Create an account and get 3 free clips per day.
Chapters
Physics of MRI 3: K-Space and Gradients - Part 1
Physics of MRI 3: K-Space and Gradients - Part 1
2012acquireapplybandwidthcomponentscompositeconceptconceptscyclecyclesdatadeterminedistributionequalessentiallyevolvesevolvingfieldfrequencyfunctiongenerategradientgradientsimageimaginginitiallecturelocalizelowestmagneticmiddleMRIoccurrencepositionprescribeproduceproducingproportionalregionrelativerepresentationresolutionreviewrotatingsamplingsignalsignalssimplyspacingstrengthtimestransformtransformingUHNultimateunderlyingvaluesvariablevarieswater
Program Implementation | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Program Implementation | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
artischapterclinicaldepartmentimplementationleadershipMRINoneprogramradiologistradiologyrafael
Overview of BPH (Benign Prostatic Hyperplasia) | Nursing Management in Prostate Artery Embolization
Overview of BPH (Benign Prostatic Hyperplasia) | Nursing Management in Prostate Artery Embolization
alphabasicallybladdercausingchapterconverteddysfunctionfibersgramshyperplasiaincontinencelotsMRImultipleNonepalpatepathopatientpatientsprostatereductasesagittalsymptomsundergoesurgencyurinary
MR Angiography | Determining the Endpoints of CLI Interventions
MR Angiography | Determining the Endpoints of CLI Interventions
angiogramanteriorartifactcalcifiedchapterclaudicationdeterminehemoglobiniliacimageinterventionmraMRIocclusionpatientsrecanalizationreperfusiontibialtissuevessels
Staff Requirements & Education | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Staff Requirements & Education | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
absorbablechapterchecklistdepartmenthazardMRINonenuclearpatientpharmaceuticalradiationradiologyremovesafetytechnologisttrainingzone
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
arrivesbloodchapterchartcheckcontrastdoseflowgadoliniumglucoseimaginginjectinjectedinjectinginjectionmonitorMRINonenursepatientpatientspneumaticpresencepriorradiologistrobescanscannerscanningscreeningworkflow
Work-up for PAE | Nursing Management in Prostate Artery Embolization
Work-up for PAE | Nursing Management in Prostate Artery Embolization
anesthesiaangiogramarteriesaspirinbladdercancercardiacchaptercliniccolordegreeeducateeffectsembolizationfoleyibuprofenipssmedicationmedicationsmetforminMRINonepatientpatientsprobeprocedureprostaterenalscorespasmsymptomstreattypeurinaryurineurologisturologywarfarin
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
angioplastychaptercolordopplerduplexflowhelpfulimageimagesimagingoccludedpatientssensitivespectraltriphasicultrasoundvelocitywaveform
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI vs PET/CT | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
biliarycentimeterchaptercoilcoilscontraindicationscoworkersdiameterexposureimagesimagingimplantskidneyslimitationsmachinemodalityMRINonepatientpelvicpreferredradiationradiofrequencyscannerskinstructuresthoracictissue
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
PET/MRI Case Study #2 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
PET/MRI Case Study #2 | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
chaptercontrastfrontalgadoliniumglioblastomalesionlesion located on the left frontal lobelobemalignancyMRINonepatientradiationsurgerytreatmentuptakeviable
The Expanded Role for Radiology Nursing | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
The Expanded Role for Radiology Nursing | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
americanarrhythmiachapterdefibrillatorsdeviceexpertsheartimagingimplantableintendedMRInursespacemakerspatientsradiologyrhythmtranscutaneous
Dashboard Component- Nursing Case Volume per Hour | Innovation and Application of Real Time Nursing Dashboards
Dashboard Component- Nursing Case Volume per Hour | Innovation and Application of Real Time Nursing Dashboards
callschaptercolorcoupledatadocumentationinterpretMRINonenursenursingpacemakerspendingphonevolumeworkup
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
Case- Vaginal Foreign Bodies- 10 year old female | OMG: Interesting Cases in Pediatric Radiology
Case- Vaginal Foreign Bodies- 10 year old female | OMG: Interesting Cases in Pediatric Radiology
adhesionanesthesiabodycervixchaptercoronalechogenicflapforeignimageimagesMRIMRI showed a smooth image in upper vaginaNoneobject foundorificeultrasounduppervaginalvaginal adhesion hiding the cervix
Keys to Good Outcomes in Ischemic Stroke | Neuro-Interventions
Keys to Good Outcomes in Ischemic Stroke | Neuro-Interventions
abnormalaspectsbloodbraincenterscerebralchaptercollateralscolorcontraindicationguidelinesheadhypoglycemicimagingintervenelumpectomymapsMRIocclusionpediatricPenumbraperfusionscalestrokestroke scalethrombectomyworkflow
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
PAD/CLI Diagnosis | CLI: Cause and Diagnosis
amputationangiogramanklearterialarterybiphasicbloodchapterclassificationclaudicationcolorcriticaldiabetesdiagnosisdiscomfortdiseasedopplerfootischemiaMRIpainpatientpatientsperipheralpredictpulsepulsesrutherfordsavetreatmentulcerultrasoundwaveformwoundwounds
Data- The Story Behind the Numbers | Innovation and Application of Real Time Nursing Dashboards
Data- The Story Behind the Numbers | Innovation and Application of Real Time Nursing Dashboards
bridgingcapacitychapterchrisdatahelpedjeannejourneyleadersmetricsNoneorganizationradiologyreviewseniorstaffstartstrategicsustainableunderstandworkflow
Device Worksheets  | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
Device Worksheets | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
aheadchaptercontinuouscuffdeemeddeterminedeviceemergencyheartleadsmockmonitormonitoredmonitoringMRInotenursepatientproberate
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
Non-Invasive Ventilation | Respiratory Compromise: Use of Capnography During Procedural Sedation
accurateairwaychaptercircuitcolorconsistentcpapdatadevicesdistaldistallyleaklevelliterlitersmaskmonitoringnasalNoneoraloxygenationpatientpatientsportprettysamplingstentsupplementalvaluesventilationventilator
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
arterybleedcentimeterchapterdatadysfunctionalembolizationfertilityfibroidfibroidsMRImyomectomyNonepatientsretainsurgeryuterineuterus
Programming for MRI  | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
Programming for MRI | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
beatscardiacchamberchapterdeviceimplantedinhibitmodeMRInativenomenclaturepacepacingpatientpositionrateresponserisksventricle
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
arterybleedingcatheterchapterclinicalclotdatadevicedevicesdiameterdysfunctionheparinintracranialmajormassivemechanicalpatientsPenumbrapulmonaryrandomizedrateratiorecurrentreducesstudysurrogatethrombolysisthrombosistrialtrialsultimateventricle
MRI Emergency | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
MRI Emergency | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
anteriorartifactbradycardiachapteremergencyheartMRIpacemakerpacingpatienttransthoracicventricular
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Q&A PET/MRI  | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Q&A PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
apronsbodychaptercontrastDialysisdischargeinjectinstitutioninstructionslinedminutesMRINonepatientpatientspediatricpediatricsportionprotocolsradiationradiologistrequirescanstechnologist
Transcript

Hi, my name is Marshall Sussman, I'm an MRI physicist at the University Health Network and the University of Toronto, I'm giving a series of lectures on basic MRI physics. This lecture is going to be the third in the series, and this one's called k-space in gradients. Now, in the second lecture, I went through the relationship between k-space and image formation MRI, and I showed how we use gradients to move around in k-space and acquire data in MRI. But what

I didn't tell you is how the gradients actually move you around in case phase. So in this third lecture here that is what we're going to get into a little bit more details. And this lecture is divided into two pieces. To give an outline of what's in this lecture, I'm gonna start of by doing just a brief review of some of the physics that we've talked about so far. So I'm gonna again review fourier

transform theory that we talked about in the k-space lecture previously and I'm also gonna give a brief of you of signal generation which we discussed in the very first lecture. Then we're gonna move on and describe how we use gradients to localize spacial position in one dimension. And then we're gonna talk about how gradients and k-space are related in one dimension.

Then I'm gonna move on to talking about how we can localize spacial position in two dimensions. So, let's begin with the brief review of some of the physics concepts. So first of all, fourier transform theory, again, this will just be a repeat of what we covered in the previous lecture. So we know that we can describe a signal as in a time domain, a signal just oscillating as a function

of time. In this case, this signal oscillates at a rate of one cycle per second. So you can see we have this red lining here, to indicate that we've gone through one complete cycle within one second. So, an equivalent way of representing that signal, is in the histogram domain. So on the left here you can see we have now an occurrence of one cycle per second, a frequency of one cycle per second, occurring

exactly once. Here, we have a second signal oscillating at two cycles per second. Again, you can see the red line indicating we go through two complete cycles in one second, and the histogram representation of that signal again a single occurrence at two cycles per second. We can add various different components of those signals together. So if we add these two signals together, we get a composite signal

that looks like this. And in the histogram domain, we get representation that looks like this. So one occurrence at one cycle per second and the second occurrence at two cycles per second. And we can extend that concept and add various different combinations of different frequency components together. So here we have one combination of one cycle per second and two cycles per second. Counts of the

signal you get looks like what you see here. The signal has a function of time, and representation looks like this on the left. So here we have a single current at one cycle per second and we have two occurrences at two cycles per second. And we showed previously how this two are related by a fourier transform which is just a simple mathematical

operation. So we can get one if we just have the signal in one domain, we can determine what the representation signal, the other domain will be, by applying a fourier transform. Second concept I wanna review is the basic concept underlying signal generation. So from the first lecture we saw that we apply on RF pulse and that causes a magnetization to tip away from the direction o f the magnetic

field. Once we do that, magnetization begins to rotate around the direction of the magnetic field, and in turn the spears and an important concept is that the speed of rotation is proportional to the strength of the magnetic field. So the higher the magnetic field the faster the signal rotates. And as a result of that rotation, we have an electrical signal that's

generated. And this is what we ultimately detect as our signal. So, that just is a very brief review of some of the concepts we went over in our first two lectures. So now, we're gonna move on to talking about how we can localize spacial position in one dimension. So, the way we do that, is through the use of gradient. So, we talked about gradients already briefly in some of our previous lectures.

And we saw that gradients are simply magnetic fields that vary linearly with spacial position. And these are magnetic field gradients that are superimposed on top of the main external magnetic field. So just to give an example here, here we have a person lying in the MR scanner. And as a result of the external magnetic field, the magnetic field is uniform everywhere inside that person's body.

