Create an account and get 3 free clips per day.
Chapters
PVT, Cirrhosis, Ascities,Variceal bleeding|TIPS, Transplenic Approach|
PVT, Cirrhosis, Ascities,Variceal bleeding|TIPS, Transplenic Approach|
2016cirrhosisdecompensatedhepatobiliaryportalSIRtransplantedvaricealvein
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
Percutaneous Biliary Drainage  | Biliary Intervention
Percutaneous Biliary Drainage | Biliary Intervention
angiogramaxischaptercoaxialcolordrainductductalfrequentlyhepaticinterventionalobstructionperipheralportalstructuressuccesssystemtubevein
Lessons Learned | Extreme IR
Lessons Learned | Extreme IR
algorithmsbacteremiabiliarychaptermultidisciplinarypatienttips
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
anastomosisarteryAvenu MedicalballoonbrachialcephalicchaptercreationdeviceEllipsysFistulaflowflowinglinesneedleperforatingperforatorpiccproximalpuncturepuncturedradialsurgicalultrasoundvein
Reflecting on The Case | Brain Infarct After Gastroesophageal Variceal Embolization
Reflecting on The Case | Brain Infarct After Gastroesophageal Variceal Embolization
chapterembolizationimagelivermixtureprominenttransplantationvaricealvein
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
Stent Graft Deployment | TIPS & DIPS: State of the Art
Stent Graft Deployment | TIPS & DIPS: State of the Art
balloonballooningbarebasicallybifurcationcapturedchaptercirculationcorddeepdeployentryidealplasticportalportionpullsheathstentstentstipsveinveinsvenous
Complications & Pitfalls | TIPS & DIPS: State of the Art
Complications & Pitfalls | TIPS & DIPS: State of the Art
accessarteryballoonbranchchapterclinicallydeepdefectgramhepaticimagesliverneedleocclusiveperfusionportaportalsegmentalsegmentsstentthrombosestipstracttypicalveinvenous
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
Ablative Radioembolization | Interventional Oncology
Ablative Radioembolization | Interventional Oncology
adjacentadministerarterialbladecancerchaptercompletedosedosesentiregreyinvadinglesionliverlobelobectomynecrosispathologicpatientportalremnantresectionresponsesegmentsurgeontinytreattumorvein
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
RFA Advantages and Disadvantages | Ablations: Cryo, Microwave, & RFA
ablationburnschaptercirrhosislivermodalitiespadsradiofrequencyunpredictablezone
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
Case 2: Upper GI Bleed | Emoblization: Bleeding and Trauma
abnormalangiogramarteryaxisbleedingbleedsbloodcatheterceliacchaptercoilscontrastembolizationembolizeendoscopyesophagusFistulagastroduodenalhemoptysishepaticmalformationsmesentericNoneportalsuperiortipsupperUpper GI Bleedvaricesvenousvesselvesselsvomiting
The Disease Process | TIPS & DIPS: State of the Art
The Disease Process | TIPS & DIPS: State of the Art
ascitesbasicallybloodchaptercirculationcirrhosisconnectionsdipsesophagealextrahepaticgastricHypertensionlivermesenteryorganperineumpleuralportalportosystemicpressurerenalshuntshuntsslidesspleenstepsurgicaltampathoraxtipstransplanttransplantationvalvesvaricesvein
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
Case 5: Liver Trauma | Emoblization: Bleeding and Trauma
activeangiogramarterybleedingbloodchaptercoilsembolizationembolizeextravasationhematomainjuryleakingliverLiver TraumamelenamicrocatheterNonenoticeportalposteriorpseudoaneurysmtraumavenousvessels
Endovascular AVF creation | Twitter Case Files SIR 2019
Endovascular AVF creation | Twitter Case Files SIR 2019
6fr venous WavelinQ magnetic catheteradvanceadvancesalignarterialbrachialcatheterscenterschaptercreateselectrodeembolizeendovascularengageFistulainsertmaturationpatientpatientsstepultrasoundveinvenavendors
HCC and IR oncology treatments | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
HCC and IR oncology treatments | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
ablationadvancedadvancingagentalbuminapproacharterialarterybeadsbilirubinbloodcarcinomacatheterchapterchemochildchroniccirrhosiscirrhoticclinicalconsideredCTcurativediabetesdiagnoseddiagnosisdiameterdiseaseeffectiveembolisationembolizationethanolhcchepatichepatic arteryhepatitishepatocellularincidenceincludeinjectedinjectioninterventionallesionslftslivermeasuresmicrospheresmicrowaveMRImultidisciplinaryNoneobesityoncologyoptimaloptionsoutcomespatientspercutaneouspercutaneouslyperformedportalprocedureprotocolradiofrequencyradiologyraterecurrenceresectionriskscoresscreeningserumsurgerysurgicalsurvivalsystemictasteteststherapiestherapytranstransplanttreatmenttumortumorsultrasoundunresectableutilizedvein
Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
anatomicanatomyarterybasilicbrachialcephalicchapterdeepdevelopeddevicefishFistulafistulasflowforearminterventionalmedianneedleneedlesnerveperforatingperforatorprocedureradiologistradiusselectivelysuperficialtexastransposedultrasoundupperveinveinsvenous
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Hemobilia | Biliary Intervention
Hemobilia | Biliary Intervention
accessangioangiogramarchitecturearteriesarteryaureusbiliarybleedingceliacchaptercollateralizationdefectsdislodgementductembolizefistulasfrequentlygramhepatichilumintercostalinterventionistsliverparenchymalperipheralportalpreppseudoaneurysmremovethrombosestubetubesupsizeveinveinsvessels
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Submassive PE | Pulmonary Emoblism Interactive Lecture
Submassive PE | Pulmonary Emoblism Interactive Lecture
anticoagulationbleedingcategorycathetercatheterschapterclotdecompensatedhemodynamichemorrhagehypoxicinterpretintracraniallobemassivemilligrammortalitypatientsplacebopressorsradiopaqueratesystemicsystolictenecteplasethrombolysistpatrial
Inclusion Criteria | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Inclusion Criteria | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
ablationcandidateschapterdiagnosisdysfunctionecogembolisationhcclargestlymphnoduleNonepatientsportalpriorradiofrequencyresectionsurgicaltumorvein
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
PV Access | TIPS & DIPS: State of the Art
PV Access | TIPS & DIPS: State of the Art
accessaccessedangulationanterioranteriorlyballoonchaptercirrhosisglidehepatichepatic veinliverneedlepasspintoportalposteriorprolapsesagittalsheathshrinkagestenttractveinvenouswire
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
Nodule in right lung | Cryoablation Case | Ablations: Cryo, Microwave, & RFA
ablationablationschaptercryocryoablationfreezehemorrhagelesionlungLung Noduleminutesnodulepneumothoraxprobesprotocolproximalthawtriple
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
ablationbiliarybiliary cancercancerchapterchinacirrhosisfactorsgeneticguyshcchepatitisinterventioninterventionalistsInterventionslargestlifestylelunglung cancerneuropiccprevalentproceduresmokingsocietaltrained
Transcript

vein thrombus, decompensated cirrhosis with ascites, and had variceal bleeding. There was a discussion, Hepatobiliary Conference, about she can't be placed on anticoagulation, she can't be transplanted

and we offered a TIPS with a transplenic approach and had complete resolution of her portal vein thrombus. And instead of having banding or some other GI intervention, she was able to undergo this procedure and did well. Another thing that's very simple but participating

