Create an account and get 3 free clips per day.
Pararenal Abscess (Ileocolostomy Leakage) | Percutaneous Catheter Drainage | 69 | Male
Pararenal Abscess (Ileocolostomy Leakage) | Percutaneous Catheter Drainage | 69 | Male
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
Update On Abdominal Compartment Syndrome (ACS) After EVAR For RAAAs: Its Diagnosis And Treatment Should Be Better Than It Is In Most Centers
Update On Abdominal Compartment Syndrome (ACS) After EVAR For RAAAs: Its Diagnosis And Treatment Should Be Better Than It Is In Most Centers
DEBATE: There Are Criteria Which Allow Preoperative Prediction Of Certain Non-Survival After EVAR Or OR In RAAA Patients: Invasive Treatment Should Be Denied For Such Patients
DEBATE: There Are Criteria Which Allow Preoperative Prediction Of Certain Non-Survival After EVAR Or OR In RAAA Patients: Invasive Treatment Should Be Denied For Such Patients
abdominalaneurysmaorticbloodclinicalcreatinineendoevarglasgowhemorrhagehypotensiveintraoperativejournalmortalitymultivariatepatientpatientspredictpredictivepredictorspreoperativeREVARriskrupturedRuptured AAA (SBP greater than 70 - Creat. 0.9 - Serum PH 7.24)scorescoresserumsystolicunivariatevascularVeithwashington
Technical Tips For Open Conversion After Failed EVAR
Technical Tips For Open Conversion After Failed EVAR
AAAacuteantibioticaortaaorticAorto-Venous ECMOballooncirculatoryclampCoil Embolization of IMAcoilingconverteddeviceendarterectomyendograftendoleakendovascularentiregraftgraftsiliacinfectedinjection of gluepatientproximalRelining of EndograftremoveremovedrenalresectedRifampicin soaked dacron graftsupersutureTEVARtherapeutictranslumbartype
New In Vitro System For Evaluating Optimal Techniques, Main And Branch Endografts, Sizing, Etc. For Ch/EVAR: How It Will Improve Results And Decrease Complications By Leading To Standardized Techniques And Endograft Components
New In Vitro System For Evaluating Optimal Techniques, Main And Branch Endografts, Sizing, Etc. For Ch/EVAR: How It Will Improve Results And Decrease Complications By Leading To Standardized Techniques And Endograft Components
abdominalable covered stent (Advanta V12anatomyaneurysmanterioraorticballoonBalloon Expballoon expandablebehaviorcentersCHchimneyCordiscovereddevicedevicesendovascularEndurantevaluateevarexpandableexpansionforcegraftheterogeneityicastimpactMaquetMedtronicmitralniceoversizingpatencypercentposteriorproximalradialrenalscanstentStent graftstent graft systemStent graft system (INCRAFTstentssuboptimaltechniquetherapeuticversusviabahn
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
Educating Your Patients To Advocate For Themselves In The Dialysis Clinic
Educating Your Patients To Advocate For Themselves In The Dialysis Clinic
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
Overview Of Sclerotherapy Liquid Embolic Agents: A World In Endovascular Confusion And Chaos
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
When To Refer Patients For Hemodialysis Access And Who Should Monitor The Maturation Process
accessappropriatelyAV AccessAV Vascular AccessbilateralcatheterchronicCKD-Stage 4creatinineDialysisdisadvantagesegfrFistulapatientpatientspermanentpredictingproteinproteinuriareferralrenalrisksurgeontrajectoryvalidatedvascularveinswrist
How To Overcome Difficult Branch Artery Access In Parallel Grafting Techniques: Tips And Tricks
How To Overcome Difficult Branch Artery Access In Parallel Grafting Techniques: Tips And Tricks
Amplatz super stiff guidewire (Boston Scientific)aneurysmaortaarteryballoonbranchcannulatecathetercathetersCook MedicalexpandingguidewireorificeparallelParallel grafting techniquepatientrefluxrenalrenal arteryrosensheathsstentstentsstifftherapeutictortuositytypetypicallyultimatelyvesselwires
Long-Term Survival After EVAR For RAAAs Is Better Than After Open Repair: What Factors Are Predictive
Long-Term Survival After EVAR For RAAAs Is Better Than After Open Repair: What Factors Are Predictive
abdomenanesthesiaangulatedconventionaldevicesE-xpemergentendovascularEndurantevarfactorsfavorgrafthemodynamichypovolemiaMedtronicobservedoutcomesparallelpatientperformpredictivepreoperativerandomizedrupturerupturedstentstentgraft balloon catheter (Jotec) / Reliant stent graft balloon catheter (Medtronic) / Onyx (Medtronic)suprarenalsurvivaltherapeutictransrenalTransrenal device
Fistula First Access Planning And Weekly Assessment Tools
Fistula First Access Planning And Weekly Assessment Tools
accessAVFcannulationcarecathetercathetersDialysisFistulaFistula Firstgooglegrafthealinginterdisciplinarypatientpatientsreadyteamtooltoolsvasawebsiteweekweekly
With Adjuncts (Chimney Grafts And Onyx) 100% Of RAAAs Can Be Treated By EVAR With Low 30-Day Mortality And Turn Down Rates: Technical Tips
With Adjuncts (Chimney Grafts And Onyx) 100% Of RAAAs Can Be Treated By EVAR With Low 30-Day Mortality And Turn Down Rates: Technical Tips
abdominaladjunctsanesthesiaaorticBEVARBEVAR / Selective Gutter embolizationbrachcatheterchimneyChimney grafts with sealing below SMAcoagulationcohortcontraindicationsdeploydeployeddistalevarextendfavorableiliaclandingMedtronicmortalityNon adhesive liquid embolic agentocclusiononyxOnyx EmbolizationparallelpatientpatientsPercutaneous combined PG EVARperfusionproximalrupturedsealsealingsuprarenalSuprerenal Aneurysm / rPRAAtherapeuticthomastreatedtriplevisceral
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
What Are The Complications Of Spinal Fluid Drainage: How Can They Be Prevented: Optimal Strategies For Preventing Or Minimizing SCI
aneurysmAneurysm repairaxisBEVARceliacchronicDialysisdraindrainagedrainseliminatedextentFEVARflowFluid / PressorsheadachehematomahemorrhagehypotensionincludingintracranialOccluded SMAoutcomespalliativeparaplegiapatientpatientsplacementpostoperativeprolongedprospectiveprotocolratesevereSevere PancreatitisspinalTEVARtherapeutictreated
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
Thrombo-Embolic Complications Of Inflammatory Bowel Disease: Nature, Etiology And Significance
abdominalangiogramarterialatrialbowelcolectomycoloniccomplicationsdiseasedyslipidemiaetiologyextremityfibrinolyticheparinincidenceincreaseinflammatoryinpatientinpatientsischemicIV HeparinmedicalocclusionoccurringpatientsprophylaxispulmonaryresectionrevascularizationriskRt PE / Rt Pulm Vein thrombosis / Lt Atrial thrombosissidedSMA thrombectomysubtotalsystemicthrombectomythrombosisthrombotictransverseulcerativeunderwentveinvenousvisceral
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
Patient Preferences For Open vs. Endo Repair For AAAs: How Are Patients Influenced And How Do Their Preferences Influence The Choice Of Procedure (From The PROVE-AAA RCT)
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Sandwich Graft Technique For Treating TAAAs: How To Make It Work Even In Urgent Or Ruptured Cases
Sandwich Graft Technique For Treating TAAAs: How To Make It Work Even In Urgent Or Ruptured Cases
a large juxtarenal aneurysmabdominalacuteaneurysmaneurysmsangiogramangioplastyaorticarteryaxillarycarotidcatheterizecatheterizedceliaccentimetercongestivedissectionembolizedendografterectilegraftgraftsiliacsivusleft carotid subclavian bypassleft subclavian artery embolizationlumenluminaloccludedparallelperformedperfusionreasonablerenalrenalssscansegmentstenosisstentssubclavianTEVARtherapeuticthoracicthoracoabdominalType B thoracic dissectionvesselsvisceralwich graft technique
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
3D medical imagingaortaaugmentedcardiaccatheterCoreValve (Medtronic) - Transcatheter Aortic Valve Delivery Catheter System / TAVIguide (FEops) - Simulation technology / Holoscope (RealView Imaging) - 3D medical imagingDigital Light ShapingdynamicfloatingfocalfocusinteractmitralneedlepatientRealView ImagingsliceTherapeutic / DiagnosticvalveVeith
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Value Of CO2 DSA For Abdominal And Pelvic Trauma: Why And How To Use CO2 Angiography With Massive Bleeding And When To Supplement It With Iodinated Contrast
Infected Aortic Prosthetic Grafts And Endografts From EVAR May Not Require Graft Excision: When And How Can These Infected Grafts Be Treated Without Their Removal
Infected Aortic Prosthetic Grafts And Endografts From EVAR May Not Require Graft Excision: When And How Can These Infected Grafts Be Treated Without Their Removal
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
Current Treatment Options For Limb Threatening Hand Ischemia: How Good Are Their Results
How Accurate Is Ulcer Healing Assessment And What Happens When We Are Wrong
How Accurate Is Ulcer Healing Assessment And What Happens When We Are Wrong
abisangiogramankleanteriorbrachialclevelandcriticalguidelineshemodynamicindicesischemiaischemiclimbmichiganMid-foot ulceration / SFA diseasenormalocclusionocclusion of PT / Diabetic with charcot ArthropathypatientpatientsposteriorRevascularization / Wound Caretibialulcerationupwardswound
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
anterioraortobifemoralarteryatheroscleroticbifurcationcarotidcarotid arteryclassiccommondebrisemphasizeendarterectomyexternalexternal carotidfemoropoplitealhoarsenessincisioninternalinternal carotidloopmaneuvermiceminimaloperationpatientpatientsposteriorproximalpullingremovesafelyshuntsutureVeithvesselvisualizationwound
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
Vascular Injuries From Orthopedic Operations: How To Prevent Catastrophes: Beware The Dangers Of Orthopedic Cement: What Are They
acuteanterioraortaarterycementchroniccommonlycompresseddelayedfractureiliacimaginginflammatoryinjuriesinjuryinstrumentationpatientpositioningposteriorprivilegepronereplacementRt Iliac Massthermalthoracicvascularveinveinsvertebral

case similar to that. This patient was more serious because the fistula work with the colon.

This patient got five surgeries sequentially through the years, for a liposarcoma retroperitoneal and what you see here is an abscess in the posterior pararenal space, what it was left because the patient had a left colectomy, left nephrectomy and a renalectomy. And then if I can advance this thing, here, we drain it with several catheters,

so if you can move it that'd be great. See that's the abscess. Move it to the next one [BLANK_AUDIO] We can relate the colon and this patient, you can see the fistula, in one of the catheters in the colon lumen,

and this is here, this is the colon. Of course this is not normal because this is all abnormal. So, the patient [INAUDIBLE] No, no this is the last case. The patient did well without the need of a colostrum. I think that the other one was [INAUDIBLE]

>> [INAUDIBLE] >> Yeah, I'll stop here, it's good. Any questions? Sorry for the speed [BLANK_AUDIO]

Okay. >> With the session, thank you everyone for coming.

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- Thank you so much, and thank you Frank for your kind invitation, I have no disclosures. As you all know, Frank and his group were among the first to do the ruptured EVAR operations here in New York. And if there were any doubts before, they probably disappeared after the publication of

the three year results of the IMPROVE trial that we have heard Janet talk about. When that trial was published last year I wrote an editorial in the British Medical Journal where I pointed out that the advantage of EVAR when treating patients with ruptured AAA

may actually have been underestimated in the IMPROVE trial. Partly because local anesthesia was used in only 6% of the patients and also because intra-abdominal pressure was not monitored routinely. We did a large cohort study in the Swedvasc registry and looking at abdominal compartment syndrome after

AAA repair, I will focus now only on the ruptured patients. There were actually almost 7,000 repairs but 1,300 for ruptured and we could verify that the risk for ACS was the same after open or endovascular repair for ruptured. However, 10% of the open repairs had been treated

with open abdomen prophylactically. You can see here how the mortality curves differ between the patients who developed ACS after ruptured AAA repair and the mortality is actually double if they get ACS, and there was no difference in the outcome

if the primary treatment was open or EVAR. So why is it that the survival benefit of EVAR is lost if the patient develops ACS? Well, it could be that abdominal compartment is simply such a deadly complication that the primary treatment doesn't matter, but there can also be

special risks when the patient develop ACS after EVAR for ruptured AAA and to focus on this problem we performed a second study on 120 patients who developed ACS, focusing on the differences between open and endo. There were three different pathological mechanisms

behind developing the abdominal compartment syndrome. The most common was a generalized oedema, but there was also bowel ischemia and bleeding. The timing of decompression was such that half of the patients were decompressed within 24 hours, another quarter within two days, and the remaining

quarter later than two days. And as you can see here, most of these patients were operated on for rupture, but as many for EVAR, with EVAR as with open repair. The survival curves were not significantly different depending on the pathophysiological mechanism,

nor on the timing of the decompression. But the abdominal compartment syndrome developed much earlier after EVAR than after open repair as you can see in this figure. So we concluded that in patients developing ACS, survival was poor generally speaking,

it did not differ depending on pathophysiological mechanisms nor on the timing of decompression. We did find, however, that the duration of intra-abdominal hypertension was an independent predictor of the need for renal replacement therapy, and although this is the largest study ever

published in this area, it's still a small group of patients, only 120 and there could be a type two error here so that actually a delay in decompression since it does lead to the need of renal replacement therapy, that it could actually also effect survival if we had had more patients.

