Create an account and get 3 free clips per day.
Chapters
Ovarian Contributory Supply | Advanced UFE
Ovarian Contributory Supply | Advanced UFE
2016angiographicarterycatheterchapterembolicfibroidsflowinflowovarianrazavisbvSIRspasmsuppliedsuppliessupplytypeuterine
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
adjunctiveanatomicaneurysmaneurysmalaortoiliacarteryasymptomaticbilateralbranchbuttockcalcificationclaudicationcoildeviceembolizingendoleakserectileevarexperienceexternalflowfluoroscopygoreGORE ExcluderGORE Medicalhypogastriciatrogeniciliaciliac arteryIliac branch systeminternalinternal iliacipsiipsilaterallengthlimblimitationsmaneuversmulticenterocclusionocclusionspatencypatientperioperativeproceduralsacrificeshorterstentstentingtechnicaltherapeuticthrombectomytortuositytreatedtype
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
Bailout Rescue Procedures When CEA Is Failing In A Critical Unstable Patient: ICA Stent Or Gore Hybrid Graft Or Standard PTFE Bypass: Indications For Each
anastomosisangiogrambailbypasscarotidCarotid bypassCEACFAdurableembolicendarterectomygoregrafthybridHybrid vascular graftinsertedlesionnitinolpatencypatientperioperativeproximalPTAptferestenosisstenosistechniquetransmuralvascular graft
Long-Term Results Of Inframalleolar Bypasses For CLTI
Long-Term Results Of Inframalleolar Bypasses For CLTI
amputationanastomosisarterybypassBypass to Dorsalis Pedis Arterybypasseschallengesconduitdiabetesdorsalisendoluminalendovascularextremityfavorablehemodialysisinflowlimbocclusionsoutcomespatencypatientspedispercentpoplitealprimarysaphenousunfavorablevein
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
aneurysmarterybrachialcathetercentimeterclaudicationcomorbiditycomplicationsdiameterendograftendoleaksgorehypogastriciliaciliac arteryischemialatexlimblumenmajoritymidtermmortalityocclusionorthostaticpatientsperformedreinterventionrevascularizationssandwichstenttechniquetherapeutictreattypeviabahnwish Technique
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
Algorithms For Managing Steal Syndrome: When Is Banding Appropriate
accessaccommodateanastomosisarterialarterybandingbasicallybrachialchoiceclipsdigitaldistalFistulaflowgangrenegraftinflowligationlowmorbidneuropathypatencypatientspredictablepreservepressuresprostheticpulserestrictionstealunderwentveinvolume
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
acuteaneurysmangiographyarteriarterialbowelclinicianembolicembolusendovascularESVSguidelinesimagingischaemialactatemesentericrecommendationrepairrevascularisationthrombotic
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
Contemporary Treatment Of Carotid Aneurysms: Optimal Use Of Endo And Open Techniques
Contemporary Treatment Of Carotid Aneurysms: Optimal Use Of Endo And Open Techniques
adjunctiveaneurysmaneurysmsarterybarecannulatecarotidcarotid arterychallengescoilcompressivecovereddeploydistallyduplexdurationembolizationendovascularextracranialfibromuscularflowfollowincludinginternalinternal carotidlimitedmayomicrocathetermorbiditiesmycoticneurologicpatchpatencypatientsperfusionperioperativeprogressedpseudoaneurysmpseudoaneurysmssequelaestaticstentstentssurgicaltherapeutictreatment
Minimizing Risks From Long-Term Central Venous Catheter Use In Dialysis Patients
Minimizing Risks From Long-Term Central Venous Catheter Use In Dialysis Patients
accesscathetercatheterscliniccomplicationsCV CatheterDialysisfacilitatefasterfewerFistulafistulasgoregraftgraftsHeROmedianpatientsreadyremovalschedulestandardusable
The Serranator Balloon Catheter (From Cagent Vascular) To Score Lesions, Facilitate Their Dilatation Without Dissection And Possibly Improve Drug Delivery: How It Works And Results Of The PRELUDE Trial
The Serranator Balloon Catheter (From Cagent Vascular) To Score Lesions, Facilitate Their Dilatation Without Dissection And Possibly Improve Drug Delivery: How It Works And Results Of The PRELUDE Trial
adjudicatedangiographicarteryassessbailoutballoonCagent MedicalcalcificationcalcifiedclassificationclaudicantcoredevicediameterdissectionseffectiveendoluminalendpointendpointsenrollingenrollmentfeasibilityivuslesionlumenmoderateneointimaloutcomespatencypathologicpoplitealprimaryPTA serration balloon catheterresistiverutherfordscoringSerrenator altoseverestenosisstentstentedstentingstudysuperficialtherapeutic
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
abdominalangiographyanterioraortaaorticarteriogrambasicallybleedingcarboncatheterceliaccoilcontrastdiaphragmdioxideembolizationholeimaginginjectinjectioninjectionsiodinatedliverlowmultiplepatientpelvicrenalruptureselectivesolublesplenictraumavascularizationveinvesselvesselsvolumes
Update On The everlinQ Percutaneous Fistula Device
Update On The everlinQ Percutaneous Fistula Device
adequatearterialarteryAVFbasicallybasilicbrachialcannulatedcathetercatheterscephaliccomponentcreatecreatescreatingdeviceEverlinQFistulafistulasflowfunctioningInterventionsmagnetsmatureoptionpatientsperforatorprimaryradiocephalicsuperficialtrialulnarveinveinsvenousWavelinq 6F EndoAVF System
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
anatomicaneurysmaneurysmsarterybilateralbranchbuttockclaudicationclinicalcontralateraldatadevicedevicesdysfunctionembolizationendoleakendoleaksevarexpansionsfreedomgoreGORE ExcluderGORE Medicalhypogastriciliaciliac branchIliac branch systemimportantlyincidenceinternalinternal iliacipsilateralocclusionsoutcomespatencypatientspivotalratesregistryreinterventiontechnicaltherapeutictrialtypeVeith
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
The Impact Of Distal Drug Migration On Wound Healing After PTAs With DCBs: A Model To Measure Drug Levels In Tissues
amputationangioplastyarteryballoonballoonsBoston ScientificcalcificationclinicalcoatedcompleteconcentrationdegreedistaldiureticdownstreamdrugendpointshealinglesionslimbnecrosispaclitaxelPaclitaxel-Coated PTA Balloon CatheterpatientpatientsPTAs with DCBRangerrutherfordsalvagestenosisstudytherapeuticwound
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
Utility Of Duplex Ultrasound For Hemodialysis Access Volume Flow And Velocity Measurements
accessaneurysmalbypassclinicalDialysisdiameterduplexdynamicflowflowsgraftluminalmeasurepatientsrenalsensitivityultrasoundveinvelocityversusvolume
Pelvic Reflux: Is Coil Embolization The Answer
Pelvic Reflux: Is Coil Embolization The Answer
allergicanalogcoilsdatadiameterembolizationhighlightincompetencemeissnermisdiagnosedovarianpatientspelvicrefluxsymptomatologysymptomstreatingvaricoseveinveinsvenous
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Pump Speed, Needle Size, And Fistula Flow: Means To What End
Pump Speed, Needle Size, And Fistula Flow: Means To What End
accessachievebloodclearanceDialysisdoseflowneedleparameterspatientsizestriveuremic
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
NaHCO3 Plus Hydration Decreases Acute Kidney Failure After EVAR: Based On A Pilot RCT (The HYDRA Trial) Comparing It To Hydration Alone: Why Is It Different From Other Negative NaHCO3 RCTs
bicarbonateboluscardiovascularcombinationcomparingcoronarydoseevarhydrationHypertensionintralowmechanismspatientsperipheralpreviousrandomizedreducingrenalsalinesodiumstandardTherapeutic / Diagnostictrialtrialswillingness
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
Do Re-Interventions Cause EVAR Infections
Do Re-Interventions Cause EVAR Infections
52 mm AAAAAA EndoprothesisanterioraortoentericbacteremiacatheterembolizationendograftendoleakendovascularevarexcluderexplantfluidglutealgoreGore Excluder cuffgraftiliacinfectioninfectionsinguinalInterventionsmedicaremortalityonsetperioperativeprophylacticpurulentreadmissionsriskscansecondaryseedingsteriletherapeuticunderwent
Transcript

lexicon because i can't remember

types like always the type 3 or the type 2b I can never remember that stuff so I I kind of divide ovarian blood supply into like three groups and the first is what I call contributory flow now for those who do like classifications this

is a akin to the Razavi type 1 so this is where the ovarian artery supplies that was going to the uterus comes down the shipping main thing to work here and you can see if this comes over here it joins the uterine artery and the joint

blood supply from here and from here goes out and supplies these fibroids so these fibroids down here are only supplied by the uterine artery the figroid here at the fundus is being supplied by both and so there are some number of

angiographic signs to go with this so first you may see ovarian inflow as a negative flow defect and so you actually can have it so that the flow here is so great that injecting particles and getting them up to this level can be

difficult this is actually exacerbated sometimes by spasm she might have a disproportionately small uterine artery and a large ovarian artery you might see that there's very little flow in the

uterine artery and you're putting contrast and suddenly it speeds up and it dilutes that's an absolute sign you have ovarian inflow and you can use that to your advantage as long as you recognize it during the procedure and that this spasm

really can be an issue because somebody's uterine arteries are quite small in this setting the other thing to be a little aware of and I've seen this and I've got the video in other lectures you can actually have the flow reverse

in the uterine artery so you put something in it goes up you kind of watch it come back down at you so you can imagine if you have a uterine artery full of embolic that you don't really want that to happen so you may have to

adjust your catheter and you may have to inject with a little little bit more force with a more distal placing of your catheter in order to get the embolic material out to where the ovarian supply is going to the

fibroids and these are subtle things but you can look at them under fluoro and see them

- Thank you. We've all heard that hypogastric artery occlusion can be not so benign as Dr. Snyder mentioned. It's not advancing, there we go. There's the systematic meta-analysis of 61 papers and showing that when you have bilateral occlusion you actually can have worse symptoms

of claudication, even erectile dysfunction. There are these known commercially available devices but should we be doing bilateral cases? There's certainly increased complexity inherent in this and anatomic limitations and cost. We choose to look at a multicenter experience

of 24 centers, 47 patients. Here are the contributing contributors. When we published our experience these are the 47 patients using the GORE IBE device both in Europe and the United States with 6.5 month follow up. The aortic diameters, some of the characteristics.