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

we do drain the Louie systems we actually do this extremely successfully as interventional radiologists and it's a very high technical success like I said in this sort of supine position

from the mid-axillary line and these things are and you've seen a lot of these how these done really you need to pacify the system you get trans you most post people go trends in to cost Albany because the liver sometimes can be

tucked up way above and we usually want to make sure that the lung and the costophrenic angle doesn't come down low in nothing I take a deep inspiration first to make sure that you're not dealing with and then we now map your

track than you find some people do this with ultrasound guidance frequently with and dilated structures and most of the time it's actually much probably routine to actually do blind passes in the like I said the path of high success and to

pull back when you a passive our blue system is the only structure that doesn't wash away generally portal vein hepatic vein hepatic artery all of those structures are cylindrical

tubule alike are not are going to wash away move away and quite quickly and you can see this PDC and show in fact a left insertion of a right into your ductal system and frequently this will be something that we would have to make

people watch out like I said identification of choosing the right duct thereafter after you've identified you've performed a color angiogram is to identify how you're going to drain this and the most important thing to identify

is a peripheral duct doesn't matter which one there are ones with higher success but then within the lateral position find one market on the table then with a second axis as a to stick axis and I'm sure this is very germane

and common you've seen get into the peripheral duct and the AP fluoroscopy get a wide down you get a tube down and then eventually go it with a coaxial system getting a skinny wire converted to a larger wire and then following that

with a below a tube and your goal is to really get axis that goes transpannic through a perfect century through obstruction or no obstruction if it's just untie elated and through into the small bowel and lock a some type of

locking system it's interesting the size that you choose does make it different so if you go larger than the 12 french-trained initially the risk of bleeding actually goes above 10% for initial axis so the best is to probably

start with a 8 and 10 and that's what we typically do this is what we connect what it ends up looking like left a

well and the lessons I learned were that you know it's really good to ask

people's opinions you know and I think that's what I love about my institution it's very multidisciplinary and I love talking to my friends and advisors and mentors elsewhere but ultimately you know it's your patient it's your case

and you're responsible and so what we do not want to get into the habit of is like you're just throwing your hands up in there and be like well sorry why don't we put in a tunnel drainage catheter because that would have helped

her too but she's so much more grateful that I opened up the tips and believe it or not the bacteremia resolved as soon as the tips was covered and she finished her course of antibiotics and she's doing really well

so patient-centered care is also really important just because the you know papers and algorithms exist saying that you shouldn't do tips potentially in patients with communication of the biliary tree you

know you gotta you got to do what's right for the patient sometimes and if sometimes you have to go against algorithms and guidelines but you know but that's again a case-by-case basis thank you

thanks Maureen

here a little bit okay the ellipsis device Avenue medical from California developed by Jeff Howe in Richmond ultrasound imaging only don't need

fluoroscopy everybody in the room like staff they'd off to where lid you advance the needle into the either the very distal cephalic vein or through the actual perforator under ultrasound and once you're there you

follow the tip of the needle keeping it in the center of the lumen of the vein under ultrasound guided down to the point where it's just adjacent to the radial artery and then once you're adjacent to the radial artery this may

take a little bit of torquing of the needle but you know even putting in PICC lines for what 15 years 20 years so it's nothing not more difficult than that which is you know why I tell the fellows do the PICC lines you're not doing the

PICC lines just to do pickle and you're doing them so you can do these kinds of procedures then you puncture the radial artery then you get arterial blood flow you put a wire down and you get a sheath down and you put the device down I'll

show you the device in just a second it's called tissue welding it's an electronic device that creates a anastomosis doesn't really succumb to any problems with vascular wall calcifications usually takes just 30 to

45 minutes I did the last one the other day in 15 minutes and angioplasty the anastomosis immediately following the creation of the fissure with a 5 millimeter 1/8 balloon of your choice here's the device you can see it opens

up there's like a little bit of a window there and so it goes down through the vein it crosses over into the artery you're able to see this under ultrasound you position that window as you see on the right with the artery and wall the

vein artery vein and artery walls between that space and then the debate the device closes down on them then the machine will give you a reading of what the distances you push to the button and you got a fistula and it's very pretty

straightforward then you go ahead and balloon that with a five millimeter balloon to make sure the anastomosis is open and running and that's it then you pull out and you can compress with one finger you know on the vein and here's a

look at the the anatomic and that's office Jilla that it does create you know you don't mobilize there's no surgical trauma patient goes home with a couple of band-aids here's a dissection with ultrasound of the area that you're

working in there on the right you can see the perforator coming down it's sitting over the PRA the right proximal radial artery and that's right where you're going to make your puncture from one vessel into the other and this is

what you're left with on the left of course you see a big surgical scar from a prior creation of probably in the brachiocephalic fistula and on the right you can see the very prominent cephalic vein after fish through the creation

which is getting ready to to be punctured here's the illustration of what you've just done again perforating vein going down towards the radial artery create the fish stool and now you have a brachial artery down radial

artery so you have a radial proximal radial perforating vein fistula I don't know whether it hopefully it goes up the cephalic vein if it goes up the basilic vein you may have to consider doing transpositions or elevation to get that

vein in a position of yeah so that it can't be punctured here's another ultrasound from one of our cases again showing a nice you know red to blue flow of the fistula here's another one you know I have to see these a while you say

wow it's really pretty amazing and what we do is we get velocity measurements at the time of the procedure one week later then at four weeks later and at four weeks if they're not flowing at least 500 to 600 cc's a minute then we'll go

in and do a secondary balloon or something to get things going there's that same patients actually this is our patients arm it's a different patient and you can see the flow map there and when you see that diastolic component

got halfway up the systolic that means you're flowing at about 600 500 to 600 cc's a minute it's a good indication that you've got a you've created a fistula with working potential if you have to re intervene it's a radial

puncture you go right up the the radial artery I'm sure your dad is familiar with doing that for the most part and that goes right across that and ask Tomo system so if you have to dilate the anastomosis to get a larger you're in

good position if you have to go up and redirect flow by embolization of small collaterals nor the brachial veins now you can do that all from the the radius it's nice highway right up into the fistula

and here's the results of the FDA trial

leave you the image you can see from an airplane on this image can you see prominent vein this is a prominent beam so at the time in this image pulmonary vein was or pacified so we should not hiss but we missed fortunately the patient got over our headache and visual disturbance discovered within seven days and for the next six months no variceal bleeding and he got a liver transplantation so how to

prevent this serious complication 1 to 2 or 1 to 3 thick mixture of colonial applied a mixture should have been used or butter the flow should be concealed being controlled by putting catheter or several coils it should have been used at first and then and cool injections should have been done I don't know or instead of Paris embolization tips or liver transplantation should have been considered the first I don't know I'm not Monday Morning Quarterback and this

is my last slide thank you for your attention

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

okay stent graft deployments once you've ballooned you basically pass the sheath over the balloon all the way down to the portal circulation the reason for that

is the Viator stance has a bare portion that's captured by the sheath so your sheath has to be deep into the portal circulation so when you unsheath it it opens up and then you pull back so it snags on your portal venous entry so

it's a feel thing and a visual at the same time for the operator okay so your sheath has to be deep in the portal circulation so that dilates put your sheath all the way down this is a run just to make it look pretty for you guys

and then you basically deploy the Viator stent via tourists and like I said has a bear portion that's captured by the plastic here and that plastic sheath basically transfers the capture of the bare

portion from plastic to your entry or access sheath okay as a ring to it and put it in has a feel to it that ring has to be right there it's very common for people starting off to deploy it inside the sheath up so it's a kind of a feel

thing to actually make sure that it's actually in there snug with it with the sheath okay then you push the stents all the way into the sheath now the bare portion is captured by the sheath you remove the plastic it's over over and

done with and then you pass pass your your stent all the way down to the portal vein and then unsheath it like a wall stents let it open pull everything back till it snags on the portal venous entry sites and then unsheathed the rest

of it which is the covered portion and that stays constrained by the cord and then you pull then you pull the cord keep key portion here is this is the ideal tips and ideal ace tips is a tips from the portal vein bifurcation to the

a patek vein IVC junction okay that's an ace tips it's usually a straight tips it's the straightest tips you'll see it runs parallel to the caiva okay rookies will be doing tips down out in the

periphery and Deliver okay they'll be fishing for small portal veins out of his small hepatic veins and at the end their tips is gonna be like a big seat like a big C loop okay it'll be a longer tips with more stance and it won't be an

aggressive decompressive tips okay but an ace tips is a more aggressive central tips straights it comes from the portal vein bifurcation to the paddock vein IVC Junction that's kind of like an ace tips

okay unsheath it and then and you and then you pull the cord to basically deploy it and this is kind of a reenactments the Styrofoam cup is the portal vein the sheath is in there now over the wire there's no wire in the in

the reenactments and then you unsheath the bear portion so it opens up okay and then you pull everything back till it catches on the portal vein okay you move the sheath all the way back and

then you pull the cord you see the cord right there you pull the cord and it basically opens up the covered portion okay and it opens up from the portal venous end so it actually capped catches it right away catches that portal venous

entry sites there's no slippage and so basically rips open tip to hub okay and that's kind of your final product and then you go in and and then you go in and balloon okay so here it is ballooning put the sheath

over the balloon sheath is deep into the portal circulation you put the tips in your unsheath to cut the the the bare portion let it flower open you pull everything back to like snags you unsheath the rest of the stunt and then

you pull the cord okay and then you dilate with 8 or 10 or whatever so this is visit with the debilitation and that's kind of your final product ideal

people were thinking about the covered

portion actually actually would be occlusive in that paddock veins a lot of people are concerned about that this could be kind of like a but carry you're gonna actually occlude flow in the paddy vein caused thromboses that didn't pan

out at least clinically okay it didn't pan out and that's another advantage of actually accessing very close to the paddock vein IVC junction that's where the biggest vein is so you don't get a lot of occlusive problems okay but

usually clinically it does not pan out so the bigger the hepatic vein the more likely you have a lot of room around your your graft you won't be occlusive to the paddock vein that's more important for for transplants than other

than others I told you it's rare this is actually a very rare case of such that where you actually have a segmental segmental kind of but carry after a tips okay and you know this is actually from a form of venous outflow from the ematic

vein this is a perfusion defect typical it's a wedge right typical perfusion defect in the liver that's how you death so you know this is vascular this is a perfusion problem but you've got hepatic artery readout artery the red arrows

running into the segments and you have portal vein running into the segments so what's the problem it's actually a paddock vein occlusion okay by the stents subclinical no no clinical complaints you let it be

in the patients usually recover okay treat the patients and not the images okay on the other side if you put their tips too deep sometimes you actually get thromboses of the portal vein branch

again you get a call from hepatology you've got portal vein thrombosis is the patient doing okay yes treat the patient and not the images they usually resolve this it's not not a big problem another technical problem