ACS developed earlier after EVAR for ruptured AAA than after open repair. And so we conclude that early monitoring of intra-abdominal pressure after EVAR for ruptured AAA may save lives. And finally, I just want to invite you all

to the next ESVS meeting, 24th to 27th September in Hamburg, and remember to submit your abstracts by April 1st, thank you.

- I do have to disclose that I am a little double booked and have a talk at 2:10 at the job fair so I won't be able to stick around to see who won the debate. Here are my disclosures. They haven't changed. Again, I come from Harborview Medical Center

at the University of Washington where we cover a very large geographic distribution and see a lot of patients presenting with a model of pure catastrophic hemorrhage ruptured abdominal aortic aneurysm. So several risk scores have been developed

to predict mortality after ruptured AAA repair. The Glasgow Aneurysm Score, the Hardman Index, the Vancouver Score, the Edinburgh Ruptured Aneurysm Score, and the VSGNE Ruptured Aneurysm Score. But these scores have differing levels of clinical utility. The Glasgow Score is not predictive in the Endo Era.

It was developed a long time ago. The Hardman and Glasgow Index failed to predict mortality in the highest risk populations. The VSGNE Score although a good score has been validated in the Endo Era but includes intraoperative variables.

Therefore limiting its use in the preoperative setting. We sought to develop a practical, clinically relevant, preoperative ruptured AAA mortality risk score to aid in the clinical decision making in the Endo Era and before the operation is considered. This article was published last month

as the Editor's Choice in the Journal of Vascular Surgery. The predictors of 30 day mortality are listed here. This is from both univariate and multivariate analysis and looking at over 300 patients presenting with ruptured AAA in our institution. And those variables are as follows,

age greater than 76, a creatinine concentration of greater than two milligrams per deciliter, a systolic blood pressure ever below 70 millimeters mercury and this is the one that's hardest to obtain, but a serum pH of less than 7.2. This is directly from the Journal of Vascular Surgery,

but you can see that if you had one point for one of those factors, your 30 day mortality was 22%. Two points, 69%. Three points, 80% mortality. And four points, 100% mortality in our institution. This is the prediction of 30 day survival after EVAR.

You can see for the patients that had zero, one, two, three and four points, if you had four points and underwent an EVAR your mortality risk was 100%. Same for open repair, a little bit more in terms of mortality upfront. And when we look at multivariate logistic regression,

the factor that stood out the most and had the highest odds ration was creatinine greater that 2.0. We've long known this as vascular surgeons. We've known that creatinine greater than two, triples operative mortality after even open elective repair.

I'm going to flip to the mortality predicted by the preoperative risk score. You can see here are the scores and the odds ratios. And when we look at our score compared to all other scores, the Robinson, Glasgow and Edinburg Scores had a area under the curve of .64.

Our area under the curve was .82 which is highly predictive of futility. I want to provide for you an anecdote. This was a few weeks ago when I was on call, I had a call that a ruptured AAA was coming in from Yakima, Washington and I had accepted the patient.

The patient was an 87 year old. His systolic blood pressure was over 70. Creatinine was normal and his serum pH was 7.24. So he only had one risk factor for mortality. So we would clearly accept this patient and offer repair. I then got a call from the ER about 45 minutes later

saying we have a patient that presented with a ruptured AAA. I said, "I know, I already heard about that patient. "I accepted him." They said no, this is a totally different patient. This patient is 76, he's hypotensive

with a blood pressure less than 50. And I asked the question, "What's his creatinine "and his serum pH?" Creatinine was 2.7 and his serum pH was 7.1. So we had a choice to make. Do we fix the 87 year old or do we try and go

for fixing the 76 year old who had all four risk factors. We said to the family that this 76 year old had a 100% risk of death. We fixed the 87 year old, he survived and was discharged on postoperative day number two. After talking with the family for the 76 year old male,

he died in the ER 21 minutes later. We have published this mortality risk score in our textbook, the only textbook of its kind, The Ruptured Abdominal Aortic Aneurysm, The Definitive Manual and I thank Dr. Veith for the privilege of the podium.

Thank you, Dr. Veith.

- Thank you Dr. Albaramum, it's a real pleasure to be here and I thank you for being here this early. I have no disclosures. So when everything else fails, we need to convert to open surgery, most of the times this leads to partial endograft removal,

complete removal clearly for infection, and then proximal control and distal control, which is typical in vascular surgery. Here's a 73 year old patient who two years after EVAR had an aneurism growth with what was thought

to be a type II endoleak, had coiling of the infermius mesenteric artery, but the aneurism continued to grow. So he was converted and what we find here is a type III endoleak from sutures in the endograft.

So, this patient had explantations, so it is my preference to have the nordic control with an endovascular technique through the graft where the graft gets punctured and then we put a 16 French Sheath, then we can put a aortic balloon.

And this avoids having to dissect the suprarenal aorta, particularly in devices that have super renal fixation. You can use a fogarty balloon or you can use the pruitt ballon, the advantage of the pruitt balloon is that it's over the wire.

So here's where we removed the device and in spite of the fact that we tried to collapse the super renal stent, you end up with an aortic endarterectomy and a renal endarterectomy which is not a desirable situation.

So, in this instance, it's not what we intend to do is we cut the super renal stent with wire cutters and then removed the struts individually. Here's the completion and preservation of iliac limbs, it's pretty much the norm in all of these cases,

unless they have, they're not well incorporated, it's a lot easier. It's not easy to control these iliac arteries from the inflammatory process that follows the placement of the endograft.

So here's another case where we think we're dealing with a type II endoleak, we do whatever it does for a type II endoleak and you can see here this is a pretty significant endoleak with enlargement of the aneurism.

So this patient gets converted and what's interesting is again, you see a suture hole, and in this case what we did is we just closed the suture hole, 'cause in my mind,

it would be simple to try and realign that graft if the endoleak persisted or recurred, as opposed to trying to remove the entire device. Here's the follow up on that patient, and this patient has remained without an endoleak, and the aneurism we resected

part of the sack, and the aneurism has remained collapsed. So here's another patient who's four years status post EVAR, two years after IMA coiling and what's interesting is when you do delayed,

because the aneurism sacks started to increase, we did delayed use and you see this blush here, and in this cases we know before converting the patient we would reline the graft thinking, that if it's a type III endoleak we can resolve it that way

otherwise then the patient would need conversion. So, how do we avoid the proximal aortic endarterectomy? We'll leave part of the proximal portion of the graft, you can transect the graft. A lot of these grafts can be clamped together with the aorta

and then you do a single anastomosis incorporating the graft and the aorta for the proximal anastomosis. Now here's a patient, 87 years old, had an EVAR,

the aneurism grew from 6 cm to 8.8 cm, he had coil embolization, translumbar injection of glue, we re-lined the endograft and the aneurism kept enlarging. So basically what we find here is a very large type II endoleak,

we actually just clip the vessel and then resected the sack and closed it, did not remove the device. So sometimes you can just preserve the entire device and just take care of the endoleak. Now when we have infection,

then we have to remove the entire device, and one alternative is to use extra-anatomic revascularization. Our preference however is to use cryo-preserved homograft with wide debridement of the infected area. These grafts are relatively easy to remove,

'cause they're not incorporated. On the proximal side you can see that there's a aortic clamp ready to go here, and then we're going to slide it out while we clamp the graft immediately, clamp the aorta immediately after removal.

And here's the reconstruction. Excuse me. For an endograft-duodenal fistula here's a patient that has typical findings, then on endoscopy you can see a little bit of the endograft, and then on an opergy I series

you actually see extravasation from the duodenal. In this case we have the aorta ready to be clamped, you can see the umbilical tape here, and then take down the fistula, and then once the fistula's down

you got to repair the duodenal with an omental patch, and then a cryopreserved reconstruction. Here's a TEVAR conversion, a patient with a contained ruptured mycotic aneurysm, we put an endovascular graft initially, Now in this patient we do the soraconomy

and the other thing we do is, we do circulatory support. I prefer to use ECMO, in this instances we put a very long canula into the right atrium, which you're anesthesiologist can confirm

with transassof forgeoligico. And then we use ECMO for circulatory support. The other thing we're doing now is we're putting antibiotic beads, with specific antibiotic's for the organism that has been cultured.

Here's another case where a very long endograft was removed and in this case, we put the device offline, away from the infected field and then we filled the field with antibiotic beads. So we've done 47 conversions,

12 of them were acute, 35 were chronic, and what's important is the mortality for acute conversion is significant. And at this point the, we avoid acute conversions,

most of those were in the early experience. Thank you.

- Thank you very much for the nice introduction for the privilege to start the aortic session with this nice, very interesting topic about Chimney technique and especially about the in-vitro testing which we have done in Muenster in Germany. So, the Chimney endovascular technique we treat short necks as we see here.

With the use of off-the-shelf devices and the placement is in parallel and outside configuration of the main abdominal device. Well, if you see the literature we can see enthusiastic reports with the use of these alternative therapeutic options,

showing low incidence of endo leaks, excellent patency, and durability of these endovascular solutions. On the other side we have also centers with suboptimal experience, as we see here from Manchester, in the titled already publication,

late ruptures after single chimneys or from the group from Florida, highlight that the technique raises cause for concern. So what are the reasons for these divergent experience? Could be the heterogeneity of the used materials, but also the degree of oversizing

of the aortic stent graft? In order to evaluate that, we performed first of all a chimney case of a patient with a huge paraanastomotic aneurysm which we did with single chimney for the right renal artery, as we see here.

What we have done is the CT scan of these patients, we send to a special company and create this silicone model one by one with the anatomy of this treated case, as we see here, having a diameter of 28 millimeter, exact the anatomy of the renals,

of the neck length, infrarenally. And it was also really nice the opportunity to have a fluid simulation system, and we can have also the possibility to bring the device in the CT scan, and perform CT angiography, as we can see here,

very nicely the pictail catheter into the descending aorta, and evaluating now the impact of the different devices for this technique. Here is the example with the device you see here how we deploy the chimney graft, here is an Incraft stent graft for the right renal artery.

The first attempt was to evaluate the impact of different abdominal devices. If we use the same chimney graft in this particular case, the Icast for Advanta V12, and you see what we changed was only the type of the stent graft of the aorta.

If you see here the CT scan analysis, you see very nicely these combination of a mitral endoskeleton of the enduring device with a rigid, but very good, intraradial force Advanta V12, or Icast. You can see here how nicely performs

around the chimney graft. And if we see also in the reconstruction, we have a very nice expansion of the chimney graft, especially in the proximal edge, which is very important in order to have a good patency over the time.

You see here very nicely the expansion of the proximal edge of the balloon expandable covered stent Let's see now what happened with the Incraft. Again, you see here very nice the radial force of the Icast is here very nice to see. However, we have seen a completely different behavior

of the abdominal stent graft of this company. You see here that we have potentially more gutters compared to the other conformability of the endurant around the chimney graft. So it was a very nice sign and finding and showing the impact of the abdominal stent graft

for this technique. What we have done after that was we took the endurant device and we changed now the use of the chimney graft, so we used in the first attempt the self-expanding covered stents, the Viabahn,

versus a balloon expandable covered stent like the Begraft. And if you see here the results, you see again a very nice expansion of the endurant around the chimney graft, but in the reconstruction you see here the severe compression of the Viabahn self-expanding stent

has poor radial force despite that we lined we had per se 70 percent stenosis. I think it's a very important finding crucial compared to the balloon expandable chimney grafts you see here the Begraft, they had also a very good expansion

as balloon-expandable covered did, but also we see here completely different area of gutters if we compare the two balloon expandable covered stents in the anterior and posterior phase, you see here the Begraft plus seems to perform better. The impact of degree of oversizing we know

from the work of Riambaud 30 percent is the recommendation if you see this very nice analysis, you see here with 15 percent oversizing, we have this area of gutter versus 30 percent of oversizing you see a very nice conformability around the chimney that we chose how important is for this technique

to have enough fabric material to wrap up the chimney grafts. In conclusion, ladies and gentlemen, we have seen in this very nice in-vitro testing that indeed the area of the gutters vary depending on the different device combinations.

And also we have seen how important is the appropriate device selection, and 30 percent oversizing to obtain optimal results. Thank you very much.

- Thank you, and thank you Dr. Veith for the opportunity to present. So, acute aortic syndromes are difficult to treat and a challenge for any surgeon. In regionalization of care of acute aortic syndromes is now a topic of significant conversation. The thoughts are that you can move these patients

to an appropriate hospital infrastructure with surgical expertise and a team that's familiar with treating them. Higher volumes, better outcomes. It's a proven concept in trauma care. Logistics of time, distance, transfer mortality,

and cost are issues of concern. This is a study from the Nationwide Inpatient Sample which basically demonstrates the more volume, the lower mortality for ruptured abdominal aortic aneurysms. And this is a study from Clem Darling

and his Albany Group demonstrating that with their large practice, that if they could get patients transferred to their central hospital, that they had a higher incidence of EVAR with lower mortality. Basically, transfer equaled more EVARs and a

lower mortality for ruptured abdominal aortic aneurysms. Matt Mell looked at interfacility transfer mortality in patients with ruptured abdominal aortic aneurysms to try to see if actually, transfer improved mortality. The take home message was, operative transferred patients

did do better once they reached the institution of destination, however they had a significant mortality during transfer that basically negated that benefit. And transport time, interestingly did not affect mortality. So, regional aortic management, I think,

is something that is quite valuable. As mentioned, access to specialized centers decrease overall mortality and morbidity potentially. In transfer mortality a factor, transport time does not appear to be. So, we set up a rapid transport system

at Keck Medical Center. Basically predicated on 24/7 coverage, and we would transfer any patient within two hours to our institution that called our hotline. This is the number of transfers that we've had over the past three years.