If we turn on our magnetic field gradients, then the magnetic field now varies linearly as a function of spacial position. So, we can see that towards the head, the magnetic field is slightly lower than the initial magnetic field and as we go towards the feet, the magnetic field continuously increases till it's on this side, slightly larger than the initial magnetic field. I'm gonna

look at three particular locations. So here we have at the head magnetic field that's less than B zero which is the main initial magnetic field. It's B zero equals to the initial magnetic field at the center, and equal to slightly greater value at the feet. [SOUND] Now, if you recall from the review I just did a few slides ago, remember that I said speed of rotation, of the magnetization is

proportional to the strength of the magnetic field. So in particular what that means, is that this different spacial positions, magnetization is going to be rotating at a different frequency. So in particular the one towards the head is gonna be rotating at the slowest frequency because it has the lowest magnetic field, whereas the one at the feet, is gonna be rotating the fastest because it experiences

the highest magnetic field. Now, another fact which I need to mention here, is that the frequency of the signal that you emit in MRI, is directly proportional to the rotational frequency. So if we are rotating at say 63 megahertz, we made a signal of 63 megahertz. So if we rotate at 64 megahertz, the signal is emitted at 64 megahertz. So what that means is the

frequency of each one of this signals is going to be slightly different, in particular the one at the head because it sees the lowest magnetic field, is gonna have the lowest frequency. The one at the feet because it sees the highest magnetic field, is gonna have the highest spacial frequency. So up until this point, I've been using this figure of the body to represent the

subject that's being imaged in MRI. But the body is is obviously quite a complicated structure, so to simplify the explanation, instead of dealing with the body, I'm gonna actually just describe my contents based on imaging jugs of water. So here we have in this case one jug of water at this position, three jugs of water in the middle position, and two jugs of water on the opposite side. So if we consider

what's going on with the signal, so again we still have the same concept where magnetic field strength varies linearly in space or position. So just as before the signal is gonna be at the lowest frequency here and the middle frequency in the center position and the highest frequency on the right, which is indicated here but now in this case we have three jugs of water here so there's

gonna be three times as much signal at the middle frequency. And the signal on the right, is going to have twice as much signal as the one on the other end emitted at the highest frequency. So this slide here shows you what the overall signal that we're going to receive, when we do our MR experiment with these three jugs of water. So essentially at this stage we can't distinguish between

the signal coming from any of these individual jugs of water. We're just measuring a net signal. So it's just simply the sum of all the signals coming from these different components here. So particular as before have one signal at this frequency here, three signals at the middle frequency and, two signals at the highest frequency. And that will add up to produce this overall composite signal,

because this is what we're gonna measure in our MR experiment. Now this is essentially what I would like to call the forward solution of MRI. What I mean by that is that if we have a known distribution of water, in this case jugs of water, we can then go through the physics behind what's going on, and predict what the signal we get out at the end of the days. But, obviously in a real experiment

that's actually not what we want, it's the inverse of that, because we actually don't know what the distribution of water is. That's what we're actually trying to measure. So we wanna actually get the reverse solution. We wanna say, given this signal here, we measure this signal here. We wanna be able to go backwards and generate the relative distribution of water that

generates this particular signal here. So in the next slide, I'm gonna show you how we do that. So, just to, again, rewrite this same diagram here, we have these different amounts of water using different amounts of signal at different frequencies and we get a composite signal. Now, if you look at this diagram closely, this is actually exactly similar to this fourier transform theory concept

that I described earlier. In the fourier transform example we had different amounts of signal occurring at different frequencies adding up to produce a composite signal. So, in this case we had one signal oscillating leading at the lowest frequency and two signals oscillating at the higher frequency to produce this composite signal here. In my MRI example, I have one jug here producing this lowest

frequency, three jugs producing the middle frequency and two jugs producing a highest frequency producing this composite signal here. So, in the case of the fourier transform, to determine what is the distribution of water, what is the distribution of signals, I applied a fourier transform, and that gave me the underlying distribution of frequency components. So I can do the exact same thing in my MRI case, if

I just simply apply a fourier transform for that signal, that gives me a histogram that tells me the relative distribution of frequencies. In particular it's gonna tell me I have one unit at the lowest frequency, three units of the middle frequency, and two units of the highest frequency. And I can convert this into an image if I simply map the height of this histogram into a grey

scale image. I can actually generate an image of these three jugs of water here. So the black one has the lowest intensity, so the lowest amount of water, the middle one has the highest amount of water, and the far one in the far right has the intermediate amount of water. So just using these basic signal processing concepts in fourier transform,

I can essentially get the reverse solutions. I have this composite signal generated by my MRI data, when I apply a fourier transform, I can then uncover what the underlying distribution of water that produce that signal was. [BLANK_AUDIO] [SOUND] So that illustrates the concept of spacial localization in one n dimension.

Now we're gonna talk a little bit more detail about how gradients and k-space are related in one dimension. So here I have this same example just to recall what we we're using before and just to put some concreteness to this example, I'm gonna use some specific frequency values on these numbers here. Now, these frequency values aren't real, the real MR frequencies are much higher, but just for

the sake of this illustration, these are the ones I'm using. So let's say that this position here the signal is emitted at one hertz, the middle one is emitted at two hertz, and the far one is emitted at three hertz. Mathematical format of these signals are sine [UNKNOWN] So it's just simply the sine of the frequency times time that describes

each of this signals. So this one is sine of one hertz times time, sine of two hertz times time, because it's a frequency of two hertz but now there's three times the signal because there's three jugs of water so we multiply by three, and similar the high one sine of three hertz times time and there's two jugs of water there. So again the conficite signal is just simply the sum of all those

and mathematically the signal is described by this equation here, it's just simply the sum of three components from I equals one to three, because we have three different locations here. The A here, is the relative amount of each of these signals present so A at this position is 1, a at this position is 3 and a at this position

is 2, times the sine of the frequency, and obviously that also varies at each one of these positions. So the A, is what we're ultimately interested in, because that's really tells us the distribution of water, the relative amount of water at each position. And the frequency, we know that the frequency is proportional to the strength of the magnetic field. And we further know that the strength of

the magnetic field, is equal to the gradient times the spacial position, because that's the linear magnetic field gradient, plus the static magnetic field, which is what which always exist. Now, just to simplify the Math since the static magnetic field of this bizia/g magnetic field is the same at all spacial positions, I'm gonna ignore that, so I'm gonna get rid of that from this term here.

So now let's write down what the signal looks like making the substitutions. So here I have my signal as this, and my frequency is going to be replaced now by, the gradient times the spacial position. So if I do that, my signal now takes on this Mathematical form here. Now, the key to this whole concept of k-space is that we make this substitution here. We define this variable

and we call it K equal to the gradient times the time. [BLANK_AUDIO] With that substitution, the signal B takes on this format on the bottom here. So the signal is the sum of the distribution of water which is the same as before. Now it's a sine of this K variable times X, the special position. So now how can we interpret

the signal? So again here's my initial format, so we have the signal of all means and it's function of time before I place in my k-space variable. So if you look at the signal oscillating is a function of time it just simply appears like this. If we make this case substitution, we can equivalently consider the signal to evolve as a function of the K variable so instead of

the signal evolving as a signal of time, we now have the signal evolving as a function of this K variable from zero to same X value. And this really discourages the whole K concept of why when we turn on the gradients we move through k-space because essentially, if we don't have any gradients on we're essentially starting at zero position. As soon as we turn this gradients on

we're essentially moving through k-space, so this K variable is evolving so this is why the gradients allow you to move through k-space and this is really the the piece that we were missing in the first [UNKNOWN] So K is just directly proportional to the gradients. So as long as there are gradients on, we are moving through k-space. So equivalent that you can think of as we're moving through

the k-space, we're essentially mapping out these grey scale values that you see here. So I've just converted this signal loss in this function of time to simply a grey scale intensity and that's the more familiar form of k-space that we see. [BLANK_AUDIO]

So as the signal evolves the function of time, this is essentially filling up the k-space data matrix. [BLANK_AUDIO] On one hand it seems like sort of a simple almost a trivial substitution. Okay I've just replaced this K with a [UNKNOWN]

gradient times time with this variable K. But as I'm gonna show you in this slide here, it does have some pretty important ramifications, because in particular what it tells us, is that it doesn't really matter what our gradients is doing, as long as we cover the same region of k-space, then the data that we acquire is gonna be exactly the same in both cases. And that's how we can get to different

k-space trajectories. So let's start out with this first example here, we have a gradient that's a constant gradient on as a function of time. So this is what the gradient's doing on the left, and on the right, I'm going to show you what goes on in k-space. So if we turn our gradient as a function of time, our k-space simply evolves from its initial zero position

because remember we always start at zero position k-space out to some maximum k-space value. And the speed that we're going at is just simply proportional to the strength of the gradient. So now let's have a second example here where turn a gradient on for a period of time, turn it off, and then turn it back on. So what's going on in k-space? So in k-space we're simply have the

gradients on, we are acquiring data just like in the first case. But now because we've stopped, we're not doing anything. So we just sit there at that same k-space position. We then resume and we turn the gradient back on and then we resume form that same k-space position. So again these are two very different gradient wave forms, but in fact we still cover exactly the same k-space

region. Again we just have to go back to the substitution here to see what exactly is going on. And as I mentioned in previous lectures, in general infinite numbers of k-space trajectories are possible. So I could, cover this exact same region of k-space by having essentially an infinite number of different ways of doing this. So turn it

on and off 3 times, 4 times you know a 1000 times, it wouldn't matter as long as I'm covering the same ultimate region of k-space, the image I generate will be exactly the same. And to say I just to [INAUDIBLE] that point in, the ultimate image you get doesn't matter how you covered k-space, it just matters what k-space data you've acquired.

[BLANK_AUDIO] Now, let's go a little bit deeper into what's going on with k-space. So the gradient is just simply a linear magnetic field gradient. So if we have this initial gradient we're training on here, we cover k-space in the manner that I just showed you. If I increase the strength of the gradient that means that I'm increasing this

g-value. So I'm increasing the slope of this magnetic field. So the magnetic field changes more rapidly as a functional spacial position. So how does that affect how we go through k-space? Well it just simply speeds up how we go through k-space. If this gradient is larger, that means we're gonna go through K faster. So in particular if I have a gradient that's

twice as large, but only half as long, again going back to this k-space substitution, here you'd see that that just simply means I'm gonna go through k-space twice as first. Again I'm covering the same region of k-space so when I reconstruct the image it's gonna look exactly the same. But I've now gone through k-space, I've acquired my data twice as fast. Similarly, if I invert the

polarity of the gradient, that just simply adds a minus sign onto this G. And again looking at the k-space variable you can probably anticipate what this is gonna do to how we go through k-space it's just simply going to invert the direction that we go through k-space. So instead of going right to left, we're gonna be going left to right. So we just fill up our k-space in exactly the

opposite direction. Now, we're gonna look into some issues related to gradients and image reconstruction. So as we've said many times now the images are reconstructed by fourier transforming the k-space data. So we acquire a series of k-space data and we apply a fourier transform on that and we get in this case the distribution or the relative distribution of order

that's generating that signal. So what's happening mathematically? So we saw that we can consider the signal evolving as a function of K, and that's indicated by this formula here. So if we apply a fourier transform to this signal as a function of K, that's applying a fourier transform to the right hand side of this equation. Now again I'm not gonna go through the Math to derive this, but I'm just gonna

tell you the result that fourier transforming this equation gives you this A variable here. And as we recall the A, is the relative distribution of the water. So this is actually the A of the image that we are ultimately interested. So this image or this distribution of water and the k-space signal data are often referred to as fourier transform pairs. So signal is a function

of K, or image is a function of spacial position, are related to each other via fourier transform, that's why they're called fourier transform pairs. So now we are gonna go into a little bit more detail, on to how the properties of k-space affect the ultimate properties of your image. So the first thing we are gonna talk about is how k-space is related to the ultimate spacial resolution

of your image. So we call again before k-space position is equal to gradient times time. So we turn our gradient on for a period of time, we go through k-space as before. Now, one question is how long do we acquire the data force. So I cut off my data acquisition at this point here but there is nothing special of this particular

point in time. Why couldn't I have expended it further we're going short. Determines how long we acquire the data acquisition for. But it turns out that the special resolution of an image is inversely proportional to the maximum k-space value you acquire. So if

we go out further in k-space, we generate an image of higher and higher spacial resolution. In the previous k-space lecture we saw why that a wide as you go to higher and higher k-space values this gives you more and more fine detail. But mathematically this is what's going on. So the spacial resolution of image, is inversely proportional to how far you go out in k-space. So for example lets say

this first example here where I go up to this particular region of k-space, lets say this provides me with a spacial resolution of one millimeter so the image has a spacial resolution of one millimeter. Finally go out half this far in k-space, another way is I only acquire data for half as long, and what's going to happen to my resolution, is it's going to get worse by a factor of two. So I'll

go only half as far in k-space and my resolution is now courser, instead of one millimeter It's now two millimeters. So again, if you want to determine how far we need to go out in k-space we just simply have to determine what is the spacial resolution you want to get, what is our gradient, and that tells us how long we have to acquire the data for. Another

important property of imaging is the field of view. So that's how big of a region are we going to be imaging with MR. So again here is our initial gradient, it's function of time and is the initial k-space region we cover. Now, the MR signal that we're generating from the body, is generated continuously. So continuously is a function of time. But in practice since we can't store an infinite

amount of data, the signal that we actually measure is only sampled discretely. So we only measure it at the discrete distributional points like you see on the image on the right. So what determines how finely we sample that? Well, it turns out the field of view of our imag,e is inversely proportional to how finely these are sampled, so in other words the larger spacing

in between these k-space points, the smaller our field a view. And in turn we know that K is equal to the gradient times time, so essentially the spacing is determined by how finely or how quickly we sample our data which is this Delta T here. So on most scanners, it's the sampling rate that's controlled explicitly through the bandwidth. So as an example let's say that we specify a bandwidth

of 32 kilohertz, that's 32,000 samples per second. That means that in turn, we have a sample rate of 1 over 32,000 or in other words, 31 microseconds per sample. We're basically sampling our data every 31 microseconds. So as I said on most scanners it's this bandwidth that's controlled explicitly. So we prescribe a particular field of view, we prescribe a particular bandwidth and then

the scanner we're going to calculate what gradient we need, in order to generate the appropriate k-space spacing, to produce the field of view that we've specified. So that's going to end the first part of this lecture, so we've basically done a brief review of the concepts of the fourier transform signal generation, and we talked talked about how we can use gradients to localize

spacial position in one dimension. So in the next lecture I'm gonna move on and talk about how we can extend this concept to localized spacial positioning in two or even more dimensions. [BLANK_AUDIO]

turned the mic to my FA which she will be speaking about program implementation staff education requirements clinical work form and review some case studies