I'm gonna focus mostly on technical for you guys this is a but key area okay and the but carry especially in the acute stage the liver is not like a cirrhotic liver is big liver is actually engorged okay so it's very large usually

your needle is too short to even reach the portal vein okay that's a big problem okay because your access needle is too short for a very large engorged the portal vein so this is as deep as it

goes do I have a see that that do you see that needle tip that's as deep as the needle tip goes okay the portal vein is a good distance away okay luckily this is a co2 porta gram luckily I'm actually in a small branch right

there I just hit it on you know and on this is not the there's not a needle tract this is just luckily hitting it a little branch and on so I'm actually accessing the portal vein and I can do a co2 porta gram here okay

typical inexperienced person would say you know this looks good I'm lucky I'm in a branch but it's a nice smooth curve I'll just pass a wire down and I'll balloon it and I'll put a stent in it's a nice curve and you know so it's my

lucky day I don't need to extend my needle or get a bigger longer needle to reach the portal vein here's the problem with this and this is exactly what this is exactly what this is they pass a wire and it looks beautiful just put a stent

and go home okay here's the problem this is actually the small branch access sites this is actually where you really need to access world vane but your needle is not long enough okay

what we found out is that if you are in a small in a small portal vein no matter how much you balloon it it will come down again and it will be narrow so believe it or not if you go sideways in a portal vein and rip it open with a

balloon it will stay open but if you go down of small portal vein and balloon it open it will always contract down okay so you cannot do a tips simply by ballooning and putting a stent in in this case okay what we do is we actually

denude the vein itself we actually rip it off okay and make it a raw parenchyma and we do that with a Tortola device we literally rip off the paddock the paddock portal sorry the portal vein endothelium and media and adventitia rip

it off make it completely raw as if it's an access as if it's a liver brain coma which is which it is now and then we then we balloon dilates okay rip it off denude it angioplasty it's okay and then put the stent and see that aggression

despite all that aggression of ripping it off it still has an hour kind of an hourglass shape to the to the tips okay that little constraint there that's the hepatic venous access sites this is the parenchymal tract to see nice and open

with a balloon but the but the actual vein that we've been through despite our aggression in actually ripping it off it's still narrowed down but this is as good as it gets okay

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

them so my particular area of interest is a blade of radium ization and what we'd like to do is to break the liver

down into a bunch of little tiny perfused volumes off of a single vascular pedicle or what we call angio zones and those are those allow us to segment out if you only have small volume disease for example like here in

segment three why do I have to treat the entire left to paddock low I can actually treat just that small portion just like it what it tastes only now I'm administering y9t but since it's expendable liver I

can administer doses that are way higher orders of magnitudes higher than what I could if our infusing into the liver just on its own so here's an example of that if you look at this lesion in the right of panic lobe you'll see these

little lines over them what we want to achieve is around a 205 GRA threshold for these lesions that's the red line everything that's south of red in terms of color orange Holly to blue is not cold enough to kill tumor so if we

administer a dose of a tea grade to the lobe we get this coverage which is to be a partial response if I administer 150 grey suddenly that red line gets larger what happens when you administer 400 grey now you've officially covered the

entire lesion and so you're going to lose the adjacent liver at those kind of doses and as well - what what the real question then is not sort of how much dose you give it's you give what you need to to ablate the tumor in its

entirety and you see what the patient's left with if someone's left with anatomically a lot of remnant liver because of how you've segmented out that lesion then go ahead and dose extremely high and that's essentially what we've

seen in pathologic results it's one of the highest things of high school pathological crosa rates you can achieve with a trans arterial therapy it's highly competitive with thermal ablation in the correctly selected bleezin

so this is an example of what it looks like when you segment out a little lesion like this and this patient ultimately went to resection and this was a complete pathologic necrosis but as you can see even it was a cirrhotic

patient we chose a very small volume of liver that we felt the patient would tolerate so that's a blade of vernalization let's take a look at what looks like in real time so we have a little capsular lesion we felt that

ablating this patient who was a potential transplant candidate we felt we can probably with a blade of radium realization so you go in and this is the comb beam CT that looks at a complete enhancement of the lesion within the NGO

zone this is what the MAA looks like when we administer it you can see how it tends to cluster within the tumor but you can see what the adverse territory is the liver adjacent to it this is what the engine room looks like how highly

selective it is the day of and this is what the wine ID actually looks like is the wine 90 doing its job and you can see how conformal it is there's no risk whatsoever to the liver that's adjacent outside of that field of

a maximum of around 11 millimeters and this is a patient at one month with a complete imaging response and this patient never developed a recurrent to the site and what's actually sole mode of treatment for this person's liver

cancer this is how you get complete pathologic response if you look at those little tiny grey dots in there those are actually the spheres within tiny little vessels within the tumor sometimes they go even to the portal branch but you can

see how they're not clustered uniformly but when you make them super hot that allows them to give range where otherwise they would be fine a little bit short so this also applies to the whole lobe this was a patient that had a

very unusual presentation of colon cancer that was invading the portal II we weren't sure what to do with this patient no one was because a very rare occurrence so we said well we would like

to resect him but there's not enough liver and we're not sure if this person's gonna survive because we've never seen portal cancer invading the portal vein so we said let's treat it with the radiation lobectomy and what's

cool here is if you look at the the arteries even though the tumor is invading the portal vein it's bringing arterial supply along with it like a vagabond and that's the conduit that allows us to treat these patients so

when we saw that we felt this patient we good candidate for irradiation lobectomy which is applying an ablative dose of y9t to the entire low not just a small segment in patients where otherwise cannot because of the anatomy the tumor

or if you're trying to shrink that lobe to get that person ready for surgery why because if you look at the size of the lobe on the left from this first image and compare it here you can see how much larger it got what happens is that part

that the surgeon ultimately tens on resecting in volutes over time and becomes completely vitalized and turns into scar tissue so we know that if a surgeon goes in afterwards to cut it out it's going to not result in liver

failure and that level of security allows people to have sir who otherwise wouldn't this patient is not going to have metastatic disease because we followed their blood level markers let me see how low they are and

is going to have enough liver remnant so the patient went to resection and this is the pathologic specimen and this was also a complete pathologic necrosis so I

advantages of radiofrequency ablation or that there's the most research on this

right so if you look up ablation research there's a whole lot of data and research on this as it's been the longest studied so that's always beneficial when you're trying to convince people that they should get an

ablation it's cheap right although some of the problem with that is a lot of manufacturers aren't making some of the devices anymore so to get replacement probes and that sort thing is difficult but it is certainly much cheaper than

the other modalities its gentler than microwave right so it's a slower increase in temperature and you can control it the disadvantages as we mention right so the ablation zone this is probably the worst part about

radiofrequency ablation is that the ablation zone is unpredictable right now we're trying to go towards this idea where we can predict the exact size of the ablation and really with RFA it was more experience related right so if

someone I've been doing them for 20 they can have a good idea how it's gonna it's gonna blade but that ablation zone is very unpredictable it's very tissue dependent right so if you have cirrhosis and the liver is

really scarred down you're gonna get a different ablation as to someone who has a normal appearing liver you have the heatsink effect which as I mentioned can be used as an advantage but usually as a disadvantage and then large large burns

are difficult right so anything greater than 4 centimeters even that is difficult to achieve with RFA it is possible to get skin burns at the grounding pad so if you're gonna do RFA make sure that the patient doesn't have

a hip prosthesis for instance and make sure you know it sometimes patients get sweat underneath the the pads and that can increase skin burns and those pads so that's one of another downside of a radiofrequency ablation so we'll move on

right now here's a different case is a 49 year old male who presented to the emergency department after vomiting a lot of blood vomiting was the key word there it's going the other direction so that's an upper GI bleed all right and

when we talk about upper GI bleeds there's a lot of different causes for upper GI bleeds the most common are ulcers but there's mallory-weiss tears of the esophagus there's just esophagitis or gastritis

there's different cancer vascular malformations fistula is varices which I'm not going to talk about but varices on the venous side in a patient with portal hypertension these are all causes of upper GI bleeding now

once again we might treat them medically we might look at them with endoscopy and potentially cauterize something embolization usually is used when and when endoscopy is not successful all right or certainly surgery but an upper

