vein. And you know I would say that the beauty of

venous approach is actually something which it isn't widely acknowledged, which is the safety element. Let's say you're wrong, let's say you're treating an AVM and you think okay I'm going to attack

from the vein side, well, if you're not successful from the vein side, you've lost nothing. The risk in all of these folks is, if you're in the artery and you don't understand that the artery is feeding significant tissue,

these are where all the catastrophic, disastrous complications you've heard so much about have occurred. It's because the individuals do not understand that they're in a nutrient artery. So, when in doubt direct puncture

and stay on the venous side. You can't hurt yourself with ethanol and that's why ethanol is as safe as it is when it's used properly. So, three B finally is multiple in-flow arteries/arterioles shunting into an aneurysmal vein

this is multiple out-flow veins. So direct puncture, coils into multiple veins multiple sessions. So, here's an example of that. This is with alcohol this is a gentleman I saw with a bad ulcer,

and this looks impossible correct? But look at the left hand arteriogram, you can see the filling of veins. Look at the right hand in a slight oblique. The answer here is to puncture that vein. Where do we have our coil.

The answer is to puncture here, and this is thin tissue, but we're injecting there. See we're right at the vein, right here and this is a combination arteriogram. Artery first, injection into the vein.

Now we're at the (mumbles), alcohol is repeatedly placed into this, and you can see that we're actually filling the nidus here. See here. There's sclerosis beginning destruction of the vein

with allowing the alcohol to go into the nidus and we see progressive healing and ultimately resolution of the ulcer. So, a very complex lesion which seemingly looks impossible is cured by alcohol in an out-flow vein.

So the Yakes classification of AVMs is the only one in which architecture inform treatment and produces consistent cures. And venous predominant lesions, as I've shown you here, are now curable in a high percentage of cases

when the underlying anatomy is understood and the proper techniques are chosen. Thanks very much.

- [Professor Veith] Laura, Welcome. - Thank you Professor Veith, thank you to everybody and good morning. It's a great pleasure, to have the possibility to present the result of this randomized trial we performed near Rome in Italy.

Risk of CAS-related embolism was maximal during the first phases of the second procedure, the filter positioning predilation and deployment and post dilatation. But it continues over time with nithinol expansion so that we have an interaction between the stent struts

and the plaque that can last up to 28 or 30 days that is the so called plaque healing period. This is why over time different technique and devices have been developed in order to keep to a minimum the rate of perioperative neurological embolization.

This is why we have, nowadays, membrane-covered stent or mesh-covered stent. But a question we have to answer, in our days are, "are mesh covered stents able to capture every kind of embolism?" Even the off-table one.

This is why they have been designed. That is to say the embolism that occurs after the patient has left the operating room. This is why we started this randomized trial with the aim of comparing the rate of off-table subclinical neurological events

in two groups of patients submitted to CAS with CGuard or WALLSTENT and distal embolic protection device in all of them. We enrolled patient affected by asymptomatic carotid stenosis more than 70% and no previous brain ischemic lesion

detected at preoperative DW-MRI. The primary outcome was the rate of perioperative up to 72 hour post peri operatively in neurological ischemic events detected by DW-MRI in the two CAS group. And secondary outcome measure were the rise of (mumbles)

neuro biomarker as one on the better protein in NSE and the variation in post procedural mini mental state examination test in MoCA test score We enrolled 29 patients for each treatment group. The study protocol was composed by a preoperative DW-MRI and neuro psychometrics test assessment

and the assessment of blood levels of this two neuro biomarkers. Then, after the CAS procedure, we performed an immediate postoperative DW-MRI, we collect this sample up to 48 hours post operatively to assess the level of the neuro biomarkers

then assess 72 hour postoperatively we perform a new DW-MRI and a new assessment of neuro psychometric tests. 58 patient were randomized 29 per group. And we found one minor stroke in the CGuard group together with eight clinically silent lesion detected at 72 hours DW-MRI.

Seven patient presented in WALLSTENT group silent 72 DW-MRI lesion were no difference between the two groups but interestingly two patients presented immediately postoperatively DW-MRI lesions. Those lesion were no more detectable at 72 hours

this give doubts to what we are going to see with DW-MRI. When analyzing the side of the lesion, we found four ipsilateral lesion in the CGuard patient and four contra or bilateral lesion in this group while four ipsilateral were encountered in WALLSTENT patient and three contra or bilateral lesion

in the WALLSTENT group were no difference between the two groups. And as for the diameter of the lesion, there were incomparable in the two groups but more than five lesion were found in five CGuard patients, three WALLSTENT patient

with no significant difference within the two groups. A rise doubled of S1 of the better protein was observed at 48 hours in 24 patients, 12 of them presenting new DW-MRI lesions. And this was statistically significant when comparing the 48 level with the bars of one.

When comparing results between the two groups for the tests, we found for pre and post for MMSE and MoCA test no significant difference even if WALLSTENT patients presented better MoCA test post operatively and no significant difference for the postoperative score for both the neuro psychometric test between the two groups.

But when splitting patients not according to the treatment group but according to the presence of more or less than 5 lesion at DW-MRI, we found a significant difference in the postoperative score for both MMSE and MoCA test between both group pf patients.

To conclude, WALLSTENT and CGuard stent showed that not significant differences in micro embolism rate or micro emboli number at 72 postoperative hours DW-MRI, in our experience. 72 hour DW-MMRI lesion were associated to an increase in neuro biomarkers

and more than five lesion were significantly associated to a decrease in neuro psychometric postoperative score in both stent groups. But a not negligible number of bilateral or contralateral lesions were detected in both stent groups This is very important.

This is why, probably, (mumbles) are right when they show us what really happened into the arch when we perform a transfer more CAS and this is why, maybe,

the future can be to completely avoid the arch. I thank you for your attention.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

- Thank you and good afternoon. I have no financial disclosures. The prevalence of buttock claudication in the general population is really unknown. But up to a third of patients do develop the problem after aortic reconstruction. Both open and endovascular.

