Create an account and get 3 free clips per day.
Chapters
Mikaelsson Catheter | Advanced UFE
Mikaelsson Catheter | Advanced UFE
2016arteriesarterychapterdistallyembolicsembolisationembolizationembolizeembospheresembozeneendpointentirefibroidsmesentericmicrocatheternitroglycerineoccludeovarianovarysbvSIRuterus
Q&A- Procedural Sedation | Procedural Sedation: An Education Review
Q&A- Procedural Sedation | Procedural Sedation: An Education Review
adverseanesthesiaanesthesiologistanesthesiologistsarrhythmiablockscardiacchaptercomfortablediazepamdosingeffectselectiveembolizationfibroidhyperkalemiainstitutionlabsNoneopioidoutcomespatientpatientspeakperioperativepharmacokineticsprocedurepropofolprotocolproviderproviderssedatedsedationserumuterineversed
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Pathophysiology | Pulmonary Emoblism Interactive Lecture
Pathophysiology | Pulmonary Emoblism Interactive Lecture
arteriesballoonbloodblowchaptercircuitcoronaryfibershypokinetichypotensionintramuralischemicleftmassivePathophysiologypressurepulmonaryresistancesystemicvasculatureventricleventricular
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Treatment Options- Medical Management | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Medical Management | Carotid Interventions: CAE, CAS, & TCAR
aggressiveantiplateletarteryaspirincarotidcarotid arterychapterembolizeendarterectomyincisionmanagementmedicalplaqueplavixstatinstatinsstentstentingtherapyultimately
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
arterybleedcentimeterchapterdatadysfunctionalembolizationfertilityfibroidfibroidsMRImyomectomyNonepatientsretainsurgeryuterineuterus
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
What To Expect From Today's Limb Preservation | AVIR CLI Panel
What To Expect From Today's Limb Preservation | AVIR CLI Panel
biopsybloodchaptercolorcytokinesdegenerativeembolisationinflammatoryneurovascularrheumatologyslidesvesselvessels
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
adjunctiveanesthesiaarteryblockscatheterchapterconceivecontrolembolizationfertilityfibroidfibroidshormoneshydrophilichypogastricimaginginabilitylidocainemultiplenauseanerveNonepainpatchpatientpatientspostpregnantproceduralquestionradialrelaxantsheathshrinksuperior
UFE Summary | Uterine Artery Embolization The Good, The Bad, The Ugly
UFE Summary | Uterine Artery Embolization The Good, The Bad, The Ugly
chaptercomplicationembolizationfibroidfibroidshysterectomiesNone
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
Why Do We Need Different Directions For Occlusions? | AVIR CLI Panel
angiogramarteriesaxialchapterclinicalcomplicationscondyleembolicembolizationenhancementhematomaimagekneemedialmicronnervenumbnessocclusivepainparticlespatientsplantarpoplitealsynovialtibialtumorvessel
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Ablative Radioembolization | Interventional Oncology
Ablative Radioembolization | Interventional Oncology
adjacentadministerarterialbladecancerchaptercompletedosedosesentiregreyinvadinglesionliverlobelobectomynecrosispathologicpatientportalremnantresectionresponsesegmentsurgeontinytreattumorvein
PET/MRI Case Study #4 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI Case Study #4 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
cervicalCervical CancerchapterlesionmodalityMRINonenormalsurgeryuptakeuterus
History of the Treatment of CLI | AVIR CLI Panel
History of the Treatment of CLI | AVIR CLI Panel
arthritischaptercytokinesdegenerativeembolisationembolizationhospitalizationsinflammationinjectionskneeleadsnsaidnsaidsosteoarthritisshouldersynovialunited
The Basics of the Cath Lab - Curriculum Week 1 | Cath Lab Academy: An Adjunct to an Orientation Program Using an Interprofessional Approach
The Basics of the Cath Lab - Curriculum Week 1 | Cath Lab Academy: An Adjunct to an Orientation Program Using an Interprofessional Approach
academyarteriesarterycardiaccathcath labcatheterschapterclasscoronaryequipmentessentiallyexamplesidentifyidentifyingimageinterventionalNonenursespracticeradiationrhythmsimulationviews
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
chapterembolizationfibroidfibroidsgynecologistgynecologyhysterectomyinterventionalNoneobgynPathophysiologypatientpatientsprocedureproceduresprogramsurgicallyworkup
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
arterybleedingcatheterchapterclinicalclotdatadevicedevicesdiameterdysfunctionheparinintracranialmajormassivemechanicalpatientsPenumbrapulmonaryrandomizedrateratiorecurrentreducesstudysurrogatethrombolysisthrombosistrialtrialsultimateventricle
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
antiplateletarterybraincarotidchapterdualembolicmedicareplavixprocedureprotectionproximalstenosisstentstentingtherapy
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
accurateairwaychaptercircuitcolorconsistentcpapdatadevicesdistaldistallyleaklevelliterlitersmaskmonitoringnasalNoneoraloxygenationpatientpatientsportprettysamplingstentsupplementalvaluesventilationventilator
Transcript

catheter we use it just happens to be AngioDynamic's version you know I don't there are several companies that make this I just happen to have this on the shelf which is why I took the picture of it

and again that's the picture what it looks like and our target for the microcatheter is probably going to be going to get over here I probably usually get the microcatheter back down to about here now if I only

got two here I suppose that would be fine i would really be reluctant to embolize if I was at this level where I'd have to be extremely careful getting around this curve and getting down into here somewhere is probably where you really

want to be I think and we're going to use particulate embolics you're going to may have to force the material not force it but injected positively it is Bob made the point yesterday he like's to get a free-flow embolisation which I agree with

unfortunately don't always get a free flow embolization the ovarian artery you think the uterine arteries are subject to spasm the ovarian arteries are unbelievable you don't want to go through that sort of you know curved

segment down and try to get passed the ovary you know I once saw Dave he's a good friend I you know yeah I always go down passed the ovary that way I don't have to worry about the ovary I said how the heck do you do that

