Create an account and get 3 free clips per day.
Chapters
NTNT Special Considerations Advantages and Disadvantages and Final Thoughts
NTNT Special Considerations Advantages and Disadvantages and Final Thoughts
2016ablationadvantagesBTG-IMClariVeinClosureFastcompressionCovidiendiscomforteCloseglueinjectMedtronicnoindexperforatorspullpullbackResearchsaphenoussbvsegmentalSIRsteerableV-blockVANISH-2varicositiesVarithenaVascular InsightsVeCloseveinsVenaSealVenefitVVSymQVVT Medical
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Vacuum Assisted Thrombectomy With The Penumbra Indigo System For Visceral And Lower Limb Artery Occlusions
Aorto-Renal BypassAspiration SystemGore Viabahn VBX (Gore Medical)PenumbraPenumbra’s Indigotherapeutic
DEBATE: TCAR Is A Game Changer For CAS And Should Replace Transfemoral CAS Procedures
DEBATE: TCAR Is A Game Changer For CAS And Should Replace Transfemoral CAS Procedures
ENROUTESilk Road MedicaltherapeuticTranscarotid Neuroprotection System
Invasive Treatment In Patients With Genetically Triggered Aortopathy (Like Marfan’s): When Is Endovascular Treatment Acceptable And When Not
Invasive Treatment In Patients With Genetically Triggered Aortopathy (Like Marfan’s): When Is Endovascular Treatment Acceptable And When Not
coilsCook Alpha / Palmaz stent / Amplatz vascular plugsDavid V Procedure 2003GORE MedicalMedical Treatment 2003 / In 2017 Hybrid (Bypass - Chimney Graft - TEVAR - Embolization)Root Aneurysm in 2003 / Lumbar disc protrusion in 2017Stent grafttherapeuticviabahn
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
Going Rogue: Off The Grid Venous Malformation Sclerotherapeutic Techniques
coil embolizationPersisting Venous MalformationsclerotherapyTherapeutic / Diagnostic
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Gore Tag (Gore Medical) / Valiant (Medtronic) / Zenith Alpha (Cook Medical)RelayPlusstent graft systemTerumo Aortictherapeutic
Panel Discussion (Session 62) 2018
Panel Discussion (Session 62) 2018
Aspiration SystemPenumbraPenumbra’s Indigotherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
Transcript

just give you where things fit in the

non-thermal 92 mesons I think below the name is where they really are are great they're also good above the knee cause I think some of the post-op discomfort is an interrupt discomfort is less than the the thermals very good for advanced

disease because you need to go retrograde right underneath the also where it's hard to place tumescence and treat all the way down to the incompetent vain down at the ankle level and there's been almost no nerve or skin

injury because you're not using heat so finally advantages disadvantages mocha I think the advantages you're not leaving any foreign body and it does have the longest follow-up it is good for relatively torturous veins courses

it's a steerable wire itself people have used for perforators and red right now it's only one that has a code from CMS disadvantage is you got to do two things at once you've got to inject and pull back so you got to think about two

things and currently the recommendations for compression at five days but I've gone down to 22 days with these patients as with all these the glue is a segmental ablation so you get rid of the pullback

rate the variable you just place it inject 1.1 CC of glue weight and pull back again number of cases have been in the in the hundreds does not require post-procedure compression not according to the ifu but according to the studies

done in europe and the initial study in the u.s. they had to use compression goes with a double-blind study between RF and glue so everybody did get compression i'm going to tell you practically probably you don't you don't

need to to use it you do leave a little bit of a floral body and and they did have a significant bit great compared to those hard to get up torturous veins because it's you need and it's a straight catheter the v baths again

there's no pull back right involved really use approved liquid but it is not available in the u.s. you are leaving a foreign body in and it does have the shortest follow glue you eliminate the pullback rate again it is very good for

torture is famous because you don't have to get up the saphenous vein you just inject in the foam goes up so that's nice and you can treat the varicosities at the same time at the same city but it does require two people to do the

procedure one's got to be looking up at the junction and one's got to be injecting down Chris really seafoam come up you have to compress so it definitely takes two people and it's recommended that the IAF uses to people and the ISU

also says compression for two weeks and that will be it cause we're running out of time so in general bigger veins I think the thermal tumescence smaller great veins may be under 10 12 millimeters non-thermal onto message

below the knee certainly non-thermal not to mentions and maybe a little better a patient comfort thank you very much

- Thank you for introduction. Thanks to Frank Veith for the kind invitation to present here our really primarily single-center experience on this new technique. This is my disclosure. So what you really want

in the thromboembolic acute events is a quick flow restoration, avoid lytic therapies, and reduce the risk of bleeding. And this can be achieved by surgery. However, causal directed local thrombolysis

is much less invasive and also give us a panoramic view and topographic view that is very useful in these cases. But it takes time and is statistically implied

and increases risk of bleeding. So theoretically percutaneous thrombectomy can accomplish all these tasks including a shorter hospital stay. So among the percutaneous thrombectomy devices the Indigo System is based on a really simple

aspiration mechanism and it has shown high success in ischemic stroke. This is one of my first cases with the Indigo System using a 5 MAX needle intervention

adapted to this condition. And it's very easy to understand how is fast and effective this approach to treat intraprocedural distal embolization avoiding potential dramatic clinical consequences, especially in cases like this,

the only one foot vessel. This is also confirmed by this technical note published in 2015 from an Italian group. More recently, other papers came up. This, for example, tell us that

there has been 85% below-the-knee primary endpoint achievement and 54% in above-the-knee lesions. The TIMI score after VAT significantly higher for BTK lesions and for ATK lesions

a necessity of a concomitant endovascular therapy. And James Benenati has already told us the results of the PRISM trials. Looking into our case data very quickly and very superficially we can summarize that we had 78% full revascularization.

In 42% of cases, we did not perform any lytic therapy or very short lytic therapy within three hours. And in 36% a long lytic therapy was necessary, however within 24 hours. We had also 22% failure

with three surgery necessary and one amputation. I must say that among this group of patients, twenty patients, there were also patients like this with extended thrombosis from the groin to the ankle

and through an antegrade approach, that I strongly recommend whenever possible, we were able to lower the aspiration of the clots also in the vessel, in the tibial vessels, leaving only this region, thrombosis

needed for additional three hour infusion of TPA achieving at the end a beautiful result and the patient was discharged a day after. However not every case had similar brilliant result. This patient went to surgery and he went eventually to amputation.

Why this? And why VAT perform better in BTK than in ATK? Just hypotheses. For ATK we can have unknown underlying chronic pathology. And the mismatch between the vessel and the catheter can be a problem.

In BTK, the thrombus is usually soft and short because it is an acute iatrogenic event. Most importantly is the thrombotic load. If it is light, no short, no lytic or short lytic therapy is necessary. Say if heavy, a longer lytic therapy and a failure,

regardless of the location of the thrombosis, must be expected. So moving to the other topic, venous occlusive thrombosis. This is a paper from a German group. The most exciting, a high success rate

without any adjunctive therapy and nine vessels half of them prosthetic branch. The only caution is about the excessive blood loss as a main potential complication to be checked during and after the procedure. This is a case at my cath lab.

An acute aortic renal thrombosis after a open repair. We were able to find the proximate thrombosis in this flush occlusion to aspirate close to fix the distal stenosis

and the distal stenosis here and to obtain two-thirds of the kidney parenchyma on both sides. And this is another patient presenting with acute mesenteric ischemia from vein thrombosis.

This device can be used also transsympatically. We were able to aspirate thrombi but after initial improvement, the patient condition worsened overnight. And the CT scan showed us a re-thrombosis of the vein. Probably we need to learn more

in the management of these patients especially under the pharmacology point of view. And this is a rapid overview on our out-of-lower-limb case series. We had good results in reimplanted renal artery, renal artery, and the pulmonary artery as well.

But poor results in brachial artery, fistula, and superior mesenteric vein. So in conclusion, this technology is an option for quick thromboembolic treatment. It's very effective for BTK intraprocedural embolic events.

The main advantage is a speeding up the blood flow and reestablishing without prolonged thrombolysis or reducing the dosage of the thrombolysis. Completely cleaning up extensive thromobosed vessels is impossible without local lytic therapies. This must be said very clearly.

Indigo technology is promising and effective for treatment of acute renovisceral artery occlusion and sub massive pulmonary embolism. Thank you for your attention. I apologize for not being able to stay for the discussion

because I have a flight in a few hours. Thank you very much.

- Thank you, Dr. Moore, and thank you Frank for inviting me back. These are my disclosures. I am a consultant for Silk Road Medical since I ran the first pivotal trial. Now, six years ago I gave a presidential address before the Society for Vascular Surgery

centered on the carotid space and I added this disclaimer, at least in part, because we were due to embark at that point on ROADSTER 1. And further on in that address, I suggested that transfemoral distal filter protection CAS was an experiment that had failed in my view.

And over the years of course in the legacy trials, that seems to be well born out by the data from these trials and yes, over time results with transfemoral CAS improved. Was it related to better technology? Perhaps.

It was certainly highly impacted by better patient selection and one only needs to see, for example, the evolution of the endovascular management committee in cres 2, as to how anatomic features have figured in that clinical decision making. Now, I'm proud to say that vascular surgeons,

first Juan Parodi and then Enrique Criado, pioneered the concept of flow reversal for neuro protection and CAS procedures and CAS procedures and of course, in my view, the TCAR procedure is in fact the ultimate evolution of that.

Now, thank you Frank for framing my debate with my Italian colleagues. Laura Capoccia's conclusion slide perhaps said it all and my worthy opponents and subsequent speakers I'm sure are going to focus on the fact that flow reversal with the MO.MA

can be achieved can be achieved with a totally percutaneous transfemoral approach, but the early data certainly suggested, as you can see here, that things were not much better. No, I'm sure we'll see results from this prospective registry with a lot of well known

Italian interventional cardiologist. Achieving an admirable 30 day major adverse event rate, but in a sense, this is the evolution of patient selection because it represents a cherry picking type of experience compared to low risk patients. Now, the final thing to consider from a technical aspect,

is that flow stagnation with the MO.MA device hardly equals high flow reversal, because although the concepts are similar, of course the actual operations are quite a bit different. And the authors even acknowledge that embolic signals from TCD were often detected during incursion

of this rather bulky transfemoral in to the arch device. And indeed, the steps of the procedures have been studied and as you can see here, there's really no difference between MO.MA and Distal Filter in the critical step of arch manipulation. Obviously a big part of the strategy, of the TCAR procedure

is avoidance of the arch, and when we've studied anatomic exclusions as recently reviewed by, this procedure can be applied to the overwhelming majority of candidates for CAS. Now Dr. Colin Buck showed you that this strategy

has achieved, as assessed by DWI imaging, lesion production rates, equivalent to carotid endarterectomy and when we published ROADSTER 1, it was the lowest stroke risk ever reported for a carotid stent trial.