And differentiating these symptoms from other common etiologies of hip and buttock discomfort, can literally be a pain in the butt sometimes. Standard non-invasive evaluation only looks at axial lower extremity arterial inflow and not the parallel or collateral pelvic flow.

So that's not a good way to evaluate these symptoms. There is evidence that shows that skin probes assessing oxygen saturation placed over the buttock accurately reflect the oxygen saturation of the gluteal muscles and that is what forms the basis of the buttock O2 study protocol,

where two probes are placed on both buttocks and both calves with a baseline probe on the chest. The patient stands for 10 minutes, with a two minute baseline value that is recorded. And then walks on the treadmill, preferably for up to 12 minutes.

Or until forced to stop. And then a 10 minute recovery phase is recorded to watch the values come back to normal. That raw data is transferred directly onto a propriety software program and then analyzed. Normalized against the chest lead changes

and then a drop of greater than 15 millimeters of mercury is chosen as indicating significant internal iliac artery inflow compromise. So patients being referred to our lab had the study in an effort to differentiate vasculogenic from neurogenic claudication.

And also to evaluate the relative severity of buttock versus calf claudication, to promote the appropriate treatment. We looked at patients who had had concomitant imaging within six months of the study, and had an independent blinded observer grade

the degree of internal iliac artery inflow compromise, into moderate and severe. Also giving consideration to tandem lesions. There were 137 patients who had the study thus far in our lab. And 26 of these had no imaging within

that six month period, so were excluded. Majority of the patients had symptoms in various parts of their bodies. So there were 111 patients total, after excluding the ones with no imaging. 56 patients had positive studies.

24 couldn't complete the protocol, so were technically not vasculogenic claudication. The drop of greater than 15 millimeters of mercury was now statically correlated to internal iliac artery flow reduction on imaging. And you can see the C-statistic values for both moderate

and severe inflow compromise was reasonable. But most specifically, the specificity to predict moderate and severe stenosis was quite good. What about treatment of buttock claudication? So, after you've got them to stop smoking, the options for revascularization include,

aorta iliac bypass, or endarterectomy, with bypasses into the internal iliac artery, in an end to end, or an end to side manner. Of course over the last several years endovascular treatment has taken the front role. Including various forms of stenting.

Also within the interstices of prior common iliac and external iliac stents. So looking at our experience in this regard, we have results on 95 patients. Majority of them did actually complain of symptoms of buttock claudication.

But we don't have the (mumbles) to study available for most of them because these are historical patients. About a third had bypass treatment. Third endarterectomy and a third endovascular options. And you can see over the last decade or so,

it's a lot of endovascular option. Looking at the follow up, the median follow up is 7.1 years. Longer in the open group than the endovascular group. And the vast majority of patients did have relief of symptoms. Five year patency was of the order of 72% overall

and was not effected by the type or extent of revascularization. And interestingly, also by the degree of stenosis in the internal iliac artery. We do have pre and post studies in the more recent patients.

And this is a 71 year old gentleman with left buttock and right calf claudication. Had successful right iliac stenting, but not popliteal intervention. And you can see the blue tracing of the buttock has normalized.

But that of the calf, which is red, has not. Another patient with bilateral buttock and thigh claudication had bilateral common iliac artery stent placement to improve inflow, without treatment of the internal iliac lesion. And you can see that the right buttock remains below

the baseline, while other parameters have now normalized on the post procedure study. So to conclude, non-invasive evaluation of suspected buttock claudication with exercise TcPO2 is reliable with ability to reserve imaging

for patients with positive studies. And also, good ability to differentiate from other non-vascular causes of buttock and hip discomfort. Open and endovascular revascularization are effective with good mid-term patency.

Thank you.

- Yeah now, I'm talking about another kind of vessel preparation device, which is dedicated to prevent the occurrence of embolic events and with these complications. That's a very typical appearance of an occluded stent with appositional stent thrombosis up to the femur bifurcation.

If you treat such a lesion simply with balloon angioplasty, you will frequently see some embolic debris going downstream, residing in this total occlusion of the distal pocket heel artery as a result of an embolus, which is fixed at the bifurcation of

the anterior tibial and the tibial planar trunk, what you can see over here. So rates of macro embolization have been described as high as 38% after femoral popliteal angioplasty. It can be associated with limb loss.

There is a risk of limb loss may be higher in patients suffering from poor run-off and critical limb ischemia. There is a higher rate of embolization for in-stent restenosis, in particular, in occluded stents and chronic total occlusions.

There is a higher rate of cause and longer lesions. This is the Vanguard IEP system. It's an integrated balloon angioplasty and embolic protection device. You can see over here, the handle. There is a rotational knob, where you can,

a top knob where you can deploy, and recapture the filter. This is the balloon, which is coming into diameters and three different lengths. This is the filter, 60 millimeter in length. The pore size is 150 micron,

which is sufficient enough to capture relevant debris going downstream. The device is running over an 80,000 or 14,000 guide-wire. This is a short animation about how the device does work. It's basically like a traditional balloon.

So first of all, we have to cross the lesion with a guide-wire. After that, the device can be inserted. It's not necessary to pre-dilate the lesion due to the lower profile of the capture balloon. So first of all, the capture filter,

the filter is exposed to the vessel wall. Then you perform your pre-dilatation or your dilatation. You have to wait a couple of second until the full deflation of the balloon, and then you recapture the filter, and remove the embolic debris.

So when to use it? Well, at higher risk for embolization, I already mentioned, which kind of lesions are at risk and at higher risk of clinical consequences that should come if embolization will occur. Here visible thrombus, acute limb ischemia,

chronic total occlusion, ulceration and calcification, large plaque volume and in-stent reocclusion of course. The ENTRAP Study was just recently finished. Regarding enrollment, more than 100 patients had been enrolled. I will share with you now the results

of an interim analysis of the first 50 patients. It's a prospective multi-center, non-randomized single-arm study with 30-day safety, and acute performance follow-up. The objective was to provide post-market data in the European Union to provide support for FDA clearance.

This is the balloon as you have seen already. It's coming in five and six millimeter diameter, and in lengths of 80, 120 and 200 millimeters. This is now the primary safety end point at 30 days. 53 subjects had been enrolled. There was no event.