Thank You rose and good afternoon ladies and gentlemen I'm Rafael Donna I'm one of the regular genders at Memorial sloan-kettering I'd like to thank you now because I don't know later I might pass out because just a nervousness if

that possible let me know later okay I would like to acknowledge Pyrrha she's trying to leave now she's have to go back to New York thank you for helping us to make this presentation possible and Renee

he's here he's our clinical radiology director he's very supportive of us and thank you too Larisa Sanchez our nurse leader and Erika leer and are in for making this giving us opportunity to present before

I go into my part of the presentation let's say let's do a PET scan into to our MRI team you see the white floating areas over there let's pretend us the normal uptake from pet SDG but if we do pet MRI look what happens yay you see

their smiles it's very very vivid colors our team is very diverse you could see from all we come from all over different parts of the world they are awesome they help us give us this very good images that we're going to present today

the MS Casey pet MRI program planning and implementation took over a year the department have to hire dual modality artis who specifically trained for pet and MRI the cross training of our ends because we all MRI nurses we have to

cause cross train to nuclear medicine and pet department the construction of the radio pharmacy in the MRI suite and the development of the pet amar protocols in collaboration with the bio engineers physicists the radiology

leadership the attending radiologist the radiology leadership our ends and the artis also the compliance with the State Department of Health regulation guidelines very important part of this

so just to give you guys an example of a

typical patients that we would see in patient this example right here is a 71 year old guy as far as this urinary symptoms he has this long-standing history of lots or lower urinary tract symptoms so we call it lots for short

but basically has the symptoms of urgency hesitancy and sometimes I'm aware incontinence he's also been followed by our urologist and it was seemed to have a little great prostate cancer so at least at this time

it's not getting any treatment so it's just on close surveillance however though he was straight on flomax which is one of the alpha blockers would we'll briefly go over later he's not able to stay on those medications because of the

side effects he's having some dizziness hypertension and he's complaining that he cannot perform well at home so this is just a quick view this is an MRI to your right there is an MRI looking from the front side and so you can see the

hip bone so it's on the right but if you look in the middle there that's this prostate gland okay and the highlighted part is this bladder as you can see the process is compressing on the bladder and likely compressing the urethra air

obstructing urine flow and to your left there is the sagittal view of the MRI and you could also see that bladder compressing excuse me that the prostate compressing on a bladder now this process is measured to be about a

hundred and fifty six grams normally a male should have about thirty grams so he has like five times the normal of size of a normal guy so be pages a very common condition usually related to aging and then when they have and it's

causing the subscribe' symptoms and we call it lots basically so about thirty percent of men would be ph will have the symptoms and if you're above sixty you're gonna have at least like fifty percent of them and seventy or an older

you pretty much have the symptoms of let's just like recovery of an enemy patho of the prostate as we all know the prostate is doughnut shape glad that in circles the urethra it's just right below the bladder and above the base of

the penis is right in front of the rectum so on exam you're able to palpate the process easily the main function of the prostate is usually to make this fluid with the semen the lining of the prostate is filled with this alpha

receptors which is important to know especially with some of the medical therapy with prostate and it's activated by smooth muscle regulated by the our genetic nervous system just a quick review on the path though so be case you

really refers to this tissue going around the prostate and so this causes compression also there's a decrease in elastic fibers in the prostate you read her causing increased resistance and one of the more popular if delivery what we

think this is happening is this imbalance in testosterone that's converted into tht also called the hadass the hydro testosterone and this is converted by an enzyme called 5-alpha reductase it is

also important to know especially with some of the malko therapies that are being used with BPH and so once the DHT is formed within the prostate he undergoes this complex mutation basically causing prostate hyperthre

being so BPH basically is hyperplasia upto prostate tissue and this really common or two reasons why patients will have lots it's because of bladder obstruction and there's increased resistance within the prostate urethra

so a lot of patients will have symptoms of hesitancy extreme straining nocturia urgency or frequency and many transportation can be fully dependent due to the severity of their symptoms so many of these men that comes to our

clinic and we want test them they will come in jokingly talk about their symptoms but in reality a lot of the symptoms are really life-altering a lot of these patients are not able to sit through a meeting for a long time they

can take long trips without having multiple stops a lot of patients are also having to go to the restrooms multiple multiple times at night causing a sleep deep vibration so a lot of these patients are actually press and a lot of

another thing that's more important for this patient it actually causes sexual dysfunction which a lot of men are not very happy about so nearly half of them will have some type of sexual dysfunction when patient have a lots

associated with BPH and would be paged you know you could have also complications such as never your Yarilo Suzman huge early biases patients can have recurrent UTIs especially the ones who are fully dependent

and at force they can affect our kidney function so this is our questionnaires

I good afternoon everyone my name is Ross Lozada and today with Murphy Aldana we will be presenting pet MRI and you technique to obtain high quality diagnostic images for oncology patients we have no disclosures Murphy and I live in New York City it is the place with

over 8 million in population 3 million of which are foreign-born about 800 different languages are being spoken other than English and they love in floor MRI of Memorial sloan-kettering Cancer Center we are reflection of these

statistics we speak about 10 languages which includes Sigala Chinese Russian Korea and Albanian just to name a few and about 70% of our staff are foreign-born actually I can count in one hand or how many are born in the United

States but despite our differences we have a few things in common one is that we all love our jobs and we take pride at what we do and T in taking care of our cancer patients and also we love food

this is a typical potluck in our Union we love our pot Luck's we do it for every holiday for every birthday in even random days where we just say hey you want to eat here we have some stuffed cabbage some rice biryani some mac and

cheese and quiche some caldereta and adobo some curry goat and a Haitian rice called John John but back to our topic our objectives for today is to provide an overview of pet and MRI imaging modalities discuss the application of

pet MRI imaging of oncology patients describe the care of the patient undergoing paddan-aram identify the nursing implications and to review some case studies so what is pet pet or

very helpful these patients the calcium this and the vessels can be

seen through with the MRA it doesn't it doesn't cause as much artifact so it could be easier to see what's going on in calcified vessels additionally you saw an image in Marc's talk as well of this is an example of a time-resolved

image of an MRA or you can basically recreate exactly what you're seeing in an angiogram and this could be very helpful to kind of determine what kind of TVL disease you're getting yourself into

newer MRI techniques that we're using in the evaluation patients with PID functional MRI which compares the ratio of how much oxygen versus deoxygenated hemoglobin we have in a tissue so we can apply this to a pre and post exercise

scenario in patients to have claudication as well although it's not it's only approved in research protocols this is an example of what you see for that so pre intervention here's the CTA image reconstruct

in 3d with a long segment an iliac occlusion and then post intervention you can see there's a standard reconstructed vessel and the you can both chart this out and do it and superimpose it on the MRA image and you're gonna get an actual

quantitative amount of tissue reperfusion but studies are still ongoing to determine just how much increasing the amount of red that's in that image is important we don't know the answer to that yet here's just

another example a patient underwent an anterior tibial artery recanalization and you can see the improvement in the t2 star which is just one of the one of the measurements that you can use on these images so what's on the horizon

program is the stuff requirements and

stuff education all personnel who works in this department the radiology department have to complete successfully the web-based training for level 1 and level 2 safety MRI training including the housekeeping

and also the hospital staff that comes to the department have to fill up a screening form after doing so you'll be given a sticker placed in the back of your ID and it's good for a year and that serves as your pass coming to MRI

so you don't need to fill it up every time you come in and the initial radiation safety training is given by our safety radiation safety officer in the start all it's on higher and also the best training for RT Sundarbans

course training to nuclear med and the pet department it is important if you work in the radial pharmaceutical area that you know the basic concept of spill management the acronym cares I would like to acknowledge that this acronym is

done or formulated by our nurse leader le carré leer C stands for contains pill and opened the checklist the checklist should be available or posted to all areas where major pharmaceutical agents are administered a s alert the

technologist and supervisor they're very knowledgeable in taking care of the spills our is to restrict the area don't let anyone come in and step onto his areas of spill remove the patient if possible he is to educate the patient

you have to reassure the patient there is no health hazard or nuclear hazard to them yes is to sanitize sanitize the area of spill and record in the medical record is very important but what to do when this bill occurs in the zone for of

the MRI we were prior to going that I would like to show you the how our Rachel active spill checklist looks like this is formulated by Pierre Robson it would take you I would give you guidelines on how to do step by steps in

case of nuclear spill and what to do for spills that occur in MRI so on for first cover the area with absorbable material remove patient from stone for prior to proceeding to the decontamination process contact

radiology leadership they're the one to direct surface contamination within zone four and remember the Geiger counters are MRI unsafe so how we check the Geiger counts you have to use an absorbable material you keep wiping and

then bring it out and measure the Geiger level until you keep doing that until it gets cleared also remember that the MRI magnet is always on so have someone is done guard outside the door so anyone that would need to go inside the room

would have to be scanned again and screen this is our ms KCC clinical

workflow for pet MRI upon arrival the patient have to fill out questionnaires the MRI screening for contrast and allergy assessment pet screening form

the RT will review MRI screening for after he checked that the patients at MRI safe and no presence of a Mia Ferris fragments or anything he would give the paper to the RN the patient then will be escorted through the change room and

asked to put on robe and non slip shots this is these are the responsibilities of the nurse in our clinical workflow for pet MRI RN to review pet screening form and contrast questionnaire if patient have to receive gadolinium check

kidney function EGFR below 15 you notify the radiologist except for a of s below 30 you notify the radiologist check for allergies if allergic make sure patients is properly pre-medicated

check for Medicaid presence of medication patches and implanted infusion pumps now also you have to check for patient's blood glucose monitoring I have one but I would but I don't go inside the scanner so I'm safe

check for pregnancy status with pediatric patients we have a special process to follow the iron then obtains blood glucose and record if blood glucose is 70 to 199 we proceed with the scan anything above 200 we follow the

glycemic management with PET imaging flow chart and here's how our PET imaging flow chart looks like it looks complicated by its color coded it's three pages but I would like to show you some key points like the administration

of insulin is also based on the level of BMI you see on the arrow says BMI below 25 and there's another flow chart is if it's above 25 after that the patient will be brought back to the pet designated injection room

remember our pet MRI is located in zone three of the MRI area so prior to that the RT would the screen the patient again the patient would pass through the wall-mounted metal detector and nobody could go into song free without escorted

by the IRT or a nurse you have to swipe your ID to open the door mission when the patients in the hot room are in would obtain the height in centimeters and weight in kilos after that the RN now could do IV access once

secured you call the range of pharmacists that you're ready to inject so we wait until and the FDG dose would come up through the pneumatic children this is how our hot lab looks like the pneumatic tube to your left above is the

shower and we have the hoop to prepare for the dose or check for the dose and the wash station and once the those arrives the nurse injecting and the RT is scanning or the RT assisting just always two artists in one machine in our