About 250 acute aortic transfers at any given... On a year, about 20 to 30 a month. This is a study that we looked at, that transport process. 183 patients, this is early on in our experience. We did have two that expired en route. There's a listing of the various

pathologies that we treated. These patients were transferred from all over Southern California, including up to Central California, and we had one patient that came from Nevada. The overall mortality is listed here. Ruptured aortic aneurysms had the highest mortality.

We had a very, very good mortality with acute aortic dissections as you can see. We did a univariate and multivariate analysis to look at factors that might have affected transfer mortality and what we found was the SVS score greater than eight

had a very, very significant impact on overall mortality for patients that were transferred. What is a society for vascular surgery comorbidity score? It's basically an equation using cardiac pulmonary renal hypertension and age. The asterisks, cardiac, renal, and age

are important as I will show subsequently. So, Ben Starnes did a very elegant study that was just reported in the Journal of Vascular Surgery where he tried to create a preoperative risk score for prediction of mortality after ruptured abdominal aortic aneurysms.

He found four factors and did an ROC curve. Basically, age greater than 76, creatinine greater than two, blood pressure less than 70, or PH less than 7.2. As you can see, as those factors accumulated there was step-wise increased mortality up to 100% with four factors.

So, rapid transport to regional aortic centers does facilitate the care of acute aortic syndromes. Transfer mortality is a factor, however. Transport mode, time, distance are not associated with mortality. Decision making to deny and accept transfer is evolving

but I think renal status, age, physiologic insult are important factors that have been identified to determine whether transfer should be performed or not. Thank you very much.

- Thank you, Larry and Tony, for the invitation. Larry told me I should be provocative so here we go. (chuckles) Those are my disclosures, mostly in the aortic space, although I was a PI for the Humanity Phase II trial. So this is a quote that interventional nephrologists in Arizona told me one day when we were trying

to have a educational, meaningful discussion, so we provide care that is better, faster, and cheaper than what you can provide in the hospital. And we'll address this a little later. What's the roles of the access surgeon, when it comes to advocating or educating

your dialysis patients? Well, when you google advocating for anything, you're going to find mostly political references. And I think there are a number of excellent patient related groups to advocate for policies and principles. But as the surgeon, I think we have

a couple of important roles. One, we need to create the most durable, successful access possible, and as Ted just said, that needs to be individualized for the patient. We need to try and protect and maintain the access and we also have a role in protecting the patient.

We can't underestimate or underemphasize the importance of vessel mapping, both arterial and venous. We frequently get patients referred who have already had their mapping somewhere else but as the surgeon is going to be doing the procedure, we tend to repeat that in the office,

so that we can see it ourselves, because mapping can be variable, can depend on environmental conditions, how cold the patient's room is, their hydration status, so we really try and nail that down. And frequently we find a high bifurcation

of the brachial artery, that's not noted on other mapping. And, again, I think to emphasize what Ted just said, we really need to champion communication between the patient, the nephrologist, and the surgeon, just because you don't receive communication, doesn't mean you can't be the person who provokes

and stimulates communication back to the nephrologist to try and really develop a clear plan. The timing of the hemodialysis is imperative and I think we should consider early cannulation grafts in appropriate patients. What about protecting and maintaining the access,

well these slides were provided to me by Dori Schatell, who's given this talk, you need to arm your patients with information to advocate for themselves and that's really, kind of the theme of what I want to talk about later. Give them pictures of their access,

write them very clear postop instructions, teach patients about cannulation patterns, teach them how to use topical anesthetics for cannulation. Make sure they know what to do in the case of an infiltration or prolonged bleeding, or loss of the thrill.

Make sure they have your contact information, and encourage patients to learn how to self-cannulate. What about protecting the patient? Well, I think it's our, it's the team's obligation but seems to fall on us a lot to educate the patient and their family about their right to choose.

Educate the patient and their family about available providers and facilities in their area. And educate the patient and their family about what services are available at different facilities, and nephrologists , radiologists, surgeons and anesthesiologists.

- Okay, I went to my nephrologist. He told me I needed to get this fistula put in, and then I was directed to the access center, because the way he said it, that's where I had to go to get it done, after I'd already talked to another doctor about doing it,

I was told I had to go to the access center. Okay-- - Oop, let's see. - Um, what she didn't say is that, she didn't like the center in the first place, because originally the doctor that saw her there for the fistula, didn't give us any help.

So he said, I can't do it for you, I don't know what's going to happen, and every time we would ask him, well, is there any solution for her to get a fistula, he wouldn't answer our question and he's like, well, I can't, I can't help you, I'm not going to take it.

So, when they told her told to go to that center, she had told him, can I go somewhere else, somewhere where they're a little bit more professional? And they said, no, you have to go there, they're the specialists. - So, going back to the original comment.

We provide care that is better, faster, and cheaper than what you can provide in the hospital. Well, when you're talking about better, that's really measured only by safety and durability of the interventions, not opinions. And faster, unfortunately, in our area,

some of our access centers are closed on Wednesdays, some of them are closed on Fridays and the weekend. And it's interesting, we often, the surgeons in town often get pummeled on Friday because the access center is closed. And I can tell you that my weekend on call,

I spent about half my day Saturday doing access interventions. And cheaper, cheaper's really only a function of how payers have decided to reimburse. You pay the same amount for staff, electricity, and supplies, whether you're at a hospital,

a surgery center, or an OBL. Unfortunately, some access centers frequently choose therapies that are less effective but cheaper to protect their margins. And perfect examples of these are stent grafts, and drug-coated balloons.

I think hemodialysis patients really want care that is safe, effective and durable. And really, where that's going to be best achieved will depend on what's available in a particular community or region. And most importantly, and I think,

as Ted highlighted, they're really the commitment to providing excellence in access care. And I'll finish with one more little vignette from one of my patients, and these patients, actually this was unsolicited, they just happened to be going off in the office one day

and I had gotten this assignment, I said, you mind if I video this and use it in my presentation? - Basically, in my opinion, what it is, it needs to be patient education. The ones that do talk to me, 'cause I do take control

of my treatments completely. That's why my fistula's in such good shape, 'cause I'll only run 16 gauge needles, which slows down my treatment, which keeps my heart in better shape. That's why I'm still up, walking, doing what I do.

- Thank you very much.

- I just like the title 'cuz I think we're in chaos anyway. Chaos management theory. Alright, unfortunately I have nothing to disclose, it really upsets me. I wish I had a laundry list to give you. Gettin' checks from everybody, it would be great. Let's start off with this chaos, what has been published.

Again "Ul Haq et al" is a paper from Hopkins. Bleomycin foam treatment of malformations, a promising agent. And they had 20 patients, 21 Bleomycin procedures. (mumbles) sclerosants in a few other patients, 40% complication rate, 30% minor, 10% major.

On a per procedure basis it was a 29% with about 7% major. All patients had decrease in symptoms. But to say "I use Bleomycin" or "I use X" because a complication (mumbles) is nonsense, you're mentally masturbating. It ain't going to be that way, you're going to have complications.

Alright, the use of Bleomycin should be reserved for locations where post-procedure swelling would be dangerous. Well they used it, and one patient required intubation for four days and another patient 15 days. So, it can happen with any agent.

So I don't know why that statement was made. "Hassan et al", noninvasive management of hemangiomas and vascular malformations using Bleomycin again, this handles the plastic surgery a few years ago. 71% effectiveness rate, 29% failure rate,

14% complication rate, 5 major ulcerations. Ulcerations happen with any agent. You're not going to escape that by saying, "Oh, well I'm not going to use alcohol because (mumbles)." No you're going to get it anyway. You all in the literature.

"Sainsbury", intra-lesional Bleomycin injection for vascular birthmarks five year experience again, 2011. 82% effectiveness, 17.3 for failure. Compli- severe blistering, ulcers, swelling, infections, recurrences. Okay, everybody's reporting it.

"Bai et al" sclerotherapy for lymphatic, oral and facial region, 2009. 43% effectiveness, but they found if they used it with surgery they had a higher effectiveness rate. Good. But again that's their effectiveness.

"Young et al", Bleomycin A5 cervico-facial vascular surgery, 2011. 81% effectiveness rate 19% failure for macrocystic. 37% failure from microcystic disease. Complications: ulcerations, hematoma, bleeding, fevers, soft tissue atrophy.

"Zhang et al." Now this is a study. They're goin' head-to-head alcohol versus Bleo. Oh, isn't that a nice thing to do. Huh, funny how that can happen sometimes. There's another paper out of Canada

that doesn't matter, there's 17 pages and there's no statistical significance for that. 138 patients, you got a lot of statistics. "Zhang et al", 138 children. 71 of 75 patients, which is 95% of that serie, were either cured,

markedly effective, or effective, with alcohol. In the Bleo group 41 of 63, that is 65% of the patients, had effective treatment. That means no cures, no markedly effective, just effective. That's their head-to-head comparison. Difference between Ethanol and

the Bleo group again was statistically significant. Ethanol at 75 patients of 14 cases skin necrosis. Bleo group at 63 patients of 5 cases skin necrosis. And in that group they stated it is statistically superior to Bleo. 95 versus 60, that's a big deal.

Again, cured, disappearance post-treatment without recurrence. Markedly effective, meant that greater than 80% was ablated. Effective means about less that 80% reduction but improved. Ineffective, no change. That was their criterion on that paper.

Again, 30 cases, superficial VMs effective rate was 95% in the Ethanol group and the deep group 94%. Okay. What was in the Bleo group? 68% superficial, 56% of deep group. So that's a statistical significance

of failure, between the two agents, comparing head-to-head in anatomic areas. Ethanol VM papers, let's go on to that, we're goin' to do other stuff. "Lee et al", advanced management, 2003, midterm results. 399 procedures in 87 patients,

95% significant or complete ablation, 12.4% complication. "Johnson et al", Kansas. University of Kansas med center, 2002. 100% success rate in tongues. One patient had a massive tongue and had breathing difficulties prior to treatment

remained intubated 5 days and then uneventfully discharged, that was their only complication. "Su et al", ethanol sclerotherapy, face and neck. Again, these are complex anatomies with complex issues of cranial nerves as well as airway control. 2010, 56 of 60 procedures, 90%, four minimal residual,

no skin necrosis, no nerve injuries. "Orlando", outpatient percutaneous treatment, low doses under local anesthesia. This is a very interesting paper out of Brazil. They did 'em under IV sedation, just a little bit by little bit.

They said they had trouble gettin' general so they had to figure another way. Smart, I like people thinkin' things out. Who here doesn't have a problem with anesthesia? Gettin' 'em not to quit before two o'clock? (laughs)

Alright, used local only 39 patients extremity VMs, main symptoms of pain. Cure or significant improvement in 94%. One ulcer, 3 transient paresthesias. "Lee et al", sclerotherapy craniofacial again, 2009. 87 patients, 75% were reductions.

71 of 87 excellent outcomes. One patient transient, tongue decreased sensation. One transient facial nerve palsy, no skin injuries. "Vogelzang" is a very important paper of a single center. Is that author- anybody here? Again, they did VMs and AVMs in this series

and then a per patient complication rate is 13.3, in AMVs 9.7 per patient, but I think what also is important is to do things with regards to procedures. And they listed both. So we'll just, it's about time to quit. This is our embolization series.

And neck, upper extremity, all the anatomies. And we're about a 10 to three ratio with regards to VM/LMs to AVMs in numbers. I think everybody's pretty much like that, a third of their practice. Again, our minor complications are that.

Major complications are these. Summary, what we found in the literature is that Ethanol publications state its efficacy rate routinely at 90 to 100%. And all other second tier sclerosants are 60 to 80%. So I think that's the take home message.

Thank you.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you, Larry, thank you, Tony. Nice to be known as a fixture. I have no relevant disclosures, except that I have a trophy. And that's important, but also that Prabir Roy-Chaudhury, who's in this picture, was the genesis of some of the thoughts that I'm going to deliver here about predicting renal failure,

so I do want to credit him with bringing that to the vascular access space. You know, following on Soren's talk about access guidelines, we're dealing with pretty old guidelines, but if you look at the 2006 version, you know, just the height--

The things that a surgeon might read in his office. CKD four, patients there, you want a timely referral, you want them evaluated for placement of permanent access. The term "if necessary" is included in those guidelines, that's sometimes forgotten about.

And, of course, veins should be protected. We already heard a little bit about that, and so out our hospital, with our new dialysis patients, we usually try to butcher both antecubital veins at the same time. And then, before we send them to surgery

after they've been vein-marked, we use that vein to put in their preoperative IV, so that's our vascular access management program at Christiana Care. - [Male Speaker] That's why we mark it for you, Teddy. (laughing)

- So, you know, the other guideline is patients should have a functional permanent access at the initiation of dialysis therapy, and that means we need a crystal ball. How do we know this? A fistula should be placed at least six months

before anticipated start of dialysis, or a graft three to six weeks. Anybody who tells you they actually know that is lying, you can't tell, there's no validated means of predicting this. You hear clinical judgment, you can look at

all sorts of things. You cannot really make that projection. Now there is one interesting study by Tangri, and this is what Premier brought to our attention last year at CIDA, where this Canadian researcher and his team developed a model for predicting

progression of chronic kidney disease, not specifically for access purposes, but for others. They looked at a large number of patients in Canada, followed them through chronic kidney disease to ESRD, and they came up with a model. If you look at a simple model that uses age, sex,

estimated GFR from MDRD equation and albuminuria to predict when that patient might develop end stage renal disease, and there's now nice calculators. This is a wonderful thing, I keep it on my phone, this Qx Calculate, I would recommend you do the same,

and you can put those answers to the questions, in this app, and it'll give you the answer you're looking for. So for instance, here's a case, a 75-year-old woman, CKD stage four, her creatinine's 2.7, not very impressive,

eGFR's 18. Her urine protein is 1200 milligrams per gram, that's important, this is kind of one of the major variables that impacts on this. So she's referred appropriately at that stage to a surgeon for arteriovenous access,

and he finds that she really has no veins that he feels are suitable for a fistula, so an appropriate referral was made. Now at that time, if you'd put her into this equation with those variables, 1200, female, 75-year-old, 18 GFR, at two years, her risk of ESRD is about 30%,

and at five years about 66%, 67%. So, you know, how do you use those numbers in deciding if she needs an access? Well, you might say... A rational person might say perhaps that patient should get a fistula,

or at least be put in line for it. Well, this well-intentioned surgeon providing customer service put in a graft, which then ended up with some steal requiring a DRIL, which then still had steal, required banding, and then a few months, a year later

was thrombosed and abandoned because she didn't need it. And I saw her for the first time in October 2018, at which time her creatinine is up to 3.6, her eGFR's down to 12, her protein is a little higher, 2600, so now she has a two-year risk of 62%, and a five-year risk of 95%,

considerably more than when this ill-advised craft was created. So what do you do with this patient now? I don't have the answer to that, but you can use this information at least to help flavor your thought process,

and what if you could bend the curve? What if you treated this patient appropriately with ACE inhibitors and other methods to get the protein down? Well, you can almost half her two-year risk of renal failure with medical management.