You can see here that 23% had exclusive iliac aneurysm treatment in the absence of a AAA. Four had aneurysmal or ectatic internal iliac arteries. These are sometimes treated by coil embolizing the first branch and extending the internal branch into a first order branch, there you can see.

But anatomic limitations persist and you can see especially with lengths. You need quite a long length for that ipsilateral side with its device in order to do the bilateral case. These are the IFUs, 165 for the contra and 195 for the ipsi. In our experience you can see that actually 194 on the ipsi

and 195 is what we found as a mean. This seems prohibitive. Some of the tips and tricks to accommodate the shorter lengths are shown here. We can maximize overlap, and we can see that from 195 we can drop this

by maximizing the overlap to 175. We can certainly cross the limbs, that eats up some length. Intrinsic tortuosity can eat up the distance. We can see we can recreate the flow divider, bring up the flow divider higher, match the two limbs. That also can cut down the distance.

Finally in some of these patients we had shorter bridging stents, the endurant stent in particular is a little shorter instead of the 100 millimeter Gore limb and that can also shorten the distance. More about the procedural outcomes. You can see here great technical success.

There were no type one or type three endoleaks. There were some adjunctive stenting in some patients, four patients, because of some kinking and distal dissection. One technical failure's worth pointing out. This is a patient who has heavy calcification

in the iliac system here. Couldn't cannulate, the internal iliac artery required coil embolization. You can see this patient, we had to sacrifice that internal and extend into the external. Complications at 30 days are very acceptable.

One groin infection. You can see that radiographing clinical follow up. One patient with new buttock claudications, a patient who lost the internal iliac artery as I'll mention to you in a minute. The other one was asymptomatic

but also one internal iliac artery lost. No aneurysm related deaths. You can see there's some type two endoleaks but not type one or three endoleaks. More about limb occlusions. This is the external iliac limb.

You can see there were three external iliac limb occlusions, two in the perioperative period and one at six months which presented with claudication requiring a Fem-Fem. The two in the perioperative period, one was a thrombectomy and stent that was treated nicely. The other one was really an iatrogenic limb occlusion

because the internal branch was deployed inadvertently high jailing the external and causing the operators to have to go back and essentially sacrifice that internal in order to preserve flow to the external. You can see that this a patient who in fact did have the claudication symptoms, this is that one patient.

As far as internal iliac limb occlusion in addition to the one we just described there was one asymptomatic incidental find of a limb occlusion at six months. This is a comparison of what Dr. Snyder just discussed, the pivotal trial with expanded access to the global experience I just presented.

You can see when you look at fluoroscopy time, for instance, contrast media used or procedural duration that there is, of course, some increase requirement in the bilateral cases but I would argue that this is not prohibitive. Cost, however, may in fact be an issue.

Certainly this can be a quite costly procedure when we start doing bilateral cases. There are, in fact, new procedure codes that Gore has provided that can offset some of this cost especially for the hospital cost, but nonetheless this is something to be considered.

So in conclusion, preservation of bilateral internal iliac artery with a Gore IBE can be performed safely with excellent technical results and short term patency rates. Only one new onset of buttock claudication occurred in that inadvertent limb jailing. Limb and branch occlusions are rare but can be treated

successfully with stenting most of the time. Some anatomic limitations exist but a number of maneuvers can permit technical success even in shorter length aortoiliac segments. Contrast fluoroscopy and length of case do not appear to be prohibitive.

However, cost remains an issue. Thank you.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- Thank you very much, Frank, ladies and gentlemen. Thank you, Mr. Chairman. I have no disclosure. Standard carotid endarterectomy patch-plasty and eversion remain the gold standard of treatment of symptomatic and asymptomatic patient with significant stenosis. One important lesson we learn in the last 50 years

of trial and tribulation is the majority of perioperative and post-perioperative stroke are related to technical imperfection rather than clamping ischemia. And so the importance of the technical accuracy of doing the endarterectomy. In ideal world the endarterectomy shouldn't be (mumbling).

It should contain embolic material. Shouldn't be too thin. While this is feasible in the majority of the patient, we know that when in clinical practice some patient with long plaque or transmural lesion, or when we're operating a lesion post-radiation,

it could be very challenging. Carotid bypass, very popular in the '80s, has been advocated as an alternative of carotid endarterectomy, and it doesn't matter if you use a vein or a PTFE graft. The result are quite durable. (mumbling) showing this in 198 consecutive cases

that the patency, primary patency rate was 97.9% in 10 years, so is quite a durable procedure. Nowadays we are treating carotid lesion with stinting, and the stinting has been also advocated as a complementary treatment, but not for a bail out, but immediately after a completion study where it

was unsatisfactory. Gore hybrid graft has been introduced in the market five years ago, and it was the natural evolution of the vortec technique that (mumbling) published a few years before, and it's a technique of a non-suture anastomosis.

And this basically a heparin-bounded bypass with the Nitinol section then expand. At King's we are very busy at the center, but we did 40 bypass for bail out procedure. The technique with the Gore hybrid graft is quite stressful where the constrained natural stint is inserted

inside internal carotid artery. It's got the same size of a (mumbling) shunt, and then the plumbing line is pulled, and than anastomosis is done. The proximal anastomosis is performed in the usual fashion with six (mumbling), and the (mumbling) was reimplanted

selectively. This one is what look like in the real life the patient with the personal degradation, the carotid hybrid bypass inserted and the external carotid artery were implanted. Initially we very, very enthusiastic, so we did the first cases with excellent result.

In total since November 19, 2014 we perform 19 procedure. All the patient would follow up with duplex scan and the CT angiogram post operation. During the follow up four cases block. The last two were really the two very high degree stenosis. And the common denominator was that all the patients

stop one of the dual anti-platelet treatment. They were stenosis wise around 40%, but only 13% the significant one. This one is one of the patient that developed significant stenosis after two years, and you can see in the typical position at the end of the stint.

This one is another patient who develop a quite high stenosis at proximal end. Our patency rate is much lower than the one report by Rico. So in conclusion, ladies and gentlemen, the carotid endarterectomy remain still the gold standard,

and (mumbling) carotid is usually an afterthought. Carotid bypass is a durable procedure. It should be in the repertoire of every vascular surgeon undertaking carotid endarterectomy. Gore hybrid was a promising technology because unfortunate it's been just not produced by Gore anymore,

and unfortunately it carried quite high rate of restenosis that probably we should start to treat it in the future. Thank you very much for your attention.

- Thank you so much, Dr. Asher. Dr. Veith, thanks again for the invitation. Okay, clearly there are some challenges in taking care of patients in the lower extremity with CLTI. The lesions are long, they're diffuse, they're often heavily calcified.

There's concomitant inflow and outflow disease and long occlusions are common. And those challenges are true both for endovascular as well as open revascularization. But inframalleolar and paramalleolar bypass is an effective technique

and perhaps in today's day where we're talking much about endoluminal techniques, it's worthwhile to remember that this can be very effective and very durable. Clearly in these patients we have to optimize medical therapy as has been discussed.

Careful wound care and offloading is required and collaboration with your pedal-based surgeon, or if you do this yourself, toe and forefoot amputation is required. And sometimes very careful evaluation, whether primary amputation is the best approach.

Clearly without revascularization, limb loss is likely. And endovascular techniques and bypass operations are both considerations, but one should not exclude one option for the other when evaluating these patients. One of my favorite papers on this topic

is Frank Pomposelli's paper from over a decade ago with a thousand bypasses to the dorsalis pedis artery performed at the Beth Israel Hospital over a decade. The average age of these patients was 67. 69 percent were male, 92 percent had diabetes,

all patients had CLTI. The conduit was 31 percent non-reversed saphenous vein, 26 percent in situ, 23 percent reversed saphenous vein and 17 percent arm vein. Inflow was preferentially the popliteal artery in over 50 percent of these patients.

The outcomes are just spectacular. The 30 day mortality was point nine percent. There was only a four point two percent early failure rate and primary patency at five years 57 percent, secondary patency 63 percent, limb salvage at 78 percent at over five years.

And these are the types of results one has to compare to when talking about endoluminal therapy. Clearly the patency was better in males and patients, interestingly, with diabetes and the use of the greater saphenous versus alternative conduits.

More recently, the Finnish experience, Dr. Saarinen's paper in 2016, 352 bypasses over a decade. Again, similar clinical and demographic factors. Ulcer and gangrene in 82 percent of these patients, median follow-up of 30 months and you can see the operative details on your right.

Autolougus vein was the preferential conduit and the popliteal artery was most commonly used as the inflow source. And here's a bit of complicated table looking at outcomes at one year, five year, and ten years, with, again, fairly favorable outcomes

in terms of patency and limb salvage. Here are a couple of Kaplan-Meier curves looking at the source of the inflow. Popliteal inflow was preferential and interestingly, in this experience, diabetes did not have a unfavorable outcome.

Also, this here, the Japanese experience with 401 bypass procedures in 333 consecutive patients. The distal anastomosis is shown on the bottom. These patients also had very favorable outcomes in terms of primary patency, secondary patency, but amputation-free survival was much worse

in the patients on hemodialysis, raising some concern about these patients that have hemodialysis that may have a patent bypass but still lose their leg. One of my favorite patients is Pearli, who ten years ago had a dorsalis pedis bypass

and she had a nice outcome and kept her leg for over ten years, but it raises the question of how you define long-term patency in these, how you define long-term success in these patients. Clearly patency is important,

but preservation of life and limb, resolution of symptoms, resource utilization, cost-effectiveness, patient satisfaction all should be taken into consideration. Thank you very much. - [Man] Thank you very much for your time.

- Thank you. I have a little disclosure. I've got to give some, or rather, quickly point out the technique. First apply the stet graph as close as possible to the hypogastric artery.