MRI Department we have four magnets and only one is for MRI PET MRI it's always two artists in each machine so one RT is assisting you and with the patient so once the FDG arrives we do a patient identification using two patient

identifiers we check the label and the dose if it's correct the FDG then will be injected to the patient once injected we tell the patient they have to wait for 40 minutes during this time we instruct them to stay still not stay

still but limit movement and stimulation and inform them that we have a camera inside that room and the nurses in a and the nurses could monitor them in the nurse's station one RT will set up the scanner and computer

and patient will be screen and wondered prior to so on for so you get wandered twice check for ferrous presence patient then will be positioned on the scanner table by the pet mr technologies it takes 15

to 20 minutes for setup you have seen how the patient is position the whole body is covered by the coils and head is covered by another coil as anybody among he works in the institution who requires time out prior to injection raise your

hand please at ms KCC we do this is done by the injecting nurse and the RT is scanning the RT is reading information directly from the monitor not anywhere in the monitor while the nurse is comparing and listening into the using

the documents on hand this is done to ensure the five rights the right patient the right scan the right area your scanning the right contrast those and rate and method of administration as you all know is either given IV push or by

the dynamic or the injector timeout will be done if patient will be receiving gadolinium once the scan is finished IV access will be removed our artists are trying to remove and inject also so they are capable of removing the IV the

radiation card will be handed to the patient and paste after that patient would be assisted to the change room and discharge there is good thing when you change the patient into the robe and the non-skid

sucks because just in case there's a spill you're not sending that patient into the paper outfit they're not gonna be happy at all now I'm gonna bring you

so we're just gonna like hop over to the clinic side and kind of discuss how we work up or what are the things we look for when we see the patients in clinic

so a lot of patients are referred to us by urologist so we have to have a urology on board to to better take care of this patient we can't treat this patient you know by ourselves so a lot of patients are referred to us by our

neurology team if they don't have a urologist we have to refer to them to erosions first before we can even work them up or PAE so we won't make sure that patient you know doesn't have any underlying cancer that we know of so we

want to make sure that we check their PSA levels because this high high patient can ask actually I predict a decent progression and actually our risk for acute urinary retention you want to make sure that you get

urinalysis a lot of patience wet with lots is not only due to pph you could also be secondary to UTI or if patient has some type of bladder tumor or bladder disorder so it's kind of good to know to understand some of the lingo

that urology uses so once they see the urologist they do some your dynamic studies and one of the popular ones are these non-invasive studies called euro flama tree and the post-void residual do you offer the Euro excuse me you heard

from a tree usually we will measure the flow rate and the volume of the patients so what they do is they they would pee in this special funnel and the final obviously they go in private but this final is connected to some machine that

can actually measures how fast and how much their voiding and so normally it's about 25 miles per second but if it's anywhere less than 13 to 15 it can suggest obstruction and use the obstructions usually due to BPH some of

us a very low flow rate such as like say less than ten or six you have you want to be a suspicious of some type of you to neutral structure after they do that usually what they'll do is they take a post void residual is basically scan so

they'll put that little probe above the bladder and they'll see how much is left in a bladder if it's 150 that she usually indicates in complete emptying someone who has greater than 200 that may suggest patients having some type of

bladder dysfunction so a lot of its patients to us at least woke up with some type of imaging and the ones that at least our physician selects is the MRI patient do get a CT angiogram which can also evaluate the pelvic Anatomy and

arteries however the process the mr process actually gives a better illustration of the prostate a tissue to see if there's any suspicious for cancer for example you can also display the president atomy and characteristic up

the gland so most patients do get MRI or at least we get them to get MRI to measure the actual volume in literature they will tell you that a patient can get a trance rectal ultrasound but I'm not sure how many

guys in here would like a probe stuck up their butt to get to get their prostate measured so unless you wanted to get pissed at you just supporter I am right so when we see the patient you obviously want to review their HMP more

importantly you'll want to check their comorbidities there's social history whether it is smoke or not because they're gonna that's gonna have an impact on how we stay patients and how you can predict their anatomies

obviously someone's died who is diabetic or who has a history of smoking you could expect for them to have a greater degree of atherosclerosis and again the first thing that we would get the patient why we walked in is we go in

that scoresheet the IPSS score and so that's gonna give us an idea of how bad this symptoms are so if they come in to us with a score of say you know they're mildly symptomatic I'm not sure how much to pee a procedure with would help them

because how much more lower can we get their scores down so a lot of patients we would treat are in the moderate to severe category and their quality of life score should be for the most part will be about three or higher you also

want to make sure the trusted results since this is Andrew Graham procedures you will make sure that they have a pretty decent renal function patients with lots a lot of them may have some degree of renal insufficiency so we have

to be careful make sure we watch that lab value so this is some of the screening criteria that a lot of us may use so patients who I have refractory to medications for the six months someone has a high IPSS core grain 13 or

qualifies score greater than three process volumes gotta be at least 40 grams we sometimes get patients with a high score but they're positive volumes around 30 we usually usually wouldn't treat those

patient because we can't basically treat or shrink the prostate any any lower than that you someone who has an abnormal urine Flo and someone who maybe refractor to medical therapy these are just a list of

exclusion criteria the ones that should my party set out someone who has prostatitis or current approximate infection you definitely want don't want to treat those patients chronic renal failure and relatively maybe coagulation

factors that could be patient dependent sometime sometimes we could optimize them to get this arteriogram procedure and prostate and bladder malignancy also this somewhat also relative we do treat patients with prostate cancer it just

depends on what course of treatment they're on currently so once we had screen the patients and and deemed them to be a candidate we reviewed the patient we review in detail the procedure with the patient so you want

to let them know that it's a our angiogram procedure that will go through the either the growing or sometimes the radio and the procedure itself you can take anywhere from one for one to four hours and sometimes longer depending on

how complicated their arteries feeding the prosthetist more importantly we want to educate them about the side effects okay we have to let them know that a lot of their symptoms might actually worsen during the first few days after the

procedure so if they have the Syria now urinary continence they actually may get really worse especially for the first few days okay we have to go over the complication with the patients that can include a public infection ischemia or

any vessel related complications that pseudoaneurysm or bleeding so we have to basically have a basic knowledge of how do we combat this side effects and these are just some of the list of side effects that

are mentioning or at least we also used a PI radium it helps I guess to numb up the prostate urethra we have to educate the patient that this can change the color of the urine so we always make a note to our patients that if you are

going to take this medication please call us that way we don't kind of shock you and we also know that the change of color is from the pair radium and not from anything else the tripping or oxybutynin

it helps reduce bladder spasm we would normally use it for a patient who go somewhere to Foley our patients would go some Foley tends to have a great degree of bladder spasm Coley's a lot of spatially get constipated for multiple

reasons being better that or they and she is soft and there's also the over-the-counter azem so this is just a sum of the standard medications that we would give all our patients all of them will get about cipro for seven days

we'll give them some type of anti-inflammatory Asia usually is ibuprofen were prescribed 800 a tid if needed anti-acids since it's just to protect your belly or their stomach from the ibuprofen minimum we'll get a stool

softener at least for the first three days or if they got developed loose toast and we would ask them to stop it and the medications for pain that we would get them as Norco just in case and I would say like more than half these

patients don't even need Norco at best they'll probably use ibuprofen you know just to minimize the inflammatory side effects that I get it also helps out with post embolization that sometimes we'll get and I believe so I don't I'm

not sure if I'm messing about post embolization syndrome patient do can get these symptoms and a lot of symptoms can vary they can get some body slug or fever malaise and the degree the symptoms were may bear from patient to

patient and a lot of symptoms are described kind of like a flu-like symptoms and we also want to reiterate a patient that the symptoms are temporary and it should get better over to at least at first week or so so patients on

warfarin we have a lot of patients on warfarin for whatever reason whether they had a recent cardiac intervention we want to assure that we stop those medications at least before the edge ground procedure so it's very important

that you have a good rapport or whoever and have prescribed him the coumadin whether it's a cardiologist or the surgical team and a lot of dissipation may need to be crossover outside like a short-acting

anticoagulation such as Lobo Knox at least in our practice we ask the patient to this condition discontinue your aspirin unless they're you know they have a recent cardiac intervention we may leave it leave them

on aspirin metformin as very important since we did it is a natural procedure we want to at least hold have the patient hold the metformin the morning of the procedure and maybe a couple of days after and someone who are

allergic to contrasts we will make sure that we're prepared to premedicate a patient and also be prepared in case there's a severe reaction and the pre medication as we know will give them some type of a standard metal prednisone

will they'll take it like twelve seven or one hour before and they also gets unbearable and preoperatively or one hour before the procedure and during the clinic we also determine the level of anesthesia so since this procedure

usually takes a long time we always get it with our anesthesia team is just more for patient comfort it's not really for pain okay I couldn't imagine laying a table for several hours at the time so we all shop anesthesia on board just

really for patient comfort so we're just

helpful and you know many of us use this on the table at the time of the procedure we also look at our own images because it reports are not all that helpful and what you're looking for I don't know duplex ultrasound is what is

the vessel wall look like is it narrowed is it patent are there are there large collateral so you're going to need a lookout for or what's the velocity of flow because as you know as you know you put your

finger over the end of a of a garden hose it's going to increase the velocity of the water that you're shooting at somebody and the flow direction and quality can also be detected so color Doppler imaging often changes from this

kind of smooth the uniform color with laminar flow on the on the right side to one of multi-directional flow with turbulence you'll see colored multiple different colors in the same image spectral Doppler waveforms are also

obtained with with duplex ultrasound so what you're looking for is this is the the picture equivalents of marks noises from earlier which is a triphasic waveform see that the flow goes above the line and then goes back below the

line and then comes you can wholly state that it comes back above the line here that would suggest that it was triphasic or normal and then these often just go above the line and they never go back below the line and these patients if

they're if you're looking at the ultrasound below the level and destruction so we're looking for a return from the image on the right to the image on the left we have specific number criteria that we use as a

determination of whether one we've been successful the numbers are not that important but the ant vanish is a duplex are that it's low-cost and it's highly sensitive but it it's time-consuming and depending on who the operators are that

are actually taking the images and who are the readers are you may or may not find them that helpful and it's less accurate for determining if the vessels completely occluded because they may just not have seen it they may have

missed it so it's operator dependent several papers suggest that we should be this should be our first line imaging study for following up patients after we do an intervention particularly angioplasty alone and if the initial

follow-up is normal we can usually push them out to just clinical follow-up and making sure they have a pulse exam if patients have an abnormal finding then we usually bring them back sooner and get a repeat ultrasound at two to three

months CT a very sensitive and specific

there are advantages of this modality one there's less radiation exposure for

the patient we receive about three millisieverts of background radiation every year with one PET scan a patient can get up to eight years worth of background radiation in just one skin the only exposure of radiation a patient

gets in a pet MRI is through the isotope pet MRI has a better disease characterization especially for areas in a Patou biliary region the pelvic areas and the kidneys information and the relationship between lesions and

adjacent tissue is better delineated with the pet MRI so it's easier to see which part is cancerous and which partners normal cells there are varying opinions and research studies are being done to make a determination if pet MRI

is a better modality than pet CTS well PET CT is a lower-cost skin has increased accessibility there are more PET scanners available and more more technologists are trained for this modality PET CT is a shorter skin there

are no contraindications for affairs implants pet CTS are preferred method for imaging the lungs of thoracic nodules and bone structures however with a pet MRI it's good for soft tissue organs such as the brain the muscle

delivered the kidneys the pancreas our GYN pelvic structures such as ovaries the uterus and cervix and also the prostate there are limitations of this skin one it is a much longer skin one whole body pet MRI can last at least

about an hour there are contraindications with certain implants due to the magnetic factor of the of this test and is not preferred for imaging air-filled structures because it can give off artifacts there

are weight limitations for our machine our machine holes can hold up to about 500 pounds of weight it is this our machine as smaller bore compared to the white board MRI the MRI whiteboy is about 70 centimeters in diameter

our pet MRI machine is only 60 centimeters in diameter in this picture the difference of the 10 centimeter difference doesn't seem much however if you put a patient in there and this is one of our coworkers

he is 270 pounds and 6 feet tall and the white board MRI his shoulders fit comfortably well inside it in the sky inside the scanner however in this pet MRI machine he said he did feel a little snug and a little tight inside

but you also have to take an account that we have to put coils on top of our patients that 10 centimeters does make a big difference the coils will help us give the good quality images that we like and I also have to note that we

have to put the head coil or the helmet on top of the patient's head to give good images of the brain the reason why the pet MRI scanner is smaller is because we have to make room for the pet detectors we try to make it bigger the

gradient coil on the radiofrequency coil have to be further away from the center of the magnet and that compromises the quality of our images so which patient

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

year old patient diagnosed with

glioblastoma lesion is located on the left frontal lobe this is done after radiation and surgery the image to your left is just a regular MRI with contrast gadolinium is the one used this time we always be the drum in the context of

choice is gadolinium in our institution you could notice the big size of the glioblastoma lesion onto the left frontal lobe of the patient as indicated in the round ring patient went for treat radiation and surgery look at the two

images to your right the one in the middle is done Pet MRI without the contrast take a note on the area where the lesion was before there is normal uptake but you don't notice any abnormal uptake and on to your right is post

treatment MRI is that those two are done the same day and with gadolinium the deletion the area where the the ring it is enhanced by the contrast but look at it there is no hypermetabolic uptake that means that the lesion is not viable

so the malignancy is not viable this time this scan is done to evaluate the effectiveness of the treatment it's a good sign before I go to the third case

So the full title of this statement

that changes everything is the 2018 HRS, that's the Heart Rhythm Society, Expert Consensus Statement on MRI Imaging and Radiation Exposure in Patients with CIEDs. Those are cardiovascular implantable electronic devices. And this guideline is intended to provide

useful and practical recommendations for patients so that they can safely undergo imaging and treatment. It's not intended to dictate management of details that they state are best left to the individual institutions to develop.