I've mentioned previously that it has achieved neuro protection equivalent to carotid endarterectomy and here are some of the ROADSTER data. I won't read the data. Vic Kashif showed it to you. Now, in the most recent MO.MA experience of course,

we see the anatomic exclusions. And the anatomic exclusions in the lower right corner are not exclusions for TCAR. You've seen this data previously and our host, Frank Vees, in his most recent meta analysis, indicated that there was no positive

impact of the MO.MA strategy versus Distal Filter protection. This is a graph of the rapid adoption of TCAR by North American vascular surgeons in the TCAR surveillance project. Mul mentioned to you that the beginning data

from these registries and projects have now been presented. Just this week, I saw the updating of the TCAR surveillance project with sustained excellent result, now at over 3,000 patients. So in conclusion.

In my opinion TCAR is the technical evolution of CAS. Avoiding the arch and superior neuro protection with high flow reversal indicated the procedure of choice and transfemoral CAS should go in to the history books. Thank you for your attention.

- Now I want to talk about, as Chrissy mentioned AVM Classification System and it's treatment implication to achieve cure. How do I put forward? Okay, no disclosures. So there are already AVM Classification Systems. One is the well-known Houdart classification

for CNS lesions, and the other one is quite similar to the description to the Houdart lesion, the Cho Do classification of peripheral AVM's. But what do we expect from a good classification system? We expect that it gives us also a guide how to treat with a high rate of cure,

also for complex lesions. So the Yakes Classification System was introduced in 2014, and it's basically a further refinement of the previous classification systems, but it adds other features. As for example, a new description of

a new entity, Type IV AVM's with a new angioarchitecture, it defines the nidus, and especially a value is that it shows you the treatment strategy that should be applied according to angioarchitecture to treat the lesion. It's based on the use of ethanol and coils,

and it's also based on the long experience of his describer, Wayne Yakes. So the Yakes Classification System is also applicable to the very complex lesions, and we start with the Type I AVM, which is the most simple, direct

arterial to venous connection without nidus. So Type I is the simplest lesion and it's very common in the lung or in the kidney. Here we have a Type I AVM come from the aortic bifurcation draining into the paralumbar venous plexus,

and to get access, selective cauterization of the AVM is needed to define the transition point from the arterial side to the venous side, and to treat. So what is the approach to treat this? It's basically a mechanical approach, occluding

the lesion and the transition point, using mechanical devices, which can be coils or also other devices. For example, plugs or balloons. In small lesions, it can also be occluded using ethanol, but to mainly in larger lesions,

mechanical devices are needed for cure. Type II is the common and typical AVM which describes nidus, which comes from

multiple in-flow arteries and is drained by multiple veins. So this structure, as you can see here, can be, very, very dense, with multiple tangled fistulaes. And the way to break this AVM down is mainly that you get more selective views, so you want to get selective views

on the separate compartments to treat. So what are the treatment options? As you can see here, this is a very selective view of one compartment, and this can be treated using ethanol, which can be applied

by a superselective transcatheter arterial approach, where you try to get as far as possible to the nidus. Or if tangled vessels are not allowing transcatheter access, direct puncture of the feeding arteries immediately proximal to the nidus can be done to apply ethanol. What is the difference between Type IIa and IIb?

IIb has the same in-flow pattern as Type a, but it has a different out-flow pattern, with a large vein aneurysm. It's crucial to distinguish that the nidus precedes this venous aneurysm. So here you can see a nice example for Type IIb AVM.

This is a preview of the pelvis, we can here now see, in a lateral view, that the nidus fills the vein aneurysm and precedes this venous aneurysm. So how can this lesion be accessed? Of course, direct puncture is a safe way

to detect the lesion from the venous side. So blocking the outflow with coils, and possibly also ethanol after the flow is reduced to reflux into the fistulaes. It's a safe approach from the venous side for these large vein aneurysm lesions,

but also superselective transcatheter arterial approach to the nidus is able to achieve cure by placing ethanol into the nidus, but has to be directly in front of the nidus to spare nutrient arteries.

Type IIIa has also multiple in-flow arteries, but the nidus is inside the vein aneurysm wall. So the nidus doesn't precede the lesion, but it's in the vein wall. So where should this AVM be treated?

And you can see a very nice example here. This is a Type IIIa with a single out-flow vein, of the aneurysm vein, and this is a direct puncture of the vein, and you can see quite well that this vein aneurysm has just one single out-flow. So by blocking this out-flow vein,

the nidus is blocked too. Also ethanol can be applied after the flow was reduced again to reflux into the fistulas inside the vein aneurysm wall. And here you can see that by packing a dense packing with coils, the lesion is cured.

So direct puncture again from the venous side in this venous aneurysm venous predominant lesion. Type IIIb, the difference here is again, the out-flow pattern. So we have multiple in-flow arteries, the fistulaes are again in the vein aneurysm.

Which makes it even more difficult to treat this lesion, is that it has multiple out-flow veins and the nidus can also precede into these or move into these out-flow veins. So the dense packing of the aneurysm might have to be extended into the out-flow veins.

So what you can see here is an example. Again you need a more selective view, but you can already see the vein aneurysm, which can be targeted by direct puncture. And again here, the system applies. Placing coils and dense packing of the vein aneurysm,

and possibly also of the out-flow veins, can cure the lesion. This is the angiogram showing cure of this complex AVM IIIb. Type IV is a very new entity which was not described

in any other classification system as of yet. So what is so special about this Type IV AVM is it has multiple arteries and arterioles that form innumerable AV fistulaes, but these fistulaes infiltrate the tissue. And I'm going to specify this entity in a separate talk,

so I'm not going too much into details here. But treatment strategy of course, is also direct puncture here, and in case possible to achieve transarterial access very close to the nidus transarterial approach is also possible. But there are specific considerations, for example

50/50 mixture of alcohol, I'm going to specify this in a later talk. And here you can see some examples of this micro-fistulae in Type IV AVM infiltrative type. This is a new entity described. So the conclusion is that the Yakes Classification System

is based on the angioarchitecture of AVM's and on hemodynamic features. So it offers you a clear definition here the nidus is located, and where to deliver alcohol in a safe way to cure even complex AVM's.

Thank you very much.

- Mister Chairman, ladies and gentlemen. Good morning. I am excited to present some of the data on the new device here. These are my disclosure. There are opportunities to improve current TEVAR devices. One of that is to have a smaller device,

is a rapid deployment that is precise, and wider possibilities to have multiple size matrix to adapt to single patient anatomy. The Valiant device actually tried to meet all these unmet needs, and nowadays the Navion has been designed on the platform

of the Valiant Captivia device with a completely different solution. First of all, it's four French smaller than the Valiant Captivia, and now it's 18 French in outer diameter for the smallest sizes available.

The device has been redesigned with a shorter tip and longer length of the shaft to approach more proximal diseases, and the delivery system deploys the graft in one step that is very easy to accomplish and precise.

The fabric has been changed with nowadays the Navion having the multi-filament weave of the Endurant that already demonstrates conformability, flexibility, and long-term durability of the material. It's coming with a wide matrix of options available. In terms of length, up to 225 mm.

Diameters as small as 20 mm, and tapered device to treat particular anatomical needs. But probably the most important innovation is the possibility to have two proximal configuration options: the FreeFlo and the CoveredSeal.

Both tied to the tip of the device with the tip-capture mechanism that ensures proximal deployment of the graft that is very accurate. This graft is being under trial in a global trial

that included 100 patients all over the world. The first 87 patients have been submitted for primary endpoint analysis. 40% of the patients were females. High risk patients showed here by the ASA class III and IV. Most of the patients presented

with a fusiform or saccular aneurysm, and the baseline anatomy is quite typical for these kinds of patients, but most of the patients have the very tortuous indices, both at the level of the access artery tortuosity and the thoracic aorta tortuosity.

Three-fourths of the patients had been treated with a FreeFlo proximal end of the graft, while one-fourth with the CoveredSeal. Complete coverage of the left subclavian occurred in one-fifth of the patients. Almost all had been revascularized.

Procedure was quite short, less than one and half hour, percutaneous access in the majority of cases. There were no access or deployment failures in this series. And coming to the key clinical endpoints, there were two mortality reported out of 87 patients.

One was due to the retrograde type A dissection at day one, and one was not device related almost at the end of the first month. Secondary procedures were again two. One was in the case of retrograde type A dissection, and the second one in a patient

that had an arch rupture due to septicemia. Type 1a endoleak was reported in only one case, and it was felt to be no adverse event associated so was kept under surveillance without any intervention. Major Adverse Events occurred in 28% of the cases. Notably four patients had a stroke

that was mild and not disabling, regressing in two weeks. Only one case of spinal cord ischaemia that resolved by drainage and therapy in 20 days. In summary, we can say that the design enhancement of Valiant Navion improved upon current generation TEVAR.

Acute performance is quite encouraging: no access or deployment failure, low procedural and fluoro times, low rate of endoleaks, Major Adverse Events in the range expected for this procedure.

Nowadays the graft is USA FDA approved as well as in Europe CE mark. And of course we have to wait the five years results.

- [Lindsay] I would like to discuss three aspects of radiation safety that hopefully will set the basis for subsequent talks in this session. These are my financial disclosures, none of which are relevant to this talk. Over 100 years ago, radiologists developed finger and hand damage, because they were using

their own hands to adjust the radiation prior to diagnostic studies. Now we are seeing disturbing levels of radiation-induced injury, such as posterior cataract in interventionists. The knowledge of radiation biology, has evolved,

to the point that we can say there are no safe levels of radiation. That's because each of us have individual thresholds to radiation damage. Furthermore, eyes and brain are much more radiosensitive, than was previously thought.

The second concept I would like to discuss is that our protective devices are likely giving us a false sense of security. First we'll talk about aprons, because of ergonomic concerns, protective aprons use various lightweight materials in place of lead.

And they are sold on the basis of being easier on the back, but rarely is there any discussion, of their effectiveness as being a barrier to radiation. When they are looked at independently, there is considerable variable, variability and their effectiveness.

In one study, the thicker of the lightweight aprons, equivalent to 0.5 mm of lead, stopped only up to 1.6% of radiation at 70 kV and 6.7% at 100 kV, from striking our less radiosensitive, but highly-valued anatomies. Lead glasses have even more variability.

In one independent study, glasses claiming the same equivalence varied in degree of attenuation by 35-95% when the beam is directed directly at the glasses. This effect is compounded by the shape of the glasses and the position of one's head in relation to the source.