So the safety composite end point was reached in 100%. The device success was also 100%. So all those lesions that had been intended to be treated could be approached with the device. The device could be removed successfully. This is a case example with short lesion

of the distal SFA. This is the device in place. That's the result after intervention. That's the debris which was captured inside the filter. Some more case examples of more massive debris captured in the tip of the filter,

in particular, in longer distance total occlusions. Even if this is not a total occlusion, you may see later on that in this diffused long distance SFA lesion, significant debris was captured. Considering the size of this embolus,

if this would have been a patient under CLI conditions with a single runoff vessel, this would have potentially harmed the patient. Thank you very much.

- This talk is a brief one about what I think is an entity that we need to be aware of because we see some. They're not AVMs obviously, they're acquired, but it nevertheless represents an entity which we've seen. We know the transvenous treatment of AVMs is a major advance in safety and efficacy.

And we know that the venous approach is indeed very, very favorable. This talk relates to some lesions, which we are successful in treating as a venous approach, but ultimately proved to be,

as I will show you in considerable experience now, I think that venous thrombosis and venous inflammatory disease result in acquired arteriovenous connections, we call them AVMs, but they're not. This patient, for example,

presented with extensive lower extremity swelling after an episode of DVT. And you can see the shunting there in the left lower extremity. Here we go in a later arterial phase. This lesion we found,

as others, is best treated. By the way, that was his original episode of DVT with occlusion. Was treated with stenting and restoration of flow and the elimination of the AVM.

So, compression of the lesion in the venous wall, which is actually interesting because in the type perivenous predominant lesions, those are actually lesions in the vein wall. So these in a form, or in a way, assimilate the AVMs that occur in the venous wall.

Another man, a 53-year-old gentleman with leg swelling after an episode of DVT, we can see the extensive filling via these collaterals, and these are inflammatory collaterals in the vein wall. This is another man with a prior episode of DVT. See his extensive anterior pelvic collaterals,

and he was treated with stenting and success. A recent case, that Dr. Resnick and I had, I was called with a gentleman said he had an AVM. And we can see that the arteriogram sent to me showed arterial venous shunting.

Well, what was interesting here was that the history had not been obtained of a prior total knee replacement. And he gave a very clear an unequivocal history of a DVT of sudden onset. And you can see the collaterals there

in the adjacent femoral popliteal vein. And there it is filling. So treatment here was venous stenting of the lesion and of the underlying stenosis. We tried an episode of angioplasty,

but ultimately successful. Swelling went down and so what you have is really a post-inflammatory DVT. Our other vast experience, I would say, are the so-called uterine AVMs. These are referred to as AVMs,

but these are clearly understood to be acquired, related to placental persistence and the connections between artery and veins in the uterus, which occurs, a part of normal pregnancy. These are best treated either with arterial embolization, which has been less successful,

but in some cases, with venous injection in venous thrombosis with coils or alcohol. There's a subset I believe of some of our pelvic AVMs, that have histories of DVT. I believe they're silent. I think the consistency of this lesion

that I'm showing you here, that if we all know, can be treated by coil embolization indicates to me that at least some, especially in patients in advanced stage are related to DVT. This is a 56-year-old, who had a known history of prostate cancer

and post-operative DVT and a very classic looking AVM, which we then treated with coil embolization. And we're able to cure, but no question in my mind at least based on the history and on the age, that this was post-phlebitic.

And I think some of these, and I think Wayne would agree with me, some of these are probably silent internal iliac venous thromboses, which we know can occur, which we know can produce pulmonary embolism.

And that's the curative final arteriogram. Other lesions such as this, I believe are related, at least some, although we don't have an antecedent history to the development of DVT, and again of course,

treated by the venous approach with cure. And then finally, some of the more problematic ones, another 56-year-old man with a history of prior iliofemoral DVT. Suddenly was fine, had been treated with heparin and anticoagulation.

And suddenly appeared with rapid onset of right lower extremity swelling and pain. So you see here that on an arteriogram of the right femoral, as well as, the super selective catheterization of some of these collaterals.

We can see the lesion itself. I think it's a nice demonstration of lesion. Under any other circumstance, this is an AVM. It is an AVM, but we know it to be acquired because he had no such swelling. This was treated in the only way I knew how to treat

with stenting of the vein. We placed a stent. That's a ballon expanded in the angiogram on your right is after with ballon inflation. And you can see the effect that the stenting pressure, and therefore subsequently occlusion of the compression,

and occlusion of the collaterals, and connections in the vein wall. He subsequently became asymptomatic. We had unfortunately had to stent extensively in the common femoral vein but he had an excellent result.

So I think pelvic AVMs are very similar in location and appearance. We've had 13 cases. Some with a positive history of DVT. I believe many are acquired post-DVT, and the treatment is the same venous coiling and or stent.

Wayne has seen some that are remarkable. Remember Wayne we saw at your place? A guy was in massive heart failure and clearly a DVT-related. So these are some of the cases we've seen

and I think it's noteworthy to keep in mind, that we still don't know everything there is to know about AVMs. Some AVMs are acquired, for example, pelvic post-DVT, and of course all uterine AVMs. Thanks very much.

(audience applause) - [Narrator] That's a very interesting hypothesis with a pelvic AVMs which are consistently looking similar. - [Robert] In the same place right? - [Narrator] All of them are appearing at an older age. - [Robert] Yep.

Yep. - This would be a very, very good explanation for that. I've never thought about that. - Yeah I think-- - I think this is very interesting. - [Robert] And remember, exactly.

And I remember that internal iliac DVT is always a silent process, and that you have this consistency, that I find very striking. - [Woman] So what do you think the mechanism is? The hypervascularity looked like it was primarily

arterial fluffy vessels. - [Robert] No, no, no it's in the vein wall. If you look closely, the arteriovenous connections and the hypervascularity, it's in the vein wall. The lesion is the vein wall,

it's the inflammatory vein. You remember Tony, that the thing that I always think of is how we used to do plain old ballon angioplasty in the SFA. And afterwards we'd get this

florid venous filling sometimes, not every case. And that's the very tight anatomic connection between those two. That's what I think is happening. Wayne? - [Wayne] This amount is almost always been here.