The Heart Rhythm Society and 11 other national and international colleges collaborated to write this statement. They included experts from the American College of Cardiology, the American College of Radiology,

the American Heart Association, people from Europe and Peru. And these were experts that were saying, "Okay, we've got these patients that need MRIs. "What are we going to do about it?" And one of their statements,

and the one that actually changed everything for us, was, "It is recommended that personnel "with the skill to perform advanced cardiac life support, "including the expertise in arrhythmia recognition, "defibrillation and transcutaneous pacing "accompany that patient."

So this means that qualified radiology nurses can monitor device patients. So what's the big deal? Radiology nurses have extensive training in the care and safety of patients in radiology and in MRI.

However, understanding of pacemakers and defibrillators and the potential issues that can occur are not necessarily a part of the radiology nurse background. In caring for these patients that are having their MRI device studies,

nurses need to be prepared. Radiology nurses need to be prepared.

this is nursing case volume per hour so

staffing is a consistent challenge as I mentioned before having dashboards helps to make real-time decisions to help allocate nursing resources during high-volume times so this dashboard indicator

identifies the distribution of nursing workload over the course of the day I love this one for me especially as a nurse manager especially since me knows Tommy says they they feel like oh my god it's so busy it's so busy it's so

chaotic and you're trying to help them you know well of course I understand why it is now so I actually have data to understand their story and help them to see the data and why they feel it's chaotic so again with the help of color

coding the ability to look and interpret the data is simple so here since I've taken you through a few I thought I'd throw it out to everybody and see what if you wanted to kind of take a stab at using our model so if showing or if

anyone wants to raise their hand so what are you seeing here in this dashboard a lot of what you owe to our cases yeah anything else are you seeing yes correct there's nothing happen at 8 o'clock anything else right yep

sort of a lull here correct so what might you interpret from that in other words so what would you kind of see your say about this I'm sorry can be allowed a long time oh yes yep exactly right and so so then

what action might we take here to help sort of get rid of sort of the high volume times yes exactly so here's where you would shift the staffing to help cover the high volume areas and so I'll just take you through what how since

it's what we do at D H I'll take you through so exactly right I think someone pointed out that you have nurse cases except for say at 8 and at 6 and 6 generally we're just doing recovery at that point we don't need any more cases

going through interpret wise so we have this Pio nurse as you can see in the magenta and I'll tell you a little that's our MRI nurse to specific for MRI doing Pio sedates as Chris mentioned we have an MRI nurse there and we also do

cover pacemakers as well and those that's her caseload as far as non sedation we actually just have we sort of as people aren't busier in between rooms is when they might go you know give lasix for a year gram or you know

port access or what have you so what I'm looking as interpret I have a Pio nurse available seven several times a day so only in the magenta is she busy or he and then the best times may be for IR addons is between like say 11 and 12

here I would potentially my action would be to say hey this pio nerves could actually come and help get cases started and get them on time and then also come and maybe relieve lunches that's another I'm sure probably an issue for everyone

is like you're down a couple staff during that time but we're still running our rooms great that was a great job very good okay so a couple more to just kind of quickly show the pending patient workup documentation so this gives the

ability of the frontline RN to have instant visuals of the electronic medical records documentation that needs workup and phone calls that are needed to be completed for future patients so again let's use our model

so look there are a lot of workup phone calls pending and remember this is real time so in this case if you were looking this is just a snapshot but say today is March 4th okay going around so the first thing I'm saying yep there's a lot of

cases I've got 14 here and it shows a couple of days worth obviously you can see how the numbers add up I'm looking at the high number of same-day pending work for procedures so you can see here three four five six work ups and I have

nine phone calls to be made and I'm looking at the MRI work up calls and right now there are a couple days out so I'm opening less concerned about that so how would I apply and what action would I take well first I would clarify that

these same day workup and phone calls are actually pending sometimes they might have been done or someone missed hitting the icon on our computer and then I would prioritize completion of pending work so I might say to a couple

nurses that are in between rooms or whatever can you make a couple of phone calls we've missed this and we need to get contact with the patient and then of course I would obviously prioritize the I our work ups before the MRI ones

because there are a couple days out okay

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

okay all right let's go over another case we have a ten-year-old with smelly

and bloody leukorrhea itching and vulva irritation always want to rule out sexual abuse of course when there's any vaginal discharge or any vaginal bleeding as well okay they're on trans abdominal ultrasound

there was an echogenic image that was noted in the upper part of her vagina and she had a badge on ah Skippy under general anesthesia and what that noted was a vaginal adhesion that was hiding the cervix so they decided to do an MRI

and the MRI showed a smooth image in the upper vagina so here's a couple of our images here on the Left we have a coronal MRI t2-weighted images sequence in the upper part of the vagina they can see a foreign body okay on that janaki

right here on the right you can see an adhesion that's kind of hiding the cervix and there's a flap on the side a flap of tissue that's how that's hiding a small orifice which is leading to the cavity of the foreign body and this is

the foreign body that was found it's a plastic dolls house glass and they suspect that it had been present there for several years okay next case a

good outcomes now the stroke care is a total team approach I mean everyone's working together different Doc's ER

neurology whoever's doing the intervention you know the EMTs are involved I mean they're the ones who first assess the stroke and they call the hospital and say I think we have a large vessel

occlusion and so things are already getting ramped up in radiology ICU texts and nurses all that stuff we're working together to get these patients on the table and intervened and then all the post stroke management too so it's

always been shown to I mean everyone is looking at times it's almost like a STEMI where everything is recorded and especially for neuro and Stroke lumpectomy hospitals in order to maintain their certification need to

record everything so as long as you're involved early in the workflow things are helping and we're still trying to make make our times better even just a couple minutes shaved off here and there it can help now

there's guidelines out there this thing is 255 pages and who wants to read 255 pages and it's pretty long but their guidelines and just to kind of review some things that no one really even follows the guidelines now I mean there

has been strokes in pediatric patients that people will intervene on all these different words NIH SS that's a stroke scale assessment aspects is there's different things that I'm going to show you all of these things are guidelines

so now no one even really follows these numbers I mean they're a good way to start but you can really change your management again on that perfusion so probably perfusion is one of the most important aspects and you know a lot of

things can mimic stroke he actually had a whole stroke activation for a patient one time at my hospital and we did the whole CT and everything everything looked fine and then it was found that the blood glucose was 34 I mean so

there's these things a patient looked like he was having a stroke but he was just hypoglycemic so a lot of times you have have things like that now even your INR are your platelets being below you can still

intervene and and pretty much nothing stops they have renal failure it doesn't matter you just it's then they start talking about neurons over nephrons and so they just put a really high priority on getting the thrombectomy because it

is life changing and imaging is so important so they you know I'll stress again and again this is what perfusion has really changed you know your selection for a stroke candidate and we use CT most centers use CT you can do

MRI - but MRI you know slower and not always available and so most people will just do what they call it triple scan which is a non-contrast CT head and that's to see if you have any blood that's one of the things that will

probably be a contraindication to stroke thrombectomy and then the CT a head and perfusion so you always see the docs like looking at these color maps they look nice but they're really important so these are

the color maps I mean I think anyone can see that there's all this red on that side of the brain and that's the red that's what we call penumbra and so what we are always looking at so CBF is cerebral blood flow MTTs mean transit

time just means how much time does it take for blood to get there so the longer it is the red and that's that's why that value is abnormal and then cerebral blood volume so when the volume is in tact that means your collaterals

are giving enough flow to that area so that's showing that this the CVV map is normal and MTT is abnormal so all that brain is at risk so potentially if you can take out that clot you'll save that entire side of the brain and that's

where this perfusion imaging comes about and you know we use all these numbers aspects mr-s Stroke Scale and you don't have to know them per se but just to know that the higher the number is usually worst except for aspect so

always ask you what's the abscess score and that just tells you on a very you know primitive way on a non-contrast CT what brain is at risk and now you know whenever I get called about a stroke these are the the questions that

go through my head you know when did this when did the symptoms start what's the stroke scale you know but even though all these questions that are in my head all I'm really caring about is a profusion map and it's not that's

really gonna guide me to what what goes where and so you know what part of the

of critical of ischemia well a lot of times it starts in our office with a physical examination so we do a risk

factor assessment and this is what happens before they get on our table with with everyone in this room and us seeing the patient assessment of intermittent claudication and it can be subtle many patients don't come in and

say oh yeah I have pain when I walk for a short time and then it I rest and it goes away a lot of times it's yeah you know my leg gives out or now it doesn't hurt it's kind of this weird feeling when I walk and it these atypical

symptoms and then obviously if they have a wound you have to a wound evaluation on physical examination things we're looking for feeling a pulse you'll be surprised how many primary care providers never feel a pulse and if we

say if you feel a pulse you may save a life because you may be the first one to say hey this patient doesn't have a pulse maybe they have got peripheral artery disease and if they prefer order these maybe have coronary artery disease

and maybe they should we start on aspirin or statin and save them from a heart attack and stroke and so you really can save a life abnormal capillary refill so in other words you've got such bad blood flow

that if you smush on their foot it takes a long time for that blood to come back because they have such poor perfusion there's something a Peugeot stess TWEN that if you lift their leg gravity alone pushes their blood isn't it overcomes

the force of blood and so there are foot becomes power becomes losing some color and then when you put them down it dilates and you get sort of this ruborous red color so that's a burger sign I just had a good example in clinic

about a week or two ago so what do we ask for patients do of any pain or discomfort in the leg thigh or butt with walking your exercise I will sell you tell you I often don't use the word pain because everyone thinks pain is

different so so some people say well it's not paying it's a key lake ease pain to me I'm a guy everything's pain to me right low low threshold but discomfort is a good way of asking it foot or toe pain

that disturbs your sleep do you have any skin ulcers or sores on your ankles feet or toes I think it's very important to know what kind of patient you're talking to in terms of Education level or in terms of just language so some patients

don't know what it all sir is and they use the term sore some people don't know what a sore is they used term wound and so just sort of you ask things different ways I think is really important when we all talk to our patients and again a lot

of classic history will miss a large majority of PAE because patients don't read the textbook the one thing I'll say is I hear this all the time well the patient had pulses and so they don't have P ad that is hashtag false and the

reason is pulse exam is insensitive so in other words even if you feel pulses they can still have peripheral artery disease okay now if you don't feel pulses they certainly have peripheral artery disease or you're just terrible

at it PID classification the way we talk about patients with PA D we use a classification scale called Rutherford it may come up so in other words patient who has PA D but asymptomatic is

