Create an account and get 3 free clips per day.
Chapters
Multiple Myeloma, Vertebral Collapse|Microwave Ablation, Bone Cement, Pedicle-plasty|62|Female
Multiple Myeloma, Vertebral Collapse|Microwave Ablation, Bone Cement, Pedicle-plasty|62|Female
2016axialcalculatedynactinterventionallevelsmyelomapatientpediclerotationalSIRthoracictransversevertebralzone
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
Systemic vs Catheter-based Thrombolysis | Management of Patients with Acute & Chronic PE
bleedingcatheterchaptermilligramNonepatientpatientsperiodriskslowersystemictargetedthrombolysistpaversus
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
biliarycentimeterchaptercoilcoilscontraindicationscoworkersdiameterexposureimagesimagingimplantskidneyslimitationsmachinemodalityMRINonepatientpelvicpreferredradiationradiofrequencyscannerskinstructuresthoracictissue
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
anticoagulantanticoagulationcatheterchapterclotcoumadindefensesdirectedheparininpatientintermediatelovenoxNonepatientpatientsplasminogenprocessriskrotationalstreptokinasesystemicsystemicallythrombectomythrombolysisthrombustpa
Why Interventional Oncology | Interventional Oncology
Why Interventional Oncology | Interventional Oncology
ablationcenterschapterhccinterventionallivermetastaticoncologypalliationprimaryradiologyresectiontechniquetherapytoleratedtreatmentstumortumors
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
The Impact of Twitter on Our Specialty | Twitter Case Files: Impact on our specialty and how to expand our reach
The Impact of Twitter on Our Specialty | Twitter Case Files: Impact on our specialty and how to expand our reach
awarenesschaptercollaborationfriendsinterventionalinvasiveminimallymultidisciplinarypatientprocedurespecialtiesspecialtystatswebsite
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
The Path Forward | Uterine Artery Embolization The Good, The Bad, The Ugly
chapterembolizationfibroidfibroidsgynecologistgynecologyhysterectomyinterventionalNoneobgynPathophysiologypatientpatientsprocedureproceduresprogramsurgicallyworkup
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Bland Embolization | Interventional Oncology
Bland Embolization | Interventional Oncology
ablationablativeadministeringagentangiogramanteriorbeadsblandbloodceliacchapterchemocompleteelutingembolicembolizationembolizedhcchumerusischemialesionmetastaticnecrosispathologicpatientpedicleperformrehabresectionsegmentsequentiallysupplytherapytumor
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
CTEPH Studies | Management of Patients with Acute & Chronic PE
CTEPH Studies | Management of Patients with Acute & Chronic PE
acutearterieschapterchroniccpapedemainterdisciplinaryjapanmultidisciplinarymultipleNoneoperatorspatientpatientsperformedpulmonaryreperfusionrequiringthrombolysistreatedtreatmentvascular
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
catheterchapterclotmassivemechanicalNonepatientpatientsPig Tail Catheterpigtailpulmonarysurgerythrombolytictpa
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
anatomychapterdefensesfailuresinterventionalmistakesNoneoccurringpatientvisible
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Radiology in Algeria | IR In Algeria, UAE - PAIRS Meeting
Radiology in Algeria | IR In Algeria, UAE - PAIRS Meeting
ablationanesthesiologistcardiologistscenterschapterfulfillhawkinsimplementinginterventioninterventionalperformedperformingprogramradiologistsvascular
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Practice Guidelines | Procedural Sedation: An Education Review
Practice Guidelines | Procedural Sedation: An Education Review
anesthesiologistassessmentbeneficialcategorychaptercontrolenhancingequivocalevidencefindingsguidelineguidelinesinterventionallabeledliteraturemonitoringNoneobservationalopinionoutcomespatientpharmacologypracticeproceduralprocedureradiologyrandomizedrecommendationsreviewsedationstatisticallystudiestrialsversus
Q&A- Documentation, Before and After results, Leadership, Culture | Innovation and Application of Real Time Nursing Dashboards
Q&A- Documentation, Before and After results, Leadership, Culture | Innovation and Application of Real Time Nursing Dashboards
accomplishchapterculturedatadocumentationdocumentinginterventionalleadershipmanagermodalityNonenursenursesnursingpatientphysiciansprojectprojectsradiologyroundingteamtechnologisttechnologists
Interspinous Spacer | Twitter Case Files SIR 2019
Interspinous Spacer | Twitter Case Files SIR 2019
ambulatechaptercoexistingdegenerativedeliverydevicedimedotterguyshirschimagesmorbiditiespatientprocessspinetransversevertebralvertebroplasty
Registry and Data | Management of Patients with Acute & Chronic PE
Registry and Data | Management of Patients with Acute & Chronic PE
arterycathetercatheter directedchaptercomplicationsdirectedechoheparinimprovementintermediateinterventionalmassiveNonepatientpatientsperfectpressurepulmonarypulmonary arteryratioreductionregistryriskseattlestrainstudiesstudysystolicthrombolysistpaunfractionated
Pulmonary Ablation | Interventional Oncology
Pulmonary Ablation | Interventional Oncology
ablationactivitycancercandidatechaptercolorectalcryodiseaselesionslobelungmetastaticnodulepatientpulmonaryrecurrecurredresectionresidualscansurgical
Transcript

This is another patient, this is a myeloma if you were here yesterday

you have seen lots of examples of myeloma cases. But sometimes CT becomes a great limiting step in most interventional departments so, I try to do lower thoracic lumbar cases using the rotational 3D the DynaCT on the Siemens platform. So this was a patient who had myeloma diagnosed in 2007, was treated,

relapsed in 2013 was treated again with IVIG was good enough, and 2015 showed a spike again and CT at this time showed lytic lesions with collapse of the vertebral bodies. And her pain was extreme, extreme pain when we saw her in the clinic, she was a 10 out of 10 and had point tenderness at multiple levels especially in the lower back. And ODI score

was 55 so she was completely almost bed ridden and her only thing that I can't go to church, I really wanna go to church I can't even do that. So this was the CT that we got on her and you can see that the L1, L3 and L4 vertebras are involved and there's some particle involvement

at the L4 level also. So we did an endo fluoroscopy, we did a microwave at all the three levels you can see the probes at all the levels and then we did the 3D rotation CT just to make sure that the placements of the needle is fine before we started using the microwave ablation.