He said I don't have any problem doing it so I was visiting him when he started telling me all this he went in to do a case and he spent like two and a half hours trying to get down that overian.. you know and he came out and said maybe you're right it's like anyway

some people use a nitroglycerine I tend not to use nitroglycerine mostly because it requires someone to go and find it and get it all mixed up not so but using nitroglycerine is okay but you're going to use particle embolics and I don't

think i ever my entire life have used more than one container on a side and usually it's half a container of embospheres or embozene and whatever it is you're using use PVA you can even use the gel-foam slurry although i kinda like the idea of

particles because you can get them to float in a free-flowing embolization you can get them to go down and they will go to the fibroids and what you want to do is kind of go until you don't see the uterus anymore and once you don't see

the uterus anymore you don't need anymore as long as you have a stable endpoint and you know oftentimes you'll still see some branches going to do the ovary but you just want to prune off those branches down distally you do not need

to occlude the entire ovarian artery ok so inferior mesenteric supply kind of

are there any questions yeah yes that's a really good sure so the question was do you have any rules or guidelines in my institution about how long the procedure can be before you start

talking about anesthesia versus sedation is that right and positioning prone supine we did come up with a guideline with within our department we looked at a little bit of research but honestly was more expert opinion just best

practice and experience I in in general I would say if the procedure is 3 plus hours the patient should know they're going to be on the table not asleep for three plus hours and talk to them about what that means and if they're ok with

that I just think again that comes into setting realistic expectations that's one of the reasons actually that we're very interested in using Dex med otama Dean because that's going to be a better

drug for those longer procedures first was giving functional and versed for four hours it's just not it's not appropriate but you know and some people would say we'll just get an anesthesiologist them but a lot of these

patients are really thick so in our institution anesthesia is just really super regulated and they require all of these clearances for their involvement no matter what they're giving sometimes they'll require all these clearances and

they give exactly what we were going to give so you know it's it's really a juggling act I would say in our department we really just make sure the patient knows what the expectation is and then we'll usually say to the

provider to if if something goes like if anything looks a little concerning during the case we're stopping and they have to be ok with that and they are they really are but that took a lot of work to get everybody on board with that

type of communication yeah we don't know so they I know I think Sloane is anyone here from Sloane no I think Sloane has with dedicated anesthesiologists they work really closely with them and it's easier for

them to get cases scheduled they will give us they will assign us an anesthesiologist for the day but if we don't have any anesthesia cases they get reassigned somewhere in the o.r and it's a different analysis every time it tends

to be the same group some are stricter than others some will have a patient say I really want anesthesia and we can call up the provider and there they say no problem let me do a quick chart review whereas the next day the provider goes

no absolutely not send them for clearances that's a little tricky yeah right so what I showed you is from the american society of anesthesiology i am not affiliated with them at all i just think they bide non anesthesiologist

sedation so i rely heavily on what they say and they recommend waiting till peak effects so i would look at the pharmacokinetics so for versed it's 3 to 5 minutes so i would wait at least 3 minutes before your readmit a stirring I

think a good example with that is when diazepam with the sedative of choice the on the peak effect for diazepam is 1 minute so when midazolam came onto the market there were a lot of adverse outcomes

with patients because providers administering it weren't familiar with the pharmacokinetics and assumed that the peak effect for versed was the same for diazepam so in theory you could give a patient in 5 minutes 5 milligrams of

versed so by the time that fully hits them they could be in a negative 5 on your raft scale so you know just look at those pharmacokinetics look at that peak effect and I would use that to drive your dosing scheme Atlee that's what I

do and I think since we've done that we've seen better meet info cities and better safety outcomes yes okay yeah we don't do that we do one thing with uterine fibroid embolization swear they'll do a superior mesenteric block

but otherwise we don't do any other type of regional blocks but I have read about that I think that's really are the IR providers giving the block okay right I've seen two with uterine fibroid embolization we'll do an epidural in

advance some I think some institutions or some literature exists about that it's interesting it would be interesting if the IR providers could actually give it though I'm not sure if that's kosher in the anesthesia world but they're

certainly qualified to do it they they do already kind of do it really but so I mean that's certainly something interesting and if you have a provider that is comfortable taking that on and their institution I think it's worth

looking at because anything that's sort of I think mixes things up and and provides a different Avenue especially for high-risk patients is worth looking into definitely yes I believe it yeah

mm-hm right so I'll just repeat what she said so just jumping on the talk about blocks so in her institution they the providers to administer blocks and I think you said

coleus estas Tamizh and PTC's and biliary dream placements they'll use that and it will decrease the amount of sedation that's required sedation being versed and fentanyl that's required during the case which like yes like you

said is really great for patients who are already on opioids previously and habit aller ins yes [Music] something right so we again he left same provider though had a patient on Groupon

or Fein and it was our first experience within about a year ago and it was terrible and she did not have realistic expectations going in of how sedated she would be and she was very very unhappy

afterwards so we talked a lot about that and in that guideline I had mentioned that we made about when we involve anesthesia and when we don't there's a caveat about that that says that if a patient is on

methadone or buprenorphine that a discussion needs to take place making them aware that they will probably not feel very sedated but we will try our best and if they're not comfortable with that we reschedule the procedure with

anesthesia but they have to know going into it that they they may not feel completely sedated and we just keep that open and honest communication but we haven't really come up with a scheme of what's best we did actually try with her

we had her come in one day having taken her buprenorphine the day of the procedure and she seemed okay with that and then we tried having her go off of it so that the receptors wouldn't be blocked she was not happy with that

experience so that's really when a person like that probably would do great with propofol but we can't give propofol so you know if the and if the patient tells us no then we just reschedule with the anesthesia

right - hmm right right right you could at least if they're if they're on an opioid uh if they're on people nor Fein then in theory they should respond to the verse said you could go heavier hand it on the

versed just to get them sedated but they will probably still feel pain but it they hopefully won't remember it that's true I you know with the Richmond agitation sedation scale that's not going to fit every patient that's a

really good point I gave a patient seven of versed during an adrenal vein sampling and she was just talking my ear off I got I fed are you okay you know do you need me to give you anything else no no I'm good I'm good and then I wheeled

her out we got her in the recovery area and she goes sit over I said yeah she said wow I don't I don't remember anything the power of her said that that was like a true and music effect I hadn't seen that so strongly in a

patient before but if you if I had done you know I was documenting that she was a zero it looked like I wasn't doing much for her but then I was putting comments you know patient comfortable denying needing any more sedation so

won't fit every patient so it is good to look at that but yeah as far as the buprenorphine I mean it's it's it's tough yeah if they have an addiction specialist I would say talk to them and they might be

able to come up with a scheme that works for them and if there's a lot of pain expected afterwards those patients are gonna have to be on parenteral opioid therapy they'll probably have to stay you know if you're in a hospital they

would have to stay overnight so those are all things you have to consider yeah yes hmm yeah I'm like it so Adam and Alexa are nurse practitioners that we work with and I'm looking at Adam because

this is actually was a very hot topic for us in the last six months so we actually cheat we met with our sedation committee that's run by that in a physiologist who's blocking us from using pres of X and discuss with him

that in the protocol that guides our practice it's said that you did the timeout and then gave sedation but Ari anesthesiologists don't do that right so they intubate the patient and everything and then and they and then the provider

comes in and does the timeout right before the puncture or incision so we talked about to him about how well if we're gonna do the latency to peak effect it's not enough time right so we do now bring the patient in and start

sedation right away our orders are put in in advance I know some by the attending or the Li P so we have a PRN dose and with an a certain number of occurrences and a titrate to a certain Ross scale

yes yeah so and that our anesthesiologist mentions that our providers are present but it's it's a certain use of the language I think it might be like direct observation or immediately available and our providers

are immediately available it's up to your hospital so our profit our providers aren't like down the street on their way in to work with coffee and street clothes and we're sedating they're they're just down the hall maybe