The traditional glasses with side panel, the ones that make you look like your granddad, are most effective for all geometries, and more commonly used and stylish sport-style glasses are less effective. Caps and hoods are a subject of debate.

An optimized setting using phantoms, a leaded surgical cap only reduced whole brain dose by 3.3%, the leaded cap with side drape by 55%. Again, the effect is dependent on head position in relation to the source. Remember, this is an optimized situation.

In real life, these numbers will be even lower. You will hear later in this session about the benefit of ceiling shields. We will have also added protection extending to the floor. More importantly, remember that if you double the distance that you stand from the source of scatter,

you can 1/4 of the dose, three times 1/9. So if you don't need to stand next to the tube step away. The third and final thing I'd like to discuss is that knowledge and technique are essential. The main source of exposure to you and your staff is scatter radiation.

When the primary beam strikes the table, the patient and the detector, it is scattered circumferentially, most markedly, on the tube side. Practical means to reduce your dose is really effectively described in this article

from JVS in 2012. One of the maneuvers that really increases the dose is tube angulation. When angling the tube, you're effectively making the patient much (mumbles) causing the machine to increase the dose.

LAO angulation markedly increases the dose to anyone standing on the patient's right. In addition, when angling the tube it makes it harder to use various barriers, therefore compounding the effect of angulation. This effect of LAO angulation and how the scatter

is greater than RAO angulation to someone standing on the right was quantified, again in the same article in JVS. So the take home messages I would like you to take from this talk are firstly, there are no safe doses of radiation.

Secondly, all measures to reduce radiation are additive. Just having new equipment does not really suffice. And finally, have all of your protective devices tested by your own physicist. Don't believe what the brochures say. Thank you for your attention.

- [Presenter] Thanks Bill. And again I have no disclosures to make on this particular presentation. So, in terms of variance, the anterior accessory GSV is not a variant. It's present in most of us, but it's an unusual cause of primary varicose veins,

although a very common cause of secondary varicose veins after primary treatment. It runs parallel to the great saphenous vein, in the saphenous space, and courses a bit more anteriorly in the thighs, so that on ultrasound, you'll see a lining here,

in this case inside the saphenous space, aligning with the superficial femoral artery and the femoral vein. In some cases, it can be the primary saphenous vein along the medial aspect of the thigh, in association with hypoplasia of the great saphenous vein

as listed on the left, and the right picture with aplasia of the great saphenous vein. And many times physicians are treating what they think is the great saphenous vein, and really it's this embryologic variant,

the anterior accessory vein, with a different takeoff. A different vein to talk about in terms of variance is the superficial accessory saphenous vein. It's present in many patients. It's really a tributary of the great saphenous vein,

running in the subcutaneous fat outside the superficial fascia that eventually joins into the great saphenous vein. So on this longitudinal view, it creates this sort of appearance with the great saphenous vein below its entry

as a smaller caliber vein. Consequently, it has the name of the H-vein, and on ultrasound, below the level of its joining with the great saphenous vein, the great saphenous vein is small,

and in this particular case with varicose veins, associated with reflux in the superficial accessory saphenous vein. It's a larger caliber, and then up higher, you can see that it drains into the great saphenous vein, and it's no longer visible.

The small saphenous vein has a lot of variability related to the differences in its termination on the posterior aspect of the calf and the thigh. Many patients have what we can call saphenopopliteal junction dominant drainage, and other patients have what we might consider

thigh extension dominant drainage. It's a spectrum, most patients have these connections, and if you look carefully, you'll find the thigh extension connection even in the majority of patients that have primarily saphenopopliteal junction termination.

The termination higher on the thigh can be into a perforator on the back of the thigh, it can be into the gluteal venous system in the pelvis, and it can travel up through an intersaphenous or Giacomini vein toward the inner thigh,

and sometimes to the great saphenous vein. Duplications of the deep system are very common, particularly in the femoral vein in up to 20% of the patients. Isolated popliteal vein duplications are uncommon, but in association with femoral duplications

occur in up to 6% of the variations. These duplications all travel through the adductor canal and follow the normal course of the vein. In contrast, remnants of the sciatic vein can introduce different variants. The sciatic vein is an embryonic vein

that was the primary drainage of the lower limb in a very small fetal stage. At some point, most of it regresses, and so the popliteal vein, which is the sciatic vein remnant, eventually connects up with the pelvic circulation

through the common femoral vein and the external iliac vein which develop later. The saphenous remnants regress, with the exception of the popliteal vein, and portions of the internal iliac vein. A true sciatic vein variant is a less common variant,

where the popliteal vein is in continuity with a large caliber vein that follows the sciatic nerve up into the pelvis, draining into the internal iliac vein. But in contrast, sciatic vein remnants are not uncommon,

and it's not unusual for one to find the primary drainage of the popliteal vein not going through the adductor canal, but to ascend upward variable lengths along the course of the sciatic vein, to eventually terminate either in the femoral vein directly

or into the deep femoral vein up higher, with or without hypoplasia, or in rare cases, aplasia of the femoral vein. And so it's important to recognize these variants in distinction to post-thrombotic changes

in the femoral vein. When you have a small vein, that small vein can be normal anatomically by all other features, and may represent a variant rather than a post-thrombotic complication.

And this was recognized by Dr. Raju in 1991 in a publication where he demonstrated venograms in a patient with a post-thrombotic femoral vein, and well-formed collaterals between the popliteal vein and the profunda, in contrast to this patient,

which had no post-thrombotic changes in the femoral vein, but well-defined congenital variation connections between the popliteal vein and the deep femoral vein. So in summary, superficial venous variability is related to the variable terminations

of the small saphenous vein, the anterior accessory saphenous vein, which is inside the saphenous sheath, superficial accessory saphenous veins, which are outside the saphenous space. It's important to recognize deep vein variablity,

'cause you want to avoid false negative diagnoses of acute deep vein thrombosis by not recognizing thrombosis in a duplication, and you want to avoid false positive diagnoses of post-thrombotic syndrome when you're really dealing

with a congenital sciatic vein dominant anatomic variability. Thank you very much.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- Now we all have seen one thing. We have to treat AVM's according to their classification angio anatomy. If you have something like, direct arterial venous communications, like pulmonary HHT patients, like the rare patients with inborn arterial venous fistulas,

you will never use ethanol. That's my opinion. That's an opinion. But I think most of us will agree on that. Will you? - [Audience] Yes.

- I think many of us will agree. So would you just do it for a HHT pulmonary patient, you would inject ethanol? - [Audience] No. - So, okay. And the direct arterial venous communications inborn,

they are very rare and they can be beautifully treated with plugs and whatever. These are one part on the AVM patients. Second part is predominantly venous outflow. However you say it's 2B, 3A or whatever. It's a dominant venous outflow

and you can cure them and I say cure, even in my paper there is imaging of follow up, but it's not in the abstract bar. (smiling) So you just, - (laughing)

- So you just occlude the venous outflow, as close to the nidus as you can. So I don't need ethanol for that. I don't need to take the risk for my patient. And so that leaves the type 4 small vessel AVM's. They are, even in my opinion,

not treatable with a polymerizing agent. There is a real place for ethanol. And then you you go to these difficult, more net-like, type 3 or whatever, AVM's, then my opinion is, I do it as long as possible,

with a safe agent. Like pushing in tons of onyx. And if there is something left over, or if there comes something in follow up, because we all need follow up for these patients, then you can finish it with ethanol.

That's my statement. Thank you.

- Thank you, I have no disclosure for this presentation. Aorotopathy is a different beast as oppose to patients with dissections that we normally see in the elderly population, but we have the same options open surgery, endovascular, and hybrid. If they all meet the indications for surgery so why not open surgery?

We know in high volumes centers the periprocedural mortality acceptable in especially high volume centers. The problem is the experience surgeons are getting less and less as we move into more and more prevalence of endovascular. And this is certainly more acceptable in lower or

moderate high risk patients. So why not be tempted by endovascular in these patients? (to stage hand) Is there a pointer up here? So the problem with aorotopathy is the proximal and distal seal zones and we've already heard some talks today about possible retrograde dissection,

we've also heard about nuendo tear distally and aorotopathy is certainly because of the fragile aorta lend itself to these kinds of problems. But it is tempting because these patients often do very well in the very short term. The other problem with aorotopathy is they often have

dissection with have problems for branch unfenestrated technology and then of course if these dissection septum are near the proximal and distal seal zones, you're going to have a lot of difficulty trying to break that septum with a ballon and possibly causing new

entry tears proximally or distally. Doctor Bavaria and his colleagues from Italy were one of the first ones to do a systematic review and these are not a large number of patients but they combined these articles and they have 54 patients. Again, the very acceptable low operative risk, 1.9%.

But they were one of the first ones to conclude and cation that TEVAR in these patients, especially Marfan's patients in this series carries a substantial risk of early and late complications. They actually cautioned the routine use of endovascular stent grafts.

One of the largest series, again stress, these are not large numbers but one of the largest series was just 16 patients and look at this alarming rate of primary failure. 56% treated successfully, 40% required conversion to open operation and interestingly enough

43% of those patients had mortality. My friend and colleague at the podium, doctor Azizzadeh was given the unbeatable task of arguing for endovascular therapy in Marfan syndrome and the best he can come up with was that midterm follow up demonstrates sizeable numbers of complications but,

he identify area where probably it was acceptable in patients with rupture, reintervention for patch aneurysms and elective interventions in which landing zone was in a synthetic graft. So why not hybrid? Well this seems to be the more acceptable version

of using TEVAR, if you can, in these aorotopathy patients. But this is not a great option because in this particular graft that you see this animation, we're landing in native aortic tissues. So really, what you have to do is you have to combine this and try to figure out a way to create a landing zone,

either proximally or distally and this is a patient and not with Marfan's this time but with Loeys-Dietz, who we had presented recently, previous ascending repair but then presented with horticultural abdominal aneurysm as a result of aneurysm habilitation of a previous dissection and here

you see a large thoracal abdominal aneurysm on the axial and coronal and as many of these patients with aorotopathy express other problems with their multisystem diseases and you can see the patients left lung is definitely not normal there, left lung is replaced with bullae and this is a patient who would not do well

with an open thoracal abdominal repair. So what do you do? You have to create landing zones and in this particular patient, he had a proximal landing zone so we were able to just use a snorkel graft from the mnemonic but distally we had to do biiliac debranching grafts to to all his vistaril arteries

and then land his stent-graft in the created distal zone and as you can see, we had an endoleak approximately and thank goodness that was just from a type II endoleak from the subclavian artery which we were able to take care of with embolization and plugs.