This was a 3D that showed me correct positioning and how much I have to calculate the bone zone on this and this was the CT axial and the [UNKNOWN] images that we obtained after that to calculate all the bone zone and everything. So this makes the procedure faster sometimes because sometimes we

get this request from our referring physicians that I need this patient done tomorrow. So CT is really at least in our institute it's a clog point and this has really helped me out and the newer platforms are the 3D rotational CT are much better. And this was the final effort we had augmented it with cement.

We had done some pediculoplasty also. And I did rotational CT just to be sure. Because whenever you have someone hurting in the back, you skip a heartbeat. But I knew it was going in the right direction and we could see

that it has gone into the pedicle and into the base of the transverse process at that level. And the patient three to eight weeks follow up was doing extremely good from VAS of ten she had become VAS of two. And her ODI was 16%. She was happily going to the church,

and was quite happy with the result. And this is the team,

a little bit more systemic versus catheter directed thrombolysis so once you've decided that a patient needs TPA what are the differences here well if

you give patients systemic TPA you're gonna give them a much more rapid delivery this is for those patients who have high-risk PE they're the ones who are coding for those patients you give them 200 milligrams of IV usually you

get 50 first and then another 150 over a very short time period they have a very high risk of bleeding as a result of that a catheter is much slower you're gonna infuse one milligram maybe which is what I think most people do

over several hours maybe a few maybe a day so it's slower targeted versus non targeted well catheter is much more targeted you're gonna give Pete you're gonna give the TPA right into the

pulmonary arteries that's the whole point in our in our thought process as a result you give a lot less drug so when you give a patient based off of some of the trials 24 milligrams of TPA over a 24-hour period that's a lot less than

200 milligrams in a 10 minute period and then the bleeding risk is very different for these patients catheter based treatments have a high bleeding risk but it's possibly lower than the initial bleeding risk of patients getting

systemic TPA so I wanted to go through a

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

there are advantages of this modality one there's less radiation exposure for

the patient we receive about three millisieverts of background radiation every year with one PET scan a patient can get up to eight years worth of background radiation in just one skin the only exposure of radiation a patient

gets in a pet MRI is through the isotope pet MRI has a better disease characterization especially for areas in a Patou biliary region the pelvic areas and the kidneys information and the relationship between lesions and

adjacent tissue is better delineated with the pet MRI so it's easier to see which part is cancerous and which partners normal cells there are varying opinions and research studies are being done to make a determination if pet MRI

is a better modality than pet CTS well PET CT is a lower-cost skin has increased accessibility there are more PET scanners available and more more technologists are trained for this modality PET CT is a shorter skin there

are no contraindications for affairs implants pet CTS are preferred method for imaging the lungs of thoracic nodules and bone structures however with a pet MRI it's good for soft tissue organs such as the brain the muscle

delivered the kidneys the pancreas our GYN pelvic structures such as ovaries the uterus and cervix and also the prostate there are limitations of this skin one it is a much longer skin one whole body pet MRI can last at least

about an hour there are contraindications with certain implants due to the magnetic factor of the of this test and is not preferred for imaging air-filled structures because it can give off artifacts there

are weight limitations for our machine our machine holes can hold up to about 500 pounds of weight it is this our machine as smaller bore compared to the white board MRI the MRI whiteboy is about 70 centimeters in diameter

our pet MRI machine is only 60 centimeters in diameter in this picture the difference of the 10 centimeter difference doesn't seem much however if you put a patient in there and this is one of our coworkers

he is 270 pounds and 6 feet tall and the white board MRI his shoulders fit comfortably well inside it in the sky inside the scanner however in this pet MRI machine he said he did feel a little snug and a little tight inside

but you also have to take an account that we have to put coils on top of our patients that 10 centimeters does make a big difference the coils will help us give the good quality images that we like and I also have to note that we

have to put the head coil or the helmet on top of the patient's head to give good images of the brain the reason why the pet MRI scanner is smaller is because we have to make room for the pet detectors we try to make it bigger the

gradient coil on the radiofrequency coil have to be further away from the center of the magnet and that compromises the quality of our images so which patient

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

PE the first one of course is

anticoagulation so heparin and bridging the patient to coumadin or now aid a direct oral anticoagulant is really the mainstay of treatment most patients again 55 percent of patients with PE have low risk PE all of those patients

should be on according to the chest guidelines three months of anticoagulation so they're gonna get heparin as an inpatient if they even need it and they're gonna get sent home on lovenox bridge to coumadin or they're

gonna get the one of the new drugs like Xarelto or Eliquis but here's all the other things that we do so these patients that are in the intermediate high risk so I'm gonna try to keep saying those terms to try to kind of put

that in everyone's brain because I think the massive and sub massive PE is what everyone used to talk about but we want to keep up with our colleagues in cardiology who are using the correct terminology we're gonna say high risk

and an intermediate but in those patients - intermediate high risk or Matt or the high risk PE patients we're gonna be treating them with systemic thrombolysis catheter directed thrombolysis ultrasound assisted

thrombolysis and maybe some real lytic and elected me or thrombectomy there's other techniques that we can use for one-time removal of clot like rotational and electa me suction thrombus fragmentation and then of course

surgical mblaq t'me so when anticoagulation is not enough so I like to show this slide because it shows the difference between anticoagulation and thrombolysis they are very different and sometimes I think everybody in this room

understands the difference but I think our referring providers don't and so when we when we get consulted and we recommend anticoagulation they're like yeah TPA well that's not the right thing so anticoagulation stops the clotting

process so when you start a patient on a heparin drip they should theoretically no longer before new thrombus on that thrombus so when you have thrombus in a vessel you get a cannon you get a snowball effect more

and more thrombus is gonna want to form heparin stops that TPA however for thrombolysis actually reverses the clouding process so that tissue plasminogen activator or streptokinase or uro kindness will actually dissolve

clot so there you're stopping new clot forming versus actually dissolving clot anticoagulation allows for natural thrombolysis so your body has its own TPA and so when you put a patient on heparin you're allowing your natural

body defenses to work you're giving it more time TPA accelerates that process so you give TPA either systemically or through a catheter you're really speeding up that process anticoagulation on its own has a

lower bleeding risk you're putting a patient on heparin or Combe it in it's it is less but it is still real thrombolysis however is a very very high bleeding risk patients when I when I consult a patient for thrombolysis I