or the way our department looks is we have a control area and it's like the you know the Central Station and you can see all of the rooms so they might be in the Central Station but just haven't gone in to do the time out yet that

being said I always talk to them before I bring the patient in and say what's the goal Rath and I address any concerns that I have and I think people think I'm a little kooky when I do that for every case but it I think it works really well

and I think the providers really like it so we just already start from the Gecko our line of communication I tell them the patient seems really anxious this is my plan what do you think agree disagree yes the procedural if does the procedure

list or the Lak but I've sedated the patient so the patient if you look at what Jayco describes in the universal protocol it's ideal if they can participate in the timeout however not required because then when they do the

timeout they're right there stabbing them with lidocaine so I like to you know I mean I would argue that by starting I would argue about that by starting at the sedation earlier and getting the patient into a comfortable

state you're more safe because you're doing the dosing appropriately according to the a sa yeah correct right right right

okay I think it's important to say though it's not about getting around Joint Commission this is what Joint Commission says you may feel uncomfortable with it and that's okay

but it is what our accrediting body says is okay we're also not intimating the patient and paralyzing them like an Asst the anesthesiologist is now having said that it's not like we walk the patient in and we go oh I think you're mr. Jones

we throw you on the table there is an initial timeout that's done with the nurse and the technologist and the other people in the room shaking his head yes as so the acceptable amount of time after reversal

yes so if it happens if it happens mid procedure you need to it's I believe the language the a sa uses that you have to have a discussion amongst the care team about whether or not you're going to proceed if it happens after the

procedure in the recovery area or it happens mid procedure and you abort then it has to be at least two hours before you discharge that patient or move them back to their unit where they came from because of that recitation effect and

because you can have really adverse effects from sedation like flumazenil can cause serious delirium I had a patient like that one time it was it was awful and it can cause serious cardiac arrhythmia so at least two hours if you

continue with the procedure I would just make sure everyone knows that you have to be really careful with recitation effects and and all of the adverse effects that you'd be looking at yes I think one more question I'm sorry

with hyperkalemia I have come across I want to say it was in perioperative guidelines when I was looking at the labs that we do cuz we do a lot of unnecessary labs in our department you guys might - I feel like we just really

overdo it I believe the perioperative recommendations are to check a serum potassium if the patient has a reason to have hyperkalemia however right if their hyperkalemic and

they develop a cardiac arrhythmia you know could hypoxia also precipitate that cardiac arrhythmia the results from the hyperkalemia maybe I just went in I wouldn't take an ounce

I would I would consider hyperkalemia severe hyperkalemia and unstable patient because that patient could go into a fatal arrhythmia so I would correct that before you bring them into an elective Percy what's often an elective procedure

so if you're doing a fistula gram you know right five point yeah why are we will go up to five point eight we personally will go up to five point eight because a lot of times they're hyperkalemic

because they're fish too less clothes now and we need to open it right so just again it I don't think there's ever going to be any hard and fast data that you see it's all about making sure everyone knows this patient has a serum

potassium of five point eight we're going to be really closely watching the ECG monitoring yeah thank you everyone thank you so much [Applause]

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

would probably be how do we make our careers sustainable how do we make our lives healthy and well balanced in organizations that may not understand

what we do how do we maintain our humanism in a system that is focused on efficiency we expect a lot from our patients we send them home too soon and not all patients who go home have the environment at home that allows them

recover so they come back because there's no one to get them out of bed there's no one to get them to the bathroom there's no one to change their dressing their PICC line blocks you know simple things so we've gotten to a point

in in the excel file accountant driven behavior of things that we've forgotten that this is the about the art of wooing nature the science or the accountancy of healing and so we as a group need to

advocate for our patients and say no this person can't go home you know so when we look at our careers at our at our lives on a daily basis there are stressors that we all experience so this is one of the big challenges that we

face given what we do there's the risk and stress of what we see in our patients and the things we see the the dreadful things we see and more and more in radiology essentially were an adjunct to the emergency room and we see

terrible things I still remember the things I saw at Hopkins the the young men being embolized to maintain their cardiac output so their family could come in so they could become transplant donors stuff like this that's just

gruesome we get exposed to radiation which is not good for us one day I think radiation will be seen like asbestosis now seen we get exposed to blood and blood from infected patients with types of hepatitis that even that don't have a

member of the alphabet associated with them yet you know we get exposed to resistant Hospital organisms my wonderful dog Tessa who's dumb as a plank you know but lovely animal tore her ACL and I had to go bring it get

repaired and the vet said oh you work in a hospital well there's a 92% chance your dog will have em or sa because the vets know that if people who own the dogs work in hospitals their dogs are colonized with Mrs a in other words

we're bringing it home and our clothing we don't know this we get back injuries more more frequently because patients are getting larger and we have conflict sometimes using techs and nurses sometimes we text nurses doctors our

administrators and we have excessive overtime that's not an option and we often work in areas that are crime ridden so driving in and out is dangerous and we have financial stress so all of

this makes it a challenging life and we have to figure out ways of making this sustainable and happy and remembering why we did it and remembering why this makes a difference burnout is actually a

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

okay pathophysiology right ventricular the right ventricle is everything when it comes to the pathophysiology of this disease I'm gonna lead you through this because I think it's interesting and important I'm gonna go to this side this

time be fair to both sides of the room so when you have a PE that increases your pulmonary vascular resistance normally the pulmonary vasculature is a very low resistance circuit but when you start putting clots in it it's restive

Gong its its resistance goes up it's kind of analogous to the left an electrical circuit what does that do to the right ventricle well it increases the after load on that right ventricle so what that does is it causes the right

ventricle to blow up like a balloon now by Laplace's law if you take a balloon and you blow it up the intramural pressure is higher in the balloon so if you can imagine that thin walled balloon if you took the pressure at each point

inside of the balloon because it still got a finite thickness the pressure is higher than if it's decompressed now the problem with that is that how does the right ventricle get blood it gets blood from the coronary arteries but if the

pressure inside the ventricle is higher than the pressure differential is less and what what what is Flo rely upon it relies upon a difference in pressure from point A to point B so if that starts to equalize your blood flow to

the right ventricle decreases okay that's why the right ventricle gets ischemic now when the right ventricle becomes ischemic it can't squeeze as hard so it gets hypokinetic when it dilates it also does

not seem to squeeze out as well because the muscle fibers aren't overlapping as well okay so both of those things lead to both so that the right ventricle is now not squeezing is hard and it's not getting blood forward to the left

ventricle so that results in LV preload reduction though LV is not seeing as much blood on top of that when the right ventricle dilates it starts impinging on the left ventricle so now the left ventricular cavity is smaller and it can

accept less blood your output is only as good as your input okay so that's where you start developing systemic hypotension because your left ventricle can't pump out as much blood what happens when your left ventricle can't

pump out as much blood you don't get as much blood into your coronary arteries you don't get as much blood into your coronary arteries you're not getting as much blood into your right ventricle this is the vicious cycle that leads to

right ventricular failure and the progressive death that you see with massive PE now if you were to draw a line like that everything above the line is sub massive PE everything below the line is massive PE okay this is a big

experiment I did we were trying to create sub massive PE we created a massive PE this used to be mostly the L the left-sided chambers and all of a sudden became the right-sided chambers to me this drove home how much the right

side can blow out and dilate that's the only point of this picture I hope I didn't cross you out okay so let's talk