We just haven't recognized it. What has been recognized is dural fistula-- - Yep. - That we know and that's been documented. Chuck Kerber, wrote the first paper in '73 about the microvascular circulation

in the dural surface of the dural fistula, and it's related to venous thrombosis and mastoiditis and trauma. And then as the healing process occurs, you have neovascular stimulation and fistulization in that dural reflection,

which is a vein wall. And the same process happens here with a DVT with the healing, the recanalization, inflammation, neovascular stimulation, and the development of fistulas. increased vascular flow into the lumen

of the thrombosed area. So it's a neovascular stimulation phenomenon, that results in the vein wall developing fistula very identical to what happens in the head with dural fistula had nothing described of in the periphery.

- [Narrator] Okay, very interesting hypothesis.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

- Thank you, it's a pleasure to be here. I'll address how the Indigo Thrombectomy technology can expand the reach of what you can do for your patients. It will preserve treatment options, improve patient outcomes, conserve hospital resources,

and perhaps most importantly, improve your day. The old treatment strategy, every time I had someone with acute limb ischemia I felt like I was shopping at this store. When I went to surgery, I wished I could put a drip catheter in, it lasts a little longer,

to mop up some di when I went to the angio suite, I wished I could cut down and remove some more macroscopic debris. I submit that the new Indigo technology

will provide a new strategy for treating acute arterial ischemia. On the same concepts are predicated STEMI, code stroke, Level I trauma alerts, we've instituted acute aorta, and piggybacked on that, an acute arterial ischemia protocol.

So that means when a patient like this presents with acute arterial ischemia, they get an algorithmic, systemic, trained, metered approach. They go past the holding room directly to the endovascular suite,

and all the processes happen in parallel, not in series. The call team is trained and dedicated, and while anesthesia is working up top with labs and lines, we use the duplex ultrasound to pick carefully our access sites. A faster time to reperfusion allows us to

do it and avoid general anesthesia, incision in hostile groins, and the exposure of lytic therapy, resulting in a decreased morbidity and mortality. Being able to treat the full spectrum of the arterial tree allows us to run options.

We preserve options by first mopping up more proximal clot, and then dripping distally when we need to, or, dripping distally to open up distal targets for surgical bypasses. As an example, this was a recent case

on a trauma CT scan, injured inthrelane aorta with emblogenic thrombus confirmed on intravascular ultrasound. We went in with a large bore system, a cath to aspirate the clot, and then used a cover stent to repair the aorta.

We shot an arteriogram the lower extremities, noticed that it embolized distally, and we used a Cat 6 to pluck out this clot and restore flow. Able to work up and down the full arterial tree. A learning curve for me was to understand that debris has to be corked to removal, which means no flow.

And most other worlds in vascular surgery, flow is good. No flow is bad. Also, you have to vacuum the clot out. Which means you have to uncross the lesion, which is counter intuitive for most of the precepts I've learned.

I've learned to use long sheaths to approach the lesion and to use larger catheters to remove more macroscopic debris. I rarely use the separator, I engage it and cork it for 90 seconds. That allows it to get a firm grip and purchase on it.

And I have to remember that no flow is good. This demonstrates how you approach the catheter with a large sheath. Under roadmap guidance you turn the aspiration vacuum on immediately before you cork it to minimize blood loss. And you use it like a vacuum by uncrossing the lesion

and let it slowly engage and aspirate the catheter. Ninety seconds allows it to get a firm grip and purchase so you can extract it without breaking it loose. I rarely use a separator, I use it only for large thrombus burdens, sub-acute clot, adherent debris,

or when the Indigo catheter is clogged. I strip out the catheter with the separator like a pipe cleaner, and then, every once in a while, on a subacute clot, I'll peck and morcellate it with a separator. Typically, in my lab, when I have new technology

I never have the team trained when I have just the right case, so I've learned over time, to train the team first. And with a trained team, they've taught me a lot. I've found with the Indigo catheter it's hard for me to watch the monitor,

work the catheter, handle the on-off switch, and watch the flow in the canister. So, what we do is we have a spotter who's not scrubbed. They taught me to take the on-off switch out, and then mechanically kink the tubing to make and on-off switch.

And they provide me feedback and just say fast, slow, or corked, so I can run the catheter and watch the monitor. I've learned to beware of the Cook Flexor sheaths, because they scuff up the tip. Use a check flow valve that unscrews from the

catheter if possible. I use coaxial catheters whenever possible, and I telescope them. You can telescope large catheters over small catheters. I use large sheaths and catheters whenever possible, using the preclose technique,

and then you can preserve options if you want to press more distally, you can cinch down, remove the large sheath, put in a 4 5 French, and then press ahead. I also, after I use a pulse technique, will occasionally use the Jungle Juice.

The team taught me the Jungle Juice is half strength contrast, some TPA and some nitroglycerine. When I lace the clot with Jungle Juice, I can observe fluoroscopically, the progress I'm making as I'm aspirating the clot. Thank you.

Thank you, Mr Chairman. In order to avoid unnecessary repetition, I'm going to try to move forward with some of my slides. There we go. And, again, in order to avoid that, we're just going to move through the cases. I have some cases that are different

to the ones presented before. It seems that everybody's happy with this technology. This is a CTO recanalization of a patient with subacute total occulsion of the SFA that previously had a stent in place,

in the distal SFA. And here you can see how we are able to reopen the vessel and look at the clot in the entire length at the end of the catheter there. So, this technology really works.

Let me show you now an acute bowel ischemia case. A patient that comes with abdominal pain. A CTA shows that the patient has an occlusion of the proximal SMA. We put a catheter there,

we do a diagnostic angiogram confirming the occlusion, then we cross the lesion and we inject distali showing that the branches are patent. And then we put in place

an oscar directional sheath that will give us great stability to work and through that one we use a Cat Eight, from Penumbra. As you can see here, advancing the catheter in combination with the separator,

and this is the final angiogram showing complete opening of the main SMA and you can see very clearly the elements that were occluding the MSL. We are also using this technology in DVT, acute DVT, with proprietal access

and here you can see the before, and then, sometimes we use it alone, sometimes we use it in combination with angiojet and with the bull spray, followed by this technology for the areas that did not respond.