tell them that we are about to do give them the absolute strongest blood clot thinning agent or an reversal agent which is the TPA and we're gonna just run it through your veins for hours and hours

um and that sort of gives them an idea of what we're doing anticoagulation in and of itself is really not invasive you just give it through an IV or even a pill thrombolysis however is given definitely through an IV through

systemic means and a large volume there thereafter or catheter directed so again

the traditional three pillars are

surgical medical and rad honk which actually was once part of radiology and separated just like interventional radiology has and where is the role for this last column so many patients are not medically operable so if you set the

gold standard you know that the cure for someone has a primary liver mass well about 20 percent of patients who present can undergo resection what you do for the remaining portion so Salvage is what we offer when someone has undergone

standard of care and it didn't work how do we hop back in and try to see how much these folks it's low-risk it's not very expensive at all as compared to things like surgery and the recovery is usually the same date so

this concept here of tests of time is kind of interesting a lot of times when we look at a tumor let's say it's 2 centimeters it's not really the size of the tumor but it's how nasty of a player it is and it's

difficult to find out sometimes so what we do is we'll treat it using an IR technique and watch the patient and if they do well then we can subject them then to the more aggressive therapy and it's more worthwhile because we've found

that that person is going to be someone who's likely going to benefit you can use this in conjunction with other treatments and repeat therapy is well tolerated and finally obviously palliation is very important as we try

to focus on folks quality of life and again this can be done in the outpatient setting so here's a busy slide but if you just look at all the non-surgical options that you have here for liver dominant primary metastatic liver

disease everything that's highlighted in blue is considered an interventional oncology technique this is these the main document that a lot of international centers use to allocate people to treatments when they have

primary liver cancer HCC and if you see if you see at the very bottom corner there in very early-stage HCC actually ablation is a first-line therapy and they made this switch in 2016 but it's the first time that an

intervention illogic therapy was actually recommended in lieu of something like surgery why because it's lesions are very small its tolerated very well and it's the exact same reason why your dermatologists can freeze a

lesion as opposed to having to cut everything off all the time at a certain point certain tumors respond well and it's worth the decrease in morbidity so

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

hi everyone I'm so excited to be here my name's Michelle mana B's I am a UT Houston fourth-year resident and I'll be headed to Yale for AI our fellowship in the fall and I'm happy to start us off this afternoon with the impact of Twitter on our specialty in how we can

expand our reach and so just a little bit about the platform that we've all chosen Twitter's a micro blog 280 characters for fewer images and short-form videos what this says to me is this is perfectly tailored for our

fast-paced highlights only major learning point objective when sharing about our favorite subject and just to give a little bit of perspective in 2018 206 users had hashtag irad in their bio so they were irad users right and March

of just this year we have over 1400 a few more stats for you so these are from just last week so a total of seven days we have 500 total tweets with hashtag irad and as we are an image-based specialty obviously the text with the

tweets with just attacks are not very many and but what I wanted to point out I'm really proud of there are 78 original contributors and 71 percent of those tweets were retweets so there's 78 people putting the

information out there and the rest of us are doing a really good job supporting them so what is Twitter done for our specialty three major points networking education awareness and collaboration so I'm a little more familiar with

Instagram so I have over a hundred twenty thousand followers on Instagram and so so this is not as familiar to me right and when I joined Twitter last year sar I had one follower and it was my mom and

I so I posted this on my Instagram I said I just have one Twitter follower what could I do help right and just over a year here we are the most recent stats of my page had significantly grown and that just speaks volumes on how much

we've grown together expanded growing evolved as a community and a presence on social media and I have 964 friends now if you're not friends with me let's be friends right now

oh and so next education and awareness so this page the interventional initiative if you are not following I suggest highly suggest you look into it so this is a nonprofit organization that increases awareness for minimally

invasive procedures their graphics are really patient friendly really easy to understand and this is the first thing you see when you go onto their website so if a patient were to just go on and say why how'd you know something my

doctor said something's wrong with my lungs is there a minimally invasive procedure for that most likely yes and all they have to do is just tap on the organ system that they identify with and they have an easy explanation of the

procedure that they're about to get or a procedure that they might be interested in and a finally collaboration and one of my favorite hashtags that really exemplifies this is hashtag leave your specials here at the door and I met dr.

Sabet I set this year and it unites as more as a disciplinary multidisciplinary group more than just this is my patient it is all of our patient and how can we work together to make sure that our patients have the best outcome and so we

are identifying more as patient centered and not specialty Center and so this is a really good positive aspect of collaboration between specialties and another aspect that I really love collaboration in a way that we get to

break down boundaries geographic boundaries right meet people that we necessary wouldn't get to meet be friends with people we wouldn't be friends with other Hawaiians and have a little fun do we have audio for this oh

darn well pretend Full House is playing in the back and we're are gonna we're gonna watch the whole thing it's so much cooler with the south kid so just you know bringing some fun you are especially doesn't always have

to be cases and always have to be serious and to show that we're humans too and so finally I want to speak a

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

patient who did not come from the street so if you've been here for a few years

you've heard me talk about you know some of my friends this is also one of my other friends who has large fibroids but her fibroids were so big and they were not all very vascular and so I sent her to have surgery and she ended up having

a hysterectomy with removal of her cervix because of abnormal pap smears but her ovaries were left in place so our path forward after doing this procedure from 1995 a procedure that is not experimental a procedure that has

had a lot a lot of research done on it more research than most procedures that are done surgically or by interventional radiologists I'd say that it would require a partnership it is true that we can see patients on our own and we can

manage mostly everything but at the end of the day uterine artery embolization is still a palliative procedure because we don't know what causes fibroids to begin with and as long as the uterus is still there there's always a chance that

new fibroids will come back so in your practice and in mind I believe that a path forward is a sustaining program embolization program which is built on a relationship with the gynecologist that yes