And there is his completion C.T. So not all aorotopathy is the same, this is a patient who presented with a bicuspid aortic valve and a coarctation and I would submit to you, this is not a normal aorta. This is probably a variant of some sort of aorotopathy,

we just don't have a name for it necessarily, and do these patients do well or do worst with endovascular stent-graft, I just don't think we have the data. This particular patient did fine with a thoracic stent-graft but this highlights the importance of following these patients and being honest with the patients family and the

patient that they really do have to concentrate on coming back and having closer follow up in most patients. So in summary, I think endovascular is acceptable in aorotopathy if you're trying to save a life, especially in an acute rupture or in an emergency situation, but I think often we prefer to land these

endovascular stent-graft in synthetic. Thank you very much.

- [Presenter] Thank you very much, Mr. Chairman, and ladies and gentlemen, and Frank Veith for this opportunity. Before I start my talk, actually, I can better sit down, because Hans and I worked together. We studied in the same city, we finished our medical study there, we also specialized in surgery

in the same city, we worked together at the same University Hospital, so what should I tell you? Anyway, the question is sac enlargement always benign has been answered. Can we always detect an endoleak, that is nice. No, because there are those hidden type II's,

but as Hans mentioned, there's also a I a and b, position dependent, possible. Hidden type III, fabric porosity, combination of the above. Detection, ladies and gentlemen, is limited by the tools we have, and CTA, even in the delayed phase

and Duplex-scan with contrast might not always be good enough to detect these lesions, these endoleaks. This looks like a nice paper, and what we tried to do is to use contrast-enhanced agents in combination with MRI. And here you see the pictures. And on the top you see the CTA, with contrast,

and also in the delayed phase. And below, you see this weak albumin contrast agent in an MRI and shows clearly where the leak is present. So without this tool, we were never able to detect an endoleak with the usual agents. So, at this moment, we don't know always whether contrast

in the Aneurysm Sac is only due to a type II. I think this is an important message that Hans pushed upon it. Detection is limited by the tools we have, but the choice and the success of the treatment is dependent on the kind of endoleak, let that be clear.

So this paper has been mentioned and is using not these advanced tools. It is only using very simple methods, so are they really detecting type II endoleaks, all of them. No, of course not, because it's not the golden standard. So, nevertheless, it has been published in the JVS,

it's totally worthless, from a scientific point of view. Skip it, don't read it. The clinical revelance of the type II endoleak. It's low pressure, Hans pointed it out. It works, also in ruptured aneurysms, but you have to be sure that the type II is the only cause

of Aneurysm Sac Expansion. So, is unlimited Sac Expansion harmless. I agree with Hans that it is not directly life threatening, but it ultimately can lead to dislodgement and widening of the neck and this will lead to an increasing risk for morbidity and even mortality.

So, the treatment of persistent type II in combination with Sac Expansion, and we will hear more about this during the rest of the session, is Selective Coil-Embolisation being preferred for a durable solution. I'm not so much a fan of filling the Sac, because as was shown by Stephan Haulan, we live below the dikes

and if we fill below the dikes behind the dikes, it's not the solution to prevent rupture, you have to put something in front of the dike, a Coil-Embolisation. So classic catheterisation of the SMA or Hypogastric, Trans Caval approach is now also popular,

and access from the distal stent-graft landing zone is our current favorite situation. Shows you quickly a movie where we go between the two stent-grafts in the iliacs, enter the Sac, and do the coiling. So, prevention of the type II during EVAR

might be a next step. Coil embolisation during EVAR has been shown, has been published. EVAS, is a lot of talks about this during this Veith meeting and the follow-up will tell us what is best. In conclusions, the approach to sac enlargement

without evident endoleak. I think unlimited Sac expansion is not harmless, even quality of life is involved. What should your patient do with an 11-centimeter bilp in his belly. Meticulous investigation of the cause of the Aneurysm Sac

Expansion is mandatory to achieve a, between quote, durable treatment, because follow-up is crucial to make that final conclusion. And unfortunately, after treatment, surveillance remains necessary in 2017, at least. And this is Hans Brinker, who put his finger in the dike,

to save our country from a type II endoleak, and I thank you for your attention.

3

- Thank you very much. The stuff Rubiole said about magic methods, but not concerning the large veins, as we heard, would be also about that or something. I don't have disclosures. We all like probably to treat such a pathology. It's quite common in our offices.

And most of us treat them without the problems. But probably we will be not much happy to having such a patients to treat, especially if we see such a pathologies, not this what you, really, I like, especially if patient is coming with the recurrence

in the same place for the third or fourth time. So of course, reflux identifications, we heard this based on ultrasounds. Small vessels, feeding vessels can be seen on the ultrasound and torso transillumination. In most cases, this will be probably sufficient,

but as we have no doubt about this case what to do. In many cases, or at least in some cases, we see the patient coming with sclerotherapy failure. And then probably the first thing that we should look for, it's a feeding vein. Persistence or persistent of a large vessel.

Reflux, what else, except physical examination, except transillumination we can use? Near Infrared light technology. And ultrasound especially. Ultrasound with high frequency that allows you to do exactly this what the static medicine doctors do.

So, to see the skin in a very good quality matches. So, concerning Vein Viveror of this transillumination, often of this wentetrotite methods that I think most of your are familiar with, this, we can use this in some cases, but as in this case it is quite easy and possible.

In this case, on the right side, I not sure what's really a problem in this patient because probably the feeding veins comes goes from, goes from the down in a perpendicular manner. So if you have such a lesion without any feeding veins visible in transillumination or in almentoteratity,

what can we do to close this? Then, I would like to encourage you to use high resolution ultrasound. This is the same lesion with 0.6 millimeter vessel just below, but this vessel goes perpendicular to one of the quite big perforators as you can see,

in a very perpendicular manner, probably none other methods can show us this kind of pathology. With this high resolution high frequency ultrasound, you can see reticular veins, but this is what is especially interesting,

you can see the connection with all vessels being below the lesion that can be not visible in any other technology. Perforators going oblique and going perpendicular are quite good visible. I can try to find the reflux in compressing the skin,

but quite often the reflux can be seen using the simple valsalva maneuvre, as the vessels are very small. Some examples what we can see the perforators, but also like on the right side, the novus scleroization coming from the

small vessels after this thing is removal. And we made some small study of 50 C1 lesions resistance to sclerotherapy failure, treated after the diagnosis made by augmented reality and 18 megahertz probe Venous ultrasound. All these lesions were previously treated,

as you can see some of them even three times, no major vessel reflux, no large branches, no axial reflux, and no vessel is visible in transillumination in the series. We found that in 50% there were the vertical or oblique course vessels feeding this lesions and

vertical plus horizontal additional 26, so we had the perpendicular going pathological reflux in 3/4ths of the patients, reflux sources in 62% were perforators or deep vein connectors. On this patient were treated with ultrasound guided sclerotherapy, or with augmented reality

guided sclerotherapy. And as you can see, 66% of the feeding veins were recognized by 18 megahertz ultrasound and we could probably not find this in any other way after six months follow-up. 90% of these lesions were obliterated.

However, 1/3 required the repeated treatments. In conclusion, the combined approach based on the augmented reality and the 18 megahertz ultrasound feeding vein identification improved the C1 sclerotherapy efficacy in the treatment of pathologies not applicable for the primary treatment

and is not for the standard approach. And we currently don't use this in standards approach, we use this for lesions that you saw. Thank you very much.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- I have nothing to disclose but what I will tell you is that the only way for me to learn the mechanics of treating low-flow malformations has been to learn from Wayne, follow what he's doing, and basically what I've done is I've filmed every single step he's taking,

dissect that, and then present you the way that he's doing it. The best way to do that is not listen to Wayne, but to film him, and just to check that afterwards. And he goes regularly to Cairo, this is the place of Dr. Rodovan sitting here

in front of us, and with Dr. Alaa Roshdy. I've learned a lot there from Wayne. This is Wayne's techniques, so normally if you look at puncture, the low flow malformations here then you get return or you aspirate so this is what happens, they inject contrast then they find volume

and inject whatever agent you prefer to inject. It happens to be alcohol but that is not essential. More often than not, there is no return. What to do then? There is a technique that Wayne has developed. Stab-Inject-Withdraw, just under high modification inject,

identify that you're not outside the vessel, get the vessel, start to fill slowly, and identify that and inject the alcohol. Of course you can do that under exposure just to see the effect of the alcohol thrombosing, et cetera.

Another example of no return is to subcutaneously certainly show that there is a low pressure system, and again, Stab-Inject-Withdrawal, and there is a cyst. Is it extravasation or is the malformation aspirate? And if it collapses, that's the malformation.

And then continue to fill in with contrast, define how big the malformation is, and then accordingly inject the amount of abrasive agent that you're using. Lymphatic malformation is very difficult to treat because the vessel's so small, would say microscopic,

and again, Stab-Inject-Withdraw, identify that it's not extravasating but it is the vessel, and start slowly, slowly to fill and any time in doubt that should there, just do a run, identify, and that is the vessel, or the network of the vessels and

start to fill that with the agent you're using. But there are certain zones that just don't inject anything, and these are the arteries. How often do arteries occur? When you puncture them. I just directly looked at all these 155 patients I've seen Wayne treat there a matter of,

I would say, 100 patients in three days. 30 patients per day, that's about six percent. And you see the artery by pulsating flow depending on the pressure that you apply. And we see again the artery pulsating and we have no doubt about that.

However, it could be difficult to see. Depending on how much you push in the contrast and you see these being ornery so there's a No-Go-Zone, no injection of any agent and again, a tiny bit of lottery there in the foot could be disastrous.

You inject any agent, any, you will have ended up with necrosis of course if you don't inject inhibitors, but not yet. The humorous may not end up with necrosis when all the mysticism with puncture will be gone. So we have extravasation, when you say extravasation

like starting injecting, still good, looking good, but you see how the extravasation even blows up and at the end it bursts, again under pressure they should apply, so pressure is really important to control and then you stop and don't inject any more.

Extravasation, you see how its' leaking in the back there, but you correct the position of the needle, identify all the vessels, the tiny little vessels, just have to be used to identify the pattern and then you start to inject the agent again.

Control is very essential. Here is the emphatic malformation labia and though there is this tiny little bity extravasation you continue because there is you know, run-off, it is filling the system and you can safely inject the alcohol.