So these considerations I think are important to the team, surgeon, nurses, nephrologists, etc., who are planning that vascular access with the patient. When to do and what to do. And then, you know, it's kind of old-fashioned to look at the trajectory.

We used to look at one over creatinine, we can look at eGFR now, and she's on a trajectory that looks suspicious for progression, so you can factor that into your thought process as well. And then I think this is the other very important concept, I think I've spoken about this here before,

is that there's no absolute need for dialysis unless you do bilateral nephrectomies. Patients can be managed medically for quite a while, and the manifestations of uremia dealt with quite safely and effectively, and you can see that over the years, the number of patients

in this top brown pattern that have been started on dialysis with a GFR of greater than 15 has fallen, or at least, stopped rising because we've recognized that there's no advantage, and there may be disadvantages to starting patients too early.

So if your nephrologist is telling I've got to start this patient now because he or she needs dialysis, unless they had bilateral nephrectomies that may or may not be true. Another case,

64-year-old male, CKD stage four, creatinine about four, eGFR 15, 800 milligrams of proteinuria, referred to a vascular access surgeon for AV access. Interesting note, previous central lines, or AICD, healthy guy otherwise.

So in April 2017 he had a left wrist fistula done, I think that was a very appropriate referral and a very appropriate operation by this surgeon. At that time his two-year risk was 49, 50%, his five-year risk 88%. It's a pretty good idea, I think, to get a wrist fistula

in that patient. Once again, this is not validated for that purpose. I can't point you to a study that says by using this you can make well-informed predictions about when to do vascular access, but I do think it helps to flavor the judgment on this.

Also, I saw him for the first time last month, and his left arm is like this. Amazing, that has never had a catheter or anything, so I did his central venogram, and this is his anatomy. I could find absolutely no evidence of a connection between the left subclavian and the superior vena cava,

I couldn't cross it. Incidentally, this was done with less than 20 CCs of dye of trying to open this occlusion or find a way through, which was unsuccessful. You can see all the edema in his arm. So what do you do with this guy now?

Well, up, go back. Here's his trajectory of CKD four from the time his fistula is done to the time I'm seeing him now, he's been pretty flat. And his proteinuria's actually dropped

with medical management. He's only got 103 milligrams per gram of proteinuria now, and his two-year risk is now 23%, his five-year risk is 56%, so I said back to the surgeon we ligate this damn thing, because we can't really do much to fix it,

and we're going to wait and see when it's closer to time to needing dialysis. I'm not going to subject this guy to a right-arm fistula with that trajectory of renal disease over the past two years. So combining that trajectory with these predictive numbers,

and improved medical care for proteinuria I think is a good strategy. So what do you do, you're weighing factors for timing too early, you've got a burden of fistula failure, interventions you need to use to maintain costs, morbidity, complications,

steal, neuropathy that you could avoid versus too late and disadvantages of initiating hemodialysis without a permanent access. And lastly, I'm going to just finish with some blasphemy. I think the risk of starting dialysis with a catheter is vastly overstated.

If you look at old data and patient selection issues, and catheter maintenance issues, I think... It's not such an unreasonable thing to start a patient with a catheter. We do it all the time and they usually live.

And even CMS gives us a 90-day grace period on our QIP penalties, so... If you establish a surgeon and access plan, I think you're good to go. So who monitors access maturation? I don't know, somebody who knows what they're doing.

If you look at all the people involved, I know some of these individuals who are absolute crackerjack experts, and some are clueless. It has nothing to do with their age, their gender, their training, their field. It's just a matter of whether they understand

what makes a good fistula. You don't have to be a genius, you just can't be clueless. This is not a mature usable fistula, I know that when I see it. Thank you.

- So in terms of overcoming difficult access, when we're doing parallel grafting, and we're going to use more than one branch or parallel graft, typically we come in from the axillary artery. It gives good pushability, it decreases the length for what you need to get from you access point

down to the branch vessels. We find that no conduit is needed. We typically just access this in three offset manners. We'll put a purse string in at each site, so that there's limited bleeding. When you come in, you have to think about

what the aortic arch construct looks like. You can have a type one, a type two or type three arch, which can make things more difficult. As you can see here, this sheath takes quite a significant bend to get down to the renal visceral segment.

You also can have tortuosity within the thoracic aorta, which can compromise your ability to cannulate. So when we think about the arch, you want to think about coming in from the right or left, which ever one makes it better. Typically, if all things are equal,

we'll come in from the left side. When you get your sheaths down one at a time, we leave the stiff wire in to try to straighten out the anatomy. Sometimes you have to snare and get through and through access.

And then you want to think about where your sheaths position is. You want it to be high enough so that you can allow your catheters to form, but also low enough so that you can reach the vessel of interest.

There are a couple of things, I think from a pre-planning perspective that are very important to try to set up, to allow yourself the optimal chance of cannulating these vessels. Appropriate C-arm projections, you want to think about

whether or not your going to use a cephalad or caudad parallel graft. Think about the tortuosity as well as the composition of the branch. What type of stent are you going to use in that? How much purchase is needed?

How much purchase can you get? And, How difficult is it going to be to cannulate these vessels? And also whether or not there's orifice stenosis. So, here's an example of a patient we did. You can see that left renal artery

is actually quite anterior. If you look at the AP view here, you can see how it would be quite difficult to cannulate, 'cause the orifice basically runs into the aneurysm in the AP view, if you just move your II to a 30 degree RAO,

then it becomes very perpendicular and very easy to cannulate and see. This is a situation where you think about periscoping or caudad parallel graft. It's much easier coming from below, it's an upwards approaching renal artery.

Coming from above, you can see it can bow out towards that large aneurysm and also potentially reflux down into infra-renal segment. This is a patient with a very short branch of main renal artery, and you can see if you just put

a typical self expanding stent, there's a higher chance that this thing's just going to pull out into the aneurysm, and what we did here is, we put a balloon mounted stent, followed by a self expanding stent

to lengthen afterwards and it worked out really nicely. And this is just the patient that has significant orifice stenosis and these patients will be hard to cannulate. Sometimes you have to pre dilate before you introduce your stents into the vessels.

You also want to think about the aorta and what configuration of the aorta is. What's the tortuosity, the calcification. Are you in a situation where you're trying to cannulate within the aneurysm and how much thrombus is there as well.

So, you can see here in the first picture, the aorta's somewhat tortuous, and going after that left renal artery probably would be easier, but going after that right renal artery becomes potentially difficult

as the catheters and sheaths are going to be pushing you away, and may make that more challenging. You may want to think about things, and certainly catheters selection before approaching. And definitely, any time you have an aneurysm

and your in a big space without a lot of thrombus, that makes things a little more difficult, 'cause you're flopping around in a large open space trying to cannulate a vessel. When you're accessing the vessel sometimes from above, what will happen is the tendency is

for the catheters and the wires, to reflux down into that infrarenal space. This is a no not well known trick, where you put a coda balloon and you can have your wires and catheters bounce off of that coda balloon

to help you navigate into that branch vessel. Sometimes that doesn't work, and it still continues to reflux, and what we've done more recently is, we'll come in from below, put a four millimeter balloon

in the distal renal artery, and then we'll pin our soft wire, be able to do a catheter exchange, exchange for our stiff wire, and ultimately, there's the catheter, ultimately in the stiff wire.

And then ultimately bring in your stent graft, all with that balloon still in place to hold and pin that wire in position, and allow things to track over that wire, rather than reflux down. Just some general thoughts, again,

thinking about the appropriate catheters, what length catheter do you need, what kind of angulation do you need, stiff versus angle glide wires. We typically use Rosen and Amplatz wires for our stiff wires to track our stents in.

And then different platforms, depending upon what your anatomy ultimately looks like. So in conclusion, a lot of pre-planning is important, I think to optimize your accessing of these vessels. And there's a lot of techniques and technology, that currently exist to help assist with this.

Thank you.

- Thank you, Frank, for this really appreciated invitation and to report what factor will be predictive for long-term survival after ruptured AAA treatments. I have nothing to disclose. We know the major key points when dealing with emergent AAA rupture treatment are related to its feasibility, short, and long-term outcomes.

The increase of endovascular repair of ruptured AAA is the proof that most of patient can be addressed by endovascular tools, even if ruptured AAA. We have observed the same trend at USZ with almost 100% of emergent EVAR for ruptured AAA. A third randomized control trial didn't show

any significant differences in terms of short-term outcomes. We know that the real-life studies and meta-analysis are really in favor of emergent EVAR for ruptured AAA. This is consistent with the experience at the USZ. About the long-term outcomes, randomized control trials and the single-center studies did not

show significant differences. We all know that the risk that for conventional open surgery, the risk factor has been clearly identified but we don't know such factors for emergent EVAR. For this purpose, we conducted a retrospective analysis

of ruptured AAA addressed by emergent EVAR and included 242 patient in order to identify factors that can influence long-term survival after emergent EVAR. We have observed this parallel graft did not significantly influence long-term outcomes after emergent EVAR as well as the type of anesthesia,

although the local anesthesia did better for short-term outcomes. Neither the sex was significantly associated to the long-term outcomes, nor the type of stent graft employed. Conversely, shock was significantly associated

to reduced long-term outcomes, as well as re-intervention and open abdomen treatments. So in conclusion, the predictive factors of long-term survival after emergent conventional open surgery are already well-known, but similar factors for emergent EVAR

needs to be identified. We were able to identify that shock, re-intervention, and open abdomen treatments are related to a reduced long-term survival. To improve such outcomes for emergent EVAR, we use five management key points.

About time, we all know that most of the patient who reach alive the hospital are enough stable to undergo a CTA and evaluation for emergent EVAR. This time we go for permissive hypovolemia and controlled hypotension. We try to perform the case faster as possible.

About imaging, we always go for preoperative CTA just to confirm diagnosis, but especially to plan the case. We go for a post-surgery CTA control to immediately understand and realize if there is some trouble with the treatment. We had also started a program with patient-specific ratio

that gives you some tools to perform better ruptured AAA cases by EVAR. This is a feasibility study with good outcomes. About device and techniques, of course to perform emergent EVAR, we need to have all the available

off the shelf devices ready to use. As a general principle, for short and angulated neck, we go for transrenal devices but when there is no neck we go for parallel graft. We are quite aggressive with the management of abdominal compartment syndrome,

not only for emergent EVAR but also for conventional open surgery. Clearly there are some limitations to emergent EVAR. In fact, it's inappropriate in rupture pararenal requiring suprarenal endoclamping for hemodynamic stabilization

and patient presenting too many technical challenges. These patients should probably be treated by fast-track open surgery. Thank you for your time.

- So first of all I want to tell everybody that you're going to have a hard time finding these tools that I'm going to show you. So before I start the talk I want to tell you how you can find these. Everybody's got phones out there that you can Google on. If you would Google "One minute access check"

it will take you to the website that is the site, and that's where you can find the tools. The other place that these are all located is on the VASA website. If you go to the VASA website, which is

the Vascular Access Society of the Americas, which is, and you go under "Vascular Access Team", all of these tools are linked. The tools that we're going to talk about were put together by the FistulaFirst and I was on the work group that created these tools,

and they're going to solve the problems that you just heard the rest of the group talk about. It talks about how to collaborate the care, how to assess the maturing and the healing access, and to level the playing field so we're all doing it the same way.

And that's basically what these tools were developed for. That's my conflict of interest. So the patient video that just showed you, the patient said patient education. This is a free, your tax-dollar money paid for this booklet. You can print these for free,

there's no copyright issues on it. This is a patient access planning booklet that explains to the patient all of their choices for renal replacement therapy, what is an access, and what's going to happen to them when they get this access.

This is a fantastic booklet and it also serves as the patient's care plan if you fill this out and use it. It can go between the dialysis facility, the surgeon, and the interventionalist. And I'm sorry it doesn't project well,

but this is just a snippet from the booklet that shows you, for the surgeons in the audience, what's going to happen at your office when the patient comes in. And it gives questions that the patient and the family should ask.

So as surgeons, if you look at this booklet, you use it with your team at your office, you'll be able to be prepared for patients coming in and you can use this tool. This is what I consider the plain ice in the sandbox tool.

This tool was created to define all of the various roles of the dialysis access care team, because we all do different parts of the process, but if we don't work together, it doesn't work. So this booklet explains what everybody's roles are, and again this is a great tool.