As you can see here, the end of distal graft. Next step, come from the left brachial you can lay the catheter in the hypogastric artery. And then come from both

as you can see here, with this verge catheter and you put in position the culver stent, and from the femoral you just put in position the iliac limb orthostatic graft.

The next step, apply the stent graft, the iliac limb stent graft, keep the viabahn and deployed it in more the part here. What you have here is five centimeter overlap to avoid Type I endoleak.

The next step, use a latex balloon, track over to the iliac limb, and keep until the, as you can see here, the viabahn is still undeployed. In the end of the procedure,

at least one and a half centimeters on both the iliac lumen to avoid occlusion to viabahn. So we're going to talk about our ten years since I first did my first description of this technique. We do have the inclusion criteria

that's very important to see that I can't use the Sandwich Technique with iliac lumen unless they are bigger than eight millimeters. That's one advantage of this technique. I can't use also in the very small length

of common iliac artery and external iliac artery and I need at least four millimeters of the hypogastric artery. The majority patients are 73 age years old. Majority males. Hypertension, a lot of comorbidity of oldest patients.

But the more important, here you can see, when you compare the groups with the high iliac artery and aneurismal diameter and treat with the Sandwich Technique, you can see here actually it's statistically significant

that I can treat patient with a very small real lumen regarding they has in total diameter bigger size but I can treat with very small lumen. That's one of the advantages of this technique. You can see the right side and also in the left side. So all situations, I can treat very small lumen

of the aneurysm. The next step so you can show here is about we performed this on 151 patients. Forty of these patients was bilateral. That's my approach of that. And you can see, the procedure time,

the fluoroscope time is higher in the group that I performed bilaterally. And the contrast volume tends to be more in the bilateral group. But ICU stay, length of stay, and follow up is no different between these two groups.

The technical success are 96.7%. Early mortality only in three patients, one patient. Late mortality in 8.51 patients. Only one was related with AMI. Reintervention rate is 5, almost 5.7 percent. Buttock claudication rate is very, very rare.

You cannot find this when you do Sandwich Technique bilaterally. And about the endoleaks, I have almost 18.5% of endoleaks. The majority of them was Type II endoleaks. I have some Type late endoleaks

also the majority of them was Type II endoleaks. And about the other complications I will just remark that I do not have any neurological complications because I came from the left brachial. And as well I do not have colon ischemia

and spinal cord ischemia rate. And all about the evolution of the aneurysm sac. You'll see the majority, almost two-thirds have degrees of the aneurysm sac diameter. And some of these patients

we get some degrees but basically still have some Type II endoleak. That's another very interesting point of view. So you can see here, pre and post, decrease of the aneurysm sac.

You see the common iliac artery pre and post decreasing and the hypogastric also decreasing. So in conclusion, the Sandwich Technique facilitates safe and effective aneurysm exclusion

and target vessel revascularization in adverse anatomical scenarios with sustained durability in midterm follow-up. Thank you very much for attention.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- So my charge is to talk about using band for steal. I have no relevant disclosures. We're all familiar with steal. The upper extremity particularly is able to accommodate for the short circuit that a access is with up to a 20 fold increase in flow. The problem is that the distal bed

is not necessarily as able to accommodate for that and that's where steal comes in. 10 to 20% of patients have some degree of steal if you ask them carefully. About 4% have it bad enough to require an intervention. Dialysis associated steal syndrome

is more prevalent in diabetics, connective tissue disease patients, patients with PVD, small vessels particularly, and females seem to be predisposed to this. The distal brachial artery as the inflow source seems to be the highest risk location. You see steal more commonly early with graft placement

and later with fistulas, and finally if you get it on one side you're very likely to get it on the other side. The symptoms that we are looking for are coldness, numbness, pain, at the hand, the digital level particularly, weakness in hand claudication, digital ulceration, and then finally gangrene in advanced cases.

So when you have this kind of a picture it's not too subtle. You know what's going on. However, it is difficult sometimes to differentiate steal from neuropathy and there is some interaction between the two.

We look for a relationship to blood pressure. If people get symptomatic when their blood pressure's low or when they're on the access circuit, that is more with steal. If it's following a dermatomal pattern that may be a median neuropathy

which we find to be pretty common in these patients. Diagnostic tests, digital pressures and pulse volume recordings are probably the best we have to assess this. Unfortunately the digital pressures are not, they're very sensitive but not very specific. There are a lot of patients with low digital pressures

that have no symptoms, and we think that a pressure less than 60 is probably consistent, or a digital brachial index of somewhere between .45 and .6. But again, specificity is poor. We think the digital pulse volume recordings is probably the most useful.

As you can see in this patient there's quite a difference in digital waveforms from one side to the other, and more importantly we like to see augmentation of that waveform with fistula compression not only diagnostically but also that is predictive of the benefit you'll get with treatment.

So what are our treatment options? Well, we have ligation. We have banding. We have the distal revascularization interval ligation, or DRIL, procedure. We have RUDI, revision using distal inflow,

and we have proximalization of arterial inflow as the approaches that have been used. Ligation is a, basically it restores baseline anatomy. It's a very simple procedure, but of course it abandons the access and many of these patients don't have a lot of good alternatives.

So it's not a great choice, but sometimes a necessary choice. This picture shows banding as we perform it, usually narrowing the anastomosis near the artery. It restricts flow so you preserve the fistula but with lower flows.

It's also simple and not very morbid to do. It's got a less predictable effect. This is a dynamic process, and so knowing exactly how tightly to band this and whether that's going to be enough is not always clear. This is not a good choice for low flow fistula,

'cause again, you are restricting flow. For the same reason, it's probably not a great choice for prosthetic fistulas which require more flow. So, the DRIL procedure most people are familiar with. It involves a proximalization of your inflow to five to 10 centimeters above the fistula

and then ligation of the artery just below and this has grown in popularity certainly over the last 10 or 15 years as the go to procedure. Because there is no flow restriction with this you don't sacrifice patency of the access for it. It does add additional distal flow to the extremity.

It's definitely a more morbid procedure. It involves generally harvesting the saphenous vein from patients that may not be the best risk surgical patients, but again, it's a good choice for low flow fistula. RUDI, revision using distal inflow, is basically

a flow restrictive procedure just like banding. You're simply, it's a little bit more complicated 'cause you're usually doing a vein graft from the radial artery to the fistula. But it's less complicated than DRIL. Similar limitations to banding.

Very limited clinical data. There's really just a few series of fewer than a dozen patients each to go by. Finally, a proximalization of arterial inflow, in this case rather than ligating the brachial artery you're ligating the fistula and going to a more proximal

vessel that often will accommodate higher flow. In our hands, we were often talking about going to the infraclavicular axillary artery. So, it's definitely more morbid than a banding would be. This is a better choice though for prosthetic grafts that, where you want to preserve flow.

Again, data on this is very limited as well. The (mumbles) a couple years ago they asked the audience what they like and clearly DRIL has become the most popular choice at 60%, but about 20% of people were still going to banding, and so my charge was to say when is banding

the right way to go. Again, it's effect is less predictable than DRIL. You definitely are going to slow the flows down, but remember with DRIL you are making the limb dependent on the patency of that graft which is always something of concern in somebody

who you have caused an ischemic hand in the first place, and again, the morbidity with the DRIL certainly more so than with the band. We looked at our results a few years back and we identified 31 patients who had steal. Most of these, they all had a physiologic test

confirming the diagnosis. All had some degree of pain or numbness. Only three of these patients had gangrene or ulcers. So, a relatively small cohort of limb, of advanced steal. Most of our patients were autogenous access,

so ciminos and brachycephalic fistula, but there was a little bit of everything mixed in there. The mean age was 66. 80% were diabetic. Patients had their access in for about four and a half months on average at the time of treatment,

although about almost 40% were treated within three weeks of access placement. This is how we do the banding. We basically expose the arterial anastomosis and apply wet clips trying to get a diameter that is less than the brachial artery.

It's got to be smaller than the brachial artery to do anything, and we monitor either pulse volume recordings of the digits or doppler flow at the palm or arch and basically apply these clips along the length and restricting more and more until we get

a satisfactory signal or waveform. Once we've accomplished that, we then are satisfied with the degree of narrowing, we then put some mattress sutures in because these clips will fall off, and fix it in place.

And basically this is the result you get. You go from a fistula that has no flow restriction to one that has restriction as seen there. What were our results? Well, at follow up that was about almost 16 months we found 29 of the 31 patients had improvement,

immediate improvement. The two failures, one was ligated about 12 days later and another one underwent a DRIL a few months later. We had four occlusions in these patients over one to 18 months. Two of these were salvaged with other procedures.

We only had two late recurrences of steal in these patients and one of these was, recurred when he was sent to a radiologist and underwent a balloon angioplasty of the banding. And we had no other morbidity. So this is really a very simple procedure.

So, this is how it compares with DRIL. Most of the pooled data shows that DRIL is effective in 90 plus percent of the patients. Patency also in the 80 to 90% range. The DRIL is better for late, or more often used in late patients,

and banding used more in earlier patients. There's a bigger blood pressure change with DRIL than with banding. So you definitely get more bang for the buck with that. Just quickly going through the literature again. Ellen Dillava's group has published on this.

DRIL definitely is more accepted. These patients have very high mortality. At two years 50% are going to be dead. So you have to keep in mind that when you're deciding what to do. So, I choose banding when there's no gangrene,

when there's moderate not severe pain, and in patients with high morbidity. As promised here's an algorithm that's a little complicated looking, but that's what we go by. Again, thanks very much.

- Thank you so much. I have no disclosures. These guidelines were published a year ago and they are open access. You can download the PDF and you can also download the app and the app was launched two months ago

and four of the ESVS guidelines are in that app. As you see, we had three American co-authors of this document, so we have very high expertise that we managed to gather.

Now the ESVS Mesenteric Guidelines have all conditions in one document because it's not always obvious if it's acute, chronic, acute-on-chron if it's arteri

if there's an underlying aneurysm or a dissection. And we thought it a benefit for the clinician to have all in one single document. It's 51 pages, 64 recommendations, more than 300 references and we use the

ESC grading system. As you will understand, it's impossible to describe this document in four minutes but I will give you some highlights regarding one of the chapters, the Acute arterial mesenteric ischaemia chapter.