Intraarticular could be malformation there and this is definitely safe pla however, if it is in the free space in the the joint, that's again, it's No-Go-Zone. How you see that is just be used to

the pattern recognition and you find that this is free. It's around the condyle there so there is no injection. Compression is again good to note to control by compression where the agents go. This is a normal vein, certainly at risk of getting with alcohol, whatever agent

you're using deep in the system, avoid that by compression. Compression can be applied manually and then that gives you a chance to fill the malformation itself and not strike connection too deep in the system. Intraosseous venous malformation,

low-flow malformations can occur anywhere, here in the spine and the axis is transpedicular patient prone because it's soft. The malformation has softened up the bone. You can just use a 21-gauge needle and identify the malformation and follow

by the agent you're using. Peculiar type of venous malformation called capillary venous malformation. Basically it's a low-flow malformation without any shunt here in the sciatic notch of the patient and geography shows that there is no shunt

there is just big veins and intense pacification. And identify the veins by indirect puncture again, see the pattern of that and inject alcohol and following geography we can see that there has decreased the density but it is a lot more left to be done.

In conclusion, direct puncture is the technique in this low-flow malformation but Stab-Inject-Withdraw is the really helpful technique for successful treatment of microvascular, microcystic lesion. No-Go-Zones for certain when you see arteries

and anytime in doubt you just have to do a run to identify if they're arteries or not. Intraarticular free space and extravasation and normal veins, similarly, No-Go-Zone. Capillary venous, intraosseous malformations can be treated successfully. Thank you.

(audience applause) - [Facilitator] Thank you, Crossey. Excellent talk, very practical and pragmatic. Any comments or questions? Dr. Yakes. - [Dr. Yakes] We have been to many meetings and people have talked about doing

other ultrasound guides, accessing the malformations. You'll never see those arteries by ultrasound. - [Facilitator] That's absolutely correct. I concur. I concur and I think some of the disasters we've seen where suddenly something falls off

have been in these situations because they don't understand or in expansile foam-based therapies, I've seen that. I've seen plenty of these, so it's always present, potentially.

- Thank you, Mr. Chairman. Good morning ladies and gentleman. I have nothing to disclose. Reportedly, up to 50 percent of TEVARs need a left subclavian artery coverage. It raises a question should revascularization cover the subclavian artery or not?

It will remain the question throughout the brachiograph available to all of us. SVS guidelines recommend routine revascularization in patients who need elective TEVAR with the left subclavian artery coverage. However, this recommendation

was published almost ten years ago based on the data probably even published earlier. So, we did nationwide in patient database analysis, including 7,773 TEVARs and 17% of them had a left subclavian artery revascularization.

As you can see from this slide, the SVS guideline did affect decision making since it was published in 2009, the left subclavian artery revascularization numbers have been significantly increased, however, it's still less than 20%.

As we mentioned, 50% of patient need coverage, but only less than 20% of patient had a revascularization. In the patient group with left subclavian artery revascularization, then we can see the perioperative mortality and morbidities are higher in the patient

who do not need a revascularization. We subgroup of these patient into Pre- and Post-TEVAR revascularization, as you can see. In a Post-TEVAR left subclavian revascularization group, perioperative mortality and major complications are higher than the patient who had a revascularization before TEVAR.

In terms of open versus endovascular revascularization, endovascular group has fewer mortality rate and major complications. It's safer, but open bypass is more effective, and durable in restoring original profusion. In summary, TEVAR with required left subclavian artery

revascularization is associated with higher rates of perioperative mortality and morbidities. Routine revascularization may not be necessary, however, the risks of left subclavian artery coverage must be carefully evaluated before surgery.

Those risk factors are CABG using LIMA. Left arm AV fistula, AV graft for hemodialysis. Dominant left vertebral artery. Occluded right vertebral artery. Significant bilateral carotid stenosis.

Greater than 20% of thoracic aorta is going to be or has been covered. And a history of open or endovascular aneurysm repair. And internal iliac artery occlusion or it's going to be embolized during the procedure. If a patient with those risk factors,

and then we recommend to have a left subclavian artery revascularization, and it should be performed before TEVAR with lower complications. Thank you very much.

- I am not Walter's enemy. I can tell you that. I am against the motion. (man laughing) I will stick to the truth, to the facts. I don't like polemic, like you. I don't like to play, let's say games

of undermining what my opponent is saying. I'm just showing what I believe in because it is the truth, okay? (quiet laughter) I have nothing to disclose. Let's stick to the definition of 'cure.'

We all know that 'cure' means 'at least one year follow-up, angiographic follow-up after the, so-called, final angiography, that shows that malformation is gone.' Call it whatever you want.

Technical success, obliterated, trombosed, concluded, ablated, gone. Then at least one year follow-up on that. Angiographic to prove it's gone. The rest is just a scale on how you can evaluate the results.

Angiographically and clinically. The only way, for me, to speak to the truth is to find in a material where there is a chance to compare.

Hat to hat. Both type of treatments. Polymerizing versus alcohol. And, the only way to find such a place is to go to Wayne's place, because he's also constantly called

talking about salvaging this and salvaging that. I am very critical about what Wayne does. You can be assured about that. He's had 16 patients, I dig out there, and polymerizing agents they were failed.

Definitely, failed. Actually, they were salvaged, by Wayne. And, I'll show that to you. These are the patients. This is the time to which they've been treated. The usual type of distribution.

Young patients. All of them extensive. There is no, for a lack of an effort. There is no, for a lack of knowing how to use

the polymer. Onyx. How we can tell that, most of those is Onyx, some of them are glue. Or a combination. The median number of sessions

with this polymerizing agent is 8.5. Range from one to thirty. The other radiologists, the other experts, besides my honorable opponent, Doctor, Professor Wolgemuth,

they also know how to use Onyx. I can assure that. Sixteen patients, all symptomatic. They are all decompensated, showing three, four tier symptomatically. They have high cardiac output,

they have required repeated, repeated blood transfusions, infections, ulcers, disarticulation. To have disarticulation of vascular malformation means, oh, horrible bleeding, infected. There is no doubt,

they are symptomatic. Couple of examples. This is a young woman, extensive AVM in the foot, type four. Been treated five times with Onyx. And they know what they've done.

They've treated well. Yet, worsening symptoms, wheelchair bound, infected ulcer. Seventy-one session. Now, pay attention. Seventy-one sessions of ethanol/coils embolization. And, this woman is now running with her friends

after her amputation of couple of necrotic toes. Not because of the alcohol. Because of the malformation. Angiographically, not cured. Example of that. Okay.

This is malformation. This is not something in a tiny, little bitty thing. It's a malformation, no question about that. Before treatment. And, this is after treatment. We can all agree that,

this is not completely cured. It is a grade three it is 80 to 99 percent still left. But, clinically, she's running. She continues to be treated. Another example.

One year old girl with bleeding malformation from the lip. Admittedly only one Onyx being used because we didn't know what to do. Luckily, the little girl was close by so she came to Wayne and after,

it's intravenous predominant lesion. It's a type two lesion. Only after a six month treatment sessions, cured. This is before start of ethanol treatment. No question there is recurrence. We can not close that only by pushing

polymerizing agents somewhere in something called 'nidus.' But if you ablate the cells, ablate the nidus. You achieve cure.

And it's cured in one year angiographic follow-up. This is time and time and again. I will show these examples. This is the outcome. The outcome tells you six cured angiographically. Eight considerably improved, they improved.

None of them is failed in this. All failed polymerizing agent treatment. Then we can move on. Complication because that's where talking about how dangerous. Alcohol is very dangerous,

but so is knife in operating room. Take a knife and stab it somewhere in some artery, or in a pressurized vein, you'll have all this blood in your face and a shoot of blood doesn't taste very good in your mouth. So it's dangerous.

But, if you use it carefully, that's what you achieve, as a result. Where do we stand with these patients? Ongoing treatment, five. Cured, five, by summation.

One still waiting for a follow-up on angiographic follow-up. Improved on watchful observation is two. Lost to follow-up because schizophrenia. Lost to follow-up because of unknown reason, after two years of follow-up.

He's been doing well throughout these two years. One clinical failure. I will tell you that Wayne have, he's seen this person. Not clinical failure. Yeah, it's clinic.

By definition, is clinical failure. Angiographically, improved. Clinically, improved. The little boy was wheelchair bound, didn't want to continue with that and, therefore, went for amputation.

So it's a clinical failure. One. To summarize that, I highlight on this, venous predominant lesions. These are the ones these create.

Type four. (man speaking off screen) Tough. Couple of examples. Striking examples. This is venous predominant lesion, IIA.

I'm sorry. IIIa, IIIb being treated. Sorry. Can we go back to that? Any way I can go back on that?

This IIIa, IIIb, there's has been five. That's moves forward. Five surgery, Onyx, anything thrown in. Extensive malformation. Shoulder, arm, a no-flow into the lower arm

because of the. And it's moving forward. I'm sorry for that. But it was cured. And there was a follow-up, too. I believe there was something.

Twenty, 15, 17 months follow-up. So we have the next patient. Thirty-two year old female treated with glue in the past.

Twenty procedure including all vessels. Everything that can not be, could be embolized, was emolized. Ended up with the worsening and this is the typical example a IIIa malformation, typical example.

This was way back in the past. This is how Wayne has developed that. It took him, I heard, nine hours and another 100 coils, but he cured that.

- [Male] 298. - Two hundred ninety-eight. This is the follow-up, you know. Eighteen months later. To summarize on that. Nothing to do with my feelings for Wayne.

Nothing to do with Walter being my enemy. (quiet laughter) No, it's just a fact, a truth. Polymerizing agents, by definition, do not cure AVMs. Do not cure.

Sometimes, when used properly, still worsen the patient's symptoms. Ethanol cures AVM. Provided that you do that with precision and skills. How you acquire precision and skills? Ask the surgeons around here.

How do they lift up this face? How Max can lift out, you know, big time metastasis sections in liver? How do you do that? With skills.

How do you acquire skills? Learn. Thank you.

- Thank you Rod and Frank, and thanks Doctor Veeth for the opportunity to share with you our results. I have no disclosures. As we all know, and we've learned in this session, the stakes are high with TEVAR. If you don't have the appropriate device, you can certainly end up in a catastrophe

with a graph collapse. The formerly Bolton, now Terumo, the RelayPlus system is very unique in that it has a dual sheath, for good ability to navigate through the aortic arch. The outer sheath provides for stability,

however, the inner sheath allows for an atraumatic advancement across the arch. There's multiple performance zones that enhance this graph, but really the "S" shape longitudinal spine is very good in that it allows for longitudinal support.

However, it's not super stiff, and it's very flexible. This device has been well studied throughout the world as you can see here, through the various studies in the US, Europe, and global. It's been rigorously studied,

and the results are excellent. The RelayPlus Type I endoleak rate, as you can see here, is zero. And, in one of the studies, as you can see here, relative to the other devices, not only is it efficacious, but it's safe as well,

as you can see here, as a low stroke rate with this device. And that's probably due to the flexible inner sheath. Here again is a highlight in the Relay Phase II trial, showing that, at 27 sites it was very effective, with zero endoleak, minimal stent migration, and zero reported graph collapses.