If you've got a nephrology practice that you're not happy with how things are coming to you with referrals, or you've an interventionalist that you're having issues with, sit down, have a team meeting, bring all the players together

and use this book to guide it. It really tells you what to do and how to do it. And this is an example of what's going to happen with the care team coming together how you go through the access planning, okay? And this is just some information of what

the surgical appointment should get. When you get the patients to show up and they come to you with no information, you don't really know much about the patient, this booklet helps to prepare the dialysis facilities so they know what to send

and they understand those records should come to you. Now, the main part of these booklets of what we're talking about today is this whole issue of what Ted's slide was about who should assess the access for maturing. Well, this answers that question.

There is a basic tool that will give you a weekly assessment of whether or not that graft or fistula is ready to go. And basically this is the care planning part of it where we make that access plan, we then find the best place to get the access,

we choose, we get the patient to the surgeon so you can place the access, patient goes for the surgery. Then we wait for it to mature, heal, we use the access, we then have to get the catheter out, and then we

have to take care of the lifeline for the rest of the patient's time on dialysis or their transition between different modalities. So, how do we do that? The tools are based, this weekly assessment tools are based on the classic one minute check.

This is actually from Dr. Bether's physical exam that's been taught to nephrologist and dialysis staff for many years. It's a simple look, listen, and feel. There's also an advanced test for the care side. This is for the patient,

and this is for the clinician side. It's the look listen and feel with the arm elevation test, and the augmentation test is also added on at the expert level. Again, all these tools are on the website for you to use. Please use them.

Once you understand the one-minute check, this is then the graft healing slides, and again it's a weekly assessment, and we called it graft healing because grafts don't mature, we just are waiting for the surgery line to heal so that

we can go ahead and cannulate it. If it's an early cannulation graft, this would be adopted for those early cannulation grafts, this is for standard graft material. So we go into week two, this tells the patient, the staff, the nephrologist, everybody on the team

what should we be looking for and what should be happening with that access and when it should be ready to cannulate. By week four, if it's not ready to cannulate, this triggers notifying the surgeon, re-engaging with the team, and figuring out

what's going on with the patient's access, okay? We cannot just let these patients sit there with accesses that are not being used for weeks and weeks and weeks. We have to have a plan. And this is what the tool does. The fistula maturation tool is the same thing.

Again it's weekly assessments, there's week one and two, week three, by week four we're looking for actual signs of change with the fistula. If it's not, we would start to already think of a plan of does this need some assisted maturation.

Week five, we're looking to see is it ready to cannulate. By week seven through ten, it certainly should be ready to go and we should be dealing with catheter freedom. There's also a catheter version, because patients with catheters still need to have their catheters

well maintained so they don't get infection. There's a patient version and a staff version. And again it's the same look listen and feel. We obviously don't listen to a catheter like we do a graft or fistula, but we listen to the patient to make sure they're not having symptoms

of infection or problems with the catheter. And we have to do that because we're all part of this interdisciplinary team. I'm a dialysis nurse, so I'm part of the dialysis team, but we have an interdisciplinary team in the dialysis unit, we have to work with the surgeons,

the interventionalists, whether you're an IN or an IR, we have to work with the patients, we have to bring the family in, it's all about this process of care, and hopefully you'll look at these tools and maybe these tools will help you

with your process of care. Thank you.

- Thank you very much. I take over the presentation from Thomas Larzon, we, and different other people have the same approach to a ruptured triple A, trying to extend the advantages we have seen now, of an EVAR procedure in patients with inadequate anatomy, and to extend the limitation,

to patients with the less favorable anatomy. So, the concept of a ruptured EVAR has been already proven, with good research of three years, and I will build up, Thomas built up this presentation, on our so common experience that we published for fourteen years experience of two university centers,

performing EVAR on 100% of ruptured abdominal aortic aneurysms, over a 32 months period. So what we can see, is on the right side, this was the period where a part of the patient was treated by EVAR,

and the one that had not favorable anatomy were opened. On the left side, there is EVAR only, this a period 2009 to 11, you can see the effect of this change, is the operative cohort mortality moved from 26 to 24%, and total cohort mortality,

including to exclude the patient that are on feet, reduced from 33 to 27%. What changed also, is the protocol for anesthesia, so from a few patients that were treated under local anesthesia, actually, there are very few patients treated

just with general anesthesia primarily. What changed is the rejection rate, decreased from 10% to 4%, the age of the population treated increased, the part of women treated increased by 10%, and the amount of patients that are instable,

and treated, increased too. So, how to extend the limitation, the one is by using parallel grafts, or on table physician modified, extend graft to achieve what Benjamin does in his practice, a good seal proximal,

this is a three parallel graft, that worked very well. The other option, is to use Onyx for the distal landing zone, this is a technique that Thomas does use more liberally than we,

but is a good solution for patients where an IBD, for example, would not be possible, it doesn't require any special catheter, there is no contraindications due to tortuosity, and sealing is immediately obtained. Here, an example,

the aortoiliac, the main trunk, has been deployed here, then a (mumbles), the iliac extension is parked, can be deployed later, and as a Buddy catheter,

you can take a Bernstein catheter, you just position it in the origin of the hypogastric, or in the common iliac artery. Then, you deploy the distal extension, there is no more flow, slowly you'll stepwise,

5-10cc of Onyx can be applied, this allows to preserve the distal perfusion of the hypogastric, and to seal it. Sealing can also, with Onyx, can also be used in the proximal landing zone, there are two options,

here, the option with an instable patient that gets two parallel graphs with the remaining type 1 endoleak, you introduce your catheter through the leak, or the catheter inside the sack that is perfused, step wise, you will apply your Onyx.

Here, in another patient, of our experience, this is a suprarenal arteries after a triple A repair with EVAR that comes with the rupture, we combined here a chimney for the SMA, with a double brach device from Biotech,

deploy this, and you can see here there will be some leak. So, three days later, because the leak didn't have to do coagulation correct, once correct it didn't seal, we just very selectively, improvised with Onyx, the gap,

this is a three months outcome. Then, here a case of some Post EVAR with a type 1A endoleak, to extend this on the visceral aorta would have been very complex, this is why doctor Larson decided here just

to fill the whole sac with 60cc of Onyx, which worked very well. So, in Orebro, you can see that the 30-day mortality is 27%, the 90-day mortality is 30%, then the whole cohort,

including the 10% that have been excluded, has a mortality of 37 and 34%. From the different factor that was significant, you can see that local anesthesia works good, Aortic Balloon Occlusion works good, mortality in patients

with abdominal compartment syndrome is increased, mortality of patients in shock is increased, and finally, the mortality of patients having this adjunct procedure is not significantly increased, this holds true for the long-term outcomes.

So, we can see that by using adjuncts, every patient with a ruptured triple A can be offered an EVAR, eventually as a bridging procedure, chimney grafts can extend landing zones, Onyx can offer additional sealing options,

and valid long-term results for adjuncts has been proven. Thank you very much for your attention.

- Thanks Fieres. Thank you very much for attending this session and Frank for the invitation. These are my disclosures. We have recently presented the outcomes of the first 250 patients included in this prospective IDE at the AATS meeting in this hotel a few months ago.

In this study, there was no in-hospital mortality, there was one 30-day death. This was a death from a patient that had intracranial hemorrhage from the spinal drain placement that eventually was dismissed to palliative care

and died on postoperative day 22. You also note that there are three patients with paraplegia in this study, one of which actually had a epidural hematoma that was led to various significant and flacid paralysis. That prompted us to review the literature

and alter our outcomes with spinal drainage. This review, which includes over 4700 patients shows that the average rate of complications is 10%, some of those are relatively moderate or minor, but you can see a rate of intracranial hemorrhage of 1.5% and spinal hematoma of 1% in this large review,

which is essentially a retrospective review. We have then audited our IDE patients, 293 consecutive patients treated since 2013. We looked at all their spinal drains, so there were 240 placement of drains in 187 patients. You can see that some of these were first stage procedures

and then the majority of them were the index fenestrated branch procedure and some, a minority were Temporary Aneurysm Sac Perfusions. Our rate of complication was identical to the review, 10% and I want to point out some of the more important complications.

You can see here that intracranial hypotension occurred in 6% of the patients, that included three patients, or 2%, with intracranial hemorrhage and nine patients, or 5%, with severe headache that prolonged hospital stay and required blood patch for management.

There were also six patients with spinal hematomas for a overall rate of 3%, including the patient that I'll further discuss later. And one death, which was attributed to the spinal drain. When we looked at the intracranial hypotension in these 12 patients, you can see

the median duration of headache was four days, it required narcotics in seven patients, blood patch in five patients. All these patients had prolonged hospital stay, in one case, the prolongation of hospital stay was of 10 days.

Intracranial hemorrhage in three patients, including the patient that I already discussed. This patient had a severe intracranial hemorrhage which led to a deep coma. The patient was basically elected by the family to be managed with palliative care.

This patient end up expiring on postoperative day 21. There were other two patients with intracranial hemorrhage, one remote, I don't think that that was necessarily related to the spinal drain, nonetheless we had it on this review. These are some of the CT heads of the patients that had intracranial hemorrhage,

including the patient that passed away, which is outlined in the far left of your slide. Six patients had spinal hematoma, one of these patients was a patient, a young patient treated for chronic dissection. Patient evolved exceptionally well, moving the legs,

drain was removed on postoperative day two. As the patient is standed out of the bed, felt weakness in the legs, we then imaged the spine. You can see here, very severe spinal hematoma. Neurosurgery was consulted, decided to evacuate, the patient woke up with flacid paralysis

which has not recovered. There were two other patients with, another patient with paraplegia which was treated conservatively and improved to paraparesis and continues to improve and two other patients with paraparesis.

That prompted changes in our protocol. We eliminated spinal drains for Extent IVs, we eliminated for chronic dissection, in first stages, on any first stage, and most of the Extent IIIs, we also changed our protocol of drainage

from the routine drainage of a 10 centimeters of water for 15 minutes of the hours to a maximum of 20 mL to a drainage that's now guided by Near Infrared Spectroscopy, changes or symptoms. This is our protocol and I'll illustrate how we used this in one patient.

This is a patient that actually had this actual, exact anatomy. You can see the arch was very difficult, the celiac axis was patent and provided collateral flow an occluded SMA. The right renal artery was chronically occluded.

As we were doing this case the patient experienced severe changes in MEP despite the fact we had flow to the legs, we immediately stopped the procedure with still flow to the aneurysm sac. The patient develops pancreatitis, requires dialysis

and recovers after a few days in the ICU with no neurological change. Then I completed the repair doing a subcostal incision elongating the celiac axis and retrograde axis to this graft to complete the branch was very difficult to from the arm

and the patient recovered with no injury. So, in conclusion, spinal drainage is potentially dangerous even lethal and should be carefully weighted against the potential benefits. I think that our protocol now uses routine drainage for Extent I and IIs,

although I still think there is room for a prospective randomized trial even on this group and selective drainage for Extent IIIs and no drainage for Extent IVs. We use NIRS liberally to guide drainage and we use temporary sac perfusion

in those that have changes in neuromonitoring. Thank you very much.

- Good morning, I would like to thank Dr. Veith, and the co-chairs for inviting me to talk. I have nothing to disclose. Some background on this information, patients with Inflammatory Bowel Disease are at least three times more likely to suffer a thrombo-embolic event, when compared to the general population.

The incidence is 0.1 - 0.5% per year. Overall mortality associated with these events can be as high as 25%, and postmortem exams reveal an incidence of 39-41% indicating that systemic thrombo-embolism is probably underdiagnosed. Thrombosis mainly occurs during disease exacerbation,

however proctocolectomy has not been shown to be preventative. Etiology behind this is not well known, but it's thought to be multifactorial. Including decrease in fibrinolytic activity, increase in platelet activation,

defects in the protein C pathway. Dyslipidemia and long term inflammation also puts patients at risk for an increase in atherosclerosis. In addition, these patients lack vitamins, are often dehydrated, anemic, and at times immobilized. Traditionally, the venous thrombosis is thought

to be more common, however recent retrospective review of the Health Care Utilization Project nationwide inpatient sample database, reported not only an increase in the incidence but that arterial complications may happen more frequently than venous.

I was going to present four patients over the course of one year, that were treated at my institution. The first patient is 25 year old female with Crohn's disease, who had a transverse colectomy one year prior to presentation. Presented with right flank pain, she was found to have

right sided PE, a right sided pulmonary vein thrombosis and a left atrial thrombosis. She was admitted for IV heparin, four days later she had developed abdominal pains, underwent an abdominal CTA significant for SMA occlusion prompting an SMA thrombectomy.

This is a picture of her CAT scan showing the right PE, the right pulmonary vein thrombosis extending into the left atrium. The SMA defect. She returned to the OR for second and third looks, underwent a subtotal colectomy,

small bowel resection with end ileostomy during the third operation. She had her heparin held post-operatively due to significant post-op bleeding, and over the next three to five days she got significantly worse, developed progressive fevers increase found to have

SMA re-thrombosis, which you can see here on her CAT scan. She ended up going back to the operating room and having the majority of her small bowel removed, and went on to be transferred to an outside facility for bowel transplant. Our second patient is a 59 year old female who presented

five days a recent flare of ulcerative colitis. She presented with right lower extremity pain and numbness times one day. She was found to have acute limb ischemia, category three. An attempt was made at open revascularization with thrombectomy, however the pedal vessels were occluded.