We have four recommendations on how to diagnose this condition. We found that D-dimer is highly sensitive so that a normal D-dimer value excludes the condition but it's also unfortunately unspecific. There's a common misconception that lactate is

useful in this situation. Lactate becomes elevated very late when the patient is dying. It's not a good test for diagnosing acute mesenteric ischaemia earlier. And this is a strong recommendation against that.

We also ask everyone uses the CTA angiography these days and that is of course the mainstay of diagnoses as you can see on this image. Regarding treatment, we found that in patients with acute mesenteric arterial ischaemia open or endovascular revascularisation

should preferably be done before bowel surgery. This is of course an important strategic recommendation when we work together with general surgeons. We also concluded that completion imaging is important. And this is maybe one of the reasons why endovascular repair tends to do better than

open repair in these patients. There was no other better way of judging the bowel viability than clinical judgment a no-brainer is that these patients need antibiotics and it's also a strong recommendation to do second look laparotomoy.

We found that endovascular treatment is first therapy if you suspect thrombotic occlusion. They had better survival than the open repair, where as in the embolic situation, we found no difference in outcome.

So you can do both open or endo for embolus, like in this 85 year old man from Uppsala where we did a thrombus, or the embolus aspiration. Regarding follow up, we found that it was beneficial to do imaging follow-up after stenting, and also secondary prevention is important.

So in conclusion, ladies and gentlemen, the ESVS Guidelines can be downloaded freely. There are lots of recommendations regarding diagnosis, treatment, and follow-up. And they are most useful when the diagnosis is difficult and when indication for treatment is less obvious.

Please read the other chapters, too and please come to Hamburg next year for the ESVS meeting. Thank You

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you very much, Dr. Veith, and thank you to you and the organizing committee for inviting me to participate again this year in, really, the premiere vascular meeting. This morning, I'd like to talk about the contemporary management of carotid artery aneurysms. These are my disclosures.

Extracranial carotid artery aneurysms and pseudoaneurysms may result from a variety of causes, including trauma, fibromuscular dysplasia, atherosclerosis. They're associated with dissection, connective tissue disorders, mycotic aneurysms associated with infection.

We see patch aneurysms from prior carotid endarterectomy, as well as aneurysms associated with radiation, and those that occur spontaneously. Sequelae of these aneurysms are often distal embolization, potential for thrombosis, some patients experience compressive symptoms, and rupture may occur as well.

Treatment has traditionally been through open surgical repair, but there have been advances in endovascular treatments, including covered stents, woven stents, such as the pipeline stent in size-appropriate cases, bare stents with or without adjunctive coil embolization.

Open surgical repair has been time tested and it's proven to be very effective, but there are potential morbidities associated with challenges or surgical exposure, particularly in patients with prior surgery or radiation and those with anatomically-challenging lesions.

A very definitive review of this has been conducted by the surgeons at the Mayo Clinic, including Drs. Money, Bower, and Fowl, and they have described the treatment of 141 aneurysms in 132 patients. In the evolution of treatment with endovascular techniques, covered stents have been employed.

These eliminate aneurysm and pseudoaneurysm perfusion completely and immediately after deployment, but there have been reports of delayed thrombosis of these covered stents when they've been deployed in the cervical distribution. This is a patient of ours who has a large patch aneurysm, nearly four centimeters in size.

If you look on the CAT scan you'll see there's very limited, essentially no overlying soft tissues as a result of the previous radical neck dissection. In this case, we'd elected to use a covered stent to achieve exclusion of this patch aneurysm, and then used a bare metal stent distally to augment the treatment itself.

Our therapies progressed to the use of bare metal stents with associated coil embolization so-called stent, assisted coil embolization. As you can see, there are two sequential, very large, pseudoaneurysms of the internal carotid artery. Here's the carotid bifurcation.

Here, I hope you can see between these green arrows, is the stent that's been deployed. We use closed cell stents typically for these applications, and we can use a microcatheter cannulate that pseudoaneurysm and deploy large neuro-embolic coils to promote flow of cessation.

When we follow up with these patients, here's this patient's one-month post-operative duplex ultrasound, there's no flow in the pseudoaneurysm, and excellent flow in the internal carotid artery without stenosis. We've then progressed to the use of overlapping closed cell stents, and in doing so,

hoped to sort of simulate the pipeline woven stent configuration but have greater applicability in terms of diameter of the internal carotid. Here, you can see this internal carotid artery spontaneous pseudoaneurysm. We then go ahead and bring our initial stent into position

across the origin of the pseudoaneurysm. Here's after initial stent deployment on this static image. Here, after our second stent deployment, you can see very limited static flow within the pseudoaneurysm itself, and that's evidenced by, after the flowed out of the internal carotid artery,

there's still residual contrast within the pseudoanerusym. Here are the individual characteristics of the patients that we've treated using endovascular techniques. To summarize those data, the mean duration of follow up for these patients is 331 days.

But we have followed one patient out to eight years. The study's limited by the relatively small number of patients and the limited duration of follow up in these patients. But our technical success has been 100%, in terms of being able to deploy the endovascular

techniques, and maintain patency. We've had no patients who've experienced neurologic sequelae, including no strokes or TIAs. There've been no cases in which the aneurysm has expanded, in most cases, the aneurysm itself regresses and there's been no flow within those aneurysms or pseudoaneurysms.

Finally, we have been able to maintain 100% patency in these patients, as monitored using our standard follow up protocol with duplex ultrasound being performed every three months for the first year, and annually thereafter. In conclusion, extracranial carotid artery aneurysms and pseudoaneurysms may be treated effectively

using standard open techniques. However, surgical exposure and perioperative morbidity may present challenges for open repair. Endovascular approaches to aneurysm and pseudoaneurysm treatment have evolved progressively. The preliminary results of our analysis with mid-term

follow up suggest that these techniques are effective and durable, with limited procedural morbidity. Thank you very much.

- I'd like to thank Dr. Veith and the organizers for the invitation. I'm a speaker for Gore medical, and I receive grant support and speaking fees from Acelity. I'd also like to thank my former partners at UPMC for their help with this study.

So are catheters really that bad? Of course we all know the answer's yes. The risk of bacteremia is 10-fold higher than with an AV fistula, and approximately 5 1/2 septic episodes per 1,000 catheter days are seen

in dialysis patients. This is not only a costly but can be a deadly problem. This is a shot of a 23 year old patient of mine who had been maintained on catheters for a long while,

and I was treating for SBC syndrome. So why can't we place fistulas earlier and avoid catheters altogether? 80% of patients start dialysis with a catheter. This is a multifactorial problem including late referrals to nephrology,

a difficulty of nephrologist to find available surgeons. Perhaps percutaneous fistula creation which is on the cutting edge of dialysis technology might help with this problem. But right now nationwide there's a backlog

of dialysis patients needing surgeons. Compounding this problem is that many patients don't have coverage for surgery until three months of dialysis care. And the proportion of patients getting dialysis fistulas pre-dialysis may be declining

according to a recent Canadian survey. In this survey they found that even in patients who had fistulas created, 11% of those fistulas weren't usable at the time of dialysis initiation. And in patients who had had

two or more surgeries, 35% of those fistulas were not able to be used. AV grafts are associated with a faster catheter removal, but more interventions over the first year of placement than AV fistulas.

TDC removal is faster with AV grafts, but it still takes longer than we all expect. We think an AV fistula should be ready to use at six weeks when indeed the median time to use is closer to 18 weeks. AV grafts we think are ready to use at two weeks,

when the median is actually closer to 9 weeks and this data is also from UPMC. Our aim in this recent study was to compare the real world performance of standard AV grafts and immediate use AV grafts in a dialysis population looking at catheter time.

Taking results from Duke and UPMC combined, we made three groups of patients: the standard AV graft patients, immediate use AV graft patients in a conventional configuration, and immediate use grafts combined

with a HeRO catheter. The demographics across these groups were similar with the exception of HeRo patients having more central venous occlusions, and immediate use AV grafts having a lower percentage of prevalent TDCs.

This was due to a small number of patients getting immediate use AV grafts on initiation of dialysis in place of a catheter. When we looked at complications across these groups, we found that there was no significant difference

in perioperative deaths, steal or AV graft infection. However we found that AV grafts were able to be used in the immediate access group significantly more often than in the standard group.

We found no results, no significant differences in our patency results either primary or secondary between the groups. However, immediate use AV grafts matured at a significantly faster rate, they had significantly fewer catheter days,

and most importantly had fewer catheter-related complications and fewer reinterventions for prolonged patency. We also looked at other authors who had studied this problem, and found that the majority

of immediate use grafts are able to be used within 24 to 72 hours. Other facilities to or other measures to facilitate early catheter removal are to have an organized approach to dialysis access.

In my office we have a schedule and we stick to it. We schedule all appointments at the patient's original visit, and I found that this is especially important for two-stage basilic vein transpositions.

Where we schedule their pre-op, their first and second surgery, all of their post-op visits and even their catheter removal visit at the initial time. Of course these can change,

but it gives us a structure to work in. We get patients back early to clinic sort of like Dr. Shenoy was just talking about. We see patients at four weeks with a fistula, and at two weeks with a graft. And if the access is not usable at that time,

we go immediately to fistulagram. We make an appointment to return to the clinic one month after we clear fistulas for use, with the plan to remove the catheter in clinic. If the catheter is not ready to come out for any reason,

then we troubleshoot the problem to make sure we stay on track. Our goal is to get those catheters out. So in conclusion, reducing catheter days can be accomplished through several means.

I believe we can do better through early fistula placement, and insurance that the fistula is ready to use at the time that the patient is ready to start dialysis. I think we can benefit our patients by

having more practitioners place fistulas. We should consider the judicious use of immediate access grafts, and perhaps use immediate access rather than standard grafts whenever possible. And we should have protocols to facilitate

early follow-up and troubleshooting of accesses as well as being proactive in catheter removal. Thank you.