Rutherford zero a patient who has got major tissue loss and is basically 1 for amputation is Rutherford 6 and then everything in between is sort of a gradation we cut off 3 to 4 so 3 is claudication pain only 4 is critical in

ischemia rest pain alright so rather for classification when we talk about wounds you may see this you don't need to go in details but there's a Wi-Fi classification that sort of Germans how bad is the ulcer and how likely are you

to to lose your leg it's sort of a prognostic I will remind you that in medicine there's differentials for everything in other words the patient comes to you with pain or you talk to your friend or whatever with pain

there's a lot of things in cause pain it could be back pain arthritis infection DVT so there's things we have to think about when I was in medical school I sort of loved this my OB GaN professor said when he sees a patient the first

thing he does is say what do I think this patient have if this were a man because you get so pigeon-holed in your specialty every patient we see as well must be vas here must be vas care but you've got to take a step back and say

okay well am I missing something maybe it's arthritis may something else so don't get pigeonholed by your own prejudices which is a good life lesson in general there's also a differential for wounds so obviously

when we see a wound we could have arterial arterial tends to be sort of the toes and distal foot it can be severe pain if you see an ulcer around the ankle that tends to be more venous so vein related which again we

can treat and then a common cause is neuropathic so if you see I'm sort of at the pressure points where people walk a lot of times patient diabetes will step on something and where you and I would be like oh man that hurts

I better oh my god I have a wound there I better check that out they'll never know because they don't feel their feet and so they could have this monster ulcer and finally someone inspects their feet and says you know you have like a

golf ball sized hole in your foot and that's the first time they ever notice it so how do we test ever for peripheral artery disease well a lot of it is non-invasive now we do a B is a b is is a measure of blood pressure in the foot

or leg we can do some ultrasound to actually look at the artery and obviously we can do CT and MRI when we look at ultrasound you may look at this every once a while this is a normal ultrasound Doppler waveform where we've

got good blood flow up down and back three now the reason that's important is that correlates the sounds so if you listen to a artery i'ma do my best Doppler impression out okay a normal artery goes once you start getting

peripheral artery disease you lose that triphasic waveform it becomes biphasic when you get severe peripheral artery disease you lose that biphasic waveform it becomes monophasic and when you have nothing it becomes

okay so here's want to be alert to that so ankle brachial index is important and it's helpful again some patients who have calcific us a-- fication it's not helpful for I will tell you a B eyes alone actually not only do they predict

PA D they predict death that's how important PA D is link to mortality CT and MRI is very useful you can see here we can see a good anatomic description of the arteries unfortunately patients with calcium

sometimes we can't see as well because the calcium is so bright on CT scan that it obscures the lumen so we have other problems in patients with diabetes and heavy calcification and a lot of those patients just need to go to angiogram

and as you know my techs and nurses know sometimes rarely but sometimes we do an angiogram and it's normal and we say or there's mild disease we say okay perfect we've taken that off the table we need to move on when some of these

non-invasive testings aren't as clear so alright so in summary critical of ischemia is a morbid disease and can be the first presentation of PA d clinical suspicion and accurate diagnosis is essential for early diagnosis and

treatment and a multidisciplinary team that includes vascular venture loss who know critical limb ischemia not just the SFA and iliac artery jockeys and wound care specialists do decrease amputation rates I like this quote it's not mine

but I'm going to steal it with impunity amputation is not a treatment option it is a treatment failure okay so we have to keep that in mind I appreciate everyone's attention because we can save questions to the end or you do it now if

there's pressing I think we may need new batteries or my thumb's weak which is also a possibility any questions

as Chris described to you we really walked this journey around bridging the data gap from our front lines all the way to our senior leaders and we thought

this was very important because we didn't think we could drive a sustainable organization if everyone was not on the same page or even in the same book so we had to start helping the staff understand the story behind the

numbers and help them understand that every number actually has a story and is connected to their work it's not just random numbers these are things that also define patient care and can help us improve the way that we take care of our

patients and so the scorecards were really key in creating that alignment across the organization because as you can see on this chart here the senior leaders the radiology mid-level leaders and the

frontline staff all review the scorecards so AB monthly staff meetings the radio radiology leaders review the scorecards with the frontline staff and then we have our radiology director and our clinical chair review the scorecards

with the institutional senior leaders as well so all across the organization everyone had the same understanding around performance and if there was a strategy strategic vision that our senior leaders had they could easily see

how we could accomplish that based on the numbers that we had on our scorecard and then when it came to the dashboards these were as Chris mentioned more real-time frontline tools that were applied by our staff and but the metrics

on the dashboards were also included on the scorecards as well so when we designed the dashboard we pulled some metrics from the scorecards and thought about which which of these metrics would be more relevant in real time for our

frontline staff and so that way we restraints where we were continuing to build that competency for our frontline staff to help them to understand how to use data to drive decision-making in real-time and finally when it came to

the strategic plan we still have our senior leaders design strategic plans but our radiology leaders were able to move that strategic plan through our strategy to deployment program to define more specific strategies for radiology

and then roll that down to our frontline staff through their one on one performance management goals so this really helped us to start to create the same level of expectation across the organization as Chris mentioned we might

have senior leaders say well we have our strategic vision of increasing or falling by 10 percent over the next year and for our frontline staff that might be difficult because if they to them their work might be chaotic and they

think they cannot possibly do any more volume but when we presented the scorecard for example on s Chris showed in I arm at a 65 percent utilization everyone could see that if our benchmark was 80 to 85 percent we still had more

capacity in our rooms to be able to service more patients and on the same scorecard we could see our on-time start rate which was actually kind of low around 50% and so that helped us engage in conversation

with our frontline staff to help them understand that our issue was not necessarily a capacity issue we had the capacity to increase volume but the way that we were managing our workflow as you can see from an on-time start was

not great and so this helped them to start to identify projects that they could lead to help to manage their workflow better and with the dashboards they could actually see real-time improvement or real-time changes as they

made decisions around their workflows so again our goal to this journey or our journey to this one box was around bridging the data gap and to really create a sustainable organization where each frontline staff was empowered to

solve problems and have the data that they needed to do that objectively so now Jeanne will go over the current state of our nurses as we embark on that next steps of up - specific dashboards for them thanks to me

This is a copy of the device worksheet, and I kind of like you to take a look at it. You're welcome to use this tool as you develop your own adaptation to your hospital protocol if it helps.

It's broken up into eight categories or sections that I actually just numbered so we can discuss them and make for easy reference. Section one is the demographic section, and that's information about the procedure, tracking, it's our look up.

We print a snapshot from Epic, which is our computer-based system and the order for the patient. So we have their background. The device information has all the information that we're able to obtain about the device

and a place to put information that we get from the programmer when we're down in MRI. One of the things that we try to determine ahead of time but can't always is, is the patient device dependent? And that's really a general term for a person with a heart rate less than 40,

or if they're symptomatic or have symptoms of presyncope, lightheadedness or any hemodynamic instability when they're evaluated with their pre MRI interrogation. So if during the MRI they turned on the rate to see if their leads are working well

and the patient's, "Woah, I get dizzy", well then we need to think about this. That patient is deemed at that point device dependent. Do they have a history of complete heart block or have they had an AVJ ablation? And just remember that if the person is nonconditional,

has a nonconditional device and they're pacemakers dependent, they have to be monitored by someone that can immediately reprogram their device. Next section is a reference section, and it has telephone numbers.

It's numbers that we obtained. We get this list to the MR coordinator so that we're prepared. If an emergency happens, they have that list ahead of time. And this is one of the changes that came out during our mock code.

When we did the mock code, one of the device or one of the people from MRI commented that, you know, it sure would be helpful to have that information ahead of time. So now we print or we put on a little Post-it note and give that to their coordinator

so that they could start making phone calls if we have an emergency. The MRI staff does their work up anticipated. They do their screening, get the patient dressed. A change that happened once we started to monitor MRI device patients was that all patients

needed to have an IV access. Prior to then, even... When device nurses were monitoring them, the ones that didn't get sedation weren't necessarily getting an IV. But we determined that we wanted to have,

be able to treat them immediately. So everybody gets IV even if they don't get contrast. They get our monitors ready so that we're all ready to come in and get started. If they haven't, we work with them and get it all done ahead of time.

Our section four is the nursing assessment. Here we get our baseline assessment, their name, all that kind of stuff and we document it. We determine if the special requirements for the nonconditional device are met, and we expect that our physicians are going to call us

when we page them and tell them that we have a nonconditional device patient on the table because that's how we know they got the page and that's what we say, and I put a little note on the device sheet just prompting the nurses so that we all know what to say to the docs.

That was initially something that they all wondered, why do I need to do this? You know, we hear about patients at the beginning of the day, why do I need to do that? And our answer is, because if we have an emergency, we want you to come right away

or note to somebody else that will respond immediately to us. We do safety checks in the MRI. We make sure that our defibrillator is ready, our code cart's ready available, oxygen suction, and we think about our emergency plan.

Setting up the monitor is like major. Our primary objective is to monitor the ECG. However, we realize that that can't always happen so we use the sat probe, and that's what's recommended in this consensus statement of course as well.

Monitoring the heart rate from the sat probe gives us a consistent heart rate. If we were to monitor from the ECG during the MRI sequences, sometimes, as it shows in this picture, that looks like static and we can't really interpret.

However, when you look at the sat probe waveform, you see that your heart rate is good so you're not going to get alarmed. But it is important to correlate as best you can your ECG with your EKG, with your O2 sat waveform. And we've found that by placing the leads

way over on the left lateral chest, you get a better R wave. So you see even sometimes during the wave, during the MR sequences, they don't fade away. So having the leads way over helps. Adjust the lead and the scale for the best positions,

and we monitor two leads. And you cannot discern no matter what, and people, I don't know what rhythm they're in, that's why it's important to get that from a handoff with the device nurse. You can't see your PQRS and T waves

just because of where your leads are positioned. We record the heart rate and the sats every five minutes once we take over from the device nurse, and that's our standard for continuous monitoring. So we just have adapted that into our monitoring for device patients.

Now section five is the device, the handoff that we receive from the device nurse. And prior to making any changes in their programming, we expect that we'll be prepared with our IV in place and our continuous monitoring is already active. They will interrogate the device and the leads

pre and post scan as I said. If the patient has had a recent shock or override tachy therapies, we don't want to have an unstable patient in the MRI scanner. And they're not a candidate for that MRI at this time. A conversation will need to be held with the physician,

and no changes should happen to the device at that stage if you determine they've had an issue. Now if during interrogation, as I mentioned, it's deemed that the patient is dependent and they have a nonconditional device, they're not a candidate for radiology nurse to monitor.

Nonconditional pacemaker dependent needs a device nurse or physician or whoever does your monitoring. We had a patient just not too long ago that did have, it was listed as an MR conditional device. However, in interrogation, they determined that the patient had a nonconditional lead.

So that changed the status of that system to be a nonconditional system. And when that patient was interrogated, they turned on the rate, she got really dizzy, turned up the rate and kept her paced throughout the study. Our nurse continue to monitor that patient.

But as we've been talking about things, it was like, should I have done that? No, that should've turned over to the device nurse, and the device nurse didn't even know that. So they're learning things too as we're adapting these work up into our protocol.

But that patient should have been monitored by someone that could immediately reset that device. We would get report of their underlying rhythm, how have they programmed or set that patient for the MRI, and what's the anticipated rhythm? Like I said, do they expect them to pace

like at a rate asynchronous at a rate of 80, or are they going to be on their own and we would expect to see whatever the patient's underlying or native heart rate is? We confirm with them that the shocking and tachy therapies are turned off.

During the MRI when the patient goes to the table, you want to make sure that they have their inner calm, available and ready. Retest it, make sure that they can talk to you over the intercom and that their ball is working. You want to be able to see them to some extent,

and you want to make sure that you've told them, if you have any issues, let me know. Any warmth or anything like that or pain or anything you feel that's weird just so that you know they're on the alert to let you know if they're not feeling good.

We do a full set of vital signs when they get on the table, and that's just so that we have their base line there. But we'd leave the cuff on. Usually we put it on their, well, depends on what part of the body we're scanning

but we would leave that cuff in place so anytime we had questions or needed to assess them, we could do that. We contact the device nurse during the study if we have any concerns, and we page them near the end so they can timely reset it.