But this is usually a technology that is helping us to get rid of most of the clot. Like here, you see there is some residual clot. And after Penambra, you can direct the catheter and you can really clean the entire vein. Same here, before and after.

We are also using it for PE. I know that you guys in Miami are doing the same and we are happy with the results. And then, just to finish, I think this is a really nice case that was done by one of our partners in vascular surgery.

A patient with an occluded carotid subclavial bypass. So you see access from the brachial artery on one side. And this person, the person who did this, was smart enough to also came from the groin

and put the filter in the internal carotid artery, just in case. So then he starts to manipulate that occluded subclavial carotid bypass. As you can see here. And at a certain point,

he does a follow-up angiogram showing that the entire carotid, including the internal and external, is totally occluded. So, because he was prepared, he had a filter,

he didn't panic, he went and used the indigo device, and he was able to get all that clot out and re-establish nice anterial flowing in the carotid artery,

completely clean. The carotid subclavial bypass. And he did a final angiogram in AP and lateral view, confirming that there is no distimbolisation at the intercranial level. So, this technology really works.

I think that we all agree. And these are good examples on how we can help patients with that technology. Thank you for your attention.

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- So, in terms of my presentations, I think Dr. Mills and I do have some agreement that we can treat some of these patients with intervention, initially at least, with some exceptions. So when we talk about treating patients with acute limb ischemia, advanced endovascular skills is a must.

You have to look at the appropriateness of the devices that we have in place. But also, I think the most important thing is that you have to achieve adequate arterial inflow to the foot by the time you've finished the procedure

with the improvement of pain, numbness, and any motor abnormality. Certain cases, obviously, you need open surgery such as emboli from atrial fibrillation to the femoral artery. But it is important to note that in terms

of acute limb ischemia, when you go from IIa to IIb, that's when you have to be aggressively try to open up as much as possible, again, with adequate flow to the foot. And again, with acute limb ischemia, its definition is less than 14 days.

It could be embolic versus thrombotic. And my focus is mostly on these targets on the thrombotic component because it has a high risk of limb loss. And again, the traditional open bypass surgery has been associated with increased risk

of morbidity and mortality as well as wound infection. When we talk about acute limb ischemia, you can, again, do surgery with thrombectomy, embolectomy, and again, open procedure, or you can do open surgery with intraoperative thrombolytics.

And again, what I go for is try to do, obviously, a diagnostic angiography followed by endovascular interventions using various technology that is in hands. And again, multiple publications has been shown that we can perform this procedure successfully

in patients with acute limb ischemia. And again, at least in the studies that I was involved with, we can see that 60% of these procedures can be completed in less than six hours and 80% was completed in 24 hours, maximizing the flow to the foot and limb salvage.

So this, again, in the PEARL registry, was shown to be both in acute and chronic cases. And again, significant improvement in terms of the treated vessels. So the goal of the treatment is removal of the clot, re-establish perfusion, minimize clot reformation,

but more importantly, identify the underlying lesion and the culprit and treat it. So again, treatment of the acute limb ischemia in percutaneous method by using thrombolysis and thrombectomy provides a minimally invasive alternative to restore perfusion to the symptomatic lower extremity

with minimal morbidity and mortality. And you can do it both for native vessels as well as in a bypass graft. In native vessels, you have a combination of a fresh thrombus superimposed on chronic atherosclerotic disease.

And by removing the thrombus, you can visualize the underlying occult lesion that's causing the occlusion. And again, by doing it endovascularly, you can identify the inflow, the occluded segment, and the outflow in a percutaneous fashion and open up the blood vessels.

And again, in my experience, you have also avoided fasciotomy and reperfusion injury because it's in a non-open technique. What are the benefits? Again, your benefits is that you convert the patients from an acute state

to a baseline chronic state. This is especially if you're doing something at two o'clock in the morning. Convert an urgent surgical intervention to an elective revascularization if necessary. You lyse the thrombi in the distal artery,

restoring patency to the outflow arteries which you cannot do surgically, or we have multiple incisions. Re-establish the patency of an occluded but non-diseased inflow source for possible subsequent bypass,

especially if the patient was presented to you late and has thrombosed off into the common femoral artery. Prevent arterial intimal injury from balloon catheter thrombectomy, avoiding operative thromboembolectomy, especially if you involve the tibial vessels,

then you have to go through each of those tibials and do open embolectomy. And then again, also you reduce the level of amputation in patients in whom complete success cannot be achieved. So, then end up either with a toe amputation

or a TMA, or they end up with a BKA or an AKA previously. The tool box involves, again, antiplatelet therapy. IIb, III inhibitors are extremely important, anticoagulants to make sure that the patient's anticoagulated.

You have your choice of tPA or rPA, infusion catheters, and various catheter devices to aspirate or remove the clot. Again, tool boxes: contralateral insertion, six Fr sheath, guard wires through the area of occlusion.

Again, in the case of the fresh thrombus, if you remove the thrombus, you can see the underlying culprit lesions which you can treat by endovascular interventions. In the native vessels, again, you want to be able to use a hydrophilic wire that goes easily

to the area of occlusion. And then after removing the clot, you can see the underlying lesion that can be treated successfully, therefore avoiding a major bypass surgery. And to finish up with a case,

58-year-old female comes in with rest pain and numbness for about two weeks. Again, multiple medical problems. ABI is 0.2. You can see in this case, the angulation is difficult, so it came to an antegrade puncture.

You can see the occlusion of the infrapopliteal segment, only a perineal one off. The wire goes very easily. Once you remove the thrombus, you can see that now the artery is open. However, there is a chunk of thrombus sitting in there.

And again, she has a single pair runoff to the leg, so in this case, we don't want to compromise that single runoff even though we removed most of the clot. So we use a filter wire and use an angiojet to remove the clot. You can see the underlying lesion here.