Here again you can see this, relative to the other devices, it's a very efficacious device, with no aneurism ruptures, no endoleaks, no migration, and no fractures. What I want to take the next couple minutes to highlight, is not only how well this graph works,

but how well it works in tight angles, greater than 90 degrees. Here you can see, compliments and courtesy of Neal Cayne, from NYU, this patient had a prior debranching, with a ascending bypass, as you can see here.

And with this extreme angulation, you can see that proximally the graph performs quite well. Here's another case from Venke at Arizona Heart, showing how well with this inner sheath, this device can cross through, not only a tortuous aorta, but prior graphs as well.

As you can see, screen right, you can see the final angiogram with a successful result. Again, another case from our colleagues in University of Florida, highlighting how this graph can perform proximally with severe angulation

greater than 90 degrees. And finally, one other case here, highlighting somebody who had a prior repair. As you can see there's a pseudoaneurysm, again, a tight proximal, really mid aortic angle, and the graph worked quite well as you can see here.

What I also want to kind of remind everybody, is what about the distal aorta? Sometimes referred to as the thoracic aorta, or the ox bow, as you can see here from the ox bow pin. Oftentimes, distally, the aorta is extremely tortuous like this.

Here's one of our patients, Diana, that we treated about a year and a half ago. As you can see here, not only you're going to see the graph performs quite well proximally, but also distally, as well. Here Diana had a hell of an angle, over 112 degrees,

which one would think could lead to a graph collapse. Again, highlighting this ox bow kind of feature, we went ahead and placed our RelayPlus graph, and you can see here, it not only performs awesome proximally, but distally as well. And again, that's related to that

"S" shaped spine that this device has. So again, A, it's got excellent proximal and distal seal, but not only that, patency as well, and as I mentioned, she's over a year and a half out. And quite an excellent result with this graph. So in summary, the Terumo Aortic Relay stent graph is safe,

effective, it doesn't collapse, and it performs well, especially in proximal and distal severe angulations. Thank you so much.

- I think we have time. If there are any questions, please come up to the microphone and any of the panels have questions for each other. I have a number of questions I could ask but I just see if anyone wants to start out. Claudio?

- I have a question Doctor Mark. He show us very nice utilization of this device for occluded limbs. My question is, do you protect in any way the other side? If not, don't you have, you're not concerned

or you're not afraid of pushing clots from one side to the other one when you're manipulating the device? And the second one, do you do this percutaneously? And if that's the case, do you have any concern about having destabilization?

Because once you start to manipulate the clot that is occupying the entire graft, and there is reestablishment of flow in an antegrade flush, and you may have some of that clot dislodge and embolize distant. - Yeah, as I mentioned,

nobody wants to be the guru of limb occlusions. However, we have seen them and we always go retrograde ipsilateral, not seen emboli once from those seven cases and in fact, the 73 we presented at the midwest there was only two instances of embolization

when we utilized this device. And both times we were able to extract those just by going further down with the cat six and both of them was below the knee popliteal. In particular, the acute ones, it's soft and it's no different than watching it in vivo

or in vitro model, as you know better than I, comes out quite easily. - Let's take our question from the audience. - [Scott] Hi, Scott Tapart from Stuart, Florida. So I'd like to poll the panel there about are you doing every single

acute limb ischemia percutaneously? The pictures are elegant, the techniques are elegant, but the last speaker touched on the profoundly ichemic Rutherford 2B patient, where you're most likely going to have to do a fasciotomy. Are you going to the OR

or are you doing this percutaneously and then watching and waiting and seeing about fasciotomy? Or has this changed your fasciotomy approach? - So since we have a number of people, that's a great question. Why don't we start at the end

and let's just go kind of rapid fire, maybe one or two sentences, how do you choose your patients and what do you do with those 2Bs and we'll try to get through everybody. - Sure, so, to reiterate the last slide of the presentation,

essentially anybody with a significant motor or neutral deficit is somebody I tend to do in an open fashion. And if I'm the least bit concerned about doing a fasciotomy or there's evidence of compartment syndrome I do that patient open.

- We try to start endovascular, and if we can clean and reestablish antegrade flow, that would take care of the problem. And of course, I'm a radiologist, so I always consult with my colleagues in surgery and they decide if a fasciotomy needs to be done or not.

And it's that at the end. - Okay, I have to be honest, we start with the selective indication but now we move maybe to 90% of our patients doing percutaneously. We will adjust patients with probably an embolization,

a huge embolization, into the common femoral artery for open surgery. Of course, in our mind, also in the registry, we have some cases of fasciotomy after percutaneous approach so it's not a limitation. - The advantage of acute arterial protocol,

as they all go to the end of asher suite and they all run along our protocol but you can run the option. You get them to treatment quicker because they don't dilly-dally around in the holding room. But then according to how the patient's doing

you can mop up as much clot as you can with the percutaneous technique and then do the fasciotomy when you're done or press head and drip more if you need to. So I think to have an algorithm where you can treat the full spectrum

is what's best for the patient. - I think it depends on the time as well because I did two weeks ago a patient who needed a fasciotomy directly so I performed that first and then it rules out any traumalitic therapy

or whatever that you want to do. And actually, if I do antivascular techniques I usually give a shot or RTPA or something and then go further with it. But anomerization of this patient's arteries as well so prefer actually if it's really a case

that needs fasciotomy just to perform surgical thrombectomy. - Yeah, percutaneous eight French up and over and almost always, you're going to be done with your thrombectomy within about 30 to 45 minutes. I don't think you're adding that much time

and for us, by the time we get anesthesia in him assuming anesthesia's anesthesia no matter what part of the world you're in, so you can get to the hybrid room quicker and then if it's going to fail then you're going to call in the OR or call an anesthesiologist.

- I wouldn't have much else to add. I do think there is some patient selection, if you have an entire SFA, 30 centimeter clot, that's going to take you hours to do so for these thromboembolic things that are 10 centimeters or shorter

lodged in the popliteal TP trunk, this method works really well. I think for the longer patients, you might think about something else. - But just a comment on the general anesthesia. If a patient is in real or really pain,

he can't lie down for 30 minutes, even. I mean, they are rolling in pain and I would do the fasciotomy first because general anesthesia is needed because there is so much pain or, yes, so yeah.

- So, let me say, does that answer it, Scott? So let's, since we have a number of panelists and we're running out of time, how about if we ask each person going down the room, you heard a whole bunch of different speakers here with a lot of experience

and if you haven't used this, there is a learning curve. The learning curve is pretty shallow. Really, a lot of it has to do with controlling your blood loss. But if we ask each person for just one tip

and we'll see if we can get through everybody. If you telling people who hadn't done a lot of this, one tip or one trick, let's see if we can get seven or eight tips and tricks out. So, I'll go last. Let's start back down at that end

and we'll end up at this end. - Sure. Use the largest catheter that the vessel will comply to. - Amen, brother. - I agree with that.

And the way I do it, in order to avoid too much blood loss, I like to engage with a syringe. So I come with my catheter, I hook a syringe in the bag, 20cc or sometimes even larger, and when I have the fish at the end of my line, then I connect to the pump and I continue.

That way if I'm aspirating, I'm not going to aspirate a large volume so I want to engage the clot. And then I bring the clot out. That's my trick. - Okay.

Very nice comment. Of course, I agree with the previous colleagues but I will say that first the trick is really the largest catheter is better, then my idea that I developed during my learning curve is the use of separate to cut away.

I probably use now in 95% of cases because it just makes everything quicker and faster and better. - I use the perclose device for large-bore catheters often and that allows me to pull the plug out, especially if it's fibrous plugs,

safe from the heart without shearing it off on the end of the catheter. I've got one question for Claudio, on that case of the carotid subclabian with the acute carotid occlusion, do you think the nitroglycerin would have helped?

- For the doctor? - For the surgeon. - Absolutely. - And then, change the diapers. - Well, I would advise if you do a surgical embolectomy do it also on the hybrid room

and try to do it also over the wire. Especially be careful if you do it below the knee. I would suggest do it open below the knee, even. - I would say don't afraid to use an eight French for ALI and that closure devices are your friends here. But you can use an eight all the way down to the pop

and then for us, the tibials, we'll use a six. - Yeah, I would agree with that. So I guess my tip would be, I agree with everything everyone said, although I don't use the separator very often in the arterial side, I do in the veins.

But one tip is, if you're not going to use a separator, if you're going to start without it, let's say you want to give it a try, I don't work through a 2E borst because the angle, the eddy currents that form around that 2E borst

trap clots and you constantly have to clean that 2E out so if you're going to start with a focal embolis in the artery my recommendation is take the 2E off, hook up to the vacuum directly, and you'll get less clot stuck in the 2E. If you want to go to the separator

then you can always add that on at the back end. - So I have a question for Fennel. I used a penumbra like a few weeks ago and it ended up really bad because the surrounding catheter from the penumbra, everything got, you know, clotted

and then I didn't have any outflow did I choose the wrong size or what is it that happened, did you see it ever? - We have not had that problem. We're usually working on heparinized patients and have not seen that happen.

- She was heparinized. No? Okay. - Okay. Any other comments? Otherwise, we'll end one minute early

on a nice, long day.

- Sam, Louis, thank you very much. I also kind of reduced the title to make it fit in a slide. Those are my disclosures. We've switched to using a hybrid room routinely a couple of years ago and what happened then is that we started using 3D imaging

to guide us during the procedure using a fusion overlay. Obviously this was a huge benefit but the biggest benefit was actually 3D imaging at the end of the procedure so rather than doing an AP fluoro run, we would do a 3D acquisition in a cone beam CT

and have those reconstructions available to check technical success and to fix any issues. We've been using this technique to perform translumbar type 2 endoleak treatment and what we do is we do a cone beam CT non contrast and we fuse the pre-op CT on top of this cone beam CT

and it's actually quite easy to do because you can do it with the spine but also obviously with the endograft so it's a registration on the graft on top of the endograft and then the software is really straightforward. You just need to define a target in the middle

of the endoleak. You need to define where you want to puncture the skin and then the system will automatically generate to you a bull-eye view which is a view where you puncture the back of the patient and the progression view you obviously see the needle

go all the way to your target. And what is interesting is that if you reach the target and if you don't have a backflow so you're not in the endoleak, you have this stereo 3D software which is interesting because you do two lateral fluoro runs

and then you check the position of the needle and then it shows you on the pre-op CT where you are. So here in this specific patient, I didn't advance the needle far enough. I was still in the aortic wall,

that's why I didn't get backflow so I just slightly advanced the needle and I got backflow and I could finish the embolization by injecting contrast, close and then ONYX to completely exclude this type 2 endoleak. So now let's go to our focus today is fenestrated endograft.