We're thinking about the emergency in our head. Following the MRI, we do continuous monitoring until they've been declared stable. And that's when we would take off their ECG and sat probe. We confirm that the therapy is turned back on. We write a little note and we coordinate discharge

with the MRI staff. You're the monitor, and you're the defibrillator. You want to rehearse your plan and just kind of think what are my potential issues? Is patient's heart rate going fast as you're thinking about (mumbles)

are you having an emergency? Is it too fast, is it too slow? And how are they doing? That's like the main thing. Just how are you doing? Get the emergency care handled outside of Zone IV.

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

now let's look at non-invasive ventilation and I know about like five

percent of the patient population that you are seeing is on some form of non-invasive whether they're on by level ventilation or continuous positive airway pressures right so see if HAP using to stent the Airways open and

maintain a pro a Peyton airway and improving oxygenation but BiPAP and patients that need co2 elimination right need help with the by level support so there's a lot of questions that come up when we give

these talks I'm like how does capnography work effectively with these different technologies of non-invasive ventilation and especially because more and more of our patients are requiring these so we're gonna look at some of the

comparisons of co2 capnography data from three different sample sites and remember I showed you that picture so that picture I showed you with the patient wearing the sampling line with a nasal oral scoop and then there was the

mask sampling port and then there was the port on the ventilator circuit distally so that's what we're looking at here so the diamonds that go I wish I had a pointer I don't have a laser pointer I'm sorry but across the top the

diamonds represent our end tidal capnography values from one liter all the way up to eight liters so as the props are as the pressures go up for CPAP they were monitoring leak rates and what they found is the cat nog rafi

values across all of those were pretty accurate when we're monitoring right here the squares and the diamonds represent the mask sampling port and the the ventilator in the circuit distal to the mask and as you could see that

quality of our monitoring goes down as we progress okay to use yes but just know the limitations of your equipment right and again this is the same thing for our BiPAP Dave data are by level ventilation we're seeing again

across the top if we're sampling right at the airway we have pretty consistent readings but then they start to fall off and we look at the other devices that are further down the downstream what we're seeing here is our end tidal

measurements again with CPAP data and what we're looking at is the patient leak so there's always leaks right when we have these devices on and that's a question well sue if I have a leak how accurate am i okay so now the red is our

nasal oral scoop and if you look at the red graph all the way across depending on the leak rate pretty consistent values right the charcoal color is the mask sampling port and that's pretty consistent probably until about like 10

right until our patient like leak rate 10 liters per minute coming out of that mast and then that value starts to fall off and even more so even further distal down our circuit when we're sampling from the circuit at the past the mask

that's the cream color pretty accurate when there's a minimal leak but as the leak goes up that falls off pretty significantly and the same holds true for our by level ventilation pretty similar distribution here with the

patient leak and the sampling so when we're using non-invasive ventilation yes it's accurate and yes it's accurate we're using high flows and yes it's accurate if we have a huge leak only if we're sampling right where the patient

is exhaling so now I hope that clears that up with the patients that are getting supplemental pressure support with your sampling and you know in those just whatever it can sample from the mouth and the nose right at the source

of exhalation has proven to be the most reliable out of all of the different sampling devices so third evaluate your

do anesthesia for some of our cases mostly to our pediatric patients but we are also capable of doing it through the adults they need some anesthesia clearance patient is asked to be NPO

after midnight we have equipment available that are MRI compatible such as the monitors the IV pumps and the anesthesia ventilator machine when we set up the the patient inside the scanner we have to be wary of the lines

the table does move in and out during the test we don't want any of those IV tubing's get snagged we've done pretty good job in securing these lines usually by taping it on top of the coils after the pet MRI with

anesthesia is done they go to the PO 70 anesthesia care unit for recovery and I

new data of the Emmy trial that came out last year our ten-year results saying

that after ten years after ten years women who wanted to retain their uterus they looked at them in ten years three-quarters of those women were still very very satisfied and also were still able to retain their uterus so ten-year

data came out randomizing people for uterine artery embolization versus hysterectomy of the women who chose you to an artery embolization ten years later they were still very happy so I tell my patients that this is what you

should expect that you will have symptomatic improvement in 12 months around 85 to 95 percent of the patients are pretty happy there is a entry intervention rate it is not zero and it can be higher than ten

depending on what kind of Imogen is seen ahead of time and that we know that dysfunctional uterine bleed tend to do a little bit better than bulk type symptoms and that's partly because of subjective nature of that so this is one

of the patients that I treated when I was in in Virginia and Riverside and she's a former miss Brazil and she came to see us with what she also called reversed cycles like she would bleed more than she would not and she was

wearing depends and it took everything to just coach her out of the car to come inside to do a consultation because she was so afraid that if she got out she would be sitting in a pool of blood and she had an MRI showing what looked like

a eleven point seven centimeter fibroid she had embolization and that was her six month follow-up MRI to the right which looks like a very impressive result they don't all look this way which is why I save this image something

that looks like a normal uterus now I for the persons that I told to hold your high horse here is the time okay so what happens if I want to have a baby because these are the things you remember we're being ambassadors for this procedure we

need to be having the answers for the things that are our friends and family members are going to be asking us so if you want to have a baby I would say that the data that informs us as to what to do with you is still very weak but the

only randomized prospective trial that we have out there says that you should actually have myomectomy and a Cochrane review was also done and it still says that there's very low level evidence suggesting that myomectomy may be

associated with better fertility outcomes as opposed to UAE but more research is needed and we still require more research so at the very least what I have to do and now you feel compelled to do is to send my patients to see

someone who is a fertility specialist in consultation so we can make this decision together so if your poor surgical candidate if you have the gazillion fibroids and if you've had surgery before a hostile

abdomen and the patient says you know what dr. Newsome there's nothing that you can tell me ever to say that I'm going to have surgery then we're going to be doing something else that is not surgery okay the other thing that your

So question. I do have a wonderful group of nurses, an excellent group that I get the chance to work with

and they have asked 100 questions and they've listened to me talk a few hundred times. Anyway, hopefully, they have helped to make this a clear presentation. One of our EP physicians looked over the information and he and a device nurse also agreed

and they were wonderful. I do have the samples here, the Medtronic grip Trip Walker gave me. Anyway, you're welcome to come up and take a look at them. But before I do, do you have any questions? Yes.

- [Woman] So our Medtronic rep comes and does whatever he does, we never really know. We think you said (distant indistinct muttering) okay, they're sent to eight. We sit there with pulse ox on, they get scanned. We reset to whatever they were before and they leave,

so clearly I'm going to up it a little bit after seeing this talk. But he doesn't always stay. I know. So we don't have a device nurse. It's just this Medtronic rep.

Would that be-- - And how would you access him if you had an emergency? - [Woman] I don't know. That's what I'm going to work on-- - Totally. - [Woman] He has left the building before.

(indistinct chattering) I know! (distant indistinct muttering) - No, he shouldn't-- (distant indistinct muttering) - [Woman] So if he has the rest of these slides somehow, I mean, I got most of these but (mumbles) I got three pages here but the other things

that say like (distant indistinct muttering) stuff like that. - I don't, but it's going to be on the web or whatever they do, and it will all be there. distant indistinct muttering) Mm-hmm, mm-hmm. And your physicians, our docs know on the morning

of the procedure that all the devices that are going to happen, hopefully they will have reviewed that. - [Woman] This is how it works. Our scheduling calls the MRI, MRI says okay (mumbles) pacemaker.

An MRI technologist calls Medtronic. Medtronic or the other (mumbles) companies says yay or nay, this is our device. (distant indistinct muttering) Other than the ordering doctor, there's no doctor that knows that patient's there.

The cardiologist knows-- (overlapping dialogue) - According to this consensus statement, and it's all highlighted, you know, that if you're saying, "Hey, where are our guidelines "and how are we doing this and where does this come from?"

you have a really strong statement that is a little bit confusing. They've written a very concise guideline. It doesn't say a whole lot of information about much of anything actually in my opinion. But this statement is 50-some pages.

It has clinical studies and it has information about caring for these patients and how they should be assessed and programmed. (distant indistinct muttering) It is. And it's on the back actually of your paperwork too, the name of that study.

Mm-hmm? - [Woman] Just a question about traditional and nontraditional pace. Right now we only do, yeah, they did an x-ray (distant indistinct muttering). - You can't tell that from an x-ray.

- [Woman] Right, but I mean, the look of the model just to see if it's MRI compatible (distant indistinct muttering) just the actual pacer (distant indistinct muttering) and then we have, the EP comes down, (distant indistinct muttering) nurse that comes down and interrogates

and shuts the pacer, puts them in a certain mode before we do it, but I'm just concerned about the difference between traditional and nontraditional (distant indistinct muttering) - So she's questioning about conditional or nonconditional.

You can't tell by looking at the device. You need to have information from the programmer itself telling you what the device is and if there's a lead that matches it. Like I said one time we had recently had a patient that had a nonconditional lead,

but the device was deemed conditional. But it really would then made it a nonconditional system. And that has those extra requirements according to this guideline. Now it doesn't say this is the way it has to be. It says, your institution needs to adapt

or to make their own very clear protocols so that when you go into the scanner and you're taking responsibility for that patient, you know that they have been thoroughly, you're safe, as safe as can be. (distant indistinct muttering)

Nonconditional is a device that is not FDA approved. Conditional is FDA approved, whoops. And I think we're at about a couple seconds here, so if you have questions I'm glad to answer them. Back there too, but hmmm? (distant indistinct muttering)

She's been back there since the beginning. (distant indistinct muttering) I don't know that an LVAD would be compatible by any stretch of the imagination. Reveals or those monitors are actually, are MR compatible. There's also a single or a lead-less system

that is MR compatible. I have those up here too so if you want to take a look at those, you can. They're really cool little gadgets. But LVAD would not be. Whoops.

Sorry. - Just to keep on time because we have another like her starting. If we can just step out in the hallway and have her finish addressing your questions and getting the answers.

And to reiterate, just watch for your emails coming from ARIN and you'll have access to her lecture, her slides. So for people who want to make practice changes, it'll be available. - And I did put my contact information on those papers

that I handed you. If you have any questions, please let me know. (audience applause drowns out dialog) Thank you.

Okay, this is another very delightful category, and I love casing nomenclature. So are these programming letters Greek? It sounds like it. It sounds like a code, VVI, DOO, OVO. But actually, it's a code that's fully understandable.

When I say 32619, you don't even calculate that. You just think, oh, that's today. There's a chart, and you have it in your paperwork. It's the NASPE chart, and this is how programming nomenclature comes about. The first chamber is position I,

and that's the chamber that pace is. So if a patient has several responses, it can pace no chambers, it can pace the A or the atrium, it can pace V or ventricle or it can pace dual, D, which is the atria and ventricle. Position II is the sensing chamber.

And again, it has those same options as a response. Position III, and that's as many as I'm going to go through, is the response to sensing. It has a response to have no response to what is sensed. It has a response to inhabit or to trigger, or it can do D, which is both to inhibit and to trigger.

Now these numbers, letters are used in determining the device programming. There are a few options. One is the option of an inhibitive mode. We don't really use inhibited too much at UVA. However, it's in this consensus statement

so I want to make sure and review it. This is a mode where if native beats occur, the device doesn't pace, it just inhibits. If there is not a native beat sensed, the device will pace and it will pace the appropriate chamber at the rate that its programmed.

The heart rate will be no lower than the set rate. So a patient that is programmed VVI, V is the first position and that's the ventricle. So it tells you that lead is in your ventricle and it would pace the ventricle. The second position is the position that it senses,

which is also the ventricle. Of course it's the lead that, you know, it's in. So it will sense the activity in the ventricle. If it senses that the patient has any of their native beats, it will inhibit or not pace. So that nomenclature is used in general programming,

but these are MRI options as well. Now asynchronous pacing is one that we do use fairly regularly. That patient would be paced at a non-competing rate that's faster than their native rate. So if the patient had a heart rate of 60,

we may or the device nurse would program them to be doing the study at a rate of 80. So the thought is that the patient normally beats at 60 and that's where they've been running, they would override that so to that wouldn't have any need to be paced during that study.