Is it a plaque rupture or a stenosis? Angioplasty was done. She goes home in the next day instead of having a fem perineal bypass graft. So in summary, again, majority of these patients can be treated effectively

with percutaneous techniques. Advanced techniques and experience is appropriate because of essential tools in hand to make sure that this is an outcome completed successfully. Thank you for your attention.

- We are talking about the current management of bleeding hemodialysis fistulas. I have no relevant disclosures. And as we can see there with bleeding fistulas, they can occur, you can imagine that the patient is getting access three times a week so ulcerations can't develop

and if they are not checked, the scab falls out and you get subsequent bleeding that can be fatal and lead to some significant morbidity. So fatal vascular access hemorrhage. What are the causes? So number one is thinking about

the excessive anticoagulation during dialysis, specifically Heparin during the dialysis circuit as well as with cumin and Xarelto. Intentional patient manipulati we always think of that when they move,

the needles can come out and then you get subsequent bleeding. But more specifically for us, we look at more the compromising integrity of the vascular access. Looking at stenosis, thrombosis, ulceration and infection. Ellingson and others in 2012 looked at the experience

in the US specifically in Maryland. Between the years of 2000/2006, they had a total of sixteen hundred roughly dialysis death, due to fatal vascular access hemorrhage, which only accounted for about .4% of all HD or hemodialysis death but the majority did come

from AV grafts less so from central venous catheters. But interestingly that around 78% really had this hemorrhage at home so it wasn't really done or they had experienced this at the dialysis centers. At the New Zealand experience and Australia, they had over a 14 year period which

they reviewed their fatal vascular access hemorrhage and what was interesting to see that around four weeks there was an inciting infection preceding the actual event. That was more than half the patients there. There was some other patients who had decoags and revisional surgery prior to the inciting event.

So can the access be salvaged. Well, the first thing obviously is direct pressure. Try to avoid tourniquet specifically for the patients at home. If they are in the emergency department, there is obviously something that can be done.

Just to decrease the morbidity that might be associated with potential limb loss. Suture repairs is kind of the main stay when you have a patient in the emergency department. And then depending on that, you decide to go to the operating room.

Perera and others 2013 and this is an emergency department review and emergency medicine, they use cyanoacrylate to control the bleeding for very small ulcerations. They had around 10 patients and they said that they had pretty good results.

But they did not look at the long term patency of these fistulas or recurrence. An interesting way to kind of manage an ulcerated bleeding fistula is the Limberg skin flap by Pirozzi and others in 2013 where they used an adjacent skin flap, a rhomboid skin flap

and they would get that approximal distal vascular control, rotate the flap over the ulcerated lesion after excising and repairing the venotomy and doing the closure. This was limited to only ulcerations that were less than 20mm.

When you look at the results, they have around 25 AV fistulas, around 15 AV grafts. The majority of the patients were treated with percutaneous angioplasty at least within a week of surgery. Within a month, their primary patency was running 96% for those fistulas and around 80% for AV grafts.

If you look at the six months patency, 76% were still opened and the fistula group and around 40% in the AV grafts. But interesting, you would think that rotating an adjacent skin flap may lead to necrosis but they had very little necrosis

of those flaps. Inui and others at the UC San Diego looked at their experience at dialysis access hemorrhage, they had a total 26 patients, interesting the majority of those patients were AV grafts patients that had either bovine graft

or PTFE and then aneurysmal fistulas being the rest. 18 were actually seen in the ED with active bleeding and were suture control. A minor amount of patients that did require tourniquet for a shock. This is kind of the algorithm when they look at

how they approach it, you know, obviously secure your proximal di they would do a Duplex ultrasound in the OR to assess hat type of procedure

they were going to do. You know, there were inciting events were always infection so they were very concerned by that. And they would obviously excise out the skin lesion and if they needed interposition graft replacement they would use a Rifampin soak PTFE

as well as Acuseal for immediate cannulation. Irrigation of the infected site were also done and using an impregnated antibiotic Vitagel was also done for the PTFE grafts. They were really successful in salvaging these fistulas and grafts at 85% success rate with 19 interposition

a patency was around 14 months for these patients. At UCS, my kind of approach to dealing with these ulcerated fistulas. Specifically if they bleed is to use

the bovine carotid artery graft. There's a paper that'll be coming out next month in JVS, but we looked at just in general our experience with aneurysmal and primary fistula creation with an AV with the carotid graft and we tried to approach these with early access so imagine with

a bleeding patient, you try to avoid using catheter if possible and placing the Artegraft gives us an opportunity to do that and with our data, there was no significant difference in the patency between early access and the standardized view of ten days on the Artegraft.

Prevention of the Fatal Vascular Access Hemorrhages. Important physical exam on a routine basis by the dialysis centers is imperative. If there is any scabbing or frank infection they should notify the surgeon immediately. Button Hole technique should be abandoned

even though it might be easier for the patient and decreased pain, it does increase infection because of that tract The rope ladder technique is more preferred way to avoid this. In the KDOQI guidelines of how else can we prevent this,

well, we know that aneurysmal fistulas can ulcerate so we look for any skin that might be compromised, we look for any risk of rupture of these aneurysms which rarely occur but it still needs to taken care of. Pseudoaneurysms we look at the diameter if it's twice the area of the graft.

If there is any difficulty in achieving hemostasis and then any obviously spontaneous bleeding from the sites. And the endovascular approach would be to put a stent graft across the pseudoaneurysms. Shah and others in 2012 had 100% immediate technical success They were able to have immediate access to the fistula

but they did have around 18.5% failure rate due to infection and thrombosis. So in conclusion, bleeding to hemodialysis access is rarely fatal but there are various ways to salvage this and we tried to keep the access viable for these patients.

Prevention is vital and educating our patients and dialysis centers is key. Thank you.