- Yeah, I'm going to talk about the Serranator Ballon Catheter, in the PRELUDE Trial. I'm a consultant to Cagent, I served on their CEC. So this is the Serranator PTA Balloon Catheter. It's a focal force catheter with a, designed to create linear, interrupted scoring along the endoluminal surface.

There are four embedded, strips along the nylon balloon, which is semi-compliant. You can here the size matrix, four, five, and six. At lengths up to 120, And this is the balloon that we'll be talking about for the trial.

The concept here is that serrated vessel will have more responsiveness to balloon dilation. And that's evident here. There is from the Serranator, from the PRELUDE Trial itself. You can see that this OCT and in this IVUS, that there are clear cuts in the vessel, from the Serranator

and in a pathologic specimen from CBSET, there's clear fracturing of the calcium, as well as the superficial neointimal lacerations. All of which are intended to both promote balloon dilation in a more controlled fashion, but also address resistive lesions, and potentially

create reservoirs for drug uptake. So the prelude study overview is here. It's a single arm, prospective, multi-center feasibility study enrolling up to 30 patients with superficial femoral popliteal artery disease. Follow up was 30 days and six months.

The enrollment was completed over a year ago, and the study ended about a year ago in terms of follow up. Investigators are listed here. I adjudicated the outcomes. You can see the Core Labs here.

So a very well done study with Core Lab independent adjudication. Primary objective was to assess the technical feasibility of the Serranator creating these, in critical SFA and popliteal artery lesions. And to assess the OCT and IVUS feasibility

in a sub-set of these patients. To look for the evidence of serration. Primary endpoints, typical safety endpoints. The efficacy endpoint is a device, is defined as device success. Which is successful balloon delivery, retrieval,

inflation/deflation, and a final diameter stenosis of less than 50%. Key secondary endpoints are here. Core Lab assessment of pre-procedure and post-procedure angiography. Patency.

As determined by duplex ultrasound. And TLR and TVR at 30 days and six months. Here are the inclusion criteria. Really nothing too unique here. The lesion length was described as less than or equal to 10 centimeters.

No stented lesions. And exclusion criteria. No CTO's greater than six centimeters, or severe calcification. Here are the patient demographics. A really remarkable here are the presence of diabetes,

in approximately a third of the patients. And Rutherford classification, really defining a claudicant population. Here are the angiographic descriptors. The lesion length was about five centimeters. There were about a third of the patients with CTOs,

and moderate to severe calcification over half of the patients. The pre-procedure diameter stenosis was 88%, and that was reduced to 23% post-procedure, and the bailout stenting and flow limiting dissections were incredibly low, with only one bailout stent

in a spiral dissection from a CTO. As mentioned previously, there was a very pleasing reduction in overall stenosis severity, in a moderate lesion set. From 88% to about 23%, and the primary endpoint of device success was achieved in 100% of the patients.

With successful placement, inflation/deflation, and retrieval, and reduction in stenosis severity of less than 50%. If we now break down the outcomes according to calcified and non-calcified vessels to really assess whether or not the serranation was working,

you can see that the severe calcification and mild to moderate calcification, that there's no real difference in mean lumen gain, or in atmospheric pressure requirements for dilation. Suggesting that the Serranator is actually effective as intended.

A couple of case examples. You can see the severe calcification here in this distal SFA. And after a single Serranator treatment, you can see a significant reduction, and management of that calcium.

Here it is in the popliteal artery. A notorious area for dissection. Especially in total occlusions. And you can see that after a passage of wire and Serranator balloon, very pleasing result without significant dissection.

Safety outcomes were excellent. No adverse events. No deaths. One SAE not related to the device. Clinical outcomes were also pleasing. There was a shift from Rutherford classification

2 and 3 primarily, to classification 0 and 1 primarily. So in conclusion, the study objectives and primary endpoints were achieved. The Serranator has been shown to be safe and effective in treating critical femoro-popliteal lesions. With 100% device success.

With acute results showing a mean residual stenosis that was lower than 25%. 100% patency at 30 days. 100% freedom from TLR at 30 days and six months. And 100% serration effect demonstrated in the sub-group which had OCT and IVUS assessment.

It was equally effective in lumen gain in both moderate and severely calcified lesions, suggesting the Serranator effect. Thank you very much.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- I'd like to thank Larry and John for the opportunity to speak today. This really is kind of an exciting time in Vascular Access 'cause you know this whole session's devoted to all the new tools and technologies, and they're really a lot of different options

that are available to us now to create functioning fistulas in patients. Those are my disclosures. I just want to mention one thing, when I was asked to give this talk, the name of the device was the Everlink device then,

and that was first developed by TBA Medical at Austin, Texas. Eventually the company was bought by Bard, and then Beckett Dickinson bought Bard, and then they changed the name of the device to the WaveLinq device,

just so that we're all on the same page here. The basic gyst of this system basically it's a two-catheter system, it involves punctures in the brachial artery and brachial vein above the elbow over wires, the catheters are then aligned

in the ulnar artery and ulnar vein. The venous catheter has an RF electrode on it, the arterial component has a ceramic foot plate, and there's rare earth magnets in the catheters that help them align in the artery and vein. They'll coapt, you deploy the foot plate,

and then you fire the RF energy from the RF generator, and the RF energy then creates a four millimeter hole between the artery and vein. This is just what it looks like under fluoroscopy, this is the arterial catheter going in here's the footplate here

this is the venous catheter then being directed and you can see the magnets on these they look like Lincoln Logs they'll kind of line up. You rotate the catheters 'til the foot plate aligns, you do some flyovers with the II make sure everything's lined up,

and then you create the fistula with the RF energy. Then this is just what Fistulagram looks like once the fistula's created. At the completion of that, for this device we then place coils, occluding coils, in the deep vein which was just beyond the sheath

where we accessed the brachial vein. And by putting those plugs in there, coils in there, It helps to direct the flow up to through the superficial veins which we cannulated for dialysis, and much like the other device

that Dr. Malia was talking before, this creates essentially a split vein fistula, it's going to mature both the cephalic and basilic if those veins are available through that from the perforator coming on out. This is just what it looks like you know,

this was in some early studies in the animal model, you can see that it creates exactly a four millimeter hole between the artery and vein. Eventually this will re-endothelialize they had endothelialization at 30 days. So really the nice thing about it is

it standardizes the size of the arteriotomy because it makes exactly a four millimeter fistula. Now, as I mention this is created at the level of the ulnar artery and ulnar vein, so the requirements basically to do this you need a adequate size obviously ulnar artery and vein,

but the big component is to have that adequate perforator vein that's going to help feed the superficial veins to mature that fistula. And then it's just creating a side to side fistula between the ulnar artery and vein.

This is just a composite of all the data that's been collected on the device so far so this is what the global registry looks like. The FLEX study was kind of the first studies in man. The NEAT trial was run in the Canada and the UK, that was one of the earlier trials.

Then there's a post-market registry, uh, in Europe that's being run now. The EASE trial is the trial with the Four French device and I'll share a little bit about that at one of the slides at the end. But basically pull all the data from this

there's almost 157 patients that they collected data on. And, you can see that with this the primary patency, or the primary patency's on at 75 percent, and the accumulative patency's almost 80 percent, and then the number of fistulas that were cannulated at six months successfully with two needles was 75 percent.

If you look at some of the interventions that've had to be done it really seems to be a lower number of interventions that have to be done to get a mature functioning fistula, uh, using this device. I just want to point out a couple things on this slide,

there was never any requirement for angioplasty at the uh, the ulnar artery the ulnar vein anastomosis, and there was, you know, with these embolizations that were performed, 12 of these were performed on patients prior to incorporating that into the procedure itself,

so right now in the IFU it says that the deep veins should be coiled to help direct that flow up into the superficial veins. Now as, uh, was alluded to earlier with the Ellipsys device this kind of falls somewhere between, uh, the radiocephalic fistula and a brachiocephalic fistula,

and again comparing these two devices basically you're creating, this is the Ellipsys device is radial-radial, and this device is really ulnar-ulnar, but again you're creating that split-flow fistula it's going to allow flow both up

into the basilic and cephalic veins. So, where can this be used? It can be used for primary access creation so that's the first option to provide a patient with a functioning fistula. It can be a secondary option to radiocephalic fistula,

or those that have failed the radiocephalic fistula, and it also is an alternative to surgery so there are patients that may not want to have open surgery to have a fistula created, and this obviously provides an option for those patients. In the UK now they're using it to condition veins,

so they'll create the fistula hoping to condition the cephalic and basilic veins to allow them to become usable for dialysis, and they're also using it in patients that have no superficial veins actually using it to mature the brachial vein

or the deeper veins, uh, and then superficializing the brachial vein to create a native fistula for patients who don't have adequate superficial veins. Now I mentioned the Four French device and what the Four French device allows is basically access

from a lot of different points. So now because it's a smaller device, we can place it, if the vein and artery are large enough, it can be placed at the wrists, so radial-radial fistula, so you come in from the wrist, put both catheters up, create the fistula at the radial-radial,

you can do it from the ulnar-ulnar, so it's just two catheters up from the wrist. And these cases are nice, the other option is you can come arterial from the wrist and you can come from the vein at the top, match up the catheters in a parallel

and create that fistula at the ulnar-ulnar level. And the nice thing about this is it really makes managing the puncture very easy you just put a TR band on 'em, and then you're good to go. So it really kind of opens up a lot of different options for creating fistulas.

So in summary this device seems to create a functional fistula without the need for open surgery. It has very good primary and cumulative patencies and seems to take fewer interventions to maintain and mature the functioning fistula, and this may add another tool that we have to create

functioning fistulas in patients who are on dialysis. So thank you very much.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- [Doctor] Thank you Tom and thanks Dr Veith for the invitation to be here again. These are my disclosures, so hypogastric embolization is not benign, patients can develop buttock claudication, higher after bilateral sacrifice, it can be persistent in up to half of patients. Sexual dysfunction can also occur, and we know that

there can be catastrophic complications but fortunately they're relatively rare. So now these are avoidable, we no longer have to coil and cover in many patients and we can preserve internal iliac's with iliac branch devices like you just heard. We had previously published the results of looking from

the pivotal trial, looking at the Gore IBE device with the six month primary end point showing zero aneurysm-related morality, high rates of technical success, 95% patency of the internal iliac limb, no type one or type three endoleaks and 98% freedom from reintervention. Importantly on the side of the iliac branch device, there

was prevention of new-onset of buttock claudication in all patients, and importantly also on the contralateral side in patients with bilateral aneurysms that were sacrificed, the incidents in a prospect of trial of the development of buttock claudication was 28%, confirming the data from those prior series.