I am as aggressive as any other interventionist that is out there but if this were my mom and that is my usual test for things I would say that where we would like to position ourselves is in the business of informing the

patient's as much as possible so that they can make an informed decision and that we're asking our gynecology partners to do the same is that if you're going to have a hysterectomy for a benign disease that you should demand

and we as a society and you as your sisters keeper should be asking for why am I not eligible for an embolization so si R is actually embarking on a major campaign in the next year or so it's called the vision to heal campaign and

it's all around providing education for this disease stage what I like to tell our patients and I'm almost finished here is when I talk to our gynecologist and to techs and nurses as well I said woody woody what should I expect right

that's what they want to know when I send my patient to you what should I expect and I say that what you should expect that Shawn and myself we're gonna tell the patient everything about fibroids we're gonna talk to them about

what the fibroids are the pathophysiology of it the same things I told you we're gonna tell them about the procedures that treat it we tell them about the options to do nothing we talk about all of the risk and the benefits

of the procedures especially of fibroid embolization and we start the workup to see if they're an appropriate candidate when they're an appropriate candidate we communicate with them and their OBGYN and then we schedule them for their

procedure in our practice there are a few of us who send our patients home on the same day and we let our patients know no one is kicking you out of the hospital if you can't go home that day then you'll get to stay but

most of our patients are able to go home that day and then we see our patients back in clinic somewhere between two and four months three months and six months and we own that patient follow-up their visits and after their year we have them

follow back up with their gynecologist and so that we're managing all of these sites and it comes back to that new again may not be so new for some of the people that have been doing clinical IR four years that shift that we own these

patients if you're a nurse in this room these are our patients these questions need to be answered by us in our department we do not believe that these patients should be calling their gynecologist for the answers to that

like what should I be doing right now should I be taking I haven't had a bowel movement and like that is something that we answer we're the ones that are given them the discharge instructions and we set them back up for their follow-up so

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

we're gonna move on to embolization there a couple different categories of embolization bland embolization is when

you just administering something that is choking off the blood supply to the tumor and that's how it's going to exert its effect here's a patient with a very large metastatic renal cell lesion to the humerus this is it on MRI this is it

per angiogram and this patient was opposed to undergo resection so we bland embolized it to reduce bleeding and I chose this one here because we used sequentially sized particles ranging from 100 to 200 all

the way up to 700 and you can actually if you look closely can see sort of beads stacked up in the vessel but that's all that it's doing it's just reducing the blood supply basically creating a stroke within the tumor that

works a fair amount of time and actually an HCC some folks believe that it were very similar to keep embolization which is where at you're administering a chemo embolic agent that is either l'p hi doll with the chemo agent suspended within it

or drug eluting beads the the Chinese have done some randomized studies on whether or not you can also put alcohol in the pie at all and that's something we've adopted in our practice too so anything that essentially is a chemical

outside of a bland agent can be considered a key mobilization so here's a large segment eight HCC we've all been here before we'll be seeing common femoral angiogram a selective celiac run you can make sure

the portals open in that segment find the anterior division pedicle it's going to it select it and this is after drug living bead embolization so this is a nice immediate response at one month a little bit of gas that's expected to be

within there however this patient had a 70% necrosis so it wasn't actually complete cell death and the reason is it's very hard to get to the absolute periphery of the blood supply to the tumor it is able to rehab just like a

stroke can rehab from collateral blood supply so what happens when you have a lesion like this one it's kind of right next to the cod a little bit difficult to see I can't see with ultrasound or CT well you can go in and tag it with lip

Idol and it's much more conspicuous you can perform what we call dual therapy or combination therapy where you perform a microwave ablation you can see the gas leaving the tumor and this is what it looks like afterwards this patient went

to transplant and this was a complete pathologic necrosis so you do need the concept of something that's ablative very frequently to achieve that complete pathologic necrosis rates very hard to do that with ischemia or chemotherapy

alone so what do you do we have a

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

that was one example so these are there have a lot of potential complications reperfusion pulmonary edema is a very very big potential complication so you could get through the case patient does

great you open up multiple pulmonary arteries and then they start coughing up blood and then they end up started drowning in their own blood and the ICU so we do not want to push that and the initial papers that you can see down

below on that table they had a very high almost 10% in some cases pulmonary edema requiring treatment requiring patients being put on CPAP or being intubated and that is because they treated too much at one time

and so now as this when this first started in the early 2000s the operators were treating multiple segments at multiple times at one time and they were using large balloons and we figured out that that was what was killing patients

and so we changed our treatment so this is the first study that was ever performed for this it was performed by dr. Feinstein I believe this was published in circulation it was done in Harvard at MGH they had 18 patients with

36 month follow-up they all improved in their ability to walk as well as their lifestyle but many of them 11 out of 18 patients had reperfusion injury so this was the first paper and at that time it became the last paper because so many

patients did poorly but here's what they're sort of what they did and the ones that did okay they you could see that they had an improvement in the New York Heart Association classification again that just means they can walk

further they're not less short of breath and that they could walk further in 6 minutes which is again our sort of first test outcomes over time whence this has become increased so you can see that study was in 2001 and then

it kind of went away for a long time and it came back in 2012 in Japan where the most operators are there they've treated up to 255 procedures now since this slide was made we're up to a thousand in Japan and those patients are doing very

well but you'll notice that they have multiple procedures so again you don't try to one-and-done these patients they come back four to six times we've treated a couple patients where I work and we've treated that was patients four

times already and so they do much better but it's a slow slow and steady treatment so I want to wrap up with saying that the IR team is very critical to patients who are getting treated for PE we're involved in the diagnosis as

the radiology team acute and chronic PE it's very important to know as I've shown you in some of the examples and some of the images which when it's acute and versus chronic doing thrombolysis on a patient with chronic PE is useless all

you're doing is putting them at a risk you're not going to be able to break up that clot it's very important to have inter and multidisciplinary approach to patient care so interdisciplinary meaning everybody in this room nurses

technologists and physicians working together to take care of that patient that's on your table right now and multi-disciplinary because you have to work with cardiology vascular medicine the ICU teams and the

referring providers whether it's neurosurgery vascular surgery whomever it is who's Evers patient gets a PE you have to work together and it's very important again to have collaborative care in these patients if we're doing a

procedure and somebody notices that the patient is desaturating that's very very important when you're working in the pulmonary arteries if somebody notices that the patient's groin is bleeding you have to speak up so it's very important

that everybody is working together which is really what we need to do for these patients so there's my references and there's my kid so thank you guys very much hopefully this was helpful I'd be

catheter some other things that we can do is mechanical intervention so if you have a patient usually with massive PE

or the inner or the high-risk B you got to do something to help them out so what we do is put a pigtail catheter and inject a little bit of TPA on the table and then twirl the pigtail or put a wire through the side part of the pigtail and