GI bleeds embolization is a lot more attractive of an option all right so here's another picture what do you think you up for it nope you turned me down all right who wants to who wants to tell me what they see how about you how about

you guys you can team up together what do you think so what do you seeing so let's look at that together so this is a seal EF is an anagram of the celiac axis you want to think it through you want to volunteer you see a filter we don't care

about that yeah all right that's fair so you see the catheter going up right in the middle and it's going right into the celiac axis all right what I want to draw your attention to is right in the middle of the screen a little bit over

to the left is again a blobby thing all right that's extravagant of contrast and the vessel that that's coming off of is the gastroduodenal artery so I want you to see that if you look at the catheter you

can see the shadow of the catheter right up going up from the bottom that's going into the celiac axis and the big vessel going over to the left side of the screen is the proper hepatic artery that the common hepatic artery excuse me and

the first vessel heading south from there is the gastroduodenal artery that blood vessel is supplying the end of the stomach and the beginning of the small intestine and what you see is the extravagant coming off now what it's

very important if you're dealing with bleeding patients whether it's in dusky whether it's hemoptysis or GI bleeding anything like that we're looking for that type of blob appearance which just mean the contrast is no longer

constrained by the artery it's free into space okay usually the way we were built is that the blood vessels the biggest they ever are near the heart as they leave the heart they get progressively smaller until they reach

the tips of your fingers and the tips of your toes if there's any place that you see where it gets big small then big again that's not normal okay that's not normal and now we just got to figure out what's

the abnormal part is it the small part or the big part all right in this particular case it's that big blob that's big it doesn't belong there all right but in the upper GI system there's lots of collateral vessels so we can

just go in and we can put coils right in the gastroduodenal artery and we can embolize that and we can do it safely because we know that there is alternative routes for blood to flow now the one thing we have to do here and

this is an important concept for any abnormal bleeding whether it's trauma or other causes is we always look for the backdoor so in this particular patient we did an angiogram of the superior mesenteric artery there's another vessel

going to the intestines and it's nice cuz we have the coils there you can get a sense that it's possible for blood to flow from a branch of the superior mesenteric artery backwards into the GDA and so we just want to make sure that

that's not happening because we can do the best job ever with an embolization procedure but if we don't get the front door and the back door we're gonna fail patients will come back with recurrent bleeding and at least in my experience

that's a big reason why people do come back so we think we do a great job in two or three days later people come back with abnormal bleeding it's weak because we didn't address both sides of the pathology all right so here's another

so these are a lot of slides most limited you know I'm talking I'm talking to you guys I'm talking showing you a lot of technical stuff you know and a lot of slides and I'm gonna talk mostly technical of you know how tips and dips are done kind of a step by step so even

the title it's kind of a workshop step by step of how basically you do you do tips and dips and what and and what are they so in general when you have when you have this is basically kind of out flow spleen spleen dumps blood into the

portal vein the mesentery dumps blood into the portal vein portal vein goes into liver liver does its thing and then dumps the blood into the eppadi veins to the right atrium okay for that because the liver is connected with the spleen

and the guts in series unlike any other organ basically the liver has to be a low-resistance organ because the portal circulation is low-pressure look the liver has to be a low-resistance organ with liver disease especially liver

cirrhosis you actually get increased resistance and in the liver with that disease and you get basically a backup of the blood flow in the portal circulation and increases the pressure in the portal circulation that's kind of

the genesis of or the pathogenesis of portal hypertension backing up circulation the spleen and in the guts then you get ascites and hydra thorax that's kind of think of it as weeping of fluid into the pleural space and into

the and into the perineum part of it is oncotic part of is osmotic basically think of it nutritional and pressure driven causes at the same time we all have potential portosystemic connections in other words they're there but they're

not connected or they're not opened up in plumbing they hold them bleed valves or pressure valves when the pressure is high and you know they start weeping or leaking you know in your in your basements we have the same thing

we have so many portosystemic connections there are about 55 named ones there are innumerable ones that are actually that are actually not named the common ones that we know are because of because of bleeding is esophageal

varices that's the connection usually between the left gastric vein and the azekah can be hazardous system you can also get gastric varices and that's usually connecting between a spleen and the left renal vein through a gas renal

shunts you can get also all sorts of connections even down in the internal hemorrhoids we get actually portal hypertension hemorrhoids and bleeding and so many numerous other shunts that we just don't have time to cut to cover

it to cover all these so the general to the general thought of treating all these complications of portal hypertension is to decompress the system to reduce the pressure and that's along the lines of years and decades of

surgery shunts that were placed and now tips ism largely replaced all these surgical shunts with the exception of Vancouver and Tampa okay that they still do some surgical actually a lot of surgical shunts most most other places

in North America converge to a tip to a tip shunt the the advantage of the tips of over surgical shunts is the usual what we hear is minimally invasive it you know it's a quick recovery less morbidity and mortality areason for

white tips has beaten the surgical shunts is the transplant era all these surgical shunts are actually extrahepatic so when you go for a transplants and liver hits the buckets they actually have to go and shut down

these shunts wherever they created them steena renal portal cable in the tips it goes out with a liver in the bucket so there's no complication of transplantation that's the real advantage of tips over surgical shunts

and that's why it's become very very prevalent in in in North America with a transplant error when approaching gastric varices just briefly another way is a BRT Oh which is to go basically into the left renal vein go up the shunt

and specifically screw rows the stomach and that's not the that's not this kind of subject of our of our discussion here I'm gonna talk to you

24 year old patient after a car accident has lower abdominal pain and melena so blood coming out of the rectum here's the CT scan anyone want to take a stab but you can just shout it out

so this time we're looking at the liver right so the liver is the big thing on the right side of the screen and what you can see is the dark hematoma posterior to the liver but you should also notice that big white dots sitting

right in the hematoma all right that's important because that's active bleeding that's the report when you guys when you guys get called in for these cases and someone says oh this you know liver trauma with active

bleeding this is the picture that is spurring that announcement okay this is what active bleeding and the liver looks like again there's a bleeding scale there's an injury scale for a liver trauma we don't need to go into that

slides are available if you want them alright here is the angiogram now again my rule works all right if you see vessels get smaller and then big again something's abnormal so in this particular picture I want you to notice

the catheter sitting in the right hepatic artery the blood is going up into the right lobe of the liver and right near the top of the pictures that big circular kind of blobby thing now this is by definition extravasation

sometimes we use the term pseudoaneurysm to describe this I just want you to appreciate what a pseudoaneurysm means it means that there's a hole in the artery that contrasts or blood is leaking out of that hole and the body is

essentially constraining the bleeding it's not going all over the place it's being constrained that's what we call a pseudoaneurysm all right that's just one way to look at it and geographically so this is an injury to the artery blood is

leaking out of the artery but maybe one layer of a three-layered blood vessel or even just the surrounding tissue is constraining that bleeding alright so what do we want to do for this exactly exactly you're getting it all right so

here we can get our microcatheter all the way out there the closer we get to it the better now in end organs like the liver or the kidney we don't actually have to get all the way out there getting close to it's going to be good

enough but the closer we get to it the better for stopping the bleeding and preserving the function of that organ all right so look how close we literally got right into the injury and then we're able to embolize it that's the goal all

right now the liver is a nice place the treat because as you know there's two sets of blood vessels going to the liver there's the portal veins in the apat ik artery so if we just embolize a little a patek artery the

liver is not going to notice that at all because it still has the portal venous flow bringing blood to that liver but our goal is to get in there preserve as much of the liver that we can and address that injury okay here's another

so this is our MGH page we started it about a year ago check it out if you guys like it some pretty good cases we mostly post cases some policy stuff industry and changing things it's not purely cases but certainly take a look if you like it give us a follow so what

