Create an account and get 3 free clips per day.
Chapters
Renal Artery Stenosis, Superior Mesenteric Artery Dissection|Stenting|64|Female
Renal Artery Stenosis, Superior Mesenteric Artery Dissection|Stenting|64|Female
2015abdominalaheadangiogramarterybrachialbranchbranchescathetercentimeterchronicclinicallycortexdissectiondissectionsdistaldistallyentryextendfalseguideguidinginventorylacticlaterallumenprettyproximalrenalsegmentsegmentsseveresheathSIRstenosisstenoticstentstentstreatingtruewire
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
Selective SMA Stenting With F/EVAR: When Indicated, Value, Best Bridging Stent, Technical Tips
aneurysmcookdeviceselevatedendograftfenestratedfenestrationsFEVARgraftI-CAST(ZFEN)intensifiermidtermmortalityorthogonalpatientsrenalselectivestenosisstentstentedstentingtherapeutictreatedVBX (ZFEN)VeithvelocitiesvisceralwideZenith Fenestrated graft
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
Rapid Transport For Acute Aortic Syndrome Patients: When Should It Be Used And When Not
abdominalacuteaneurysmsaorticbasicallycenterscomorbiditycreatininedissectionsevarevarsfactorsinpatientinstitutionlowermortalitypatientsphysiologicpreoperativerapidrenalrupturedstudysyndromestransfertransferredtransferstransportunivariatevascularVeith
Technical Tips To Make Distal Bypasses Work
Technical Tips To Make Distal Bypasses Work
anastomosisanesthesiaanestheticsangiogramangioplastyanticoagulationantiplateletarterybypassbypassesconduitdebridementdistaldistallydopplerdorsalisendarterectomyfootgrafthybridincisioninterventionischaemiaLeMaitrelevelOmniflow II Ovine graftsOrthograde graftspatientpatientspedisPeroneal BypasspoplitealprocedureproximalptferemoteRemote EndarterectomyrevascularizationsaphenousskinstentingSurveillancetherapytibialveinsvenouswaveform
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
Technical Tips For Maintaining Carotid Flow During Branch Revascularization When Performing Zone 1 TEVARs
anastomosisanterioraorticarteriotomyarterybordercarotidcarotid arterycommoncreateddissectiondistalendograftflowhemostasisincisioninnominateleftlooploopsLt Subclavian RetrosmiddlepreferredprostheticproximalproximallyrestoredsecuredshuntstentsubclavianSubclavian stentsuturesystemicallyTAVRtechniquetherapeutictransversetunnelingvesselwish
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
The Importance Of Stent Flexibility In Venous Stenting
The Importance Of Stent Flexibility In Venous Stenting
aspectaxialcellCook Medicaldedicateddestroyeddiameterflexibilitygeometriesiliacing stentkabnickoutcomepatencyproximalratioRecanalization of Left IliacsectionalstenosisstentstentingstentsvenousVenous Self-ExpventricleZilver Vena
Indications And Advantages Of Antegrade In Situ Fenestration For F/EVAR: How To Do It
Indications And Advantages Of Antegrade In Situ Fenestration For F/EVAR: How To Do It
aneurysmantegradeaorticaxillarybailoutbrachialbridgingceliacCutting BalloonendoleakendovascularevarfenestratedfenestrationgraftischemiclaserLaser Atherectomy CatheterLaser ProbelfEVARmidtermprobeproximalrenalretrogradesitusteerablestentingsubclaviantechniquethoracicthoracoabdominalTurbo-Eliteunfitvisceral
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
aneurysmarterybuttockclaudicationCook ZenithdeployedendograftendoleaksevarevarsexcellentfinalgrafthelicalhypogastriciliacjapaneselandinglimbobservationalocclusionoperativepatencypatientspercentrenalrequiredspiralSpiral Z graftstenosisstentStent graftstentsstudytripleVeithzenith
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
Italian National Registry Results With Inner Branch Devices For Aortic Arch Disease
aortaaorticarcharteriesarteryascendingavailabilitybarbsbranchcarotidcatheterizedcommondecreasedevicesdissectiondoublr branch stent graftendoleakendovascularevarexcludinggraftguptalimbmajormidtermmorphologicalmortalityoperativepatientpatientsperioperativeproximalregistryrepairretrogradestentStent graftstentingstrokesupraterumotherapeutictibialvascular
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
Imaging Tools To Increase The Safety/Accuracy Of Endovascular Procedures And Reduce Radiation And Contrast Media
anatomyangioplastyarterialBaylis MedicalcontrastCVOdefinediagnosticfusedfusiongraftguidewireiliacLeft CIA PTA using Vessel ASSISTocclusionoutlinepatientphasePowerWire RFprettyPTAradialsnarestenosisstentstentstotallyveinsVessel ASSIST (GE Healthcare) - Fusion Imagingvesselswire
Crush Stenting: A Better Technique For Treating Occluded Fempop Stents: Indications, Technique And Results
Crush Stenting: A Better Technique For Treating Occluded Fempop Stents: Indications, Technique And Results
antiplateletballoonballoon expandableBESBMS SES/ Covered SES / Interovoven SEScombiningcomplicationscrushdebulkingdistaldistallydualendovascularexpandableexpandinghydrophilicintermediatenitinoloccludedpatencyperformpoplitealproximallySESstentstentingstentssubintimalSupera / Viabahntechniquetherapyviabahn
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
aneurysmarterybrachialcathetercentimeterclaudicationcomorbiditycomplicationsdiameterendograftendoleaksgorehypogastriciliaciliac arteryischemialatexlimblumenmajoritymidtermmortalityocclusionorthostaticpatientsperformedreinterventionrevascularizationssandwichstenttechniquetherapeutictreattypeviabahnwish Technique
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
With Complex AAAs, How To Make Decisions Re Fenestrations vs. Branches: Which Bridging Branch Endografts Are Best
anatomicanatomyaneurysmaneurysmsaorticarteriesballoonBARDBEVARbranchbranchedbranchesceliaccenterscombinationCoveracovereddeviceendovascularexpandableextremityfenestratedFenestrated EndograftfenestrationfenestrationsFEVARincidencemayoocclusionocclusionsphenotypeproximalproximallyrenalrenal arteriesrenalsreproduciblestentstentstechnicaltherapeutictortuositytypeversusViabah (Gore) / VBX (Gore) / Bentely (Bentely)visceral
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
How To Avoid And Treat Pitfalls In Fempop Endovascular Treatments: Dissections, Difficult Lumen Re-Entry And Knowing When To Stent
How To Avoid And Treat Pitfalls In Fempop Endovascular Treatments: Dissections, Difficult Lumen Re-Entry And Knowing When To Stent
6F Sheath / Stiff Terumo guidwireAntegrade-Retrograde TechniqueballooncathetercathetersCLI Right Limb over occlusion of SFAdissectiondistaldistallyGlid Terumo guidewire 0.035x180 cmguidewireguidewiresocclusionpoplitealpreciseproximalrecanalizationrecanalizedretrogradesupporttechniqueTherapeutic / DiagnosticTrailblazer
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
How Can Duplex Ultrasound Reliably Predict Stent Thrombosis Before It Occurs And Improve Results
How Can Duplex Ultrasound Reliably Predict Stent Thrombosis Before It Occurs And Improve Results
abnormalcontroversialdiagnosticduplexendovascularextremityfempopfollowiliacinterveneoccludedocclusionpatencyperipheralprostheticproximalstenosisstentstentedstentsSurveillancesystolicveinvelocities
Transcript