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

here are the treatment options and I did want to include a fourth one it says nothing about the intervention per se but it's medical management which was actually had the significant growth over the last decade and really more

aggressive medical management every treatment below this should have medical management included as part of it so I included that first that's critical if you're gonna have a carotid endarterectomy if that's what ultimately

your your physician decides then you should still have medical management before and after carotid artery stenting and then ultimately trans carotid artery stenting so carotid endarterectomy I'll show you a case example but this is a

diagram illustrating what's ultimately done that longitudinal incision and then removal of that plaque this is what the plaque looks like when it comes out as opposed to carotid artery stenting which is less invasive obviously and we place

a stent but we don't actually remove the plaque overall you know you know we can talk about why that's okay in fact the plaque itself doesn't need to come up what we need to improve the flow and stabilize that plaque from being able to

embolize small clot overall medical therapy is really just these basic things aspirin or sometimes dual antiplatelet therapy so that's aspirin and plavix in addition aggressive statin therapy so

Doc's will Vascular Docs anyone interested in this space will have you a non-aggressive statins or cholesterol-lowering medications stop smoking tight glucose control so those diabetics have to be really well

regulated and in the blood pressure control if you don't do those things no matter what you do with the carotid endarterectomy or the stenting is gonna fail so what's carotid endarterectomy

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

new data of the Emmy trial that came out last year our ten-year results saying

that after ten years after ten years women who wanted to retain their uterus they looked at them in ten years three-quarters of those women were still very very satisfied and also were still able to retain their uterus so ten-year

data came out randomizing people for uterine artery embolization versus hysterectomy of the women who chose you to an artery embolization ten years later they were still very happy so I tell my patients that this is what you

should expect that you will have symptomatic improvement in 12 months around 85 to 95 percent of the patients are pretty happy there is a entry intervention rate it is not zero and it can be higher than ten

depending on what kind of Imogen is seen ahead of time and that we know that dysfunctional uterine bleed tend to do a little bit better than bulk type symptoms and that's partly because of subjective nature of that so this is one

of the patients that I treated when I was in in Virginia and Riverside and she's a former miss Brazil and she came to see us with what she also called reversed cycles like she would bleed more than she would not and she was

wearing depends and it took everything to just coach her out of the car to come inside to do a consultation because she was so afraid that if she got out she would be sitting in a pool of blood and she had an MRI showing what looked like

a eleven point seven centimeter fibroid she had embolization and that was her six month follow-up MRI to the right which looks like a very impressive result they don't all look this way which is why I save this image something

that looks like a normal uterus now I for the persons that I told to hold your high horse here is the time okay so what happens if I want to have a baby because these are the things you remember we're being ambassadors for this procedure we

need to be having the answers for the things that are our friends and family members are going to be asking us so if you want to have a baby I would say that the data that informs us as to what to do with you is still very weak but the

only randomized prospective trial that we have out there says that you should actually have myomectomy and a Cochrane review was also done and it still says that there's very low level evidence suggesting that myomectomy may be

associated with better fertility outcomes as opposed to UAE but more research is needed and we still require more research so at the very least what I have to do and now you feel compelled to do is to send my patients to see

someone who is a fertility specialist in consultation so we can make this decision together so if your poor surgical candidate if you have the gazillion fibroids and if you've had surgery before a hostile

abdomen and the patient says you know what dr. Newsome there's nothing that you can tell me ever to say that I'm going to have surgery then we're going to be doing something else that is not surgery okay the other thing that your

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

vessel growth or angiogenesis and then this is the cycle of pain that occurs after that how does this actually occur

and like I mentioned it's not a new concept here as you can see this is a depiction from a 2005 article from Journal Rheumatology it just blown-up knee joint and what happens here is in the lining with that sort of peach color

or light color on the lateral aspect of the image where it says synovium gets inflamed releases these cytokines those cytokines break down the cartilage lead to new blood vessel growth and it's an inflammatory process so not just a

degenerative process and that it's that inflammation that we aim to target with genicular artery embolisation if you even take biopsies of patients who have inflammatory diseases and the joints here if you look at those two slides on

top where all those little dark staining blood vessels there that's a biopsy specimen from somebody with frozen shoulder to two slides below or actually biopsy specimens of someone's synovium who has just a rotator cuff tear and

you'll see there's no increased blood vessels in the two slides below but on top there increased blood vessels everytime you have more blood vessels you have more nerves that's why they called a neurovascular bundle because

questions comments and accusations please hello this topic is very personal to me I've had it actually had a UFE so this is like one of my big things I work in the outpatient center as well as a

hospital where we perform you Effy's and frequently the radiologist will have me go in and talk to the patient it's from a personal perspective one of the issues which it may just have been from my situation was pain control post UFE

whether you normally tell your patients about pain control after the UFE someone say we are all struggling with this yeah oh it's not what's your question is going to be okay good I'm gonna get doctor Dora to answer Shawn the question

is what do you what do we do with this pain issue you know what are you doing for the home there at Emory there you know and a lot of practices we we don't rely on one magic bullet for pain control recently we've been doing

alternate procedures for two adjunctive procedures to help with pain control for example there are nerve blocks that you can do like a superior hypogastric nerve block there's there's Tylenol that can be given intravenously which is seems to

be a little more effective than by mouth there's there's a you know it and a lot of times it's it's a delicate balance right between pain post procedural pain because you can often get the pain well controlled with with narcotics opioid

with a pain pump but the problem is 12 hours later the patients is extremely nauseous and that's what keeps her in the hospital so it's a it's a balance between pain control and nausea you can you can hit the nausea

beforehand using a pain and scopolamine patch that that'll get built up in the system during the procedure and that kind of obviates the nausea issues like I said that the the nerve blocks the the tile and also there are some other

medicines that can can be used adjunctive leaf or for pain control in addition to to the to the opioids so the answer the question is there are multiple there multiple answers to the question there's not one magic bullet so

that helped it did one of the things that I tell the patients is that you know everyone is different and yet some people I've seen patients come out and they have no pain they're like perfect and then some come out and they are

writhing in the bed and they're hurting and they're rolling all around what and I always ask the acid docs are you telling them they could possibly have you know pain after the procedure because some have the expectation that