make it sort of a mechanical fragment fragmentation the problem with that is that fragmented clot goes downstream so when it's in a main pulmonary artery it actually has less surface area than it is when it is in a distal pulmonary

capillary so when you break that clot up you have to be careful because it can actually make the patient worse the benefit there there's no thrombolytic so if we're doing this we we generally are doing it in patients who can't either

receive TPA at all frequently we get patients with who have have had recent spine surgery who get a massive PE had brain surgery get a massive PE and you have to try to treat them without any TPA or even heparin the drawbacks are

that again it increases pulmonary vascular resistance by sending all those little pieces of clot into the small pulmonary arteries and capillaries and it makes it actually much worse in some patients again there's no control trials

and sometimes you need to have a bigger

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

riesen comes to us and he talks about

some theories on why we make mistakes so and we're gonna cover these and then we're gonna cover the Swiss cheese model which many of you may be aware of so sorry slips tend to hurt current situations that are so routine that

they've become rote so an example of a slip could be selecting the wrong drug from a drop-down alright so again slips and lapses occur when the correct plan is made but executed incorrectly so we have that drop down of drugs but we just

select the wrong one that's a slip a lapse is generally not visible because it's reflective of a memory failure so for instance we may have a patient who forgets to take their medications or we may have a prescriber that forgets to

take a drug off of a med rec so those are examples of slips or lapses mistakes or judgment failures they're more subtle and they're complex than slips and these can go undetected for a period of time and they're often left to

a difference of opinion well I don't do it the same way that Mary does it who doesn't do it the same way that sue does it so those are mistakes and their knowledge base we know the right thing to do but because we have outside things

that are occurring situations that are occurring we may have to do some workarounds and those workarounds aren't always safe or we're gonna get in and this is part of the anatomy we're gonna get into the anatomy a little bit later

and often mistakes are rule-based so we know the rules we know what we're supposed to do but for factors that are out of our control we bypass those and that's when mistakes can happen active failure failures are highly visible

errors and we usually see these because they have immediate consequences and then the latent failures their processes that are under the radar they come from not following policies and there may be a good reason why we're not following

policies but oftentimes we hear that we've always done it that way and that means they're rooted in culture so that's where the justa culture comes into play all right Swiss cheese model so this is this is probably a graphic

that's very familiar to a lot of people but it does really it's it's at the basis of a patient safety air so organizations have defenses those are the slices of cheese now those defenses although we'd like them to be solid

they're oftentimes not they're filled with holes because of human factors the human condition those active and latent failures the slips lapses and mistakes that happen to all of us it's a part of us so often some of those defenses get

penetrated but then there's another defense that stops let's take for example identifying a patient so a patient comes in and maybe they're not english-speaking they may be

spanish-speaking and so we call their name and they answer the answer yes because it's close enough right it's close just close enough and they come up we don't check anything we don't check don't verify their name and their date

of birth we pass them on to our prep recovery room and then we're getting them ready because we have confidence that Jane at our front desk she doesn't make an error she always identifies the right patient so we have a high level of

confidence in Jane it's not a bad thing that's an OK Fay but here again we're not doing what we know is in our policy so it's rule-based and that we know is the right thing to do so it's knowledge base so it becomes a

mistake that we're not checking our patients identity and date of birth and that patient gets back to let's say the interventional room and boom we stop because now we're doing a timeout and we identify that we have the wrong patient

for our procedure and it stops but sometimes these heirs line up the holes line up and it's just one of those days and we end up with a patient safety event at the end so now we come to the

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

good afternoon everyone so I have the big task about talk about IR in Algeria and UAE and couple words about the past meeting so my name is Hoshino bada I'm intervention ideologies I joined the unit in Abu Dhabi almost 5 years ago so I think everybody's familiar now with

the African continent so Algeria between Morocco and Tunisia so it's a bit difficult or bother the iron algea because it's a very very early stage and these couple numbers give you an idea about the the landscape

readiness came health care system over there we have about 850 CT scanners 250 MRI for about 144 hundred one thousand four hundred forty thousand radiologists if you compare between Morocco they have almost 700 and 800 in Tunisia and about

2700 radiographers but only twelve IR people two of them performing your IR as well so one of the main issue it is not as social IR curriculum over there and there's not even a chapter of any intervention society that can help to

promote as a platform to promote the IR program however on the other hand they have a very dynamic and very active society of radiology and actually they are performing a really lot of work by doing a lot of meetings worktop hands-on

workshop all over the year all over the year absolutely and in the last four or five years they also introduced IR in their in their meetings and so exposed to the the young residents and and radiologists it triggers as some some

momentum about IR over there and so some of them went to in Europe together had trained fellowship and they came back to our Jaso even there's a small number of IR over there they are only fully trained in Europe with a with a good

quality so but of course the number is very small so a lack of IR that means some some people have to do the work and the classic thing happens like the Ignacio is going to perform some of the procedure which means biopsies drainages

or the video intervention and some somehow some ablation therapies in very limited centers and if you look at the vascular access or the Lions barakatuh performed by almost everybody radiologists cardiologists surgeons even

anesthesiologist there's not enough people to do in a foursome it's ornery Rogers doing the first time it's the only area when it's 100% I would say imaging people is definitely regarding Western intervention from diagnostic

tool to biopsy to intervention so if you look at the vascular interventional quite similar what well said in in in Egypt so the vascular stuff is doing by IR however all the outer condition that performs swiftly by vascular surgeon but

nowadays summer some changes because they are facing some issues essentially though they do send graft they don't have to do they don't know how to deal with the unduly so there's more and more kind of through there I'll reconsider

the need for collaboration with IR and they start to really have some some bridge all together to fulfill the complication and issue they might and control in their practice so the only optimistic things now in Algeria is that

there is definitely a big Werner's at the level of the old age about creating a really implementing a training program for IR and the actually they are trying really to to initiate and start that so working progress that the Society of

international urology over there so there is hope about the future in terms of implementing this type of program and before moving into the UAE just a small comment I know you do a co2 injection in your daily practice just give you an

idea about that so this was pioneered by a giant team in the late 60s and early 70s so this is this work was performed a couple years before the work of Hawkins actually Hawkins always reference the Algerian team about about that so now we