I have today is I have two cases that I picked and you know for all the thousands of cases that all these huge academic medical centers do I tried to pick a couple that might be a little interesting and that aren't being done

in all the different centers across the institution so I'll start off with the first which is an endovascular AVF creation so what's nice about this is that you know what we see so far from this is that the length of stay impact

has been certainly reduced in certainly the maturation times and the Rhian turn re intervention rates have been reduced so I'll go through this and normally wouldn't go step by step for a few things but I think you know not all

institutions are doing this yet I think that you will I do think this is going to be a shift for a lot of the dialysis patients and everybody who works anion knows what a huge impact it is the ESRD patients is just astronomical the

numbers of them it's just continuing to rise so procedural steps the first step is you're going to access the brachial vein advance the guide Y down to the ulna insert a six French sheath and perform a vena Graham and the rationale

for that of course is to make sure you don't have any issues centrally some centers do that in advance some centers don't I will mention also that the ultrasound mapping is absolutely critical to make sure that

you get the right patient you start off by seeing them in the outpatient clinic and then you're going to go and have them have vascular ultrasound to make sure you have a good candidate so the next is you're gonna access the brachial

artery same thing advance your guide wire down to the ulna from there you're gonna insert the venous side now this is one of two approved vendors that will allow you to do an endovascular creation this was a wave link it's a to stick

system and it requires two catheters which is why you see the next step is pretty much repeated but just flipping it to the arterial side so from there there's a magnetic zone it actually has like a little canoe so it's got a

backing of a ceramic sort of a space there if you can think of sort of the older or atherectomy cut home catheters that had that little carro canoe you would actually take the debris out it's very

look into that and I'll show you that in a couple of images once you align that you're gonna sort of engage the little electrode this is an RF ablation RF created type fistula so it creates a little slit between the Adri and the

vein and what happens is is that you know of course don't forget you have to ground the patient just like any RF once you get the magnets and you get the electrode alignment you're going to engage the device for two seconds and

the fistula is created and then from there a lot of centers are actually going in there embolize in one of the brachial veins and this is basically to sum some of that stuff obviously to the superficial system for draining I have

read that there are a few places that actually go back back in through the newly-created fistula like even at the time of the procedure with the 4 millimeter balloon and just sort of open that up I'm not sure that that's 100%

necessary but I'm sure all these fine people on the panel could help us with that so here you see and I skipped all the entry steps but here you can see the Venus in the arterial catheter you know in position here and there's that little

canoe thing pointed out by the arrow that I had talked about and you use fluoro to sort of align these two things when you first start doing these cases take your time the first one was over an hour and a half for us now obviously

it's about a third at that time this is the little electrode this is when it's advanced and pretty much ready to engage can you play the video for me so this is quick so what happens is you suppress the

device the electrode actually advances and as it advances towards the veena side what happens is is that it actually just creates this fistula through the RF sort of energy from there you're gonna do a post vena graph in here you can see

after we did an initial post intagram there was enough sort of flow between the PIAT brachial so we decided to embolize one and this patient was our first patient and is doing very well so far this is done on I'm gonna say just

because you know to dr. brains point I don't want to get on the hook for certain dates and patient identification but this was done in mid-march so we saw them two weeks out and we're gonna see them again another couple weeks so just

there's a couple of trials that you can read into one is the neat one is the flex trial I think the technical success is really promising at 96% the maturation days you can see there's a massive massive comparison where they

could be ready to be dialyzed in 60 days and this could be a game-changer for many patients the six-month patency rate is what I've seen in most of the reports it's around 98% compared to about 50% with the surgical place and then you can

see that this about 3.5 interactions or re interventions that are required in about 0.5 at a year's time out from this so it's really making a big difference for these patients and I think this is what we do in i/o we continue advanced

things innovate and obviously look to do things in a more timely cost-effective minimally invasive way at the beginning when these new procedures come out the devices themselves might be at a higher price point but we'll see how that goes

moving forward as more and more vendors get into the space so the second case

today's objectives I'll start with reviewing hepatocellular carcinoma HCC

and the current treatment options I'll share the protocol inclusion and exclusion criteria and I will discuss the research treatment protocol briefly and next transitioning to research the preparation taken in the department with

staff members for trial lastly I will talk about what's involved intraoperatively from a nursing standpoint so hepatocellular carcinoma HCC is the most common primary liver manely malignancy and is a leading cause

of cancer-related deaths worldwide cirrhosis is a condition in which there is scarring to the liver causing permanent damage chronic medical conditions such as diabetes mellitus and obesity lead to chronic liver disease

obesity is a risk factor to diabetes and diabetes directly affects the liver because of the essential role the liver plays in glucose metabolism both cirrhosis and chronic liver disease remain the most important risk factor

for the development of HCC a which viral hepatitis and excessive alcohol intake are the leading risk factors of cirrhosis non-alcoholic fatty liver disease and non-alcoholic steatohepatitis which is nash our

conditions in which fat builds up in your liver thus having inflammation and liver cell damage along with fat in your liver these are other risk factors for HCC the incidence of HCC will continue to escalate as hepatitis C and obesity

become more prevalent in the United States so unfortunately the diagnosis of HCC is too often made with advanced liver disease when patients have become symptomatic and have some degree of

liver impairment at this late stage there is virtually no effective treatment that would improve survival in addition the morbidity associated with therapies unacceptably high modalities available for HCC screening include both

radiographic tests and serological markers radiological tests commonly used for surveillance include ultra sonography multi-phase CT and MRI with contrast ultrasound has historically been utilized to identify intrahepatic

lesions since the early 1980s both the photograph above shows a cirrhotic liver versus a normal liver there are visible differences in the portal and hepatic veins between the cirrhotic liver when compared to the non cirrhotic liver so

AFP alpha-fetoprotein has been used as a serum marker for the detection of HCC an AFP level of less than 10 is normal for adults an extremely high level of AFP in your blood greater than 500 could be a sign of liver tumors liver function

tests or lfts look at the part of your liver that is not affected by cancer to see how well your liver is working the lfts will be considered for diagnosis and determining the stage of HCC the tests look for levels of certain

substance in your blood such as bilirubin albumin ALP ast alt and GGT despite advances in prevention techniques screening and new technologies in both diagnosis and treatment incidence and mortality

continue to rise so treatment options for HCC can be divided into three categories surgical options non-surgical options and systemic therapy patients are screened diagnosed and treated accordingly of

these three options interventional radiologists offer the non-surgical approach which include trans arterial embolisation percutaneous ethanol injection radiofrequency ablation and microwave ablation so I want to talk

about the child pu classification the child pious core consists of five clinical measures and is used to assess the prognosis of liver disease and cirrhosis including the required strength of treatment and necessity of

liver transplant the child piu score was originally developed in 1973 to predict surgical outcomes in patients presenting with bleeding esophageal varices today it continues to provide a forecast of the increased increasing severity of

your liver disease and you're expected survival rate the Chao few score is determined by scoring five clinical measures of liver disease the five clinical measures are total bilirubin serum albumin prothrombin time ascites

and hepatic encephalopathy once scores are available in each of the five clinical measures all scores are added and the result is a child piu score their interpretation of the clinical measure is as follows so Class A would

be five to six points lease liver disease with one to five year survival weight at 95 percent Class B seven to nine points moderately severe liver disease one to five year survival rate at seventy five percent and Class C ten

to fifteen points most severe liver disease one to five year survival rate at fifty percent so which child pew scores do I our patients fall into for a research with the CPC and the majority of the HCC child pew scores a and B

seven with the survival rate of one to five years for 95% the best outcomes are achieved when patients are carefully selected for each treatment option regardless of the treatment approach

patients with HCC require a multidisciplinary approach to care to ensure optimal outcomes what we refer to as tumor board tumor board are meetings where specialists from surgery medical oncology radiation oncology

interventional radiology and others collaboratively review a patient's condition and determine the best treatment plan through this multidisciplinary approach patients have access to a diverse team of experts

instead of relying on a single opinion each specialty will have unique contributions to ensure optimal long term outcomes for patients with HCC so there are various algorithms for HCC treatment I actually have one on top of

the other there just to show you that if you're interested in the process you can look it up it's there's a few out there all right so how are the patients selected for treatment like I said tumor board and moving on now to the surgical

options there are two surgical options liver resection and liver transplant surgical resection is currently considered to be the definitive treatment for HCC and the only one that offers the prospect of cure or at least

long-term survival however most patients have unresectable disease at presentation because of poor liver function the overall resect ability rate for HCC is only 10 to 25 percent and even among those who undergo surgical

resection with curative intent there is a recurrence rate of it to 80% at five years post resection survival rates are in the range of 80 to 92% at one year sixty-one to 86 three years and 41 to 74 at five years

the most common sight of post resection recurrence is a remaining liver for patients who are not surgically resectable liver transplant is the only other potentially curative option virtually all patients who are

considered for liver transplant are unresectable because of the degree of underlying liver dysfunction rather than tumor extent down staging using local regional therapies can also be used to increase eligibility for orthotopic