I'm going to be pain-free and that's not always the case so they have an unrealistic expectation that I'm gonna have the UFE but not have pain what I also tell them is that the pain it's kind of like an investment right and

this is easy for a guy to say that right but but it's it's an investment the worst part the worst pain you should be feeling is the first 12 12 hours or so every day I tell my patient you're gonna be getting better and better and better

with far as the pain as long as you is you follow our little cookbook of medicines that we give you on the way home and I want you to make sure that you fill these prescriptions on the way home or you have someone fill those

prescriptions for you before he or she picked you up in the hospital and lately we have been and I see that you're there as well lots of other little tricks that are out there right and again there are all

little tricks so ensure arterial lidocaine doctor there is near alluded to and if you're on si R Connect you may it may spill over on some of your chat rooms here people have been using like muscle relaxant like flexural or

robertson with some success but just know that we don't have any studies that tell us how that's supposed to do so when i have someone that is like writhing in pain i just use everything so i do it superior hypogastric nerve

vlog and i actually will do some intra-arterial lidocaine although not so much lately i have been using the muscle relaxant but i will warn you that i've had two patients with extreme anticholinergic effects where they are

now not able to pee from that so you know where we're doing that balance act I see that you're there can I take that question here first just so we're we're doing the same thing we're using the multimodal just throwing all these

things at people and we're trying the superior hypogastric blocks but we're collaborating with anesthesia to do that right now do you all do your own blocks or do you collaborate with anesthesia we do our own blocks okay it isn't it is

not that difficult I would tell you that but again it's kind of like you know you got to do if you start feeling better and then you're like we don't really need them we'll just do it on our own okay thank you again yes what's the

acceptable interval between UFE and for IBF oh that's a your question what is the interval between UFE and IVF so if you wanted to get pregnant yeah and can you have a you Fe and then have an IVF like how long would you have to wait

wait and tell you before you can have that the IBF it I guess it really depends on the age of the patient because we know that that the threshold for which patient tend to have that inability to conceive

is around 45 years old so you know it did below the you know below the age of 45 the risk of causing ovarian failure or or the inability to conceive is significantly less it's zero zero to three percent so I would say that you

know you probably want the effects of the fibroid embolization to two to take effect it takes around 12 months for these fibroids to shrink down to their most weight that they're gonna they're going to shrink down the most I wouldn't

say you need to wait 12 months to put our nine vitro fertilization there's no good there's no good literature out there I don't believe that's your next and so I would say just remember that if you came to my practice and you said you

wanted to get pregnant I will be sending you to talk to fertility specialists beforehand we do not perform embolization procedures as a way to become pregnant there's no data to support that but if you saw your

gynecologist and they said let's do this then I'm sure they'll be doing lots of adjunct things to figure out what would be an ideal time then to for you to have IVF and if I dove not having any data to inform me I would ask you to wait a year

and what will be the effect of those hormones that they gave you if for example a patient has existing fibroids what would be the effect of those hormones that IVF doctors prescribed their patients yeah so fibroids actually

can grow during pregnancy so I would say that most of those hormones are pro fertility hormones so I would expect that maybe you can see some of that effect as well yeah alright if you have any other questions you can grab me oh

you're I'm sorry go with it okay yes we we have time I don't want to keep anybody here for that so I have a two-fold question the first one is post-procedure can you use a diclofenac patch or a 12-hour pain

patch that is a an NSAID have you have any experience with that and your next question my second part of the question is there a patient profile or a psychological profile that tips you that the patient is not going to be able to

candidate because of their issues around pain so they're two separate but we have in success sending people home that first day so I'm looking to just make it better I haven't had experience with the Clos

phonetic patch it's in theory it seems ok you know these are all the these are they're all these are non-steroidal anti-inflammatory drugs so there are different potency levels for all of them they you know they range from very low

with with naproxen to to a little bit higher with toradol like that clover neck I think is somewhere in between so we found that at least I found that that q6 our our tour at all it tends to help a lot so with that said I I don't have

much experience with it with the patch in answer to your second question the only thing I can say is there there is a strong correlation between size of fibroids and the the amount of a post procedural pain and post embolization

syndrome so there really you know we often say we don't really care too much about the number of fibroids but the size of the fibroid is is is should be you know you should you should look at that on pre procedural imaging because

if it gets too big it may not be worth it for the patient because they may be in severe pain the more embolic you put into the blood supply's applying the the fibroid the the greater the pain post procedural pain

are there multiple other factors that would contribute to pain but that's that's one aspect you can you can look at post procedurally on imaging okay thank you very much yes ma'am hi what what kind of catheter do you use

to catheterize the fibroid artery when you pass by radio access yeah so over the last three years the companies have been really very good about that so there are a few things that I without endorsing one company or the other that

you need to make sure that the sheath that you're using is one of those radial sheets a company that makes a radio sheath you should not use a femoral sheath for radial access so no cheating where that's concern you may get away

with it once or twice but it will catch up to you and you need a catheter that is long enough to go from the radio to the to the groin so I'm looking for like a 120 or 125 centimeter kind of angled catheter whether it's hydrophilic the

whole way or just a hydrophilic tip or not at all you can you can choose which one in our practice most of us still tend to use a micro catheter through that catheter although if I'm using a for French and good glide calf and it

just flips into like a nice big juicy uterine artery then I may just go ahead and take that and do the embolization if the fellow is not scrubbed in as well so thanks a lot but they make they make many different kinds like that and more

of those are to come all right I'm you can please please please send us any other questions that you have thanks for your time and attention and enjoy the rest of the living

being your sister's keeper this is my last two slides uterine fibroid embolization is effective and it's durable we do know that we although 300 000 hysterectomies are done in the country Stella for benign disease of

fibroids we are making dent in that doing around 30 000 UFE procedures annually in the u.s. we know that the procedure is clinically successful for bleeding in bulk and there are several several clinical studies that have shown

that compared to surgery that you can have less recovery time and complication that outpatient service is going to now become the standard of what the population is asking for no one wants to be in the hospital unless they have to

do it and that we could return patients to a better quality of life faster going back to work and around a week with a low complication rate thank you for your time and for your attention and doctor and I would be available for questions

Thanks

and you can see on this t1-weighted image that increased area of enhancement which is the area of synovial thickening you actually see this on MRI beforehand and there it is located over the lateral aspect of the knee on the axial image

and so what we're doing sorry in the medial aspect of the knee so what we're doing here on the angiogram is and you solve these leg angiograms where everyone doesn't really care about these Janicki lit arteries they're really

important when you have sfa or popliteal occlusive disease because they serve as a collateral source but otherwise and people have arthritis they can be a real pain and pain in the knee if you will so this is a this is the superior medial

genicular artery it always drapes over the femoral condyle and you'll see here on this image you don't really see very much once we get into the vessel look at this it almost looks like a small about a cellular carcinoma like when you're in

the liver you get this tumor type blush vascularity that's what we're looking for that corresponds to the patient's area of pain and then after embolization this is what it looks like takes a very small amount

of embolic we're using maybe 0.4 2.6 sometimes 1 CC at most of dilute embolic that we're injecting this is another case again before and after if you look here on the right and then on the left you don't really see much until you