The leg was significantly ischemic and flow could not be re-established despite multiple attempts at cut-downs at different levels. You can see her angiogram here at the end of the case. She subsequently went on to have a below knee amputation, and her hospital course was complicated by

a colonic perforation due to the colitis not responding to conservative measures. She underwent a subtotal colectomy and end ileostomy. Just in the interest of time we'll skip past the second, third, and fourth patients here. These patients represent catastrophic complications of

atypical thrombo-embolic events occurring in IBD flares. Patients with inflammatory disease are at an increased risk for both arterial and venous thrombotic complications. So the questions to be answered: are the current recommendations adequate? Currently heparin prophylaxis is recommended for

inpatients hospitalized for severe disease. And, if this is not adequate, what treatments should we recommend, the medication choice, and the duration of treatment? These arterial and venous complications occurring in the visceral and peripheral arteries

are likely underappreciated clinically as a risk for patients with IBD flares and they demonstrate a need to look at further indications for thrombo-prophylaxis. Thank you.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you Dr. Veith for an invitation to be here. These are our disclosures. We're fortunate to have funding from VA HSR&D for this work. Decision aids help patients make decisions about medical treatment, such as steroids versus biologics for things like arthritis.

Or medical versus surgical treatments for things like degenerative joint disease. Decision aids are uncommonly used for decisions about surgical treatment. Such as the options that face patients facing abdominal aortic aneurysm repair,

which as well all know are options like open surgery, which is invasive, but has a long recovery, but is likely durable over time. Or endovascular repair, which is, of course, less invasive with a shorter recovery, but may have problems with durability.

We design the preferences for open versus endovascular repair or prove AAA trial and this study has two objectives. First was to implement a decision aid, which is designed to help Veterans choose between an open and endovascular repair for their abdominal aortic aneurysm.

Of course, taking place in Veterans Hospitals across the US. And then second, to test if the decision aid makes it more likely for Veterans to receive the type of aneurysm repair that is aligned with their treatment preferences.

We are going to achieve these objectives, we hope, via a randomized clinical trial. I'll tell you briefly about that. We're going to study Veterans who have an existing abdominal aortic aneurysm that measures at least 5.0 cm in diameter that are anatomic and physiologic candidates

for open and endovascular repair. At ten control sites, the Veterans will take a simple survey and have their vascular surgery consultation. And simple surveys for their surgeons will follow thereafter. At 10 intervention sites, the process is identical

with the exception of an introduction of a decision aid. This decision aid was designed in England by Roger Greenhall, Jana Paul and others as part of the Picker Institute and provides a balanced view of the advantages and disadvantages of

both open and endovascular repair. We then followed the Veterans for two years to see what happens when the repair ultimately occurs and our main outcome measure was whether or not they preferred aneurysm repair type turned out to be their actual repair type.

We had performed this study, and I'm very grateful to my colleagues across the country at the 20 sites who are going to perform this trial. We began enrollment a little over a year ago. We're going to enroll 240 patients, I hope. We've enrolled 181 patients thus far,

so we're about 3/4 of the way there. And many of our sites, especially those in Gainesville, Ann Arbor, Buffalo, Salt Lake City, Tampa, Tucson, Pittsburgh and others have either completed their enrollments or are close to doing them. And while our objectives are to answer

these two study questions, I can't do that quite just yet. But we can examine the information sources that Veterans have used thus far when facing this decision. We asked Veterans questions like who have you talked to about if the surgical treatment options available to you if you needed an operation?

52% of our study participants thus far said they didn't talk to anybody. They didn't talk to their PCP at all about their AAA repair options. We asked them who their main source of information was about open surgical repair and again 41% of patients

reported having no information at all about open surgical repair of AAA and while only one in five cited a primary care physician as their main source of information. We asked the Veterans the same question about endovascular repair.

Again, 40% of patients received no information about EVAR, 17% got information from their primary care physician, about 10% of patients, a number lower than we expected, used the internet. Finally, we asked patients, has your view of the different surgical treatment options available been influenced

by anybody in your, among your medical advisors. 50% of patients reported that their view had not been influenced by anyone. We felt this led us be safe to conclude that while our future work will report the actual preferences for repair types

and the effects of this decision support, we found that half the patients with abdominal aortic aneurysm meeting criteria for repair had not yet discussed their treatment methods with anyone prior to meeting with a vascular surgeon. I believe this shows that the burden of explanation

for patients facing abdominal aortic aneurysm repair rests squarely on the shoulders of those of us in the vascular community. Thank you.

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.


- I wanted to discuss this topic because some of us are more sensitive to DNA damage than others. And it's a complicated ethical issue. I have a disclosure in that I developed a formulation to premedicate patients prior to CT and x-ray. We all know that we stand in fields of radiation for most of our careers,

and we also know that many of us have no hair for example on the outside of our left leg. This is a picture that a bunch of us took for fun demonstrating this. But this is in fact radiation dermatitis. We know that the founders of our field

suffered consequences from the chronic high doses that they received in the 1920's. And they lost digits, they lost ears, they lost noses any many of them died of cancers or cardiovascular disease. The mechanism of injury is the x-rays

impinge upon water molecules in our cells. They create free radicals. These free radicals bind with our DNA and then Oxygen binds with that site resulting in an oxidative injury which can be reduced by the use of anti-oxidants.

I studied this over the last eight or nine years and I looked at the issue of chronic low dose radiation. Now this is different from the data that we collect from Nagasaki and Hiroshima and from Chernobyl and elsewhere. There are cancer risks but there

are also cardiovascular risks. And there are risks from chronic inflammation from increased reactive Oxygen species circulating with our system. I've been in touch with the IAEA recently about this and they didn't actually

realize that we don't wear our badges. So they thought the data they were getting on the doses that we were receiving were accurate. So that was a very interesting conversation with them. So cardiologists have been known

to get lifetime doses of of over one Gray. There's a lot of literature on this in public health literature. For example for every 10 milliSieverts of low dose ionizing radiation and received by patients with acute MI's,

there's a 3% increase in age and sex adjusted cancer risk in the follow-up five years. There's an excellent paper from Kings College London demonstrating that when endovascular surgeons were studied with two specific immunofluorescence tests, P53 and H2 alpha,

they were able to demonstrate that some endovascular surgeons are more sensitive to radiation dose than others. So why would that be? Well it's interesting if you look at this genetically and you look at the repair mechanisms

and in this whole thing I think in fact the lens is kind of the canary in the coal mine. When you get radiation induced cataracts, it's in the posterior chamber of the lens not the middle or anterior, which is where age-related injury occurs.

And this is the germinal layer or reproductive layer. The growth layer in the lens itself. And this is where cataracts develop. And this is really kind of a harbinger I think of injury that occurs elsewhere in our system. We know that when we wear DLDs on our chest,

on our bodies, on our arms, that the dose to the left side of our head is six times higher than to the right. In fact they dosed the left lens as higher than the right. And most of us who have lens replacements have it of the left eye.

This literature from adjacent fields that we may no be aware of. In the flight safety literature for pilots and stewardesses. There's extensive literature on cosmic radiation to flight crews who's doses annually are in the same range as ours.

So when you look at medical staff, you have to look at the overall context of the human in the Angio suite. Many of our medical staff will not be well. They may have chronic cardiac disease. They may be on say drugs for auto

immune disease or Methotrexate. They may have other illnesses such as Multiple Myeloma. They may have antibiotics on board that alter the DNA repair ability like Tetracycline. And they have chronic stress and sleep dysfunction. Cigarettes and alcohol use.

All of these things decrease their ability to repair DNA damage. If you look at DNA repair mechanisms, there are constantly the terms BRCA1 and two, PARP, P53, and ATM that show up. And deficiencies in these,

I'm going to skip all this to show you, can result in increased injury from a same dose being received by two different individuals. Now who is at risk from this is well understood in adjacent fields.

Here are 37 references from the public health literature related to mutations and SNPs or polymorphisms in DNA structure known to cause increased sensitivity to radiation. So I would propose that in, and here are papers on that topic

in adjacent fields that we don't read. So when we talk about personalized medicine for our patients, we need to also think about personalized career choices based on our DNA repair ability when we decide what we do. This has to be done in the context

of empathetic compassionate approach. It may begin with screening based on family history and personal history, and then advance in the right context to genetic screening through mutations and SNPs that can decrease their ability

to repair DNA damage from our occupational exposure. I'll skip all this because I'm out of time. But one other issue to think about, mitochondrial DNA is inherited purely maternally. So maternal DNA damage, mitochondrial DNA damage could be transmitted across generations

in female interventionalists. Also screening is important. It's emotionally complex. It's ethically complex. But it's an important conversation to begin to have. Thank you.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you Tim, Manny, Dr. Veith. Again thank you for the kind invitation. Um, here are my disclosures. The Chimney Snorkel Sandwich technique is really one that's been used and discussed many times throughout this great meeting in years past.

I've been asked to kind of see how we expand the use for thoracoabdominal aneurysms. Um, basically it's a matter of putting a parallel graft and then having an inner graft that will help seal the aneurysm sac itself by maintaining

perfusion to the visceral vessels. Um, the number of parallel grafts has been shown to be of note, and generally if you get beyond two parallel grafts at any one location, that tends to dramatically increase the incidence of

gutter leaks and potential for continued perfusion of the aneurysm sac. Here again showing at two, they still keep a reasonable aortic diameter, but once you start going three and four parallel grafts you tend to have significant compression

of the main aortic graft itself, as well as the potential for gutter leaks. Um, the PERICLES Registry certainly looked as I know has been discussed earlier in this meeting, and basically what it showed was that this was a reasonable way of treating

some of these complex aneurysms with a durable outcome going out to two to three years, uh, at a survival rate of over 70 percent. So, to show how we use this for patients with thoracoabdominal aneurysms, this was a 67 year, I use the term is,

a 67-year-old gentleman presented urgently with a sudden onset of back and abdominal pain. Apparently he was, uh, had a new wife and was trying some sexually enhancing medications from the DR. Had a history of coronary artery disease,

erectile dysfunction, and congestive heart failure, and CT scan revealed a type four thoracoabdominal dissection with a eight centimeter juxtarenal aneurysm, and he was in acute pain. Uh, here is the CT scan as we go through,

and you can see obviously the very complex dissection. You had a small segment of perfusion still around the level of the celiac going down into the SMA, uh, and then this rather, again the renals were

also with a small luminal area, and then a large aneurysm going up to eight centimeters going down into the abdominal component, and then reasonable access vessels from below. This shows the dissection extending down

through the thoracoabdominal segment, and again, he was in acute pain. Uh, so we came in and did an angiogram and IVUS, uh, and here we show the area of the dissection going down as well as the take-off of the subclavian artery.

Again, the true lumen being here. This was confirmed with IVUS. The IVUS sash, and this is the true lumen here, the false lumen being around the periphery, and as you go through you can see there's almost complete collapse of that

true lumen throughout the cardiac cycle. Uh, we performed a left carotid subclavian bypass, and embolized the left subclavian artery and put a thoracic endograft in, covering that lead point as you go in and taking it really almost up to the level of the left carotid artery.

There you can see the occluded subclavian. Uh, with that in place we then prepared to do a four vessel sandwich, or double sandwich, technique. Here we came down, we brought the grafts down to about the level of the takeoff of the celiac access with thoracic endografts.

Lateral shows the takeoff of the celiac and the SMA. Uh, we were able to catheterize both those vessels from the axillary region and put stents going out in this two sandwich technique, uh, and then actually put our stents going out from both the celiac and SMA.

We then were able to do that once we had those stents in place with adequate overlap and no real gutter leak, we then came down and similarly put another graft down to the takeoff of the renal vessels and then selectively catheterized

the right and left renal. Here you can see the stenosis near the origin of the right renal artery. With that we then performed balloon angioplasty with covered stents, I believe these were VBX stents going out,

and then covered that further down as we went down into the area of the eight centimeter aneurysm. And here we come in building down from that area and the perivisceral segment down and then to the iliacs showing good perfusion down to the takeoff of the

hypogastric, and then finally angiogram showed we had good perfusion to celiac, SMA, both renal vessels, and then down through the aneurysm sac itself. This is, uh, he remains stable. His postoperative course actually was uneventful.

He was discharged from the hospital at day four. He's been seen back now at one year follow up at six and 12 month follow up and he's remained stable with no evidence of endo-leak. So I appreciate the opportunity to try and present a more novel way of managing

these patients in the acute setting. Thank you very much.

- Good morning, thank you very much to Dr. Veith and Professor Veith and the organizers. So this is real holography. It's not augmented reality. It's not getting you separated from the environment that you're in. This is actually taking the 3D out of the screen

so the beating heart can be held in the palm of your hand without you having to wear any goggles or anything else and this is live imaging. It can be done intra-procedure. This is the Holoscope-i and the other one is the Holoscope-x

where in fact you can take that actually 3D hologram that you have and you can implant it in the patient and if you co-register it correctly then you can actually do the intervention in the patient

make a needle tract to the holographic needle and I'm going to limit this to just now what we're actually doing at the moment and not necessarily what the future can be. This is ultimate 3D visualization, true volumes floating in the air.

This is a CT scan. So it started working, So we get rid of the auto-segmented and you can just interact. It's floating 45 centimeters away from you and you can just hold the patient's anatomy here and you can slice into the anatomy.

This is for instance a real CT of an aorta with the aortic valve which they wanted to analyze for a core valve procedure. This is done by Phelps. If you take the information

and they've looked at the final element analysis and interaction between the stem and the tissue. So here you can make measurements in real time. So if you did the 3D rotation and geography and you had the aorta and you wanted to put in a stent graft EVAR TVAR, and you would see,

and you could put in a typical tuber that you would do, and you could see how it, and this is a dynamic hologram, so you can see how it would open up, you can mark where your fenestration's chimney is and all that type of stuff would be. And you can move it around, and you have

a complete intuitive understanding of a, can we go to the next slide please, I can't, it seems to be clicking, thank you. So how do we do all this? Well, to create a hologram, what you need to do is just conceptualize it as printing in light.