liver transplant while on the transplant list patients disease progress and meeting criteria gets complicated so patients on the transplant list are and do get some other therapies

which I will later discuss so we're surgical resection is not possible for poor liver function liver transplant is a treatment of choice prior to 2008 no systemic therapy was available that demonstrated an improvement in survival

with the publication of two randomized placebo-controlled phase 3 trials the oral multi targeted tyrosine kinase inhibitor sorafenib has become the new standard of treatment for advanced HCC with an increased median survival from

seven point nine months and the placebo group to ten point seven months in the treatment group systemic therapy can be difficult to tolerate because of the side effects dose reduction or treatment interruption is often needed

despite the side-effects treatment is recommended and to be continued into a progression of the tumor is demonstrated the majority of diagnosed patients with HCC present with advanced disease oral therapy has taken two pills twice daily

equaling 400 milligrams B ID so interventional radiology it's like surgery only magic so I I always think about this when patients come in and pre-op beam and they think they're having surgery you know it's well a lot

of benefits to ir what we're doing so interventional radiology is where the magic happens and non-surgical approach procedures are performed percutaneous local ablation include ethanol injection and radiofrequency ablation microwave

ablation is utilized both percutaneously and intraoperatively and lastly there is trans arterial embolisation which depending on the embolization agent can either be chemo bland or radioisotopes percutaneous ethanol injection known as

Pei has a long track record and is very effective in destroying HCC tumors that are less than or equal to 2 centimeters in diameter performed under percutaneous ultrasound guidance a needle is placed into the tumor and absolute alcohol is

injected over recent years radiofrequency ablation referred to as RFA has largely replaced Pei at most centres RFA's also performed percutaneously advancing a specially designed electrode into the tumor and

applying radiofrequency energy to generate a zone of thermal destruction that encompasses the tumor and a 1 centimeter margarine surrounding liver RFA is thus preferable to ethanol injection for patients with solitary

tumors 2 to 4 centimeters in size for tumors smaller than 4 centimeters RFA can achieve initial complete response rates of over 90% in microwave ablation MWA microwaves are created from the needle to create small

regionals regions of heat the heat destroy the liver cancer cells RFA and microwave are effective treatment options for patients who might have difficulty with surgery or those whose tumors are less than one and a half inch

in diameter the success rate for completely eliminating small liver tumors is greater than 85% so can I get a show of hands from the audience on who what facilities are doing chemo embolization everybody pretty much are

you guys doing them next to the gentleman yeah okay so this is gonna be a boring review here alright so trans arterial embolisation a minimally invasive procedure performed to restrict to tumors blood supply it is performed

by advancing and angiography catheter into the branches of the hepatic artery supplying the tumor and injecting an agent mixed with orally contrast followed by a cluding agent known as beads the beads which range from 100 to

300 micrometers in diameter are carried by the circulation into the terminal hepatic arterioles where they lodge and include the vessel resulting in the schema tumor necrosis the procedure is done using moderate sedation patients

are monitored for 23 hours or less for pain and post embolization syndrome trans arterial chemo embolization thus is where the chemo therapeutic agent mixed with beads is injected to the tumor

these particles both blocked the blood supply and induced cytotoxicity attacking the tumor in several ways taste is the treatment of choice when the tumor is greater than four centimeters or there are multiple

lesions within the liver taste takes advantage of the fact that while the liver is refused by both the portal vein and the hepatic artery HCC survives its blood supply almost entirely hepatic artery tastes has been shown to

prolong survival in patients with intermediate stage HCC and objective responses were observed in the majority of patients tear trans arterial radioembolisation is a form of catheter directed internal radiation that

delivers small microspheres with Radio isotopes directly into the tumor y9t microspheres are administered and a procedure similar to taste the procedure has been shown to be safe and effective in cirrhotic patients with HCC the side

effects are usually well title tolerated one major advantage of y9t over taste is that it is indicated in the case of portal vein neoplastic thrombosis while taste traditionally has been considered a contraindication all right so there's

and what's available the ellipsis device

which is a startup company still hasn't been bought by anyone it was developed by an interventional radiologist named Jeff hall if you know Jeff from Richmond Virginia and it's a totally ultrasound mediated placement it only requires one

puncture into a cephalic or a perforating vein and then you go from the vein into the artery and I'll talk about that in a moment then the everline the queue device now cold wave link wave linq device i was formerly a TV a

medical developed here in Austin Texas and recently bought by bard BD both devices were FDA approved over the summer and now this goes back the whole idea of what are we doing here what we're creating what we call a deep

fistula so and that was done in response to failing forearm fistulas the radius of Halleck fissures when they started to fail people would then jump to the upper arm and start creating brachial basilic

transposed basilic vanes already oh so phallic brachial cephalic fistulas in the upper arm and then here a guy by the name of Ken grass in Illinois it's called the grass fistula I think I'm saying that right developed a fish to

where he would hook the deep veins at the forearm to the brachial artery flow would then go from the brachial artery across the fistula up what's known as a perforating vein and that perforating vein selectively would go well

selectively perhaps unselect if we go to either the basilic or the cephalic or perhaps even both and here's a nice anatomic description I don't sorry I do not have a pointer I don't even have a keyboard but if you look there we'll

start up at 11 o'clock you can see there B and C basilic vein cephalic vein or labeled you see that P going straight down from the middle of the clock down to six o'clock that's the perforator okay we all know about perforators in

the legs if you do varicose veins because they're incompetent perforated up until six months ago I never even knew there was a perforating vein there one number two I defy anyone to try to find it in an anatomy book because it

just you know it doesn't I'll show you one picture of it but it's not exactly descriptive of what it does then basically they would take that and cut the perforating vein off of the deep venous system and attach it to the

brachial arteries you can see down there four o'clock so now you have flow from the brachial artery across the perforator and up into the superficial venous system and supplying the lead basilican the cephalic veins

kind of kind of a great idea and in fact they looked at these and they compared upper arm fistula swen maintenance of dialysis with deep fistulas and the the time to use of maturation was about the same about four months there was no

significant difference in outcome among the three types of fistulas brachial cephalic transposed rinky basilic and in fact since we have flow through both both of those veins you know it's may be

tempting to speculate that you can now use both of those things actually for hemodialysis and that's currently done many times two needles one needle and ability and the break in the basilic keeps me breaking

one needle in the basilic one needle in the cephalic and then you can alternate those needles so you don't have the problems of vein injury by frequent cannulation at the same spot well here's the one anatomic picture I ever found

with the perforating vein this is from the sobota Atlas which medical students know very well and you can see right in the middle there it says perforating vein and it's ducking down there below the fashion who knows where the hell

it's going but you don't know it from here and here you can see on ultrasound this is pretty much you know what it looks like that's the perforating vein and I guarantee whew go back and grab your ultrasound machine in your

departments and you all have to do is put it on color when you follow the basilic vein down or the and they'll meet the cephalic vein kind of a V and then just below that you'll see your perforator diving deep towards the

brachial artery alright and so now you'll all know where the action is going on and the you know since I think this procedure really is ideal for interventional radiologists I mean it really leverages everything that we do

you know ultrasound fluoroscopy multiple oblique angulations complex angulation is to position the device correctly I mean this procedure is really made for us so I suspect that some of your your attendings may want to begin a program

like this and if you cover the ORS and you're dealing with vascular surgeons or interventional nephrologist I'm sure they will probably want to get involved and so you know get ready guys here it comes so here is a obviously an

illustration of the the forum you can see there's the brachial artery going down take particular attention to the median nerve you can see this with ultrasound it's a very hyper echoic focal structure but when you're

puncturing that brachial artery load down at the elbow you want to make sure that they see the Brig a break heel and pardon me the median nerve because you can injure it if you put a five or six French sheet through it and that's one

of the potential complications of this procedure but as a radiologist we know ultrasound we can see it and we just have to do a complex needle I'm sure you know angling the ultrasound probe around it so he can get them to

the brachial artery then if you follow the cephalic Emily basilic vein down you can see they meet in the center median cubital vein and then the antecubital median antebrachial vein and then but they don't really show here is the

perforator but the point I wanted you to make it and to make you is them the median nerve is right in your target very often you don't want to tangle it now there's a lot of variation in the cue you know and whenever you get down

to anatomic structures this small which when you're doing these procedures you want to be aware of you can see that some people if you look all the way to the right type for there's no perforating vein and these people are

deemed to be anatomically unsuitable for this type of procedure you have to have a good quality and we'll talk about size usually about two two and a half millimeters perforating vein to get that blood from the brachial or radial or own

or artery up into the superficial system to a point where the fish so it can be cannulated but the anatomy here is variable and so you have to be aware that if you don't see it it just may not be there may just be you know a variant