And this is in line with the results of EVAR using iliac branch device published by many others showing low rates of mortality, high rates of technical success and also good patency of the devices. In press now we have results with follow-up out through two years, in the Gore IBE trial, we also compared

those findings to outcomes in a real world experience from the great registry, so 98 patients from the pivotal and continued access arm's of the IBE trial and also 92 patients who underwent treatment with the Gore IBE device in the great registry giving us 190 patients with 207 IBE devices implanted.

Follow-up was up to three years, it was an longer mean follow-up in the IDE study with the IBE device. Looking at outcomes between the clinical trial and the real world experience, they were very similar. There was no aneurysm-related mortality, there was no recorded new-onset ipsilateral buttock claudication,

this is all from the IDE trial since we didn't have that information in the great registry, and looking at the incidence of reinterventions, it was similar both in the IDE clinical trial experience and also in the great registry as well. Looking at patency of the internal iliac limb, it was

93.6%, both at 12 months and 24 months in the prospective US IBE pivotall trial and importantly all the internal iliac limb occlusions occurred very early in the experience likely due to technical or anatomic factors. When we look at the incidence of type two endoleaks, we had previously noted there was a very high incidence of

type two endoleaks, 60% at one month, this did tail off a bit over time but it was still 35% at two years. A total of five patients in the pivotal IBE trial had a reintervention for type two endoleak through two years, and despite that high incidence of type two endoleak, overall the incidence of aortic aneurysm sac expansion

of more than five millimeters has been rare and low at two and nine percent at 12 and 24 months, and there's been no expansions of the treated common iliac artery aneurysm sac's at either 12 or 24 months. Freedom from reintervention has been quite good, 90.4% through two years in the trial and most of these

re-interventions were type two endoleaks. We now have some additional data out through three years in about two thirds of the patients we have imaging data available now through three years in the pivotal IBE trial, there have been no additional events, device related events reported since the two year data and through three years

we have no recorded type one or type three endoleaks, no aneurysm ruptures, no incidences of migration, very high rates of patency of the external and internal iliac arteries, good freedom from re-intervention and good freedom from common iliac artery aneurysm sac enlargement. And I think, in line with these findings, the guidelines

now from the SVS are to recommend preservation of the internal iliac arteries when ever present and that's a grade 1A recommendation, thank you.

- Thank you very much Mr. Chairman. Thank you Frank, for this kind invitation again to this symposium. This is my disclosure. With the drug coated balloons it is important to minimize the drug loss during the balloon transit during the inflation of the balloon.

Because Paclitaxel has a high degree of cytotoxicity that may induce necrosis and increase inflammation in the distal tissue, and we know that even with the best technique, we can loose 70 - 80% of the drop to the distal circulation,

the inference by different factors between them and the calcification of degree of these blood cells. There are adverse events secondary to drug coated balloons that have been reported recently. In animal molders it has shown that Downstream Vascular Changes are more frequent with

Drug Coated Balloons than with Drug-Eluting Stents. In animal molders it has been also shown that there is no evidence of significant downstream emboli or systemic toxicity with DCB's than with patients with controls. This was a study presented yesterday by (mumbles)

with a very nice and elegant study with a good methodology that shows in animals that there are different concentrations of the drug in distal tissue depending on the balloon that you are using. In this case, the range in balloon (mumbles)

those ones have the lowest concentration in the distal tissue. In clinical experience in this meta-analysis amputations and wound healing rate are lower with this series with controls. But there is controversy because

Complete Index Ulcer Healing is higher in this series than with control patients. But there are lower wound healing index in patients compared with drug-eluting stents. In the debate, (mumbles) and also in the dialux which are clinical trials in diuretic patients with CLI,

there we no issues of safety and no impair of the wounds healing. But, remember the negative result of the IN PACT DEEP trial in which there were more amputation at six months that could be influenced, but in all their factors, the lack of standardized

wound care protocols. (mumbles) has also reported recently good survival to 100% in patient treated with DCB's compared with plain balloons and with lutonic balloons. So in our institution, we did a study with the objective to examine

patient outcomes following the use of the drug-coated balloons in patients with CLI and diuretic patients with Complex Real World lesions undergoing endovascular intervention below-the-knee with the Ranger balloon coated with Paclitaxel.

This is a Two-Center Experience that is headed by the National University of Mexico in 30 patients with strict followup. With symptomatic Rutherford four to six. With the Stenosis and occlusion of infrapopliteal vessels and many degrees of calcification.

It was mandatory for all patients to have Pre-dilation before the use of DCB. We studied some endpoints like efficacy. (mumbles) Limb salvage, sustained clinical improvement, wound healing rate

and technical success and some other endpoints of safety. This is an example of multi level disease in a patient that has to be approached by (mumbles) access with a balloon preparation of the artery before the use of the DCB, and after this, we treated the anterior artery

and even to the arch of the foot. This is the way we follow our patient with ultra sound duplex with an index fibular of no more that 2.4. All patients were diabetic with Rutherford 5-6. 77% have a (mumbles) at the initial of the study.

And as you can see there were longer lesions and with higher degree of calcification and stenosis only in two of them we produced (mumbles). There were bailout stent placements in five patients and we did retrograde access in 43 patients.

Subintimal angioplasty was done in 32 patients, and Complete Index Wound Healing was in 93 of our patients. This is our Limb Salvage 94%. The Patency rate was 96% with this Kaplan Meir analysis. And in some patients we did a determination of Paclitaxel concentration in distal tissue

with the High Pressure Liquid Chromatography method. We only did this in five patients because of the lack of financial support, and technical problems. As you can see in three of them we had Complete Wound Healing.

Only one we had major amputation. This was the patient with the higher concentration of Paclitaxel in the distal tissue, and in one patient, we could not determine the concentration of Paclitaxel. This is the way we do this.

They take the sample of the patient at the moment we do the minor amputation. During day 10 after the angioplasty, we also do a (mumbles) analysis of the patient we have a limb salvage we can see arterial and capillar vessel proliferation and hyperplasia of the

arteriole media layer. But, in those patients that have major amputation even when they have a good sterio-graphic result like in this case, we see more fibrinoid necrosis which is a bad determination. So in conclusion,

angioplasty with the (mumbles) balloon maintain clinical efficacy over time is possible. We didn't see No Downstream clinical important or significant effects and high rates of Limb Salvage in complex CLI patients is possible.

Local toxic effects of paclitaxel and significant drug loss on the way to the lesion are theoretical considerations up to now because there is no biological study that can confirm this. Thank you very much.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- So this was born out of the idea that there were some patients who come to us with a positive physical exam or problems on dialysis, bleeding after dialysis, high pressures, low flows, that still have normal fistulograms. And as our nephrology colleagues teach us, each time you give a patient some contrast,

you lose some renal function that they maintain, even those patients who are on dialysis have some renal function. And constantly giving them contrasts is generally not a good thing. So we all know that intimal hyperplasia

is the Achilles Heel of dialysis access. We try to do surveillance. Debbie talked about the one minute check and how effective dialysis is. Has good sensitivity on good specificity, but poor sensitivity in determining

dialysis access problems. There are other measured parameters that we can use which have good specificity and a little better sensitivity. But what about ultrasound? What about using ultrasound as a surveillance tool and how do you use it?

Well the DOQI guidelines, the first ones, not the ones that are coming out, I guess, talked about different ways to assess dialysis access. And one of the ways, obviously, was using duplex ultrasound. Access flows that are less than 600

or if they're high flows with greater than 20% decrease, those are things that should stimulate a further look for clinical stenosis. Even the IACAVAL recommendations do, indeed, talk about volume flow and looking at volume flow. So is it volume flow?

Or is it velocity that we want to look at? And in our hands, it's been a very, very challenging subject and those of you who are involved with Vasculef probably have the same thing. Medicare has determined that dialysis shouldn't, dialysis access should not be surveilled with ultrasound.

It's not medically necessary unless you have a specific reason for looking at the dialysis access, you can't simply surveil as much as you do a bypass graft despite the work that's been done with bypass graft showing how intervening on a failing graft

is better than a failed graft. There was a good meta-analysis done a few years ago looking at all these different studies that have come out, looking at velocity versus volume. And in that study, their conclusion, unfortunately, is that it's really difficult to tell you

what you should use as volume versus velocity. The problem with it is this. And it becomes, and I'll show you towards the end, is a simple math problem that calculating volume flows is simply a product of area and velocity. In terms of area, you have to measure the luminal diameter,

and then you take the luminal diameter, and you calculate the area. Well area, we all remember, is pi r squared. So you now divide the diameter in half and then you square it. So I don't know about you,

but whenever I measure something on the ultrasound machine, you know, I could be off by half a millimeter, or even a millimeter. Well when you're talking about a four, five millimeter vessel, that's 10, 20% difference.

Now you square that and you've got a big difference. So it's important to use the longitudinal view when you're measuring diameter. Always measure it if you can. It peaks distally, and obviously try to measure it in an non-aneurysmal area.

Well, you know, I'm sure your patients are the same as mine. This is what some of our patients look like. Not many, but this is kind of an exaggerated point to make the point. There's tortuosity, there's aneurysms,

and the vein diameter varies along the length of the access that presents challenges. Well what about velocity? Well, I think most of us realize that a velocity between 100 to 300 is probably normal. A velocity that's over 500, in this case is about 600,

is probably abnormal, and probably represents a stenosis, right? Well, wait a minute, not necessarily. You have to look at the fluid dynamic model of this, and look at what we're actually looking at. This flow is very different.