select the vessel out once you get into that super medial vessel you can see how much enhancement there is so in our clinical study of 20 patients this is what we did you'll see on the bottom here we used embassy and 75 micron in 9

patients and 1111 patients got a 100 micron and I'll explain why we upsized our particles so initially we wanted to go very small because that's what dr. o Cano had done in Japan but then we wanted to actually up size our particles

and I'll explain this here in our complications so like all clinical studies the purpose of doing really good clinical research is because this is early and we don't know if they're going to be complications and it's always fun

when you're the first one to figure it out and you tell patients I don't really know what's gonna happen and this is what happens so 13 patients had this kind of skin discoloration over their knee now we knew this because we've been

doing knee embolization for about 10 years in bleeding patients not necessarily arthritic patients so we had seen this before but none of these patients in this clinical study went on to have any alteration of the skin and

it resolved in all patients there was some minor side effects from basically medications and one small groin hematoma but there were two patients who developed plantar numbness over their great toe so under their great toe

basically in the medial distribution of their tibial nerve they ended up getting plantar numbness and this is believed at least in our experience to probably be related to non-target embolization to the tibial nerve the tibial nerve

probably gets its blood supply from many of these generic arteries so we decided

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

them so my particular area of interest is a blade of radium ization and what we'd like to do is to break the liver

down into a bunch of little tiny perfused volumes off of a single vascular pedicle or what we call angio zones and those are those allow us to segment out if you only have small volume disease for example like here in

segment three why do I have to treat the entire left to paddock low I can actually treat just that small portion just like it what it tastes only now I'm administering y9t but since it's expendable liver I

can administer doses that are way higher orders of magnitudes higher than what I could if our infusing into the liver just on its own so here's an example of that if you look at this lesion in the right of panic lobe you'll see these

little lines over them what we want to achieve is around a 205 GRA threshold for these lesions that's the red line everything that's south of red in terms of color orange Holly to blue is not cold enough to kill tumor so if we

administer a dose of a tea grade to the lobe we get this coverage which is to be a partial response if I administer 150 grey suddenly that red line gets larger what happens when you administer 400 grey now you've officially covered the

entire lesion and so you're going to lose the adjacent liver at those kind of doses and as well - what what the real question then is not sort of how much dose you give it's you give what you need to to ablate the tumor in its

entirety and you see what the patient's left with if someone's left with anatomically a lot of remnant liver because of how you've segmented out that lesion then go ahead and dose extremely high and that's essentially what we've

seen in pathologic results it's one of the highest things of high school pathological crosa rates you can achieve with a trans arterial therapy it's highly competitive with thermal ablation in the correctly selected bleezin

so this is an example of what it looks like when you segment out a little lesion like this and this patient ultimately went to resection and this was a complete pathologic necrosis but as you can see even it was a cirrhotic

patient we chose a very small volume of liver that we felt the patient would tolerate so that's a blade of vernalization let's take a look at what looks like in real time so we have a little capsular lesion we felt that

ablating this patient who was a potential transplant candidate we felt we can probably with a blade of radium realization so you go in and this is the comb beam CT that looks at a complete enhancement of the lesion within the NGO

zone this is what the MAA looks like when we administer it you can see how it tends to cluster within the tumor but you can see what the adverse territory is the liver adjacent to it this is what the engine room looks like how highly

selective it is the day of and this is what the wine ID actually looks like is the wine 90 doing its job and you can see how conformal it is there's no risk whatsoever to the liver that's adjacent outside of that field of

a maximum of around 11 millimeters and this is a patient at one month with a complete imaging response and this patient never developed a recurrent to the site and what's actually sole mode of treatment for this person's liver

cancer this is how you get complete pathologic response if you look at those little tiny grey dots in there those are actually the spheres within tiny little vessels within the tumor sometimes they go even to the portal branch but you can

see how they're not clustered uniformly but when you make them super hot that allows them to give range where otherwise they would be fine a little bit short so this also applies to the whole lobe this was a patient that had a

very unusual presentation of colon cancer that was invading the portal II we weren't sure what to do with this patient no one was because a very rare occurrence so we said well we would like

to resect him but there's not enough liver and we're not sure if this person's gonna survive because we've never seen portal cancer invading the portal vein so we said let's treat it with the radiation lobectomy and what's

cool here is if you look at the the arteries even though the tumor is invading the portal vein it's bringing arterial supply along with it like a vagabond and that's the conduit that allows us to treat these patients so

when we saw that we felt this patient we good candidate for irradiation lobectomy which is applying an ablative dose of y9t to the entire low not just a small segment in patients where otherwise cannot because of the anatomy the tumor

or if you're trying to shrink that lobe to get that person ready for surgery why because if you look at the size of the lobe on the left from this first image and compare it here you can see how much larger it got what happens is that part

that the surgeon ultimately tens on resecting in volutes over time and becomes completely vitalized and turns into scar tissue so we know that if a surgeon goes in afterwards to cut it out it's going to not result in liver

failure and that level of security allows people to have sir who otherwise wouldn't this patient is not going to have metastatic disease because we followed their blood level markers let me see how low they are and

is going to have enough liver remnant so the patient went to resection and this is the pathologic specimen and this was also a complete pathologic necrosis so I

female recently diagnosed with cervical cancer this is the baseline imaging the

one on the left is pet the one on to your right is pet MRI which one you think the doctor likes better so there is a cervical lesion you could see the abnormal uptick or hypermetabolic uptake in the cervical area that's what we call

hot spots but we do a closer look because the pet MRI this time is used or done for planning for surgery or treatment look at the actual pet MRI you could see the hypermetabolic uptake in the cervical area the normal bladder

and normal uterus those are normal updates under your right you could see the uterus full the full outline of the uterus and exactly where the cervical lesion is located and the bright one at

the bottom is the normal blood er this scan is done to help the doctors plan for the surgery and to check if there is metastasis at this time there's none and the path MRI is choice of modality of choice for this reason because MRI is

the only modality that could do all the planes and it does very good in differentiation of tissues this is the end of our presentation and if you have any questions feel free to do so I did not pass out thank you

[Applause] [Music] [Applause]

so I'm gonna talk about me and shoulder embolization I'll take out my phone here so I know the timer perfect and I will try and cover everything about knee and shoulder embolization as quickly as I can so why are we doing this is really what I'm going to talk about there are

two different disease processes and the knee we're talking about arthritis and in the shoulder I'm talking about frozen shoulder so these are my disclosures obviously you know knee knee osteoarthritis is a major problem it

affects more than 30 million people in the United States and there are more than a hundred thousand hospitalizations a year just from NSAID toxicity in this patient population who takes NSAIDs for pain of course and they end up with

things like GI bleeds there are more deaths just related to ends as the United States and there are more than four million knee injections performed annually in the