move to the UAE

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

so my name's Heather I'm a nurse in interventional radiology at NYU Langone health in New York and I am the clinical resources for our department so what that means is I'm responsible for individualizing our education to meet the needs of our department and one of

the first things I wanted to look at when I took on the role was our procedural sedation practices and how we can improve by enhancing our knowledge this presentation includes many of the lessons and concepts that I learned

along the way that I think are really important to understanding how to effectively administer procedural sedation so our learning objectives are going to be a review of the guidelines pre-procedure assessment components

including airway assessment pharmacology of the medications that we give and intra procedure assessment so this is the 2018 AAS a practice guidelines for a procedural sedation by non anesthesiologist has everyone seen this

good great as so this is especially important because as you'll see the American College of Radiology and Society of interventional radiology were involved in its development so this is our guideline and I think it's really

important to look at this look at the practice recommendations and see how they align with your own practice and if there may be some changes you need to make first thing you always want to look at when you're reviewing any sort of

literature whether it's evidence-based guidelines or maybe just a review article is you want to look at the methodology that the author used to create the guideline so anybody know why that's important you just shout it out

so if I want to write a guideline for procedural sedation I could find a bunch of studies or review articles that fit my point of view and use them throw them at the bottom and that would be that but even if I use for an demise control

trials which are considered the gold standard of experimental research those randomized controlled trials could be poorly constructed randomized controlled trials so they may have introduced bias at some point into the study

that's skewed the outcome and the findings so you really want to make sure that the authors of the guideline that you're looking at appraise the research that they're using to support their recommendations and that's what the

aasa' task force did so they used randomized control trials and observational studies and then they categorize the strength and the quality of the study findings so as you're going through you'll see that statistically

significant was deemed a p-value of less than 0.01 and outcomes were designated as either beneficial harmful or equivocal equivocal meaning this findings were not significant one way or the other and then they also used

opinion based evidence from experts so they surveyed members of their task force and they did take into account some informal opinion from message boards and letters to the editor so I think a good example here is one of

their recommendations about capnography so they did a meta-analysis of randomized control trials that indicated that the use of continuous and title carbon dioxide monitoring was associated with a reduced frequency of hypoxemic

events when compared to monitoring without capnography and then you'll see at the end of the recommendations this category so for this particular recommendation they labeled it as category a1 - B evidence and what that's

telling you as category a means it was a randomized control trial which is great it was a level one meaning it's a high level of strength and quality and B is telling you that there was statistically significant findings that demonstrated

benefit to the patient now another recommendation that you may see as you're reading through would be the NPO guidelines so if you look at any of the literature about NPO recommendations it's really all expert

opinion because all of the evidence has shown equivocal findings so for example one of the studies they looked at compared the outcomes of patients who had clear liquids one hour prior to the procedure versus two hours and they

found no change in the outcome I think it's important when you're a provider and you're looking at that because you're gonna base your judgment calls on the evidence so you may have a patient come in who had tea up until one hour

prior to their procedure and you have to make a decision whether or not you want to cancel or proceed and you could look at the findings of the literature that shows that there really hasn't been a proven difference in outcomes so you may

decide to just do the procedure versus capnography there's very strong evidence showing it's beneficial to the patient always so I think this is a real big take-home point of why we do everything we do about procedural sedation all of

our assessments and enhancing our practice as a sedation is a continuum and practitioners intending to produce a given level of sedation should be able to rescue the patients whose level of sedation becomes deeper than initially

intended pre-procedure our assessment

about you rolled out the radiant in 2015 and all of this data is great but it's reliant on the nurses documenting it in

all their different areas so how did you did you actually when you built this dashboard did you leave blanks because you just didn't have the data available or did you circle back around and hold the nurses accountable how did you do

that trying to motivate them and engage them rather than it looking like a disciplinary action because you're showing that they're not documenting appropriately yes and that's part of our journey from 2013 we started all these

projects it became evident that document documentation was important when it came to the data and so we actually started training from our technologists and and then to our nurses we created standard work for how they documented time stamps

I'm at different points in the process we audit we audited that for a while to make sure that they were compliant with that documentation so so we embarked on a lot of projects and I did a to greenbelt projects I did one in

interventional radiology and I did one on beginning complete because you really have to start at the ground and if people's reporting is not good you have to fix it so we have a definition for beginning complete for our

technologists which cleaned their data up then we did a project with Jeannie's nurses around and Tommy did some auditing around the time stamps in their system and that took a long time so yes you have to clean your data up first

and that takes projects in order and we also did Tommy led all of us to look at our data and a data validate sort of like Gilbert's thing you know so is it really valid and so we did a lot of work around that as well

the nurses do with themselves and the nursing supervisor did it as well to make sure and the technologists help you with that because what we found is when we handed the data to the nurses and we had them do their audits it was more

impactful than when we did it how would you say your start times improved from pre project pre dashboard to current how did you measure that was the time yes so that was actually interesting especially in interventional radiology because it

it when we started rolling off the Huddle's and the dashboards we had some participation in the with the technologists and the nurses and the providers doing their Huddle's and looking at the information and then

there was a period of time when they stopped doing that and they actually and they actually saw a drop in there on time starts so when we started up they were around maybe 40% on-time start and then when they consistently did their

Huddle's and looked at the - would I use the information they quickly jumped to 60 65 percent so and when they stopped dropped again so it was sort of it proved that that the tools actually worked and now they're actually going

back and owning the work of their own to continue T their Huddle's and use the dashboards in real time yeah rome wasn't built in a day and would you say that this is significantly impacted employee engagement yes I will definitely say it

has previously we had a real sort of segmented nursing work you know silo's and now we have like this cohesive team of nursing and and physicians and technologists working together in IR I will say also part of

our leadership team crisp as part of this as well our senior leaders we did a job we did a change in sort of our leadership structure so before it was like the physicians they led their physicians the technologists led their

technician technologists and the nurses led theirs well we in got a team together so we have a nurse manager the chair of interventional radiology the nursing supervisor and the nursing technologist

and supervisor and we lead as a team now and so we look at volumes together we look at budgets together we look at staffing together so it's not no longer just leading in silos so with that consistency in that that that sort of

got them all together and then so then they see that you can't hit a technologist against a nurse in a physician against a nurse or a technologist because we're all one team and that was a big part of helping this