You see this patient that were treated with a fenestration and branches. You can see that the selective angio in the left renal looks really good but if on the cone beam CT at the end of the procedure we actually had a kink on the left renal stent

so because I had depicted it right away at the end of the procedure I could fix it right away so this is not a secondary procedure. This is done during the index procedure so I'll go directly to what we did is we reinflated a ballon,

we re-fed the balloon and then had a nice result but what happen if you actually fail to catheterize? This was the case in this patient. You see the left renal stent is completely collapsed. I never managed to get a wire from the aortic lumen and back into the renal artery

so we position the patient in the lateral position, did a cone beam CT and used the same software so the target is now the renal artery just distal to this crushed renal stent and we punctured this patient back in the target and so you can see is right here

and you can see that the puncturing the back. We've reached the renal artery, pushed a wire through the stent now in the artery lumen and snared the wire and over this through and through wire coming out from the back we managed

to reopen this kinked left renal stent. You can see here the result from this procedure and this was published a couple of years, two years ago. Now another example, you can see here the workflow. I'm actually advancing the needle in the back

of the patient, looking at the screen and you can see in this patient that had a longer renal stent I actually punctured the renal stent right away because at the end of the procedure I positioned another covered stent inside

to exclude this puncture site and then, oops sorry, and then, can we go to the, yeah great thank you. And then I advance the wire again through this kinked renal stent into the endograft lumen and this is a snare from the groin

and I got the wire out from the groin. So you see the wire is coming from the back of the patient here, white arrow, to the groin, red arrow and this is the same patient another view and over this through and through wire

we manged to re advance and reopen this stent and we actually kinked the stent by getting the system of branched endograft through a previous fenestrated repair and fortunately my fellow told me at the end of the procedure we should check the FEVAR

with a cone beam CT and this is how we depicted this kink. So take home message, it's a very easy, straightforward workflow. It's a dedicated workflow that we use for type 2 endoleak embolization. We have this intermediate assessment with Stereo 3D

that helps us to check where we are so with 3D imaging after the learning curve it's become routine and we have new workflows like this way of salvaging a kinked renal stent. Thank you very much for your attention.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- My rebuttal is short and sweet. I think that those of us who have seen both agents, seen it in a fair comparison, understand that while ethanol has an appearance of difficulty to use, have come to the conclusion that it is actually safe. It has to be applied in the right spot. If it is such it will absolutely cure

and in it's very, very safe fashion. I think Walter mentioned the four deaths that I referred to. I agree, tragic, terrible, but we learn. Haven't had any deaths since, because I understand now the mistake I made and how to use ethanol.

I think the same thing is true. Max will tell you that there were enumerable deaths during the development of transplanting these difficult operations. No longer, all controlled, it's all because of learning. Thanks.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Alright, that's our beautiful city by our inland freshwater ocean. I'm against the proposal because, in my opinion, ONYX and the polymerizing agents don't do what they're supposed to do, which is cure. You know, we could talk about this, but in preparation for this, I looked at the

relatively sparse, but available, literature on ONYX, and the fact of the matter is, repeatedly when one looks at what is in the literature, ONYX does not cure with a few exceptions. For example, this is the curative exception. This is a mandibular AVMs, three of them cured

at one year angiographic followup. Now, I consider cure a very simple metric: is it gone at one year followup angiography or imaging? And this meets that criteria, but again, we know that mandibular AVMs, as Dr. Fannis has so nicely shown, this is a bone cyst, essentially,

fill it with anything, it'll get cured. All venous predominant legions, three A. So, yes, cure is possible in isolated circumstances. I think Walter has acknowledged that. But, all the other data, including Dr. Loglos' own data, is that there is no angiographic

followup, short clinical followup. Other papers, Embolization of peripheral high-flow AVMs by Kilani et. al, surgical excision in nine out of 19. Right, that's not the same thing, but it is one aspect of doing it, and there's no angiographic followup. And we see this again and again and again.

Very short clinical followup. So paper after paper refused to tell us that we don't really know what the behavior of ONYX is, as defined by the very simple metric of cure. Although complete, in this paper for example, although complete angiographic exclusion of the nidus

is obtained in a minority, 36 percent, of cases, there's no angiographic followup, so the exclusion is presumably based on immediate post-embolization angiography. In other words, ONYX looks good, acts bad. Other embolization agents in this paper also used,

probably some of them ethanol, which actually got the job done. And then finally, another paper with zero clinical or angiographic followup. So the answer is obvious: ONYX, while it is used copiously by some of the participants in this debate, does not cure,

and I, as my Chinese friends said, think ONYX is garbage. I don't think it works. Few examples of that, here's a young woman, a patient of Dr. Yakes, who, 12 years old, extensive facial maxillary scalp AVM, nine ONYX embolizations, left blind in the right eye

with persistent massive oral and nasal hemorrhage, and after appropriate embolizations, patient was stabilized clinically, and the ONYX was resected. She's stable now, not cured, but she's actually had an excellent clinical result. And you can see that's what it looks like.

Now that's hideous, that's not going to work. And it also, I think, points out what Dr. Walgramuth has actually admitted to, which is it's very difficult to see through this stuff. Radiation dose is increased, and identifying what to do and where to go is a real challenge.

Another such example, I think, suffice it to say a picture is worth a thousand words is this illustrative case of an extensive pelvic AVM, treated with what appeared to be gallons of ONYX, with very little benefit, and an enlarging ulcer. This was later treated by direct alcohol injection

with cure and improvement resolution of that ulcer. So, in summary, it's real simple, folks. There's no evidence in the literature that polymerizing agents have cured AVMs with an exception of a few venous predominant legions. And as I said, you could probably put Jello

in the outflow of those things and it'd work. My own personal experience is repeatedly had ONYX failures, and importantly, many patients are worsened by this treatment, and actually, their subsequent curative treatments are hampered. Thanks very much.

- Thank you very much for the presentation. Here are my disclosures. So, unlike the predecessor, Zenith Alpha has nitinol stents and a modular design, which means that the proximal component has this rather gentle-looking bear stents and downward-looking barbs.

And the distal part has upward-looking barbs. And it is a lower-profile device. We reported our first 42 patients in 2014. And now for this meeting we updated our experience to 167 patients operated in the last five years.

So this includes 89 patients with thoracic aneurysms. 24 patients in was the first step of complex operations for thoracoabdominals. We have 24 cases in the arch, 19 dissections, and 11 cases were redos. And this stent graft can be used as a single stent graft,

in this case most of the instances the proximal component is used or it can be used with both components as you can see. So, during the years we moved from surgical access to percutaneous access and now most of the cases are being done percutaneously

and if this is not the case, it's probably because we need some additional surgical procedures, such as an endarterectomy or in cases of aorto-iliac occlusive disease, which was present in 16% of our patients, we are going to need the angioplasty,

this was performed in 7.7% of cases. And by this means all the stent grafts were managed to be released in the intended position. As far as tortuosity concerned, can be mild, moderate, or severe in 6.6% of cases and also in this severe cases,

with the use of a brachio-femoral wire, we managed to cross the iliac tortuosity in all the cases. Quite a challenging situation was when we have an aortic tortuosity, which is also associated with a previous TEVAR. And also in this instances,

with the help of a brachio-femoral wire, all stent grafts were deployed in intended position. We have also deployed this device both in chronic and acute subacute cases. So this can be the topic for some discussion later on. And in the environment of a hybrid treatment,

with surgical branching of the supoaortic tranch, which is offered to selected patients, we have used this device in the arch in a number of cases, with good results. So as far as the overall 30-day results concerned, we had 97.7% of technical success,

with 1.2% of mortality, and endoleaks was low. And so were reinterventions, stroke rate was 1.2%, and the spinal cord injury was 2.4%. By the way we always flash the graft with CO2 before deployment, so this could be helpful. Similar results are found in the literature,

there are three larger series by Illig, Torsello, and Starnes. And they all reported very good technical success and low mortality. So in conclusion, chairmen and colleagues, Zenith Alpha has extended indications

for narrow access vessels, provide safe passage through calcified and tortuous vessels, minimize deployment and release force, high conformability, it does retain the precision and control of previous generation devices,

however we need a longer term follow up to see this advantages are maintained over time. Thank you very much.

- Yeah, thank you Mr. Chairman. These are my disclosures. Well, we know that the Heli-FX EndoAnchor System provide fixation and seal in aortic necks, and it can prevent or resolve migration or endoleaks. It's important to have an even spacing around aortic circumference and

to resolve type 1A endoleaks, you need successful, of course, deployment of EndoAnchors and adequate penetration into the aortic wall. The objectives for this study was to quantify the EndoAnchor penetration into the aortic wall in patients undergoing EVAR

and to assess the predictors of successful penetration and to associate that with postprocedural type 1A endoleaks. We searched in the ANCHOR database, and we included patients that has been treated for a type 1A endoleak, and we had to have a good quality

first postprocedure contrast-enhanced CT scan without any artifacts due to metal or glue, and without implantation of adjuvant aortic extension cuffs or stents. And then we selected two patient cohorts, patients with successful treatment

after the implantation of EndoAnchors for a type 1A endoleak, and patients with a persistent type 1A endoleak after the EndoAnchor implantation. Well, this is to show how we determined the position of the EndoAnchors, this is a good penetrating EndoAnchor

more than two millimeters in the aortic wall. This is borderline, and this means there is still a gap between the endograft and the aortic wall or the EndoAnchor itself is penetrating less than two millimeters. And this of course, a non-penetrating EndoAnchor.

The good ones are green, the borderlines are orange, and the non-penetrating are flagged red. Here are results, the anatomical criteria to predict type 1A endoleaks, as you can see here, at the left, in the type 1A endoleak patients, there is a larger aortic diameter

with a median of 30 millimeters, and neck length is shorter, less than one centimeter, compared to the patients with no endoleak. Then about the EndoAnchor penetration, in the patients with a persistent type 1A endoleak, there are significantly more EndoAnchors

which are borderline or non-penetrating. What are the predictors for a successful EndoAnchor penetration. Well, protective factors, oversizing of the endograft compared to the diameter of the infrarenal aortic neck, and the use of the endurant stents.

Independent risk factors are the aortic diameter at the lowest renal artery, and five and 10 millimeters below more than 30 millimeters, a significantly neck thrombus and calcium around the circumference and also a more than two millimeter thickness.