>> 64 year old with a history of hypertension, made it to the ER with acute onset of severe pain, gets a CT scan and

I'm gonna just scroll through a series of images here as well. You can see the cortex of that left kidney's a little thin, but look at the SMA, I don't know if you can see that but there's a dissection flap in it there. TrueLumen's/g markley/g compressed,

there's a large nearly thrombosed or no flow false lumen. [BLANK_AUDIO] And that extends very distaly/g in that estimate/g. Reconstructions show you that that left kidney is a bit shrunken, thin cortex and also has a very tight proximal stenosis.

So, patient in the ER abdominal pain, lactic acid is normal, what are we gonna do? And I think that diagnostic angiography is very useful, particularly cuz it gives you the opportunity to do pressure measures in case like this.

It is real important, I think in this dissections to find out is that stenosis hemodynamically significant or not and the only way go ahead and do that is to go ahead and do an angiogram and get some pressures, I don't know any thoughts, any comments from

the audience on that? >> Felix, I'm sorry what was the age? Wouldn't you think the [INAUDIBLE] The dissection, is this a stent? Or is this a creative tissue disorder? >> I think it's worth just really talk about the differential cuz

this comes up a lot. So focal visceral/g dissection, just some people are just unlikely to spontaneous dissections usually it's associated with severe uncontrolled hypertension. Three, they have SAM,

or some type of similar vasculidity, post traumatic, there are certain things that make these more likely patients that are on chronic steroids. I think is a risk factor for this FNB can present with this. So anything else I'm missing that you would put your differential? So because she had bad hypertension,

had a left renal artery stenosis, had some underlying [UNKNOWN]. We assumed this was a ruptured plague/g and had formed a dissection so she would [UNKNOWN] In her SMA, probably precipitated by hypertensive crisis.