out yeah sorry before that I was just going to talk about how important leadership was in this so Chris is our operations manager and I would say she made all of this perseverance tommy's the brains I'm the Brawn so I

would like to ask you give more details on the culture like what you were just describing about becoming a multidisciplinary team sure um that's a good vision but practically how did you accomplish so the culture was really

really hard and my Greenbelt project that I did back in 2013 was not successful because of the culture and what we learned was that we had to do something about the culture Jeannie alluded to the fact that our our

department chair dr. chair Toth and our administrative director Karen Buttrey talked to me about this and and they decided it was important that they had leadership teams in each modality so every modality and radiology has a

leader it is the division director the technologists lead and if there's a nurse a nursing lead they meet once a month tommy's does the score cards for them they bring their score cards they bring their a3 reports on

their strategic plan and they sit as a group I sit with them as well and we talk about how they're aligning their strategy to their work what the culture is like and do we need help sometimes we bring HR in if we think we need help

and geney's done a lot of leadership training with the nurses she's very good at it we have Conaty so we've partnered with Dartmouth and we send different teams to Conaty to learn leadership training this

has been really this all started really in 2013 and it continues today and we work just as hard on it as we did in 2013 Neverending yeah and I was part of that Conaty training and it was phenomenal so

it was two of the IR physicians myself the business manager and another radiology technologist supervisor and so really we had to work on a project together and it really brought us together to understand each other's work

and for um I feel like probably the strongest you know asset I have is relationships and and making those connections and nursing wasn't my first career I did practice management and so I worked for a doctor's office and I

kind of know that you have to sort of make sure that everyone understands that we're all trying to get we're all trying to take care of the patient and we all have different responsibilities to do so and there's a crossover if we fight

against each other then nothing's going to work and so that was where I I feel like I probably did the best these again you know brains and brawn and I was just sort of like let's make it all work together people with it so

was that something that you had to work into the amount of hours that it takes to maintain the new task that was being asked for yes so the documentation is part of their work to take care of the patient so for a technologist for

example when they go get the patient from the waiting room they start the beginning the exam in Radian those are things they need to do - as part of the EMR to actually accomplish their work so that was by design already part of their

workflow we just had to make sure that they were all doing it at the same point in time so for example before we standardized the definitions we would have some technologists who would begin the exam when they went to go again the

patient some will do it after they had set up the rooms so we have to standardize all of it so the data was measuring at the same points and for the nurses as well as part of their documentation as they work up the

patient so it's all part of the flow the other thing we do that I want to mention quickly because we're out of time is rounding so rounding is really important so I am the operations manager I probably around three times a day in

every modality and as an example I was just in mr and I saw a red button on their dashboard and I said why aren't we 19 minutes behind and somebody had forgot to complete the exam and everybody was there and they were

talking to me about it and they said yep and they ran back and they you know so I stay engaged the supervisors Jeanne I have two other supervisors tomy rounds you have to keep the conversation going you can't just build these and think

they're gonna take care of themselves because they're not you have to really do that disciplined rounding work so thank you everyone very much yeah thank you and just some related articles that

other other institutions have used for healthcare dashboards I found really really great so I don't know if this is true but I think they're going to send the slides after yeah conference oh yeah yeah afterwards we're happy to stay here

thank you

that I have mr. case is failing new to us I don't think it's necessarily new worldwide but I found it interesting so I threw it in there so this is a

non-surgical patient this is a 92 year old guy this guy just simply asked dr. Hirsch one of our spine specialists when he saw him in clinic he was referred to us that you know all I really want to do dr. Hirsch no I'll never forget dr.

Hirsch she's a real good connector with his patients he turned him and said dr. Hurst's really all I want to do is take walks with my grandchildren which he was completely unable to do so I'm not sure that this is a crazy

complex case like some of the extreme interventions that you've seen earlier but it's certainly a meaningful case for certain patients so because of that you can see that this patient obviously had a frame role

narrowing and I'll blow up these images and show you what that looks like in really what we're trying to do here because really kind of a not necessarily a non-surgical candidate but certainly a high-risk or poor surgical candidate

because of some other coexisting morbidities so again as we get the degenerative process sort of advances you can see and stole this from Verta flex just to give them credit you can see that this like some inflammation

here are the nerves creating all kinds of issues with them being able to ambulate you have this it's a traditional setup like a vertebroplasty gonna put the patient prone access through the back you can start to see

the delivery device here there's no pointer on this but you can note that the vertebral bodies is a little bit narrowed here at least in this sort of graphical illustration here you're advancing the inner spine spacer what

happens is it's actually screwed to a rod that goes through the delivery system fairly large delivery system trying to get the exact French size from the vendor because I forgot it today what we found out is it's it's about the

size of a dime according to them so so this is what it looks like efforts deployed on the top of the device you can see sort of not the blue sort of struts of fuel but on the top of the device it's lining the spinous processes

here but you can see that that's where they actual receptacle for the screw piece of it the male piece of it actually gets screwed into it and then you unscrew it after you deploy it so that's how it's actually left behind and

then this is what it looks like in profile so you can see sort of the stabilization around the spinous process it fits right in between the spinous process in the transverse process so we've seen this patient twice he's doing

great he thinks dr. Hirsh all of a sudden is a god I think he did this case in about an hour but now he's spending time with these grandchildren and like you know when we think about it it's it's

probably the reason why 99% of the people actually got into this field so this is a real rewarding case so I threw this in there for people and so just the images plain film you can see on the left this is not a vascular case but you

can see he could use some help there too and it turns out that you know you can see on the EMR aside what's going on with his nerves this is what it looks like obviously the post-op picture I'm pretty

good position in here and then this is where it looks like in the lateral position and since I'm as interested in listening to these guys as you guys that's all I have I have two cases but before I end I do want to thank dr.