Like if you had plastic and you took the XYZ data and you just put it into a 3D printer, and it would print it for you in light, then you'd go, Okay, so I understand, if it was printed for you in plastic then you'd understand. But imagine it's printing in light.

So we have every single piece of light focused, each photon is focused so that you can see it with a naked eye, in a particular place, but the difference is that it's totally sterile, you don't have to take off your gloves, you don't have to use a mouse,

you can interact with it directly. And all the XYZ data is 100% in place, so we've just seen a beautiful demonstration of augmented reality, and in augmented reality, you have to wear something, it isolates you from the environment that you're in, and it's based on

stereoscopy, and stereoscopy is how you see 3D movies, and how you see augmented reality, is by taking two images and fusing them in one focal plane. But you can't touch that image, because if you look at me now, you can see me very well, but if you hold your finger up 45 centimeters

and you focus on your finger, I become blurred. And so, you can only focus in one plane, you can't touch that image, because that image is distant from you, and it's a fused image, so you have the focus plane and you have the convergence plane, and this is an illusion

of 3D, and it's very entertaining, and it can be very useful in medical imaging, but in intra-operative procedures it has to be 100% accurate. So you saw a very beautiful example in the previous talk of augmented reality, where you have gesturing, where you can actually gesture with the image,

you can make it bigger, you can make it smaller. But what RealView does by creating real holography, which is all the XYZ data, is having it in the palm of your hand, with having above 20 focal planes, here, very very close to your eye, and that in another way, of having all those focal planes not only actually lets you

do the procedure but prevents nausea and having a feeling of discomfort because the image is actually there as of having the illusion of the images there. So just to go back, all RealView imaging is doing, is it's not changing your 3D RA cone, BMCT, MRI,

we can do all those XYZ datas and we can use them and we can present them, all we're doing, so you use your acquisition, we're just taking that, and we're breaking open the 3D displays and seeing all that 3D data limited in the 2D screen, let's set it free and have it floating in the air.

So we have the holoscope-i for structural cardiology and electrophysiology, and obviously the holoscope-x, which makes the patient x-rayed, completely visible. So its an over the head, this is now, obviously, free-standing when somebody buys us like Phillips or Siemens, it will be integrated into your lab,

come down from the ceiling, it's an independent system, and you just have a visor that you look through, which just goes up and down whenever you want to use it. You can interact with it the same as you do with your iPhone you can visualize, you can rotate, you can mark, you can slice, you can measure, as I showed you

some examples of it, and you can do this by voice as well, you just talk to it, you say slice and you slice it with your hand, it recognizes everybody's hand, there's no delay for whatever you're imaging. So structural cardiac procedures, this is what

a mitral valve will look like, floating in the air in front of you, you can see the anterior leaflet, the posterior leaflet. And once the catheter is inside and you're guiding the catheter inside the procedure, you can turn on your doppler, you'll be able to see that the catheter

movements, so for someone doing a mitral clip, or whatever, this would be very very useful. This is an electrophysiological procedure, and you can see how the catheter moves, when the catheter will move, and obviously, as my previous speaker was saying, you are appreciating 3D in a 2D screen,

so it's very difficult to appreciate, you'll have to take my word for it. But I think you can see dynamic colography at this quality, that you can interact with, that is something that is very special, we've presented at a number of conferences,

including at Veith, and we've already done a first in man, and the most exciting thing for now, is just this week, the first machine was installed at Toronto general, at the Peter Munk Cardiac Center, and they've done their first case, and so now we are launching and clinical trials in 2018, and hopefully,

I'll have something which is more vascular relevant, at the next time, Veith 2019, thank you very much.

- Thank you very much for the opportunity to speak carbon dioxide angiography, which is one of my favorite topics and today I will like to talk to you about the value of CO2 angiography for abdominal and pelvic trauma and why and how to use carbon dioxide angiography with massive bleeding and when to supplement CO2 with iodinated contrast.

Disclosures, none. The value of CO2 angiography, what are the advantages perhaps? Carbon dioxide is non-allergic and non-nephrotoxic contrast agent, meaning CO2 is the only proven safe contrast in patients with a contrast allergy and the renal failure.

Carbon dioxide is very highly soluble (20 to 30 times more soluble than oxygen). It's very low viscosity, which is a very unique physical property that you can take advantage of it in doing angiography and CO2 is 1/400 iodinated contrast in viscosity.

Because of low viscosity, now we can use smaller catheter, like a micro-catheter, coaxially to the angiogram using end hole catheter. You do not need five hole catheter such as Pigtail. Also, because of low viscosity, you can detect bleeding much more efficiently.

It demonstrates to the aneurysm and arteriovenous fistula. The other interesting part of the CO2 when you inject in the vessel the CO2 basically refluxes back so you can see the more central vessel. In other words, when you inject contrast, you see only forward vessel, whereas when you inject CO2,

you do a pass with not only peripheral vessels and also see more central vessels. So basically you see the vessels around the lesions and you can use unlimited volumes of CO2 if you separate two to three minutes because CO2 is exhaled by the respirations

so basically you can inject large volumes particularly when you have long prolonged procedures, and most importantly, CO2 is very inexpensive. Where there are basically two methods that will deliver CO2. One is the plastic bag system which you basically fill up with a CO2 tank three times and then empty three times

and keep the fourth time and then you connect to the delivery system and basically closest inject for DSA. The other devices, the CO2mmander with the angio assist, which I saw in the booth outside. That's FDA approved for CO2 injections and is very convenient to use.

It's called CO2mmander. So, most of the CO2 angios can be done with end hole catheter. So basically you eliminate the need for pigtail. You can use any of these cobra catheters, shepherd hook and the Simmons.

If you look at this image in the Levitor study with vascular model, when you inject end hole catheter when the CO2 exits from the tip of catheter, it forms very homogenous bolus, displaces the blood because you're imaging the blood vessel by displacing blood with contrast is mixed with blood, therefore as CO2

travels distally it maintains the CO2 density whereas contrast dilutes and lose the densities. So we recommend end hole catheter. So that means you can do an arteriogram with end hole catheter and then do a select arteriogram. You don't need to replace the pigtail

for selective injection following your aortographies. Here's the basic techniques: Now when you do CO2 angiogram, trauma patient, abdominal/pelvic traumas, start with CO2 aortography. You'll be surprised, you'll see many of those bleeding on aortogram, and also you can repeat, if necessary,

with CO2 at the multiple different levels like, celiac, renal, or aortic bifurcation but be sure to inject below diaphragm. Do not go above diaphragm, for example, thoracic aorta coronary, and brachial, and the subclavian if you inject CO2, you'll have some serious problems.

So stay below the diaphragm as an arterial contrast. Selective injection iodinated contrast for a road map. We like to do super selective arteriogram for embolization et cetera. Then use a contrast to get anomalies. Super selective injection with iodinated contrast

before embolization if there's no bleeding then repeat with CO2 because of low viscocity and also explosion of the gas you will often see the bleeding. That makes it more comfortable before embolization. Here is a splenic trauma patient.

CO2 is injected into the aorta at the level of the celiac access. Now you see the extra vascularization from the low polar spleen, then you catheterize celiac access of the veins. You microcatheter in the distal splenic arteries

and inject the contrast. Oops, there's no bleeding. Make you very uncomfortable for embolizations. We always like to see the actual vascularization before place particle or coils. At that time you can inject CO2 and you can see

actual vascularization and make you more comfortable before embolization. You can inject CO2, the selective injection like in here in a patient with the splenic trauma. The celiac injection of CO2 shows the growth, laceration splenic with extra vascularization with the gas.

There's multiple small, little collection. We call this Starry Night by Van Gogh. That means malpighian marginal sinus with stagnation with the CO2 gives multiple globular appearance of the stars called Starry Night.

You can see the early filling of the portal vein because of disruption of the intrasplenic microvascular structures. Now you see the splenic vein. Normally, you shouldn't see splenic vein while following CO2 injections.

This is a case of the liver traumas. Because the liver is a little more anterior the celiac that is coming off of the anterior aspect of the aorta, therefore, CO2 likes to go there because of buoyancy so we take advantage of buoyancy. Now you see the rupture here in this liver

with following the aortic injections then you inject contrast in the celiac axis to get road map so you can travel through this torus anatomy for embolizations for the road map for with contrast. This patient with elaston loss

with ruptured venal arteries, massive bleeding from many renal rupture with retro peritoneal bleeding with CO2 and aortic injection and then you inject contrast into renal artery and coil embolization but I think the stent is very dangerous in a patient with elaston loss.

We want to really separate the renal artery. Then you're basically at the mercy of the bleeding. So we like a very soft coil but basically coil the entire renal arteries. That was done. - Thank you very much.

- Time is over already? - Yeah. - Oh, OK. Let's finish up. Arteriogram and we inject CO2 contrast twice. Here's the final conclusions.

CO2 is a valuable imaging modality for abdominal and pelvic trauma. Start with CO2 aortography, if indicated. Repeat injections at multiple levels below diaphragm and selective injection road map with contrast. The last advice fo

t air contamination during the CO2 angiograms. Thank you.

- Thank you, Mr. Chairman. I guess this would be the old man's operation then. It's a new treatment paradigm. I just want to draw you attention to the fact that the results that are reported vary extremely. This is perhaps the most recent report from October from my colleagues at Saint Thomas' Hospital in London.

What they advocate is this excision of an infected graft with in situ reconstruction using deep vein of bovine graft. And they report a three year survival of 88%. I think this illustrates the selection of patients because the data is quite remarkable. It's actually better survival than after standard EVAR

in the British EVAR trial where the survivor at three years was less than 80%. And equally recent studies from Finland where they also use graft removal and vein reconstruction of the aorta. Here the results are completely different. Similar operation time as we heard before, over seven hours.

Early mortality of 18% and overall mortality of 40% with only one and a half years follow-up. Also, the authors very honestly note that it was not always possible to excise the grafts entirely. And the interesting thing is that they noted that there were no re-infections, even when only

partial graft removal was possible. So this makes me wonder. Do we really need to excise all that if when we leave behind material it doesn't re-infect? I will show you a couple of patients I have treated. I have a large series of them.

This was a septic patient with high blood cell count, high CRP, fever, this type of mycotic aneurysm. Quite difficult to treat open, I think, in a good way. I'm not saying they end always good, but we put in a chimney graft, excluded the aneurysm with a aortic stentgraft, and this is what happened

to the white blood cell count. It dropped within one week. So did the CRP. And this, of course says nothing, but this is the PET scan at five months showing no reaction around the stentgraft.

These results have been pretty much confirmed by a nationwide Swedish study showing that the results of open repair are notoriously worse than after EVAR with a much higher mortality after three months and a significantly high mortality still after one year. So those were the primary mycotic aneurysms.

How about the worse beast, the infected stentgrafts? We have several tricks to avoid this radical resection I will show you only my favorite trick right now. It's a resection of the infected sac. And this was the very first patient we did. It was a standard abdominal aortic aneurysm

treated with a standard stentgraft. The patient had a minor type II endoleak as you can see at follow-up. After two years, the endoleak was gone. Suddenly, there was air in the sac, and the patient seemed infected.

There was bowel right next to it, so I was convinced this was a aortic fistula and for that reason I did a laparotomy. There was no fistula. But we had an infected sac, and while I was at it, I resected as much as I could of the sac

only leaving behind the difficult portion adjacent to the cava, and when this was done, I wrapped the omentum around the graft. This is a follow-up CT showing that remnant of the native aorta, and as you can see, there is no inflammatory reaction around the stentgraft.

And this is a six month follow-up CT. The very most recent case. I have this bad habit of bringing recent cases. This is an elderly gentleman with a aortoenteric fistula post open AAA repair, and nobody was particularly keen on operating on him because he had this wonderful

result of the previous open repair. We put in a stentgraft, and this is the postop CT showing the collection right next to the stentgraft. This is at six weeks follow-up with that collection being less, and the CRP has dropped from 165 to 36. Of course, this is very early,

but it's a very promising result, I believe. The overall results for the non-radical treatment such as the low early mortality because we don't do this massive surgery to begin with. And the late mortality seems, in my eyes, comparable to the radical surgery.

So in conclusion, Mr. Chairman, ladies and gentlemen, I believe that most infected aneurysms don't need radical surgery. Thereby, you avoid major surgical trauma, which is poorly tolerated by these weak patients. You reduce lower early mortality.

You have similar or better long-term survival. And many infections do heal in spite of the fact that you leave prosthetic material behind. Thank you for your attention.

- Good afternoon to everybody, this is my disclosure. Now our center we have some experience on critical hand ischemia in the last 20 years. We have published some papers, but despite the treatment of everyday, of food ischemia including hand ischemia is not so common. We had a maximum of 200 critical ischemic patients

the majority of them were patient with hemodialysis, then other patients with Buerger's, thoracic outlet syndrome, etcetera. And especially on hemodialysis patients, we concentrate on forearms because we have collected 132 critical ischemic hands.

And essentially, we can divide the pathophysiology of this ischemic. Three causes, first is that the big artery disease of the humeral and below the elbow arteries. The second cause is the small artery disease

of the hand and finger artery. And the third cause is the presence of an arterial fistula. But you can see, that in active ipsillateral arteriovenous fistula was present only 42% of these patients. And the vast majority of the patients

who had critical hand ischemia, there were more concomitant causes to obtain critical hand ischemia. What can we do in these types of patients? First, angioplasty. I want to present you this 50 years old male

with diabetes type 1 on hemodialysis, with previous history of two failed arteriovenous fistula for hemodialysis. The first one was in occluded proximal termino-lateral radiocephalic arteriovenous fistula. So, the radial artery is occluded.