>> So the reason I'm asking when I look at the dissection and where it extended on the CT, I'm trying to envision getting the inventory ready for the room and how it's gonna go to treatment, what would be my preferred treatment

modality, you planned to do bear metal stent, do the significant [UNKNOWN] You're gonna cover stent I didn't look [UNKNOWN] So I'm trying to set up my room and what's I mean obviously there's no radiant you're not gonna do anything I'm just gonna anti coagulate him.

And let them go so, walk us through what you're thinking, obviously you're gonna show us a case, but how are you gonna plan this out. >> You always amaze me Dr. [UNKNOWN] You're so organized, I'm like let's go down the road

and see what you find and it's like oh my gosh, now what are we gonna do? >> I'm organized cuz I'm like terrified of making a mistake I'm sorry, even at 8:30 in the morning. >> [LAUGH]

I'm gonna put on my administrative hat for a minute because we're truly trying to get to this and I strongly encourage you all to look at this. We all have to do timeouts now, right, let's see a show of hands, who has a timeout before every [UNKNOWN]

Angiogram? Yeah, okay. So who thinks is completely worthless and a waste of time? All right, well I'm impressed, you guys are all, got better mental hygiene than I do.

What's useful is it forces me to stop and say okay, have we pulled all the stents I might possibly need for this case? Do we have all the wires on hand I might possibly need for this case, that has bailed me out a lot.

You don't wanna get in a tough situation and not have the parts you need right there even worse to find out when you really need it oh, that inventory stock is going to zero and so, you raise an excellent question because one of the most complex things about

treating dissection that's just [UNKNOWN] Branch is the entry point and the re-entry point may involve multiple branches and the false lumen may give rise to a large portion of bile here, so what are we trying to accomplish here? If our goal is, oh well we need to re expand the true lumen,

well, you may end up boxing off half the branches in the process so, [UNKNOWN] Is not really too practical in these kinda cases, the false lumen is not pro fused here,

re-profusing that false lumen can be really difficult to do. So most of the time, you're trying to close off the entry tear, which for me means a carbon stent and a proximal SMA, you're trying to tack down the

flap and hope that the side branches sort of magically line up when you tack that thing down, usually is a non-covered stent because you're gonna be going across a bunch of branches, but I don't know, thoughts coming?

>> And the reason I'm bringing this up is, this is a really hard case, and if you're gonna get into this, you're gonna have to really think about, I mean it's easy for Fricks/g to

go through it, and walk us through it, but there's a lot of thinking going on and I want people to realize that, and I think one of the challenges you may not be able to figure what true and false is, and so you gotta really sort out depending on the extent of

the [UNKNOWN] Is gonna go. I haven't seen any of these pictures before, as you're looking at them, but those are the things that I'm thinking about, and the other thing to think about quite frankly I know that you're transfemeral

shop, and many of us are, but is easier from arm approach, well things fall in easier to a true or false lumen coming from a break deal, or radio approach, those are things that I would think. >> All right, so let's have a little poll with the audience here, how many would tact this given the CT scan from the transfemeral

approach? Okay, how many would do brachial and all radial? Okay. Yeah I am pretty wed to femeral approach. For me often with these cases pushability is a problem, you think

going around the corner is an issue, but particularly with a Morpher or similar like Tri-vascular's/g new catheter from OSCOR. Something you can tip deflect in there will take care of the angles for you but you get all that pushability when you come from a femeral approach whereas from the arm the sheath are fine, very easy to push back,

you're trying to push a stent introduced that's a little bit rigid out that artery and the sheath just backs up and then pulls the wire out of the vessel. So I find coming from above very challenging and I do it only when I have to. >> And I agree.

I think, I grew up in an area arena or area of transfemeral and if I do a radial, we've got coronary guys that are very good at doing radials, so I'll have one of them help me. But I think if you're gonna get into the radial business or brachial business there's tonnes of radials workshops now, you've just gotta

make sure you've got the tools, you've gotta make sure the patient's not too long, you got the guiding catheters, the stents are gonna be 135 centimeters for example and so you have everything that you need.

So there's a little bit thinking obviously that goes on to change your approaches. So those are the considerations. [BLANK_AUDIO] >> See here's an APIB image of that abdominal aorta,

you can see that left renal artery stenosis is actually more impressive than the CT suggested [BLANK_AUDIO] Here's a lateral and you can see the SMA origin looks pretty good but about a centimeter and a half down that contrast column gets very thin for about a ten centimeter segment, and then more distally

looks pretty reasonable again. The celiac artery looks pretty much wide open. Now we're obviously not committed to doing anything at this point and I think Dr. Mizer made a very important point that once you put a catheter in this you are raising the stakes a lot,

you've got a patient with some belly pains, which may get better without any further intervention, lactic acid is normal, no [UNKNOWN] Signs on exams.