- So this is what I've been assigned to do, I think this is a rich topic so I'll just get into it. Here are my disclosures. So I hope to convince you at the end of this talk that what we need for massive PE when we're talking about catheter based therapy is a prospective registry. And what we need for catheter based therapy for

submassive PE is a randomized controlled trial. So we'll start with massive PE and my rational for this. So you know, really as you've heard, the goal of massive PE treatment is to rescue these patients from death. They have a 25 to 65% chance of dying

so our role, whatever type of physician we are, is to rescue that patient. So what are our tools to rescue that patient? You've heard about some of them already, intravenous thrombolysis, surgical embolectomy, and catheter directed therapy.

The focus of my talk will be catheter directed therapy but let's remember that the fastest and easiest thing to do for these patients is to give them intravenous thrombolysis. And I think we under utilize this therapy and we need to think about this as a first line therapy for massive PE.

However, there's some patients in whom thrombolytics are contraindicated or in whom they fail and then we have to look at some other options. And that's where catheter directed therapy may play a role. So I want to show you a pretty dramatic case and this was an eye-opening case for me

and sort of what launched our PERT when I was at Cornell. It's a 30 year old man, transcranial resection of a pituitary tumor post-op seizures and of course he had a frontal lobe hemorrhage at that time. Sure enough, four or five days after this discovery

he developed hypertension and hypoxia. And then is he CT of the chest, which I still remember to this day because it was so dramatic. You see this caval thrombosis right, basically a clot in transit

and this enormous clot in the right main pulmonary artery. And of course he was starting to get altered, tachycardiac and a little bit hypotensive. So the question is, what to do with this patient with an intracranial hemorrhage? Obviously, systemic thrombolytics are

contraindicated in him. His systolics were in the 90 millimeter of mercury ranged, getting more altered and tachycardiac. He was referred for a CDT and he was brought to the IR suite. And really, at this point,

you could see the multidisciplinary nature of PE. The ICU attending was actively managing him while I was getting access and trying to do my work. So this was the initial pulmonary angiogram you can see there's absolutely no flow to the right lung even with a directed injection

you see this cast of thrombus there. Tried a little bit of aspiration, did a little bit of maceration, even injected a little TPA, wasn't getting anywhere. I was getting a little bit more panicked as he was getting more panicked

and I remembered this device that I had used in AV fistula work called the Cleaner. Totally off label use here, I should disclose that and I have no interest in the company, no financial interest in the company. And so we deployed this thing, activate it a few times,

it spins at 3,000 rpm's, he coughed a little bit, and that freaked us all out also. But low and behold we actually started seeing some profusion. And you can see it in the aortogram actually in this and that's the whole point of massive PE treatment with CDT,

is try to get forward flow into the left ventricle so that you have a systemic blood pressure. Now, you know, when we talk about catheter based therapies we have all sorts of things at our disposal. And my point to you is that you know really, thank you...

You guys can see that, great. So really, the point of these catheter therapies is that you can throw the kitchen sink at massive PE because basically your role is to try to help this patient live. So, if I can get this thing to show up again.

There we go. It's not working very well, sorry. So, from clockwise we have the AngioVac circuit, you have, let's see if this will work again, okay. Nope, it's got a delay. So then you have your infusion catheter,

then you have the Inari FlowTriever, you saw the Cleaner in the previous cast, and you have the Penumbra aspiration device the CAT 8. And some of these will be spoken about in more detail in subsequent talks. But really, you can throw the kitchen sink at massive PE

just to do whatever it takes to get profusion to the left side. So, the best analysis that has been done so far was Will Kuo in 2009. He conducted a meta-analysis of about 594 patients and he found this clinical success rate of 86.5%.

This basically meant these patients survived to 30 days. Well, if that we're the case, that's a much lower mortality than we've seen historically we should basically be doing catheter directed therapy for every single massive PE that comes into the hospital. But I think we have to remember with this meta-analysis

that only 94 of these patients came from prospective studies, 500 came from retrospective, single center studies. So even though it was a very well conducted meta-analysis, the substrate for this meta-analysis wasn't great. And I think my point to you is that

we really are going to have a hard time studying this in a prospective fashion. So what is the data, as far as massive PE tell us and not tell us? Techniques are available to remove thrombus, it can be used if systemic lysis is contraindicated,

but it doesn't tell us whether catheter based therapies are better than the other therapies. Whether they should be used in combination with them and which patients should get catheter based therapy, which should get surgery and which techniques are most effective and safe.

Now, I think something we have to remember is that massive PE has a 5% incidence which is probably a good thing, if this was even higher than that we would have even more of an epidemic on our hand. But this is what makes massive PE very difficult to study.

So, if you looked at a back of the envelope calculation an RCT is just not feasible. So in an 800 bed hospital, you have 200 PE's per year, 5% are massive which means you get 10 per year in that hospital, assume 40% enroll which is actually generous,

that means that 4 massive PE's per year per institution. And then what are you going to do? Are you going to randomize them to IV lytics versus surgery versus interventional therapy, a three arm study, what is the effect size, what difference do you expect between these therapies

and how would you power it? It's really an impossible question. So I do want to make the plug for a Massive PE Prospective Registry. I think something like the PERT consortium is very well-suited to run something like this

especially with this registry endeavors. Detailed baseline characteristics including all these patients, detailing the intervention and looking at both short and long-term outcomes. Moving on to submassive PE. As you've heard much more controversial,

a much more difficult question. ICOPER as you already heard from the previous talk, alerted the world to RV dysfunction which this right ventricular hypokinesis conferring a higher mortality at 90 days than no RV dysfunction. And that's where PEITHO came in as you heard.

This showed that the placebo group met the primary endpoint of hemodynamic decompensation more commonly than the Tenecteplase group. Of course, coming at the risk of higher rate of major bleeding and intracranial hemorrhage. So I just want to reiterate what was just said

which is that systemic thrombolysis has a questionable risk benefit profile and most patients with submassive PE, as seen in the guideline documents as well. So that sort of opens a sort of door for catheter directed therapy.

Is this the next therapy to overcome some of the shortcomings of systemic thrombolysis? Well what we have in terms of CDT is these four trials, Ultima, Seattle II, Optalyse, and Perfect. Three of these trails were the ultrasound assisted catheter, the Ekos catheter.