Zubin irani he trained at the dotter Institute he's a really innovative procedures he does a lot of a high-level cases and dr. Hirsch was a world-class spine person and before I walk off the stage I want to thank some of my team

who's here from MGH we have our inventory managers some of our technical managers in one of our techs and it's always a pleasure to be able to bring them here so thank you guys for everything that you do

[Applause]

study that was done was the perfect registry so all these studies have some name perfect the PE stands for pulmonary

embolism I don't know what the rest means but it's a registry of a hundred and one consecutive patients so these are patients that had what they termed at that time massive PE as well as sub massive PE it was seven sites and they

took all their data over three years so basically they said if you treated a patient with PE let us know send us all their info we're gonna put it in this one paper the therapy was all over the place for so patients with sub massive

or intermediate high risk PE they got catheter directed thrombolysis usually over 12 to 24 hours but again it was not specific it was whatever they did we want to know about it put it in one and sort of reported patients with

massive PE which are very different from those patients with intermediate high risk PE got mechanical fragmentation with some low-dose TPA and this was left open to whatever you were doing at your institution and then they looked at how

patients did overall and they looked at only survival to hospital discharge so they just want to know if patients like made it through that hospitalization overall they found that most patients were treated successfully so they didn't

die on the on the table and that they were able to get through there were six deaths for four mostly from the massive PE group and two from the sub massive and eighty nine point one percent had reduction in RV strain so that's one of

the risk factors or that's one of the goals endpoints that we look in in every study is RV strain did we improve their RV strain pre and post intervention and that can be measured either under an echo or on a CT scan one thing that we

don't know is by reducing that RV strain did we actually improve their life their quality of life or their overall survival and that's one some of the other studies mentioned 84% of these patients are almost 85 had a reduction

in their pulmonary artery pressure so as interventional radiologists and I believe interventional cardiologists also when we start our case we measure the pulmonary artery pressure we're really measuring the strain on the heart

as a result of the high pulmonary artery pressure so at the end of the case we want to know if we didn't even better and I always talk with our trainees and our team about the fact that once you do one of these cases you're really only

looking at the pressure you're not necessarily looking at what the picture looks like because sometimes the picture doesn't look very very good at the end of a PE lysis but the patients are doing much better one thing that's important

to notice is that there was a thirteen point one percent who had complications had complications that's a large number of patients so when you give patients thrombolysis they can have complications and many of them require blood

transfusions or have large hematomas or pseudo aneurysms and things that require further intervention the ultima study is another study this is a study looking at patients receiving unfractionated heparin so patients got just heparin and

other patients got Kathryn directive thrombolysis so this is the standard of care which is heparin versus TP a from a catheter this was a small group of patients only 59 patients and they were all patients who had acute PE with

an r v lv ratio greater than one so that's sort of night now the new standard the RVL v ratio should be less than one and that's basically just looking on a CT scanner and echo how big the RV is the left ventricle pumps all

the blood to the main to your body so that is much stronger than the than the right and it has a much larger size in on average and this is one of the methods that we use in all studies so what they looked at over time here is

these patients and how there are VL v ratio changed after they either received TPA or whether they got just the standard of care which is heparin and you'll see that there is an improvement in the patients who had a catheter

directed thrombolysis and overall they had better a change in their RV LV ratio so that's sort of the marker that we we have been using but again it still doesn't tell us do these patients live longer do they have better quality life

afterwards this Seattle to study is another study that was performed and this is actually a sort of a changing game-changing study at least for a catheter directed thrombolysis in the beginning this was a

industry-sponsored study it's May it was sponsored by the the makers of eCos catheters but it was what was nice about this study is that it was very well defined everyone had to do the same thing so if you're trying to study if

something works or not it's got to be consistent in this group they had massive patients and sub massive but they all had an RV LV ratio greater than 0.9 on CT every patient got unfractionated heparin or or lovenox low

molecular weight heparin and then they all received 24 milligrams of TPA that's the study everybody got the same thing and what you see here on this on the right is that the patients who had T who had catheter directed thrombolysis all

had a reduction in their RV LV ratio they all had a reduction in their mean systolic mean or systolic pulmonary artery pressure and they all had a reduction improvement in their Mead modified Miller index which is actually

a score of how much clot there is in the pulmonary arteries so that suggests that there's an improvement at least in the short term and these patients had reduced bleeding 13% vs. 10% is reduced it's not still

not great but these patients all got TPA so this is a summary slide from chest to in the chest guidelines in 2015 looking at the three studies I just mentioned to you so perfect Seattle - and Altima and it's basically again

showing you that there has been improvement in patients right ventricular strain as well as the patients mean systolic PA pressures but I will tell you even with this data we still don't know what the right answer

is because we don't know how this affects patients in the long term and how they're gonna do in their overall life so back to our patient to move on

blasian it's well tolerated and folks with advanced pulmonary disease there's a prospective trial that showed that

there are pulmonary function does not really change after an ablation but the important part here is a lot of these folks who are not candidates for surgical resection have bad hearts a bad coronary disease and bad lungs to where

a lot of times that's actually their biggest risk not their small little lung cancer and you can see these two lines here the this is someone who dr. du Puy studied ablation and what happens if you recur and how your survival matches that

and turns out that if you recur and in if you don't actually a lot of times this file is very similar because these folks are such high risk for mortality outside or even their cancer so patient selection is really important for this

where do we use it primary metastatic lesions essentially once we feel that someone is not a good surgical candidate and they have maintained pulmonary function they have a reasonable chance for surviving a long

time we'll convert them to being an ablation candidate here's an example of a young woman who had a metastatic colorectal met that was treated with SPRT and it continued to grow and was avid so you can see the little nodule

and then the lower lobe and we paste the placement prone and we'd Vance a cryo plugs in this case of microwave probe into it and you turn off about three to five minutes and it's usually sufficient to burn it it cavitate s-- afterwards

which is expected but if you follow it over time the lesion looks like this and you say okay fine did it even work but if you do a PET scan you'll see that there's no actually activity in there and that's usually pretty definitive for

those small lesions like that about three centimeters is the most that will treat in a lot of the most attic patients but you can certainly go a little bit larger here's her follow-up actually two years

that had no recurrence so what do you do when you have something like this so this is encasing the entire left upper lobe this patient underwent radiation therapy had a low area of residual activity we followed it and it turns out

that ended up being positive on a biopsy for additional cancer so now we're playing cleanup which is that Salvage I mentioned earlier we actually fuse the PET scan with the on table procedural CT so we know which part of all that

consolidated lung to target we place our probes and this is what looks like afterwards it's a big hole this is what happens when you microwave a blade previously radiated tissue having said that this

was a young patient who had no other options and this is the only side of disease this is probably an okay complication for that patient to undergo so if you follow up with a PET scan three months later there's no residual

activity and that patient actually never recurred at that site so what about

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.

×
Create a free account to watch 3 clips every day. Upgrade for unlimited access.