United States keep this in mind there are double-blind randomized placebo-controlled studies that show that knee injections don't work and yet there are four million every year okay so what's the rationale for genicular

artery embolisation so in the knee we always learned that knee arthritis is degenerative right there's no inflammation like rheumatoid arthritis but many years ago they discovered that there's actually an

underlying synovial inflammation that leads to an increase in these cytokines being released that leads to new blood

want you to follow follow okay so our again we went from a six-week program now down to a three-week program and

incorporating simulation and so we took a lot of what we wanted to and like what we would recover in our first second and third week and here we're going to go into more detail so really week one as we talked about the basics so really

just doing some introductions you know what we did was a baseline assessment so we gave them a quiz and then we also talked about aseptic technique the cath lab environment essentially and then we also really talked about the team and

the environment and scopes of practice we really wanted to focus on that because this is kind of the Foundation's the fundamentals of working with a team because I know coming from critical care into the cath lab I was usually like the

one that owned the patient and now I have this team and so it was really kind of a difficult transition for me because they didn't understand the RT role and I think vice-versa so what we do is we have the nurses and

the text and so the nurses look up the RT scope of practice and vice versa and it's really an aha moment for some of those nurses and techs to see really what is our scope of practice and how similar they are yeah it's very

different too and so this is a lot of times we get a lot of good feedback of like oh I didn't know that they could do this or oh wow you know so like I said some really great aha moments and then our second day we go into a great detail

about radiation safety a lot again as a nurse I didn't know a lot about radiation safety the RT but we really wanted to blend the best of both worlds and really help learn from each other so that's the hence the

interprofessional approach and then really just basic cases so left heart calf so what wire is what catheters what do we need for this case and we would bring these wires and catheters to class so that they could look at them they

could play with them so especially if they've never been exposed to something like this before they have that hands-on you know the kinesthetic learning essentially so that they get to look at at some of these

pieces of equipment same with right heart cast some of our interventional procedures and structural heart peripheral etc so we wanted to cover a lot of different cases and then day three we really went into more of that

equipment some of the interventional equipment and then looking at radiographic views so we kind of wanted to like put it all in some sort of sequence and then the third day we went into doing some sort of simulation so we

wanted to introduce them to our simulation software the mentis and then our day four and five this is where they would work back at their home facility and do their clinical practice essentially or their orientation so so

segwaying into some of the examples that we've wanted to show everyone just on the first week of our academy and some examples of the activities that we do with our learners in class is trying to identify different areas of the cardiac

cath lab so essentially is your rhythm right your EKGs I think that's pretty number one important part of working in the cath lab is identifying your EKGs and your rhythms right so again our technologists may not have had this

prior experience so we really do need it we needed to start from the ground up identifying what a rhythm is and we asked them to take a class prior to attending the Academy if possible depending on their hire date and

depending on when they start the Academy I think it benefits them to understand a basic you know EKG rhythm what's a p-wave what's a QRS right so down to the very basics once they do that they can come into

class and we can show them examples of abnormal and normal cardiac rhythms and and have them identify them and and ensure that they understand that you know this is something that you see in the cardiac cath lab you need to raise

your hand and call it out rhythm rhythm hello or making sure that you identify that it is a normal rhythm another example that event an activity that we do is identifying our coronary Anatomy that's pretty important as well

injecting contrast and doing angiograms through the coronary arteries to identify any abnormalities or stenosis and so with that comes a little bit of complicated it's complicated for them to identify those arteries and different

views you know we have the left anterior descending we have a right coronary artery well how does it look in different views and as an RT we understand that every time we move that SI arm the image changes not only for

the artis to identify the coronaries but also the RNs we need them to identify what we're looking at some of these are ents have never seen an geographic views in five different ways so where's your Li D if my image intensifier is REO

caudal where is your right coronary artery if my image intensifiers le oh so we really wanted to incorporate that collaborative effort with both parties our T's and our NS learning this activity all right and no pun intended

patient who did not come from the street so if you've been here for a few years

you've heard me talk about you know some of my friends this is also one of my other friends who has large fibroids but her fibroids were so big and they were not all very vascular and so I sent her to have surgery and she ended up having

a hysterectomy with removal of her cervix because of abnormal pap smears but her ovaries were left in place so our path forward after doing this procedure from 1995 a procedure that is not experimental a procedure that has

had a lot a lot of research done on it more research than most procedures that are done surgically or by interventional radiologists I'd say that it would require a partnership it is true that we can see patients on our own and we can

manage mostly everything but at the end of the day uterine artery embolization is still a palliative procedure because we don't know what causes fibroids to begin with and as long as the uterus is still there there's always a chance that

new fibroids will come back so in your practice and in mind I believe that a path forward is a sustaining program embolization program which is built on a relationship with the gynecologist that yes

I am as aggressive as any other interventionist that is out there but if this were my mom and that is my usual test for things I would say that where we would like to position ourselves is in the business of informing the

patient's as much as possible so that they can make an informed decision and that we're asking our gynecology partners to do the same is that if you're going to have a hysterectomy for a benign disease that you should demand

and we as a society and you as your sisters keeper should be asking for why am I not eligible for an embolization so si R is actually embarking on a major campaign in the next year or so it's called the vision to heal campaign and

it's all around providing education for this disease stage what I like to tell our patients and I'm almost finished here is when I talk to our gynecologist and to techs and nurses as well I said woody woody what should I expect right

that's what they want to know when I send my patient to you what should I expect and I say that what you should expect that Shawn and myself we're gonna tell the patient everything about fibroids we're gonna talk to them about

what the fibroids are the pathophysiology of it the same things I told you we're gonna tell them about the procedures that treat it we tell them about the options to do nothing we talk about all of the risk and the benefits

of the procedures especially of fibroid embolization and we start the workup to see if they're an appropriate candidate when they're an appropriate candidate we communicate with them and their OBGYN and then we schedule them for their

procedure in our practice there are a few of us who send our patients home on the same day and we let our patients know no one is kicking you out of the hospital if you can't go home that day then you'll get to stay but

most of our patients are able to go home that day and then we see our patients back in clinic somewhere between two and four months three months and six months and we own that patient follow-up their visits and after their year we have them

follow back up with their gynecologist and so that we're managing all of these sites and it comes back to that new again may not be so new for some of the people that have been doing clinical IR four years that shift that we own these

patients if you're a nurse in this room these are our patients these questions need to be answered by us in our department we do not believe that these patients should be calling their gynecologist for the answers to that

like what should I be doing right now should I be taking I haven't had a bowel movement and like that is something that we answer we're the ones that are given them the discharge instructions and we set them back up for their follow-up so