And only one of them is randomized and that's the Ultima trial. I'm going to show you just one slide from each one of them. The Ultima trial is basically the only randomized trial and it showed that if you put catheters in these patients 24 hours later their RV to LV ratio will be lower

than if you just treat them with Heparin. Seattle II is a single arm study and there was an association with the reduction in the RV to LV ratio at 48 hours by CTA. PERFECT, I found this to be the most interesting figure from PERFECT which is that you're going to start it at

systolic pulmonary artery pressure of 51 and you're going to come down to about 37. Optalyse, a brand new study that was just published, four arms each arm has increasing dose associated with it and at 48 hours it didn't matter, all of these groups had a reduction in the RV to LV ratio.

And there was no control group here as well. What is interesting is that the more thrombolytics you used the more thrombus you cleared at 48 hours. What that means clinically is uncertain at this point. There is bleeding with CDT. 11% major bleeding rate in Seattle II,

no intracranial hemorrhages. Optalyse did have five major bleeds, most of the major bleeds happened in the highest dosed arms. So we know that thrombolytics cause bleeding that's still an issue. Now, clot extraction minus fibrinolytic,

this is an interesting question. We do have devices, you're going to hear about the FLARE trial later in this session. EXTRACT-PE is ongoing which we have enrolled about 75 patients into. What the data does and does not tell us

when it comes to CDT for submassive PE it probably reduces the RV to LV ratio at 24 hours, it's associated with a reduction at 48 hours, major bleeding is seen, we do not know what the short and long-term clinical outcomes are

following CDT for submassive PE. Whether it should be routinely used in submassive PE and in spite of the results of Optalyse this is a preliminary trial, we don't know the optimal dose and duration of thrombolytic drug. And even is spite of these early trials

on these non-lytic techniques, we don't know their true role yet. I'd liked to point out that greater than 1,600 patients have been randomized in systemic lytic trails yet only 59 have been randomized in a single, non-U.S. CDT trial.

So this means that you can randomize patients with submassive PE to one treatment or the other. And we want to get away from this PERT CDT roller coaster where you get enthusiasm, you do more cases, then you have a complication, then the number of cases drops.

You want that to be consistent because you're basing it on data. And that's where we're trying to come up with a way of answering that with this PE-TRACT trial. Which is a RCT of CDT versus no-CDT. We're looking at clinical endpoints

rather than radiographic ones greater than 400 patients, 30 to 50 sites across the country. So in summary I hope I've convinced you that we need a Prospective Registry for massive PE and a Randomized Controlled Trail for submassive PE. Thank you.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

- So I have the honor to provide you with the 12-month result of the TOBA II trial. I guess we all confirmed that this action is the primary mechanism of angioplasty. We all know that lesions of dissection have a TLR rate of 3.5 times higher than lesions without dissection.

The current tools for dissection repair, these are stents. They have limitations, really a large metal load left behind causing inflammation. This is leading to in-stent restenosis. So the Tack Endovascular System.

It's a delivery system over six French catheter. This is for above the knee with six implants pre-loaded on a single catheter. The Tack implant itself, it has an adaptive sizing, so it adapts to the diameter of the vessel from 2.6 up to 6.0 for SFA and PPA usage.

It's a nitinol implant with gold radiopaque markers for visibility. Has a unique anchoring system, which prevents migration, and a deck which is deployed in six millimeter in length. So with regard to the TOBA II study design,

this was a prospective multi-center single-arm non-blinded study at 33 sites in US and Europe. We enrolled 213 subjects. These were all subjects with post-PTA dissection. So only with a dissection visible on the angiogram, the patients could be enrolled into this study.

We had the usually primary safety end point, primary efficacy end points, which we are familiar from other trials and other studies so far. With regard to the inclusion criteria, I just want to look at this very briefly.

Mainly we had de novo or non-stented restenotic lesions in the SFA P1. If it was a stenosis, the lesion length could be up to 150 millimeter. If it was a total occlusion, the length was up to 10 centimeters.

They had to be the presence of at least one target run of vessel to the foot. They had to be a post residual, post-PTA residual stenosis of lower than 30%, and the presence of at least one dissection Grade A to F. With regard to the key lesion characteristics,

baseline for the different patients, there was not a big difference to other studies out there. The only difference was maybe we had slightly more patients with diabetes. The lesion, the target lesion length, the mean target lesion length was up to 74 millimeters.

We also had patients with calcification, mainly moderate but also some with severe calcification. There were two met the primary end points. The 30-day freedom from major adverse event, and also the primary efficacy end point at 12 months, which was a freedom from clinical driven TLR,

and freedom from core lab adjudicated duplex ultrasound derived binary restenosis. Now, with regard to patency in a patient cohort, where we really had 100% dissected vessel at 100% dissected vessel population, we had primary patency at 12-month of 79.3%

and a freedom clinical driven TLR of 86.5%. There was with regard to dissection severity, we had 369 total dissections we were treating. The number of dissections per subject was 1.8. The mean dissection length was two centimeters. So around 70% of subjects had a dissection of

Grade C or greater before using the Tack. In 92.1% of all dissections, this could be completely resolved with a Tack. With regard to the Tack stability and durability, in total, 871 Tacks have been deployed. So that was a number of 4.1 Tacks per subject.

The bailout stent rate was very low, just one. The freedom from Tack fracture at 12 months, 100%, and there was one minor Tack migration at 12 months with education by the core lab so the Tack was not seen at the same place as six months or 12 months before.

There was significant clinical improvement with Rutherford category improvement in 63%, which improved of up to two classes. There was also an improvement in ABI, walking impairment questionnaire. So just to conclude, TOBA II is a unique trial.

First to enroll 100% dissected vessels. Successfully met the primary efficacy and safety end points, and demonstrated the Tack is an efficient repair system for dissections after POBA or DCB with minimum metal left behind, low radial force, stable and durable design,

and preservation of future treatment options. There was only a very, very low bailout stent rate. This in combination with high patency rate and high freedom from clinical TLR. Thank you very much.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.