tip Jennings down in Texas now the only person who knew about perforating veins was Bart - Oh max I talked to him the other day goes yeah I knew it because tip Jennings was doing all these deep fistulas down in Texas when he was down

there but tip is kind of when one of the proponents of deep fist shows why because when the proximal or the the distal radius of how a fistula fails the deep fistula can be made and still you don't have to tangle with the

superficial cephalic or basilic vein and also the deep fish avoids steel people don't steal blood when they have a deep fish to them and just because the the the size two or three millimeters of the perforator I think chronic keeps a check

on the blood flow that actually goes through trying to snip up the action

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

to have severe humor billion almost all all those that need your attention is about aghori portal veins though can be tremendously so the differentiation between hepatic artery and portal vein

bleeding is the big differentiator that will require you to do something about it most of the times if you injure the portal vein or hepatic vein these usually heal by themselves and it's counterintuitive the management of this

is actually to upsize your tube and they make sure the side holes are not adjacent to the bleeding vein it's crossing so it's counterintuitive that you upsize - for bleeding injure the vein more but

eventually those veins will thromboses off for that little branch the difficult situations of sahiba heavy hit an artery and here's one way we did a gram you can see the pacification the reason why you want to go into the peripheral duct I'll

show you always near the hilum is actually also very big blood are the blood vessels and the reason why we go peripheral the number of large vessels are much greater diminished so you always want in this patient was

transferred for an outside Hospital my PTC was performed by someone who obviously doesn't do a lot of these and access directly into the coma bar duct you can see all these filling defects all these filling defects in the combat

like those or clots and filled with someone who's actually had life-threatening significant he Mobilia and required what we did was they were just pacify the system get another peripheral access

right biliary system and embolize the track coming out and thereby removing the original axis that was placed by the outside hospital interventionists obviously the ones that aureus the most of the narco that will kill people is

the ones that hit our ease and pseudoaneurysm formation or tara Venus fistulas and I can be problematic in my only real ways their dresses trans cap the treatments a patient would have an angio we'd have to get into the pedagogy

find the feeding or it almost always though and we can predict way that bleeding artery is it's where your Y is crossing the architecture of the artery tree frequently you will not see it until you remove the tube so almost

always you would have to prep the right flank prep the groin to an angiogram with the tube in because you don't really want to be rushing at the beginning of your procedure you frequently do the angiogram not see

bleeding and then a second operator needs the described brake scrub get non sterile axes remove the blue tube repeat the angiogram and almost certainly then you'll see it but again it's very

predictable where it is but every now and then you get caught out and the bleeding side can be remote from where your actual Y or actual access transgressor you you do need to have a careful eye looking for that and so you

know when we looked at out and we do large numbers of blurry drainage the best predictor or and like I said Arturo Kimber Billy is actually related to your first tube and the size that you place and it's also

interesting like I said every now and then you're gonna see that bleeding arteries are actually not liver arteries and you can't bleed from the GDA internal memory from other procedures intercostal artery from where you put

your tube first needle through the liver through sorry through the ribs itself it's actually access site rather than your internal parenchymal your liver so it's actually important to also do sometimes it a water gram check the

intercostal artery because you'll miss it by doing a celiac or teragrams hepatic artery gram and don't understand why the patients still bleeding and here's just example of what a pseudoaneurysm does when we remove the

chief we can see the image on the right the blue tube has mean withdraw back and they you can see quite clearly there and sorry the pseudoaneurysm of the paddock right re and like any other immunization is important to go front door back door

implies across mainly because the liver architecture has a rich collateralization that will feed before and after and like I said the lake complication zone was or derived and related to tube maintenance and tubes

catching on to things in dislodgement and so these are just really you know your whoever answers the phones whether it's the physicians on call they have to manage with maintenance of these tubes and really just keeping these tubes open

as long as possible it's amazing how long some of these tubes do last in particular in benign but Lewis structures so management of these is really or expectant and the right advice and frequently just need to

get these tubes changements they're clogged sufficiently the difficult ones

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

much more controversial so you it was pretty clear that we have to rescue

massive PD patients from death but with these statistics what are we supposed to do with sub massive PE well are we supposed to prevent mortality it's gonna be hard to do if the mortality is only 2 to 3% because you're trying to really

improvements of a very low statistic are you trying to reduce the rate of hemodynamic deterioration that's a possibility what about long-term disability if you remove clot upfront

will these patients do better six months one year or two years down the road frankly we don't know the answer to any of this and the reason is that the pytho trial made things quite difficult for us to interpret the pytho trial was the

trial that was going to answer all uncertainty this was a trial where it took some massive PD patients in that high-risk intermediate category and randomized them to receive a bolus of tenecteplase which is similar to TPA but

is not the same versus anticoagulation alone what did it show well it showed there was no difference in death between tenecteplase and placebo so they actually gave a placebo drug so that no it was a double blinded

study now if you look at the next line though a lot more patients decompensated if they receive the placebo than that's not to place this is not a bad thing you know it's not it's not great when you have to intubate somebody or initiate

pressors so if you can avoid that outcome that's it that's a pretty good thing so maybe it is the right thing to give systemic thrombolysis in the setting of sub massive PE problem was this the bleeding you look down here

there was an eleven percent rate of major bleeding in the tenecteplase arm there was a two percent rate of intracranial hemorrhage so now we've got this therapeutic window that's hard to interpret so we seem to be improving

outcomes from an efficacy standpoint but then we're also increasing the rate of bleeding so basically what we've sort of coalesced around is that systemic thrombolysis has a questionable risk benefit profile because the rate of

bleeding and the rate of really serious bleeding is makes us nervous so is that an opportunity for catheter director thrombolysis and I'll call this the poster child for Catherine throwing license if this is how it worked every

time we might have a homerun so this is gentleman looked terrible well still in the sub massive category but breathing at 35 times a minute hypoxic had his main PA systolic pressure of 60

millimeters of mercury you look over here and there's this large clot in the right upper lobe go to the left side and then there's all this clot in the left lower lobe as well so what do we do we put in bilateral infusion catheters this

can be an E Coast catheter it can be a standard catheter these areyou nafeez catheters have side holes starting from here and ending it's hard to see but there's another radiopaque marker somewhere down there on this side there

and somewhere over there and between those markers you have multiple side holes and those are put up inside the clot so you're dripping TPA at a rate of about 0.5 to 1 milligram per hour and you're getting it directly into the

clock that's the theory and so after 20 to 24 hours of that you know you're given 20 to 24 milligram of TPA that's compared to 50 or a hundred that you get was sitting with systemic thrombolysis you get something

that looks like this where the pulmonary arteries look pristine the PA still the systolic pressures come down the patient feels great now the skeptic would look at this and say well if you just tried some heparin and you just infuse saline

would you have the same result and frankly if you were to conduct the experiment you might find something interesting or not interesting but we never have conducted that experiment but you know I'll tell you a little bit

about the ultimate trial if I have time I don't want to go to overtime though

no way around this I'm gonna read to you the inclusion criteria right off the protocol it's kind of long so confirmed diagnosis I wrote some single line there that can help you follow along confirm diagnosis of HCC number two patients

above age 23 patients with single or multiple nodules HCC who are unsuitable or unwilling for surgical resection or RFA the largest tumor nodule should be less than 10 centimeters in the large largest diameter total volume of tumor

cannot exceed 50% of the liver patients are candidates for trans arterial embolisation no tumor invasion to portal vein or thrombosis and main and first branch of the portal vein 5 patients have no lymph node involvement or

distant metastasis 6 ECoG score at 0 to 1 with no known cardiac pulmonary or renal dysfunction 7 child pew score group a and B 7 eight patient should have measurable disease by contrast MRI nine prior local

therapies such as surgical resection radiofrequency ablation and alcohol injection are allowed as long as tumor progresses from the prior treatment and the patients are still candidates for tae 10 patients have normal organ

function based on some labs eleven patients are able to understand and willing to sign the informed consent and twelve men and women of childbearing age need to commit to using two methods of contraception and the exclusion criteria

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

so this shows you this shows you how so this typically you've accessed the portal vein now and you're in next up you basically pass the wire down this just gives you a little depiction of

what you're what you're what you're doing here this think of this is a sagittal and Deliver okay hepatic vein and portal vein it's the sagittal and what you're trying to do is

and if you're in the right hepatic vein you need to pass your needle anteriorly to hit the right portal vein okay and the right portal vein is usually anterior and interfere to the Patek vein okay so you pass your wire you're you