And it paces at this programmed rate. Say they're pacing them at a rate of 80, it will pace regardless of what's happening underneath. It will mostly override it. So probably nothing will happen underneath. But it's going to pace all the time,

and you would anticipate that you would be paced at the programmed rate and now below. Now an example, I'm using the ventricle again. So that second example is VOO. It would pace the ventricle. It would not sense what's happening in the ventricle,

and it would not respond to anything that it of course then sensed. So the other mode is the non pacing mode, and that's a mode for a patient who has a strong underlying rhythm. Maybe they had an ICD implanted

and their ICD was implanted because they had a sudden cardiac death but they have no issues. Or it's just (mumbles) because they're high risk for sudden cardiac death, but no pacing needs. So the pacing indicator or the pacing need is turned off.

So they only have their native rhythm. You would expect that patient to have a variable rate and rhythm because that's what you and I do. All rate response, of course an ICD shocking therapy and tachy therapies are turned off for an MRI, always turned off for an MRI

and I want to mention that again because it's important that we talk over that with the person that's doing the programming prior to their MRI. Now do risks exist for patients that are having an MRI? Yes.

There are concerns, and these concerns are several. One is the device reset with the batteries getting low. So that's why important to make sure that the person has a good battery. Any potential heatings at the lead, at the tissue interface. This is (mumbles) determine to not be

significantly clinically significant. There could be a failure to sense or a failure to pace. Those are some things that we'll talk about. Or inappropriate shocking. Or there is also the option at the device study because of artifacts might increase,

or decrease rather the image quality. Clinical studies however have shown that MRI is safe for both MR conditional and MR nonconditional patients when proper precautions are taken. The risks are rare.

However, with having a well-established monitoring protocol, these risks are minimized, we're prepared for them.

these are our prospective CDT trials it's a lot to go through them so I'm not going to suffice it to say that the only one of these that is randomized is the

one in the top left the ultimate trial with 59 patients the rest of these are single set are single arm studies the optimized trial was randomized but the key arm it did not have was a control arm so all it did was vary the amount of

drug but there was no control arm to tell us how are people doing if they just get heparin well and I'll show you one result from these trials that is the most important result and that is up from the ultimate trial at 24 hours CDT

catheter to thrombolysis reduces the RV to lv ratio to a greater extent than heparin alone what does that mean so you saw all those pictures with the big dilated right ventricles our surrogate measure for right ventricular

dysfunction is the ratio of the diameter the inner diameter of the right ventricle to the left ventricle what we found in this study was that that ratio got reduced to a greater extent at 24 hours in the CDT arm compared to heparin

alone that means that CDT seems to reduce our V dysfunction faster than heparin now importantly 30 days later the echos looked identical so really it's a question of time which is not surprising what we've noticed in

our practice is that patients feel better faster okay I'm gonna go through the rest of this because I'm out of time but I want to give you a little bit of a sense of where we're going because there's bleeding associated with CDT and

maybe I'll show you this that in the Seattle to trial there was an 11% major bleeding rate now this was a pretty conservative definition but there were some serious bleeds and there were no intracranial

hemorrhages in this study but we have realized that CDT is not risk-free it's not like we've all of a sudden gained all of the advantages of systemic thrombolytics and none of the disadvantages now the rate of

intracranial hemorrhage seems to be about tenfold less but it does happen about 0.2 to 0.4% of the time the rate of major bleeding seems to be about 5% which is about half the rate of major bleeding that we see with system or

thrombosis so bleeding is still there it just doesn't seem to be as frequent so that's where some of these other devices are coming in then our a float Reaver the the the extra penumbra indigo cat 8 device and so the the float Reaver is

has actually gone through the full trial and the results are about to be published what is this thing well it's this pretty big hose which is about 20 French and it goes through the right heart and goes up there and it takes

this clot and literally aspirates it out and these are some of the things that will come out and that's sort of your post picture right there the data showed something similar to what we saw with the catheter directed thrombolysis

trials they had looked at 106 patients are vlv ratio was reduced again there's no comparator arm here so this is just the device on its own with a 3.8 percent adverse event rate and so now we're talking about mechanical devices that

don't use a clot-busting medication therefore you're gonna you can expect less bleeding but you're trading some of that off for a mechanical device that can cause injury to either myocardial structures or to the pulmonary artery so

that's something we have to be highly cognizant of as they're introduced into the market this is the penumbra cat 8 this is from Jim Benenati publication basically showing a couple things that's the separator that is the actual

catheter and that's the sheath back there so you've got poor profusion because of a clot in the inter lobar pulmonary artery and then at the end of it you have better perfusion for lung down there so we actually just completed

enrollment into the extract PE trial 120 sub massive PE patients the same efficacy endpoint you have to remember that has been established by the FDA as a way to get approval this is not the final

study nor should it be the final study when we evaluate these devices so to summarize sub massive PE what does the data not tell us CDT probably reduces the RV to LV ratio at 24 hours that is the main outcome that I want you

guys to remember from the ultimate trial it's associated you didn't see this data so don't worry about that we do see major bleeding and sometimes rarely but sometimes we see intracranial bleeding with CDT as well so what we're missing

from catheter directed thrombosis for sub massive PE is what are the clinical outcomes the RV to LV ratio is a surrogate outcome what about death what about clinical deterioration what about recurrent hospitalization what

about recurrent VTE how are people doing in the long term are they walking as well as they were before we don't know any of this none of the data right so far can tell us any of this information so where do we go from here for sub

So one of the options that can happen is the absence of bradycardia pacing. So your patient's either known or unknown to be pacemaker dependent. They may have turned off their pacing function. And the MRI could sense that artifact

with the patient's heart rate, and it would withhold pacing. So what do you do? If it's even transient, a brady or a pause episode, you abort the scan. You escalate care as needed. You activate your emergency contacts

and you're going to be anticipating transthoracic or external pacing as they're getting your programmer person back to the MRI scanner to set them back on their own programming. So another emergency would be tachy arrhythmias, untreated tachy arrhythmias.

So that can occur because your patience is or has a known or high risk of ventricular fibrillation. They may be set on asynchronous pacing and there's a risk when someone is pacing at the set rate, if the patient starts to override and their heart rate goes up to 100

and you're pacing at 80, that it could hit, a pacemaker spike could hit on the T wave, the vulnerable T wave as we call it, and it could induce R on TVF. So what do you do? That one's pretty easy.

You get them out of the scan, do CPR, call your emergency teams, get your device people back to reprogram it, but you're preparing to defibrillate. You know your defibrillator's ready. So pad placement for devices are two options, either the typical, classic I call it,

right sub clavicular and left lateral or you can do anterior posterior. If the patient has a right-sided device, which sometimes they do, you want to make sure that your pad is placed at least an inch away from that.

The goal will be to sandwich the heart with electricity so that the electricity will traverse the heart, either front to back or here to here. The need for an elective shock or pacing does not change if the patient has a device. They still need to be shocked or paced

if they're having an issue.

to our case study the first case study is the normal whole body pet MRI the the

image song to your left it's a regular pet MRI the one on the right as you could see it's a big difference there is very vivid image and you could pinpoint the organs they are not to me of the patient this is normal

scan there is normal uptake on the brain the ureters the bladder the kidneys those are normal there's no abnormal uptake or there's no hypermetabolic uptake noted the next case study is a 59

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

I'm the FDG is have a radio pharmacy located on the second floor no New York State does allow nuclear medicine

technologist and nurses to inject the con the FDG isotope I know in other states one in particular is is New Jersey the the nurses are not allowed to inject isotope and the technologist has to do it also in addition certain

isotopes and certain scans the ducts have to inject the contrast like the the cervical Lin scintigraphy and some so my question has to do with discharge instructions so just like you give them that little card that they keep with

them so they trigger some radiation alarm and a bridge or on a highway do you give them discharge instructions about if there's small children at home that they're not sitting in their lap for extended period what kind of

instructions do you give on discharge after these patients so we when they come in coupled with the screening forms that they fill out we have some instructions attached to it and does that does have

the discharge instructions but we reiterate to them you know if they have small children or babies and pregnant women and just try to keep their distance for the next 12 to 24 hours just to until the really activity has

wear off so the FDG is like two hours almost for the half life FDA FDA has 60 minutes 116 minutes half life and usually by 12 hour by the 12 hour period they're mostly background radiation okay thank you

we had they have a written instruction like it's like a packet that we give into the market that we do to the patient and the patient have accessed to the web portal that they have and they can be the instructions from there

this is correct so betta bar is still investigational for the most part the only way you can build for it is two different scans you build for a pet and you build for our mr so you've got to get approval for both what you are not

going to get reimbursed for is the registration and that's where it gets a little bit challenging because then you need a radiologist who is both certified uncredentialed to read a pet and an mr so right now most institution bill it as

two different procedures so that's why you that's how we get the approvals just a little information on the side I went back to this case study because I forgot to tell you that in order for the PET CT to have as clear image as the pet MRI

the pet portion I mean the city portion and the pet city would have to be done diagnostically and that this would expose the patient to radiation three times that's why they prefer the pet MRI because yeah the reason why we do it if

we do it mostly for for for pediatrics and it's it and it's because of radiation because you know like our my team is saying you you are going to have this patient have constant follow-up so if you can reduce the amount of

radiation they have from a younger age as we all know it work in radiology DNA injuries occur when you're younger then more is more severe than than later our MRI the pet MRI injection they're all lined with lead and our MRI the pet

MRI room is actually lined with lead so we don't really have Needham let aprons we don't know we don't have wear aprons they are allowed to go to other appointments after they are pet MRI usually with the FDG most of the

radiation after the Tessa's finish is gone they're not more than what not more than radioactive than background radiation so they are are safe to be around people yes that's more for precautionary

measures yes no they go straight to the PACU so we our MRI table is detachable we have an area for where we keep our inpatient bay area we have a structured ready for them to go into right after the test and the

anesthesiologist and if they are Pediatrics the pediatric nurse is with them and they go straight to pack you do like probably like probably less than ten a week right now some weeks we are busy we do for how we do that much some

it varies like we'll do three or four but we are trying because the reimbursement that's one of the big issue our institution is actually eaten eating the cost for some of these to provide a patient with less radiation

especially or pediatric population we have one pet MRI machine for the whole institution three at the main campus we have two we have multiple and other regional sites so the yes

no less than 15 GFR except for the EU vist less than 30 then we notified the radiologists eeeh this is harder to so you this is the it's a linear contrast as opposed to the Catalan bettervest which is

macrocyclic so it's easier for the body to get rid of well there yes well they're only they're already getting dialysis so it's really not much of a harm yes we do patients on dialysis but we make sure the dialysis is done within

24 hours after receiving the contrast yes um sometimes you know you just have it to have it we don't require it for all the tests if you have it we have it we check if it's already in the chart we

acknowledge it you know we don't require for outpatient we don't require but in patients we do all right anything okay so Bernie pet/ct the scanning time for pet/ct is about 30 minutes to 45 minutes Patsy pet/ct is about 30 to 45 minutes

with the pet MRI sometimes they they order dedicated pet MRIs so that is a little longer you have to take note that we do a whole body scan whole body scans for even just for a regular MRI is at least an hour so we try to eliminate

just you know having them have to have to or point to different appointments and just one waiting room one waiting time so that cuts down the response for the patient themselves yes we do for adults it's 12 for the

whole body and then for the pet brain it's about 10 if I'm not mistaken and then plus or minus 10% and then the pediatric doses are cultured calculated base of their height and their weight and there are all protocol by a

radiologist because we have a lot of whole-body protocols we have the bone survey actually that's about 30 or 40 minutes and yes that's an hour and then we have longer whole body protocols diseases

specific and sometimes they try to depends on what the patient's diagnosis is we have whole body scans where they have to check the bone marrow and that needs to be from tips of the toes and tips of the fingers and that can be a

challenge especially if the patient is tall because that has to be in sequest sequestered and sequential patient and positioning is also a challenge alright thank you so much thank you thank you so much

[Applause]

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.