This is not like any, not like a bypass graft. You've got flow taking a 180 degree turn at the anastomosis. Isn't that going to give you increased turbulence? Isn't that going to change your velocity? Some of the flow dynamic principles that are important

to understand when looking at this is that the difference between plug and laminar flow. Plug flow is where every bit is moving at the same velocity, the same point from top to bottom. But we know that's not true. We know that within vessels, for the most part,

we have laminar flow. So flow along the walls tends to be a little bit less than flow in the middle. That presents a problem for us. And then when you get into the aneurysmal section, and you've got turbulent flow,

then all bets are off there. So it's important, when you take your sample volume, you take it across the whole vessel. And then you get into something called the Time-Averaged mean velocity which is a term that's used in the ultrasound literature.

But it basically talks about making sure that your sample volume is as wide as it can be. You have to make sure that your angle is as normal in 60 degrees because once you get above 60 degrees, you start to throw it off.

So again, you've now got angulation of the anastomosis and then the compliance of a vein and a graft differs from the artery. So we use the two, we multiply it, and we come up with the volume flow. Well, people have said you should use a straight segment

of the graft to measure that. Five centimeters away from the anastomosis, or any major branches. Some people have actually suggested just using a brachial artery to assess that. Well the problems in dialysis access

is there are branches and bifurcations, pseudoaneurysms, occlusions, et cetera. I don't know about you, but if I have a AV graft, I can measure the volume flow at different points in the graft to get different numbers. How is that possible?

Absolutely not possible. You've got a tube with no branches that should be the same at the beginning and the end of the graft. But again, it becomes a simple math problem. The area that you're calculating is half the diameter squared.

So there's definitely measurement area with the electronic calipers. The velocity, you've got sampling error, you've got the anatomy, which distorts velocity, and then you've got the angle with which it is taken. So when you start multiplying all this,

you've got a big reason for variations in flow. We looked at 82 patients in our study. We double blinded it. We used a fistulagram as the gold standard. The duplex flow was calculated at three different spots. Duplex velocity at five different spots.

And then the diameters and aneurysmal areas were noted. This is the data. And basically, what it showed, was something totally non-significant. We really couldn't say anything about it. It was a trend toward lower flows,

how the gradients (mumbles) anastomosis, but nothing we could say. So as you all know, you can't really prove the null hypothesis. I'm not here to tell you to use one or use the other, I don't think that volume flow is something that

we can use as a predictor of success or failure, really. So in conclusion, what we found, is that Debbie Brow is right. Clinical examinations probably still the best technique. Look for abnormalities on dialysis. What's the use of duplex ultrasound in dialysis or patients?

And I think we're going to hear that in the next speaker. But probably good for vein mapping. Definitely good for vein mapping, arterial inflow, and maybe predicting maturation. Thank you very much.

- Thank you very much again. Thank you very much for the kind invitation. The answer to the question is, yes or no. Well, basically when we're talking about pelvic reflux, we're talking really, about, possibly thinking about two separate entities. One symptoms relate to the pelvis

and issues with lower limb varicose veins. Really some time ago, we highlighted in a review, various symptoms that may be associated with the pelvic congestion syndrome. This is often, either misdiagnosed or undiagnosed. The patients we see have had multiple investigations

prior to treatment. I'm not really going to dwell on the anatomy but, just really highlight to you it is incompetence in either the renal pelvic and ovarian veins. What about the patterns of reflux we've heard from both Mark and Nicos what the pattern are

but, basically if you look a little more closely you can see that not only the left ovarian vein is probably effected in a round-about 60%. But, there is incompetence in many of the other veins. What does this actually have implication for with respect to treatment.

Implications are that you probably, if you only treat an isolated vein. There is a suggestion, that the long term outcomes are not actually as good. Now this is some work from Mark Whiteley's group because, we've heard about the diagnosis

but, there is some discussion as to whether just looking at ovarian vein diameter is efficient and certainly the Whiteley group suggests that actually diameter is relatively irrelevant in deciding as to whether there is incompetence in the actual vein itself.

That diameter should not be used as a single indicator. You may all well be aware, that there are reporting standards for the treatment of pelvic venous insufficiency and this has been high-lighted in this paper. What of the resuts, of pelvic embolization and coiling? The main standard is used, is a visual analog scale

when you're looking at pelvic symptoms to decide what the outcome may be. This is a very nice example of an article that was... A review that was done in Niel Khilnani's group and you can see if you look at the pre

and post procedural visual analog scales there is some significant improvement. You can see that this is out at one year in the whole. Now, this is a further table from the paper. Showing you their either, there's a mixture

of glue, coils, scleroses and foam. The comments are that, there are significant relief and some papers suggest its after 100% and others up to 80%. If you look at this very nice review that Mark Meissner did with Kathy Gibson,

you will see that actually no improvement in worse. There's quite a range there for those patients 53% of patients in one study, had no improvement or the symptoms were potentially worse. We know that those patients who have coil embolization will have reoccurrence of symptomatology

and incompetence up to about a quarter of the patients. What about varicose veins? The answer is there is undoubtedly evidence to suggest that there is physiological/anatomical incompetence in some of the pelvic veins in patients

who have recurrent varicose veins. Whether this is actually a direct cause or an association, I think it's something we need to have some further consideration of. As you know, there are many people who now would advicate actually treating

the pelvic veins prior to treating the leg veins. You can maybe discuss that in the question time. If we then look at a comparative trial. Comparing coils and plugs, you can see over all there really isn't no particular difference. If we then look again to highlight this,

which comes again from the Whiteley group. You can see that 20% of patients will have some primary incompetence but, it'll go up to around 30% if they are re-current. There is no randomized control data looking at this. What are the problems with coils?

Actually, a bit like (mumbling) you can find them anywhere. You can find them in the chest and also you can find that there are patients now who are allergic to nickel and the very bottom corner is a patient who's coils I took out by open laparotomy because they were allergic to nickel.

So, ladies and gentlemen I would suggest to you certainly, for continuing with pelvic embolization when doubtedly it needs some more RCT data and some much better registry data to look where we're going. Thank you very much.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you. No relevant disclosures to this presentation. The means to the end is removing Uremic toxins. That's what we want to do. That's what this is all about. We don't really know all the Uremic toxins and how they inter-relate, but there are a bunch

of compounds that have been identified. Urea obviously being one of them, although not necessarily being a particularly toxic compound. It's a small molecular weight marker of Uremia, which is convenient to use

if not clinically meaningful. We've developed, or Frank Gotch and Sargent developed this dimensionless concept of the Kt/V, an index of the body volume water space, which has been cleared fully of Urea and this index has been the standard for comparing dosing of dialysis for about 30 years now.

Since the National Cooperative Dialysis Study in the 80's. And the most recent iteration of this study has been the HEMO study in 2002, I believe this was published. Where they compared a high dose of Kt/V of 1.71 versus standard dose Kt/V of 1.3 and looked at patient outcomes and they were

concluding that the higher dose of dialysis wasn't beneficial. But this 1.3 was certainly better than we were seeing in the old days of 0.9 out of the NKDS studies, so 1.3 or that range has been accepted as the target dose

for dialysis and KDOQI guidelines now suggest that we strive to achieve a single pool Kt/V of 1.4, so we have a little cushion with a minimum delivery of 1.2, and that has been adopted now by CMS and the payers.

That's in our conditions for coverage that we achieve or we strive for a Kt/V 1.2 and now we have this quality incentive program, which might relate a little bit to the question earlier about saving access as we get penalized or incentivized

for doing certain things, and right in our penalty methodology in the top categories Kt/V, if we don't hit that target we get dinged up to 2% of the total payment for dialysis on that.

So it's something that's being identified, monitored, and if you like ... Not negatively incentivized. It's not a reward. It's a penalty for failing to achieve. And also you can go to dialysiscompare.gov now.

You login your unit. Here's my little unit in Hockessin. We got four stars. A nearby unit got three stars. They're really just as good as us, but somebody thinks those stars mean something,

and one of the components in those stars is hitting your Kt/V target, so if I want to get stars and not be seen as a poor performing unit, I need to hit these performance parameters, so that's why the Kt/V is the holy grail for Nephrologist. We need to get that number.

It's a very simple concept. Mathematically, you've got two items in the numerator and one in the denominator, and you want to maximize that parameter. Number one we can dispense with the volume of distribution

of Urea is pretty much determined by the patient. It's total body of water times the fraction. It varies a lot depending on the age, weight, gender, obesity, etc. You can put it in the calculator and same qx metal to deliver that number for you.

But we can't really change that, unless somebody has an amputation, or a large amount of weight loss or gain, then it changes. Time we have complete control over. We can dialyze theoretically as long as we want and in the U.S. we sort of like

to believe four hours has been adopted as a standard. There are some recommendations that wouldn't do that. Patient acceptance of that is variable. I can sit in front of a patient and tell them they need four and half hours, and they may look at me askance,

because they know they don't want it, and if you look at dialysis times in different countries, you can see certain countries like Germany, typically dialyzes closer to three hours. Typical dialysis time in the United States is more like... Did I say three hours?

I meant five hours. And typical dialysis time in the United States is about three and a half hours. There are also resource limitations and cost involved in that. So the third variable is the one we have

the most control over, which is the clearance of Urea. And that's depending on the dialyze of the blood, in the blood, out. the dialyze of that... capacity of that filter to remove the solute of interest, Urea in this case in a dialysate flow,

and there are specs for each kidney. Here is a Optiflux F160 at a blood flow of 300 and a dialysate flow of 500. It predicts we should get a Urea clearance of 271 mL per minute, or conversely a larger kidney, an F180 had a blood flow of 500, a dialysate flow of 800.

We should get a Urea clearance of 412. Obviously, none of these are perfect clearances. The maximum theoretical clearance would be that of the blood speed, but it's impossible to clear it 100% of the blood. So when your asked as a surgeon or a provincialist

to make a functional access what your Nephrologist is really asking for in a customer service world is give me a fistula that flows 150% higher. 150% of my intended pump speed and we're good to go. Need a little cushion on that as well.

And here's how it translates into action. Here's an example on a calculator. Here's a patient, who's a 70 kilogram female, dialysis time three and a half hours, 210 minutes. Her Kt/V calculates at 1.77. All good.