NEET your needle and when if you're missing the portal vein usually what's happening is that you're scooping behind it okay your posterior to it and sometimes you'll find the operators will actually increase the curve in the

needle so they can actually reach anterior anterior and actually hit the portal vein because usually usually if you if you know you're in the right place that the right hepatic vein not in the middle of petting vain and

you're missing the portal vein you need to reach anterior more so they put a little extra curve in the kelp into needle to actually catch that right portal vein okay with liver cirrhosis you get shrinking shrinkage of the liver

size the liver decreases the portal vein starts moving more anterior and more superior and closer to that paddock vein okay and it becomes more and more difficult to actually hit it so the smaller the liver the harder the liver

the smaller the space and you've got a thick mat piece of metal okay it's very difficult to hit that okay it becomes more and more challenging with with smaller levels to hit to hit the portal vein especially centrally okay this is

an access kit a new access kit by Gore it's basically the similar to the similar to the Cal Pinto needle it's a little longer with a little bit increase angulation compared to the traditional ring kits or the Cole Pinto needle but

once accessed you pass a wire okay into the portal circulation there are two ways of doing this okay there's a traditional old-school way that's my way is that to use a Benson wire okay the youngsters the Millennials are using

glide wires okay so if you're dealing with a millennial physician they're usually going for the glide okay if you're dealing with them with an older you know guy or gal they're using usually using a Benson wire okay the

advantage of the Benson wire is that has a floppy tip it actually you just push it in and hits the wall it prolapses into the main portal vein right away as you can see just prolapse and portal vein if you're using a glide where

you're catching all sorts of things you'll have small branches you don't know where you're going your V's even sometimes dissecting outside of the portal vein they're second-guessing themselves all the time but actually the

good way with a little bit of more different skillset is that you use use actual good old fashioned Benson wire actually goes in prolapses right away into the ends of the main into the main portal vein rarely would I actually use

light or switch to a glare that's usually if I'm coming in in a small in a small branch or an orchid angle where I have to use a glide right to try to get around the angle because I don't have enough room for a Benson to actually hit

the wall and prolapse is very really really tight space so tights Bates funny angles I'll switch to a glide where if it's a straight forward a Benson as very is very straight forward okay try to get the sheath as much into the portal vein

over the over the needle over the wire as possible and then you balloon your tract okay through the sheath okay some people will balloon with a six millimeter boom some people will balloon with an eight millimeter blue eye

balloon with an eight four okay at night and I make sure it's a four so that I actually use the balloon as the measurements for this four centimeters actually you I actually use the balloon to measure my to measure my Viator's

stance okay with the balloon there there'll be two waists there's a portal venous entry site and the Ematic venous entry site so you actually gauge that and take a picture of it so you actually see how long your tract is where's your

hepatic venous access who has your portal venous axis actually gives you a lot of anatomy here been engaging in actually putting where your Viator stent is okay usually high pressure balloon I use it and ate some people will use a

six or even a seven millimeter balloon

something some case examples of where I use cryoablation right so this is a

patient who has a nodule in the in the back of their lungs in the right lower lobe and basically I'll place two probes into that notch on either side of Brackett the lesion and then three months later fall up you can see a nice

resolution of that nodule so when it comes to lung a couple things I'll mention is if the nodule is greater than eight millimeters I'll immediately go to two probes I want to make sure that I cover the lesion whereas microwave it's

pretty rare depending on what device you're using for you to put more than one probe in so some people's concern with cryo in the lung is more probes means more risk of pneumothorax but you can also see surrounding and proximal to

where we did the place you can see the hemorrhage that you see so if those of you out there that are doing the lung ablations you probably have physicians that are using something called the triple freeze protocol right so the

double freeze protocol is the idea that you go ten minutes freeze five minutes 30 minutes freeze five minutes thought well what we saw was lung early on in the studies was a very large ablation a freeze to start with caused massive

hemorrhage patients were having very large amounts of hemorrhage so what we do now in lung is something called a triple freeze protocol we'll do a very short freeze about three minutes and that'll cause an ice ball to form and

then we'll thaw that in other three minutes three minutes of thawr and as soon as that starts to thaw we'll freeze it again and we've shown us a substantial decrease in the amount of hemorrhage so if you're doing long and

you and you you're told to do a double freeze protocol perhaps suggest the triple freeze is a better idea so that's three months later so another example

you know the most common procedures in China this is kind of interesting I was blown away by this when I did the research on this I knew when I would go

into the hospitals and I was all over for I've been to Beijing shanghai nanjing to even the smallest little place is up in northern china and the one thing that blew me away I'm looking at the board and I'm seeing neuro case

after neuro case after neuro case I'm like it got 10 Narrows and and a pic line I'm like it's an interesting interesting Dysport of cases and the reason being is in China they consider diagnostic neuro

so neuro angio to be the primary evaluating factor for any type of neurological issue so you're not getting a CT if you come in with a headache you think you're gonna go get that cat scan now it's generally what not what they do

so you're talking about a case and I'll give you the case matrix of the break-up it's just proportionately high for a neuro very well trained in neuro and most of the guys that are trying to neuro very similar to what dr. well Saad

said a lot of the guys in Africa are trained in France so other neuro interventions have trained in France or lipstick in China and have received European training on that so you know the level of what they're doing some of

the stroke interventions some of the ways they're going after these complex APM's they'll Rob well anything you'll see here in the US so it is quite interesting to see and the second

largest is taste hepatocellular carcinoma is on the rise it's the highest level in the world is found in China and Korea for that matter and there's many reasons why we can go into it some of it is genetic factors and a

lot of societal factors alcohol is a very liberally lie baited in China and there is problems with you know cirrhotic disease and other things that we know could be particular factors for HCC so always found that very

interesting like I said I would go into a hospital and I'll see a PICC line a hemodialysis catheter and then 20 tase's on the board in one day so it is quite interesting how they do it and then biliary intervention stents tips and

then lung ablation you know the highest rates of HCC biliary cancer and lung cancer found in China and once again when we talk about lung cancer what are those contributing factors you're talking about certainly a genetic

component but mostly it's lifestyle factors smoking is prevalent in the US and in you know in Europe and in some areas in Asia we've seen obviously a big reduction in smoking which is fantastic China not so much you don't see that

it's a societal thing for them and unfortunately that has led to the the largest rates of cancer in the world in lung cancer so lung ablation is a big procedure for them over there as well so procedure breakdown this is kind of some

of that breakdown I was telling you about that cerebral procedure is some of the most commonly performed and you're talking about at very large numbers they're doing neuro intervention because they do it for die

Gnostic purposes and I would that kind of blew me away when I found out they do have cast scanners and certainly for trauma and things like that they'll do it but the majority of the stuff if you come in you have headaches you might end

up in the neuro suite so it's quite interesting how they can do that tumor intervention very high like I said you have the highest rates of HCC in the world you're getting cases they do have y9t available and in fact China just

made their largest acquisition ever with the by what you guys know a company they bought surtex there's a Chinese company now it got bought by China now the interesting is they don't currently have a whole lot of

y9t over there but they just opened up some of their own generators so they can actually start producing the white room 90 and I think you'll see probably a increase in those numbers of y9t cases but to date the number one procedure for

them is taste and they do a lot of them you know like I said on average a community hospital setting you might find 15 or 20 cases a day with three interventionalists so compared to what you guys do there's probably not many

people here unless you're working at a major institution that there's nothing but cancer doing 20 cases a day and I promise you're probably not doing it with only two interventionalists so it's amazing how fast and effective they've

gotten at and below therapy and unfortunately it is necessary because of those elevated HCC levels and like I said when we look at some of these things it's I go over there and I'm looking at the board there are very few

cases for you know PICC lines very few the frosted grams very new bread-and-butter abscess training procedures like we do here in the US they are very it's the prevalence is very simple it's neuro it stays and it's

biopsy and those are some kind of the big three for intervention in China and there it's such a large volume you get to learn a lot when you're over there and CLI PA D even though it's more prevalent in China than it is here

because smoking lifestyle factors certainly westernization of the diet in China which occurred since the 1950s and 60s has led to a lot of McDonald's and and fast food and things that weren't currently available prior to 1950s you

see a lot of PA d but it is very undertreated and certainly talking to some of my colleagues like whom are oh you'll get to see a little bit later on with CLI fighters one of the things that's kind of frustrating for them is

that it is so undertreated it's very common to see amputations in China instead of actually doing pipe in percutaneous intervention they normally like to go too far and you see a lot of amputation certainly above

normal so that's something I think as an interventional initiative when we look at these things coming from a Western perspective it's definitely something we need to pursue a little more aggressively but there it's very little

oh well you're talking about two you know two to three percent you know maybe up to six percent or PID cases very very low levels so equipment in equipment in

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.