The second one was in the distal latero-terminal arteriovenous fistula, still open but not functioning for hemodialysis. Then, we have a cause of critical hand ischemia, which is the occlusion of the ulnar artery. What to do in a patient like this?

First of all, we have treated this long occlusion of the ulnar artery with drug-coated ballooning. The second was treatment of this field, but still open arteriovenous fistula, embolized with coils. And this is the final result,

you can see how blood flow is going in this huge superficial palmar arch with complete resolution of the ischemia. And the patient obviously healed. The second thing we can do, but on very rarely is a bypass. So, this a patient with multiple gangrene amputations.

So, he came to our cath lab with an indication to the amputation of the hand. The radial artery is totally occluded, it's occluded here, the ulnar artery is totally occluded. I tried to open the radial artery, but I understood that in the past someone has done

a termino-terminal radio-cephalic arteriovenous fistula. So after cutting, the two ends of the radial artery was separated. So, we decided to do a bypass, I think that is one of the shortest bypass in the world. Generally, I'm not a vascular surgeon

but generally vascular surgeons fight for the longest bypass and not for the shortest one. I don't know if there is some race somewhere. The patient was obviously able to heal completely. Thoracic sympathectomy. I have not considered this option in the past,

but this was a patient that was very important for me. 47 years old female, multiple myeloma with amyloidosis. Everything was occluded, I was never able to see a vessel in the fingers. The first time I made this angioplasty,

I was very happy because the patient was happy, no more pain. We were able to amputate this finger. Everything was open after three months. But in the subsequent year, the situation was traumatic. Every four or five months,

every artery was totally occluded. So, I repeated a lot of angioplasty, lot of amputations. At the end it was impossible to continue. After four years, I decided to do something, or an amputation at the end. We tried to do endoscopic thoracic sympathectomy.

There is a very few number of this, or little to regard in this type of approach. But infected, no more pain, healing. And after six years, the patient is still completely asymptomatic. Unbelievable.

And finally, the renal transplant. 36 years old female, type one diabetes, hemodialysis. It was in 2009, I was absolutely embarrassed that I tried to do something in the limbs, inferior limbs in the hand.

Everything was calcified. At the end, we continued with fingers amputation, a Chopart amputation on one side and below the knee major amputation. Despite this dramatic clinical stage, she got a double kidney and pancreas transplant on 2010.

And then, she healed completely. Today she is 45 years old, this summer walking in the mountain. She sent to me a message, "the new leg prostheses are formidable". She's driving a car, totally independent,

active life, working. So, the transplant was able to stop this calcification, this small artery disease which was devastating. So, patients with critical high ischemia have different pathophysiology and different underlying diseases.

Don't give up and try to find for everyone the proper solution. Thank you very much for your attention.

- Yeah, I am not Mehdi Shishehbor. If you are here to listen to him talk, I'm sorry to disappoint you. He's stuck in Cleveland in the weather. So this is my disclosure. There are several companies, but it's uncompensated consulting.

So, when you look at all the guidelines that are out there, most of the guidelines do recommend ankle brachial index as the central point in terms of management of critical limb ischemia patients, this is the ACC/AHA guidelines from 2016. And the same thing PARC,

Peripheral Academic Research Consortium also talks about using ankle brachial indices in the management of critical limb ischemias. So Mehdi gives this example of a 82 yr old patient of his who came in with a Charcot joint and mid-foot ulceration. The ABI was in the .56 range,

so he takes her to the cath lab and finds SFA disease, PT is occluded. He gets the inflow improved, the anterior tibial also looks better, and the ankle brachial indices are now normalized to 1.12, and even the metatarsal and the digit PPGs are improved.

So he tells the patient to go home and rest, and the wound care is instituted. And the mid-foot ulceration heals, but when the patient comes back there is a heel ulceration, because the patient has been asked to take it easy, and with the non-vascular position,

which is above the level of the heart, or at the level of the heart rather than being down. Now she has sort of a pressure and ischemic ulceration on the heel, despite normal ABIs. So Mehdi goes in and do retro grade pedal axis and gets into the origin, revascularizes the arch,

and gets the PT opened up, and the DP opened up, and has a good arch, complete arch now, as you can see good result, and with good wound healing at 16 weeks it shows improvement and 21 weeks much more better looking, almost healed ulceration with some callous over that.

So the point of this is the clinical examination of the patient and continued follow up closely is very important and not just depend on ABIs. To further this thought, Mehdi looked at the Cleveland Clinic Data and 29% of patients with critical limb ischemia were noted to have, in fact,

ABIs that were almost normal. And then, the IN.PACT DEEP data, which you look at about 350 patients, all CLI patients, they looked at the hemodynamic parameters to diagnose critical limb ischemia. This was one of the trials that sort of lead to

removing ankle brachial index requirement in the critical limb ischemia below knee trials, as well. What they showed is, even though all these patients have critical limb ischemia, upwards of 28% actually had normal ABI and several had ABI greater than 1.4 And remember, all these are critical limb ischemia patients.

So probably ABI's not a good measure to assess critical limb ischemia. Similarly, the Michigan group, the Blue Cross Blue Shield group looked at 4,391 patients with CLI, and only 60% actually had mild to moderate disease,

and 14 had severe disease, and when you look at the number of patients that had normal ABIs, that was a quarter of them. So a quarter of CLI patients have normal ABIs. The other disturbing fact is that, when you look at noncompressible ABIs,

majority, up to 80% of these patients could potentially, especially the posterior tibial artery, could be upwards of 80% occlusion. So basically, if you get noncompressible vessels you could be looking at having a potential occlusion of the below knee vessel.

So in summary, about 30% of patients with CLI will have normal ABIs, or noncompressible ABIs. If they have noncompressible ABIs, upwards of 80% will have potential occlusion of severe stenosis. So at this time, in the absence of better profusion, tissue profusion imaging,

angiogram is probably the best way to assess. We need to consider TBI, pulse volume recordings, in the patients with Rutherford five and six. Thank you.

- Ladies and gentlemen, I would like to thank Professor Veith for his kind invitation. A minimally invasive carotid endarterectomy. I have nothing to disclose. Here you can see the same patient operating with the classic carotid endarterectomy with normal incision and on the other side,

you will see the patient, the same patient after the minimal incision carotid endarterectomy. So ladies and gentlemen, if one can safely perform carotid endarterectomy by minimal incision, let's do it routinely. The technique of minimal incision carotid endarterectomy.

The incision must be done over a carotid bifurcation. In slim patient, it is easy to determine the location just by the palpation. By routinely, I advise to mark bifurcation by using ultrasound. Reaching the artery by tissue separation

along the border of sternocleidomastoid muscle. Once the artery is visualized, apply the vessel loop on the external carotid artery. If it is needed, on the thyroid artery. Pulling the external carotid artery vessel loop up to the opposite side,

and releasing posterior part of bifurcation enables visualization and applying vessel loop on the common carotid artery, about 15 millimeter down the bifurcation. Pulling the external carotid artery vessel loop down into the opposite side reveals anterior and posterior

portion of internal carotid artery. What is the most important? The vessel loop on the internal carotid artery must be located above atherosclerotic plague. Temporary clamping of internal carotid artery for 30 seconds should show if the shunt is needed.

If there is no neurological signs, we continue pulling all vessel loops to elevate the artery to the level of the skin. Typically, longitudinal incision from common carotid artery to internal carotid artery is performed. The main important maneuver

that led to perform this operation correctly and safely, this is eversion-like movement. After arteriotomy, I squeeze the artery, internal carotid artery, usually on the level of the end of the atherosclerotic plague, usually using the forceps.

I make eversion-like movement. This led me easily and safely remove that atherosclerotic plague from the internal carotid artery. Always allow one two second backflow from internal carotid artery

to remove potential debris by the blood flow. The same, unclamping common carotid artery for a short period of time to remove potential debris from the proximal part. Should a shunt be indicated, it is easy and quick to insert.

As a first step, the shunt is inserted into internal carotid artery. It is necessary to slightly loosen internal carotid vessel loop. In the same way, I put the shunt into the common carotid artery if it is needed.

Continued suture usually close the arteriotomy. If the diameter of the internal carotid artery is smaller than two millimeter, artificial patch can be easily used. Redon drainage is always used. I make another small incision for the Redon drain

due to very, very small incision for endarterectomy. And continued suture usually closes the wound for good cosmetical effort. Here, you can see the operation step-by-step. What I will now emphasize this group of patient.

This is symptomatic patient with a very soft atherosclerotic plague. In this series, our experience. This is 165 patients allocated into two groups. 122 patients in the minimal incision carotid endarterectomy group,

and 43 patients in classic endarterectomy group. Patients randomly allocated. Here, you can see the results three months, up to three months results. I will like to emphasize there were no nerve injury. Hoarseness and shunt was used in 12%

in minimal incision carotid endarterectomy group. Here, you can see in the first and second column, the results up to September 2017. Third and fourth column, the results up to September 2018. Here you can see some examples. Here you will see some more examples.

Here you will see the scar that is after the operation. So nearly no limitation in neck movement, quick wound healing, short hospital stay, and perfect cosmetic effect. So to conclude, ladies and gentlemen, this is the low risk operation.

This is the operation of quick recovery. Precautions and contraindication, according to my experience seems to be same as for classic carotid endarterectomy. Of course, further study is required. Minimal incision, I also used during the

aortobifemoral and femoropopliteal operations. I hope to show it next year. Ladies and gentlemen, when I was a young surgeon, it was said that big surgeon, big incision. I'd rather suggest, good surgeon should try to make the smallest incision possible.

Data and presented technique will be published. Thank you very much for your attention.

- I'd like to thank Dr. Veith and the committee for the privilege of presenting this. I have no disclosures. Vascular problems and the type of injuries could be varied. We all need to have an awareness of acute and chronic injuries,

whether they're traumatic, resulting with compression, occlusion, tumoral and malformation results, or vasospastic. I'd like to present a thoracoscopic manipulation of fractured ribs to prevent descending aortic injury

in a patient with chest trauma. You know, we don't think about this but they can have acute or delayed onset of symptoms and the patient can change and suddenly deteriorate with position changes or with mechanical ventilation,

and this is a rather interesting paper. Here you can see the posterior rib fracture sitting directly adjacent to the aorta like a knife. You can imagine the catastrophic consequences if that wasn't recognized and treated appropriately.

We heard this morning in the venous session that the veins change positions based on the arteries. Well, we need to remember that the arteries and the whole vascular bundle changes position based on the spine

and the bony pieces around them. This is especially too when you're dealing with scoliosis and scoliotic operations and the body positioning whether it's supine or prone the degree of hypo or hyperkyphosis

and the vertebral angles and the methods of instrumentation all need to be considered and remembered as the aorta will migrate based on the body habits of the patient. Screws can cause all kinds of trouble.

Screws are considered risky if they're within one to three millimeters of the aorta or adjacent tissues, and if you just do a random review up to 15% of screws that are placed fall into this category.

Vertebral loops and tortuosity is either a congenital or acquired anomaly and the V2 segment of the vertebral is particularly at risk, most commonly in women in their fifth and sixth decades,

and here you can see instrumentation of the upper cervical spine, anterior corpectomy and the posterior exposures are all associated with a significant and lethal, at times, vertebral artery injuries.

Left subclavian artery injury from excessively long thoracic pedicle screws placed for proximal thoracic scoliosis have been reported. Clavicular osteosynthesis with high neurovascular injury especially when the plunge depth isn't kept in mind

in the medial clavicle have been reported and an awareness and an ability to anticipate injury by looking at the safe zone and finding this on the femur

with your preoperative imaging is a way to help prevent those kinds of problems. Injuries can be from stretch or retraction. Leave it to the French. There's a paper from 2011 that describes midline anterior approach

from the right side to the lumbar spine, interbody fusion and total disc replacement as safer. The cava is more resistant to injury than the left iliac vein and there's less erectile dysfunction reported. We had a patient present recently

with the blue bumps across her abdomen many years after hip complicated course. She'd had what was thought to be an infected hip that was replaced, worsening lower extremity edema, asymmetry of her femoral vein on duplex

and her heterogeneous mask that you can see here on imaging. The iliac veins were occluded and compressed and you could see in the bottom right the varicosities that she was concerned about. Another case is a 71-year-old male who had a post-thrombotic syndrome.

It was worsened after his left hip replacement and his wife said he's just not been the same since. Initially imaging suggests that this was a mass and a tumor. He underwent biopsy

and it showed ghost cells. Here you can see the venogram where we tried to recanalize this and we were unsuccessful because this was actually a combination of bone cement and inflammatory reaction.

Second patient in this category, bless you, is a 67-year-old female who had left leg swelling again after a total hip replacement 20 plus years ago. No DVTs but here you can see the cement compressing the iliac vein.

She had about a 40% patency when you put her through positioning and elected not to have anything done with that. Here you could see on MR how truly compressed this is. IVA suggested it was a little less tight than that.

So a vascular injury occurs across all surgical specialties. All procedures carry risk of bleeding and inadvertent damage to vessels. The mechanisms include tearing, stretching, fracture of calcific plaques,

direct penetration and thermal injury. The types of injuries you hear are most common after hip injuries, they need to be recognized in the acute phase as looking for signs of bleeding or ischemia. Arterial lesions are commonly prone then.

Bone cement can cause thermal injury, erosion, compression and post-implant syndrome. So again, no surgery is immune. You need to be aware and especially when you look at patients in the delayed time period

to consider something called particle disease. This has actually been described in the orthopedic literature starting in the 70s and it's a complex interaction of inflammatory pathways directed at microparticles that come about

through prosthetic wear. So not only acute injury but acute and chronic symptoms. Thank you for the privilege of the floor.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.