Same parameters three and a half hours, 120 kilogram, 40 year old male. His Kt/V is 0.96, clearly below the target. You're not going to get that guy's clearance with those parameters. If you goose him up to 500 mL per minute

on a minute on a bigger kidney and you achieve a clearance of 410, then the same male with the same treatment parameters will get 1.45, so you've met their target. If you want to do better than targets just put him on four hours and you only get 1.66,

so these are very easily definable, measurable, predictable quantities that you can achieve. And then you've got limiting factors. What is the pump speed? Well, hemolysis through needles is really an overstated concern.

This arterial negative pressure alarm won't let you go below 250 on this machine and if-- 300 is it Debbie? 250, 300 and at that point it will cut off, so you won't be able to drive the negative pressure that high,

and so you've got parameters for each needle, which are fairly fixed, a little latitude in it, but with 17-gauge needle you can go up to 300 and so on. With a 14-gauge needle you can go up to 500 or more, and it's a pretty si le higher flow.

And here's a case where you've got a 2 millimeter radial artery, a small fistula. The access flow measures at 450. You can dialyze at a blood speed of 300 with a 17-gauge needle and you're good to go. Where as you got a huge brachial artery here.

This access flow is greater than 2000. You can run the blood speed at whatever you want. And you can use a needle size of 14-gauge. You can put whatever needle size you want in this fistula. So the point is that one size doesn't fit all. Dialysis dose, and dialysis needles,

and dialysis fistulas need to be scaled to the size of the patient. You got a neonate. You got Shaquille O'Neal. Somewhere in between is our patient. Thank you.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you very much, chairman and ladies and gentlemen. The funding of this trial was from The Academy of Medical Sciences and The Royal College of Surgeons of England. AKI due to the influence EVAR is actually more common than we all think. This is being shown by prospective studies and registries.

Why is it important? Well, it's associated with a higher intra or inter hospital mortality, cardiovascular events and also long term cardiovascular events and longterm mortality. As even more common and complex, EVAR, and this can range from 22% up to 32%.

These are some of our cases, some of our first, including FEN astrate EVAR in 2010 Thoraco-Abdominal Branch repair 2016 and Fen astrated TEVAR 2018. These are longer procedures, usually with more contrast and direct ventilation after removing arteries.

What are the mechanisms for acute kidney injuries due to infer-renal EVAR? While this involves use of contrast, systemic inflammatory response syndrome, due to ischemic re-perfusion injury, manipulation of the thrombus, aorta and catheterizations which will ------ alpha

and also from high prophalinemia. There is no high-quality evidence for AKI prevention in EVAR. What about Sodium Bicarbonate? Well it's been well know to reduce what been used commonly to reduce CIN in high risk patients in perrifical and

corona graphy. There are two main mechanisms as to how this works. Firstly, from reducing renal tubular ischemia. Secondly, by reducing oxygen deprived free radical formation in the tubules. What is the evidence?

Well this is a met analysis, comparing Sodium Bicarbonate directly with hydration with normal saline, as shown in the orange box. There is no difference. We can look at the population ll

mostly CKD patients or diabetic patients, certainly Hartmann's patients but they are not EVAR patients. They are coronary patients or peripheral an-graphy patients. In addition, serum bicarbonate and the urine pH was not reported so we do not know how effective the Bicarbonate was in these RCT's.

The authors went on to look other outcomes including needful hemo dialysis, cardiac events, the mortality and they found no difference but they concluded the strength of this evidence was low and insufficient. A further Meta-analysis this time published in BMJ this time comes in favor of bicarbonate

but again this is comparing bicarbonate with saline no use of combination therapy. There are again no use of EVAR patients and these patients all have a low eGFR. The preserved trial, a large trial published earlier this year in the New England Journal again using various

treatments again comparing sodium bicarbonates and saline again no difference. But again this compares bicarbonate direct with saline with no combination therapies. In addition, there were no EVAR patients, and these are low eGFR patients.

The met-analysis also showed that by using bicarbonates as a bolus dose rather than a continuous infusion, which was actually the way they used bicarbonates in most of these patients might be better. And using a higher dose of bicarbonate may also be better as shown in this Japanese paper.

So we come to HYDRA trial. They're using a high dose bicarbonate in combination with hydration to protect renal function. We did a UK wide survey of anesthetists of day to day and they felt the best volume expander they would like to use was Hartmann's solution.

So we randomized patients between standard hydration with Hartmann's solution verses standard hydration Hartmann's plus high dose bicarbonate per operatively and low slow intravenous infusion bicarbonate during the surgery. Importantly, with these patients,

we kept the map within 80% of baseline, 90% of the time in contrary to all the RCT's coronary and angeo-porphyry. We're going to skip that slide. This is the inclusion criteria, any patient undergoing infra EVAR, with any renal disfunction,

the primary area you must look at is recruitment and the second area you must look at is AKI. We screened 109 patients of which, 58% were randomized and there were only 2 crossovers. There was a willingness for patients to participate and there was also a willingness for PET 4 Clinitions to

recruit as well. This is the demographics, which is typical of aortic patients they are all on by a few MRSA patients, have normal renal function. Most of the patients wear statins and anti pace agent, only 13% were diabetic.

The patients were matched in terms of hypertension and also fluid hydration pre-operatively measures of via impedance. Here are the results of the trial. The AKI instance in the standard hydration group was like 3% and 7.1% with standard hydration plus bicarbonate. And it was similar in terms of organotrophic support into

and postop and also contrast volume used. It's a safe regime with none of the patients suffering as a result of using bicarbonate. So to conclude, to answer professor Veith's question, about how was this trial different to all the other trials? Well, certainly the previous trials have compared

bicarbonate with saline, there's lack of combination studies that involve mostly coronary an peripheral procedures, not EVAR. And the the most only included patient with low eGFR. HYDRA is different, this is not a regime using high dose bolus of sodium bicarb combined with standard hydration.

It shows promise of reducing AKO. This is an EVAR specific pilot RCT. Again, Unlike previous trials using bicarbonate, 90% of the patients had normal or mild impaired renal function. And unlike previous trials, there's more aggressive management of hypertension intra and postoperatively.

Thank you for listening.

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Good morning. I'd like to thank everybody who's in attendance for the 7 A.M. session. So let's talk about a case. 63 year old male, standard risk factors for aneurismal disease. November 2008, he had a 52 mm aneurism,

underwent Gore Excluder, endovascular pair. Follow up over the next five, relatively unremarkable. Sac regression 47 mm no leak. June 2017, he was lost for follow up, but came back to see us. Duplex imaging CTA was done to show the sac had increased

from 47 to 62 in a type 2 endoleak was present. In August of that year, he underwent right common iliac cuff placement for what appeared to be a type 1b endoleak. September, CT scan showed the sac was stable at 66 and no leak was present. In March, six months after that, scan once again

showed the sac was there but a little bit larger, and a type two endoleak was once again present. He underwent intervention. This side access on the left embolization of the internal iliac, and a left iliac limb extension. Shortly thereafter,

contacted his PCP at three weeks of weakness, fatigue, some lethargy. September, he had some gluteal inguinal pain, chills, weakness, and fatigue. And then October, came back to see us. Similar symptoms, white count of 12, and a CT scan

was done and here where you can appreciate is, clearly there's air within the sac and a large anterior cell with fluid collections, blood cultures are negative at that time. He shortly thereafter went a 2 stage procedure, Extra-anatomic bypass, explant of the EVAR,

there purulent fluid within the sac, not surprising. Gram positive rods, and the culture came out Cutibacterium Acnes. So what is it we know about this case? Well, EVAR clearly is preferred treatment for aneurism repair, indications for use h

however, mid-term reports still show a significant need for secondary interventions for leaks, migrations, and rupture. Giles looked at a Medicare beneficiaries and clearly noted, or at least evaluated the effect of re-interventions

and readmissions after EVAR and open and noted that survival was negatively impacted by readmissions and re-interventions, and I think this was one of those situations that we're dealing with today. EVAR infections and secondary interventions.

Fortunately infections relatively infrequent. Isolated case reports have been pooled into multi-institutional cohorts. We know about a third of these infections are related to aortoenteric fistula, Bacteremia and direct seeding are more often not the underlying source.

And what we can roughly appreciate is that at somewhere between 14 and 38% of these may be related to secondary catheter based interventions. There's some data out there, Matt Smeed's published 2016, 180 EVARs, multi-center study, the timing of the infection presumably or symptomatic onset

was 22 months and 14% or greater had secondary endointerventions with a relatively high mortality. Similarly, the study coming out of Italy, 26 cases, meantime of diagnosis of the infection is 20 months, and that 34.6% of these cases underwent secondary endovascular intervention.

Once again, a relatively high mortality at 38.4%. Study out of France, 11 institutions, 33 infective endographs, time of onset of symptoms 414 days, 30% of these individuals had undergone secondary interventions. In our own clinical experience of Pittsburgh,

we looked at our explants. There were 13 down for infection, and of those nine had multiple secondary interventions which was 69%, a little bit of an outlier compared to the other studies. Once again, a relatively high mortality at one year. There's now a plethora of information in the literature

stating that secondary interventions may be a source for Bacteremia in seeding of your endovascular graft. And I think beyond just a secondary interventions, we know there's a wide range of risk factors. Perioperative contamination, break down in your sterile technique,

working in the radiology suite as opposed to the operating room. Wound complications to the access site. Hematogenous seeding, whether it's from UTIs, catheter related, or secondary interventions are possible.

Graft erosion, and then impaired immunity as well. So what I can tell you today, I think there is an association without question from secondary interventions and aortic endograft infection. Certainly the case I presented appears to show causation but there's not enough evidence to fully correlate the two.

So in summary, endograft infections are rare fortunately. However, the incidence does appear to be subtly rising. Secondary interventions following EVAR appear to be a risk factor for graft infection. Graft infections are associated without question

a high morbidity and mortality. I think it's of the utmost importance to maintain sterile technique, administer prophylactic antibiotics for all secondary endovascular catheter based interventions. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.