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

these are our prospective CDT trials it's a lot to go through them so I'm not going to suffice it to say that the only one of these that is randomized is the

one in the top left the ultimate trial with 59 patients the rest of these are single set are single arm studies the optimized trial was randomized but the key arm it did not have was a control arm so all it did was vary the amount of

drug but there was no control arm to tell us how are people doing if they just get heparin well and I'll show you one result from these trials that is the most important result and that is up from the ultimate trial at 24 hours CDT

catheter to thrombolysis reduces the RV to lv ratio to a greater extent than heparin alone what does that mean so you saw all those pictures with the big dilated right ventricles our surrogate measure for right ventricular

dysfunction is the ratio of the diameter the inner diameter of the right ventricle to the left ventricle what we found in this study was that that ratio got reduced to a greater extent at 24 hours in the CDT arm compared to heparin

alone that means that CDT seems to reduce our V dysfunction faster than heparin now importantly 30 days later the echos looked identical so really it's a question of time which is not surprising what we've noticed in

our practice is that patients feel better faster okay I'm gonna go through the rest of this because I'm out of time but I want to give you a little bit of a sense of where we're going because there's bleeding associated with CDT and

maybe I'll show you this that in the Seattle to trial there was an 11% major bleeding rate now this was a pretty conservative definition but there were some serious bleeds and there were no intracranial

hemorrhages in this study but we have realized that CDT is not risk-free it's not like we've all of a sudden gained all of the advantages of systemic thrombolytics and none of the disadvantages now the rate of

intracranial hemorrhage seems to be about tenfold less but it does happen about 0.2 to 0.4% of the time the rate of major bleeding seems to be about 5% which is about half the rate of major bleeding that we see with system or

thrombosis so bleeding is still there it just doesn't seem to be as frequent so that's where some of these other devices are coming in then our a float Reaver the the the extra penumbra indigo cat 8 device and so the the float Reaver is

has actually gone through the full trial and the results are about to be published what is this thing well it's this pretty big hose which is about 20 French and it goes through the right heart and goes up there and it takes

this clot and literally aspirates it out and these are some of the things that will come out and that's sort of your post picture right there the data showed something similar to what we saw with the catheter directed thrombolysis

trials they had looked at 106 patients are vlv ratio was reduced again there's no comparator arm here so this is just the device on its own with a 3.8 percent adverse event rate and so now we're talking about mechanical devices that

don't use a clot-busting medication therefore you're gonna you can expect less bleeding but you're trading some of that off for a mechanical device that can cause injury to either myocardial structures or to the pulmonary artery so

that's something we have to be highly cognizant of as they're introduced into the market this is the penumbra cat 8 this is from Jim Benenati publication basically showing a couple things that's the separator that is the actual

catheter and that's the sheath back there so you've got poor profusion because of a clot in the inter lobar pulmonary artery and then at the end of it you have better perfusion for lung down there so we actually just completed

enrollment into the extract PE trial 120 sub massive PE patients the same efficacy endpoint you have to remember that has been established by the FDA as a way to get approval this is not the final

study nor should it be the final study when we evaluate these devices so to summarize sub massive PE what does the data not tell us CDT probably reduces the RV to LV ratio at 24 hours that is the main outcome that I want you

guys to remember from the ultimate trial it's associated you didn't see this data so don't worry about that we do see major bleeding and sometimes rarely but sometimes we see intracranial bleeding with CDT as well so what we're missing

from catheter directed thrombosis for sub massive PE is what are the clinical outcomes the RV to LV ratio is a surrogate outcome what about death what about clinical deterioration what about recurrent hospitalization what

about recurrent VTE how are people doing in the long term are they walking as well as they were before we don't know any of this none of the data right so far can tell us any of this information so where do we go from here for sub

there a better option this is where a carotid artery stenting was developed over a couple decades ago and this is a

less invasive viable option for treating carotid artery stenosis it was generally started off as a trends ephemeral approach but I'll show you what the new approach is that many of us are involved in it involves the use of

in volunteer tection so it's one of the unique vascular territories where embolic protection is required if you're gonna get Medicare reimbursement for this you have to involvement and bollocky protection if you do without

you can do the procedure but you won't get it you won't get reimbursed and ultimately it's it was proven to show much better outcomes if you use involved protection because even doing the procedure and trying to place the stent

there is some small embolic degree that that that shuttles off and if it happens in the foot you may or may not lose a toe but if it happens in the brain you're gonna lose brain cells and it's gonna be potentially catastrophic so

significant adjunct to the stenting procedure is doing embolic protection and there's two types of embolic protection there's distal and there's proximal I'll walk through each of those with some diagrams here and then anyone

that gets a carotid stent has to be on dual antiplatelet therapy so if they have an allergy they're unable to be on aspirin and plavix they don't get a stent because there's early stent thrombosis that can't occur in these

patients if they don't have that dual antiplatelet therapy so let's go through

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

now let's look at non-invasive ventilation and I know about like five

percent of the patient population that you are seeing is on some form of non-invasive whether they're on by level ventilation or continuous positive airway pressures right so see if HAP using to stent the Airways open and

maintain a pro a Peyton airway and improving oxygenation but BiPAP and patients that need co2 elimination right need help with the by level support so there's a lot of questions that come up when we give

these talks I'm like how does capnography work effectively with these different technologies of non-invasive ventilation and especially because more and more of our patients are requiring these so we're gonna look at some of the

comparisons of co2 capnography data from three different sample sites and remember I showed you that picture so that picture I showed you with the patient wearing the sampling line with a nasal oral scoop and then there was the

mask sampling port and then there was the port on the ventilator circuit distally so that's what we're looking at here so the diamonds that go I wish I had a pointer I don't have a laser pointer I'm sorry but across the top the

diamonds represent our end tidal capnography values from one liter all the way up to eight liters so as the props are as the pressures go up for CPAP they were monitoring leak rates and what they found is the cat nog rafi

values across all of those were pretty accurate when we're monitoring right here the squares and the diamonds represent the mask sampling port and the the ventilator in the circuit distal to the mask and as you could see that

quality of our monitoring goes down as we progress okay to use yes but just know the limitations of your equipment right and again this is the same thing for our BiPAP Dave data are by level ventilation we're seeing again

across the top if we're sampling right at the airway we have pretty consistent readings but then they start to fall off and we look at the other devices that are further down the downstream what we're seeing here is our end tidal

measurements again with CPAP data and what we're looking at is the patient leak so there's always leaks right when we have these devices on and that's a question well sue if I have a leak how accurate am i okay so now the red is our

nasal oral scoop and if you look at the red graph all the way across depending on the leak rate pretty consistent values right the charcoal color is the mask sampling port and that's pretty consistent probably until about like 10

right until our patient like leak rate 10 liters per minute coming out of that mast and then that value starts to fall off and even more so even further distal down our circuit when we're sampling from the circuit at the past the mask

that's the cream color pretty accurate when there's a minimal leak but as the leak goes up that falls off pretty significantly and the same holds true for our by level ventilation pretty similar distribution here with the

patient leak and the sampling so when we're using non-invasive ventilation yes it's accurate and yes it's accurate we're using high flows and yes it's accurate if we have a huge leak only if we're sampling right where the patient

is exhaling so now I hope that clears that up with the patients that are getting supplemental pressure support with your sampling and you know in those just whatever it can sample from the mouth and the nose right at the source

of exhalation has proven to be the most reliable out of all of the different sampling devices so third evaluate your

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.