Predictors for a type 1A endoleak, protective factors is the neck length more than one centimeter, and good penetrating EndoAnchors and risk factors for a type 1A endoleak is, again, the aortic diameter five millimeters

below the lowest renal artery more than 30 millimeters, and also boerderline and non-penetrating EndoAnchors and in this logistic regression model, a non-penetrating EndoAnchor is really predictive for a type 1A endoleak, or a persistent type 1A endoleak. A few cases, this is an excellent job,

there are four EndoAnchors placed, and they all penetrate well, although they are not circumferentially divided around the circumference. The majority of the problems in the patients in the ANCHOR database, if a persistent type 1A endoleak

is mainly due to an incorrect indication, these are EndoAnchors red and orange, non-penetrating and borderline. That is because they are above the fabric, or they are in a no-neck aneurysm, so the indication is not correct.

This is again, a patient with an undersized endograft, of course, the EndoAnchors will never penetrate the aortic wall at a post-serial part of the aorta. This is another example of misdeployment, a huge load of calcium and thrombus, and again, to defined a no-neck aneurysm,

and again, well it's obvious that the EndoAnchors will not do their job. These are then the EndoAnchor distribution in successfully treated type 1A endoleaks at the left, 332 EndoAnchors, but if you select only the patients

with an EndoAnchor which are inside recommended use at the right, you can see that more than 90% of those EndoAnchors are good penetrating. Here are the patients at the left with a persistent type 1A endoleak, 248, and you can see the majority is red or orange,

and that means that majority of those patients had an EndoAnchor deployment beyond the recommended use. So to conclude, good EndoAnchor penetration is less likely when there is large aortic diameter, the EndoAnchor is not perpendicular to the stentgraft during deployment,

and it's beyond the recommended use, more than two millimeters of thrombus, not in the infrarenal neck, or a gap more than two millimeters. And in borderline or non-penetrating EndoAnchor, it's predictive for a type 1A endoleak.

Thank you very much.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- I think it's unfair to have Wayne here with all his expertise and knowledge and throwing all these combative comments, vulgar attack, et cetera. But the bottom line is all these types, no matter how you define them, they are mixed.

They are mixed, they are not, with the exception for HDT. You have Type 1 in a midst of Type 2. You have Type 2A and then 3B, type something. I don't even know what they are, except that you say venous predominance, yes. Can be multiple venous predominance, yes.

Then you can have Type 4, these are the major groups. But to have a filler that occupies a space, can be Onyx, it's fine. It doesn't cure. You have to do something to these cells. You have to compress them.

You have to ablate them. You have to take them out. And a filler doesn't do that. The filler recolonizes on top of that, as you've put it already, from Molly. Recolonizes.

You can use it as a filler, but the cure, the ablation, has to be something that's powerful. Like a knife, even worse than knife, burn injuries, burn it to the bottom. That's how you achieve a cure. If you don't believe me, just look at ...

Can you play us that clip that was rotating constantly as Walter was talking, here, how Onyx is wonderful? This is the girl that you show on the pictures from Bob. Can you look at that? It's a ton of extras placed into the veins,

arteries, everywhere. She continues to bleed. On top of that, it's horrendous, how to treat it. Wayne managed to stop and control the bleeding, but this is an example.

This is the most scary sample of what Onyx cannot do. So back to the motion. Polymerizing Onyx can cure, and it's the material of choice to use? The answer is no. Alcohol is dangerous, personally,

I say yah, very dangerous, if you drive and you don't know how to use it. But so is everything else. But if you know, you can cure them. Thanks.

- Thanks, I appreciate the invitation. MR imaging of vascular malformations poses some challenges primarily related to the heterogeneous spectrum of the lesions. The primary distinction to be made with imaging is between low flow and high flow abnormalities. This distinction, however, can often be made clinically

and so the real value in MR is in determining the malformation extent and the associated involvement of adjacent normal structures. The basic MR evaluation of vascular malformations should of course be multiplanar in two or three orthogonal planes, and in each of those planes,

there should be T1 and T2 weighted imaging. There's some debate about the value of contrast-enhanced scans. Certainly contrast-enhanced scanning will show things like arteriovenous shunting and lesion perfusion, but mostly the value of contrast-enhanced scanning

is in making the diagnosis of the abnormality rather than in guiding specific treatment. So let's talk about the various imaging sequences and go through a few examples. On T1 weighted images, we see the anatomy of the limb or of the area in question quite clearly.

But what you notice is that there's a signal similarity between the normal tissues and the adjacent malformation, such that they blend together. That means that assessment of lesion extent is poor on T1 weighted images. Now this is in distinction from T2 weighted imaging

where malformation images tend to stand out quite dramatically from the adjacent surrounding normal tissue, making assessment of lesion extent quite good, with the following caveat that on these bright water-type sequences, edema, when present, especially in high-flow lesions

or in low-flow lesions following embolization, it can result in overestimation of lesion extent. Many people routinely include contrast-enhanced imaging for malformation evaluation. I think it's probably not necessary and doesn't actually provide that much

additional information beyond making the actual diagnosis. Now that said, that's to be distinguished from dynamic time resolved imaging, which is a newer type of contrast-enhanced imaging using faster acquisition. It has what's called a higher temporal resolution and we can clearly differentiate

inflow arteries from draining veins and this can be valuable in treatment planning as well. Here we see pre- and post-contrast images and you'll notice that on the post-contrast images, there's slightly better visualization of the malformation, but the difference between the two is really modest

and probably not clinically relevant. Now that's to be distinguished from time resolved imaging, which will allow us to see arterial, parenchymal, and venous phases, and these can be stitched together to create a movie that really does look quite a bit like a catheter-based angiogram.

The difference between high and low flow malformations is primarily made based on structural characteristics, rather than MR signal abnormalities. So, low flow lesions will usually have minimal mass effect. Here we see signal abnormality with almost no mass effect. When a mass is present, it sometimes has

hamartomatous stromal elements that look like septations running through the mass. When a mass is not present, the lesion tends to be pretty infiltrative. Without any mass effect, sometimes the degree of infiltration is amazingly intimate, as in, case like this.

When we see phleboliths, which are routinely identified on radiographic images, we have confidence that we're dealing with a low flow lesion. But in fact, MRI imaging can identify phleboliths pretty consistently, and here you see they appear as rounder, oval, low signal images

on all imaging sequences, and of course, they don't enhance. Now, these findings are in distinction to high flow lesions, which demonstrate no well-defined mass ever, and in fact, if you see a well-defined mass it should make you think that you're dealing with a tumor rather than a malformation.

But they will demonstrate characteristics of enlarged feeding arteries, enlarged draining veins, and these infiltrative masses will often be riven through with multiple flow voids, and the degree of infiltration can be really, pretty impressive.

There are some signal characteristic differences between the various malformations. It's a long and involved topic, and probably something that doesn't make sense to go into here at this point, but I think the utility of MR in vascular malformations is primarily related to defining the anatomic

characteristics of the malformation, assessing what normal structures are involved or immediately adjacent, and this allows us to mitigate risk and plan the procedures. Now this is different from post-treatment evaluation of MRI, where there's definitely differences between how low flow and high flow lesions respond.

In low flow images, post-embolization we see significant signal changes. In high flow lesions, post-embolization we see anatomic changes. One important caveat to remember is when imaging and malformation within three months of an embolization,

it can be difficult to interpret related to the post-embolization inflammatory reaction. So on T1 weighted imaging post-embolization, we see bright signal, representing thrombus is the treated area as opposed to lack of bright signal, in the non-treated area.

On T2 weighted images, where the malformation generally appears bright, post-embolization we see dark areas in the treated zoned, representing scar. I personally prefer evaluating these with T2 weighted images. I think the distinction between treated and

untreated is greater and more consistent. Another example, scar forming, T2 weighted images. Again, I think the distinction is pretty clear. Although, contrast-enhancement isn't all that valuable in pre-treatment planning. Actually, can I get this video to go?

There we go. Although contrast-enhanced scanning isn't generally valuable in pre-treatment planning, there can be some utility in post-treatment evaluations. Specifically, dynamic time-resolved imaging or virtual angiography can be applicable to high flow malformations.

As you can see here, when the post-treatment evaluation and assessment of residual arteriovenous stunting is an important end point. Thank you. (applauding) - [Announcer] Any questions from the audience?

I think it's important to note, you mentioned the importance of T2 weighted imaging. And it is crucial, particularly for venous and lymphatic, or mixed lesions. But I think it's also important to state with T2 imaging, that you have to have fat suppression,

'cause fat also has bright signal and can be confused with malformation. - [Scott] Yeah, exactly, and there's really a broad range of T2 weighted images. What we rely on mostly is this short towen version recovery which,

- [Announcer] Now that's different, yeah. - [Mark] Yeah that's going to be. - I was going to write next. - [Mark] Yeah, so the, T2 fat suppressed images are, of course, critical, and should be obtained in every plane. We actually also obtain stir imaging in every plane. Yes, question?

- [Audience Member] So is the T2 full, (mumbling) what time do you need. - [Mark] I'm sorry, can you repeat that? - [Audience Member] What time do you need to continue to use of a full of T2 for (mumbling) - [Mark] Well, it depends on what you're looking for.

If you're trying to assess for complications, you can image any time. But, the challenge in interpreting is that the diagnostic radiologist won't necessarily know exactly where you've treated, and the lesion may appear abnormal in ways that aren't understood.

So, as the interventionalist who's doing the procedure, you really need to sit with the radiologist and help them understand what you did within that short timeframe. Now, if you're talking about imaging after three months, it's much easier to interpret signal changes have moderated, and that post-embolization inflammatory

phase has resolved. - [Audience Member] After two or three months? - [Mark] After three months, yeah. - [Announcer] Okay, thank you so much. - [Mark] Thank you.

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

- Alright-ey, hands put up. Who is for Onyx? Put your arms up. - [Male Audience Member] Who supports the Onyx Motion? - Onyx Motion, that's correct. He should've gone to law school. Who supports the alcohol motion?

Who supports the motion in the ocean? Alright, thank you I think we covered a lot of territory today. We want to have theses things and we are so glad that everybody came. I think this is Tony's first time,

Walter's first time here, Loronze and we really learned a lot today. I'm really glad Pletio Rossi was here because without him and his development of selective catheterization, I mean where would we be

sticking needles in every artery like that, trying to do angiograms, much less advanced sheaths or anything else. Pletio was wonderful having him here, one of my hero's. Anybody like to say anything?

Anybody got any questions or anything? - [Female Audience Member] The HHT scientific meeting's in June in Puerto Rico if you want some more good-- - Do they have electricity there yet? - [Female Audience Member] I hope so, I knew it looked nice before.

- Oh, okay, okay. Alright, well thank ya'll so much and we'll see you next year. (Clapping)

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.