So, treating this or not, treating this is tough and does it even need to be acutely treated is another important question but she had severe pain, I saw an easy distal target here, and I thought it was reasonable to go ahead and treat this and other operators may completely disagree

with that. I think that Mizer makes another very important point, in this case it's relatively straight forward, we see the trule of approximately, we see the trule in [INAUDIBLE] I just have to connect

the dots. And it's very rare to have the catheter sort of go in and out somehow you into the false swimming, covering the truth and go out again. So, just crossing this and confirming you're in the true living distily, is usually enough for me, but Ivas is definitely routinely part of this to make sure you stay in the trule the whole

time. [BLANK_AUDIO] So, it's another tricky part of this, is that the wire doesn't always go in the branch you think you're gonna go into and you have to decide how much effort you wanna put in to trying to

get in to the branch you're interested in. So here we are in a lateral view what is not maybe the biggest most straightest distal branch, but it is [UNKNOWN] And my usual approach is to get that wire to the ileocolic, the one

at the right little quadrant >> [COUGH] >> And that to me is my target for this dissection cases, is to trying if I have to extent all the way down there, but get the longest branch that that SMA open, and

we've cut a few corners here, we've done Ivis which unfortunately we don't have any pictures for you but I don't have a selective angiogram of that vessel, we used to redo that and make sure that I'm in the [INAUDIBLE] >> So, I'm sorry [UNKNOWN].

>> No please. >> I think it's a really hard a case so I'm gonna ask some stupid questions. When you're pathing that [UNKNOWN] Wire, are you just using wire or are you using a microcatheter and a wire?

Guiding and the sorts of [INAUDIBLE] Guide sitting in the SMA or whatever you guide or choice is. How do you are negotiating in and out of the dissection. >> It's a very important question so let's spend a couple of minutes on it, I think 90 percent of the time for me it's gonna be in our C2 catheter trimmer wire,

and if that wire goes easily, I'm gonna follow with that catheter inject to make sure [UNKNOWN] In this particular case, I can tell very clearly to my eye there that all those branches are all arising from the true lumen, and

how do I know that, they feel very briskly, there's no visible dissection going into any of those branches, we knew from that CT that false lumen didn't have any filling, and so I was very confident that this was all true lumen all the way and so I did this more

like I would a chronic eclusive disease, so more and more now for us, chronic eclusive disease, guiding the origin, cross via one four wire just like you are probably showing a renal case in a few minutes here. Cross with over for,

you may never put a catheter out distole and then [INAUDIBLE] Balloon and stern. >> So where is the distole point of your stenting, you mentioned that you would stent down to the branches and you use environmental stents,

what is the rational of that because enolic view of that is for example thoracic dissections we just cover the entry side approximately and we usually don't end up stenting the whole length of the dissection, so are you gonna stent the whole length of dissection here?

>> Yeah, I think that's a great question as well [INAUDIBLE] understand, so we are basically treating this like an [INAUDIBLE] Plaque that happens to have a large intramural haematoma associated with it so this is an SMA Stenosis case and we're gonna treat the Stenotic segment.

And so I'm gonna stent the Stenotic segment just like you would any long [UNKNOWN] And you'll see in this estimate, disease a lot of cases where relatively long segments of SMA are disease. I think much more than in the renal artery.

I think it's very common to see two, three centimeter segments and I think it's because a lot of them get a little inter viral haematoma, the plaque raptures into the wall and they get long segments of disease. So for me I'm treating this case as if this dissection it's really extensive [INAUDIBLE]

I'm just going to very simplistically stent this stenotic segment from proximal to distal. Now in this particular case we started distally which is a little unusual but the problem with going proximal distal courses then you have to keep putting your guide and all your stents through your first

stent. So, it's technically easier to build it up from distal the proximal. Probably physiologically smarter do it proximal. Is look all better? No. Okay, let's extend it.

Still not better, no. Okay let's extend it. And then you start to get really nervous when you get out of the branches but you just extend a little bit if you have to. In this case, didn't reverse. So here we are placing the self expanding stent out there.

We know we've crossed some branches. You can see afterwards flows, not great. All right? Kinda poor filling of the list of branches there, but there's clearly some stenosis proximately.

We're gonna place another stent proximately usually we use a balloon expandable in this case we use the self expanding stent, and now we have a pretty good looking SMA. And I notice there's a modern stenosis just beyond the stent. Okay and this is where the judgement call comes, the extended

out there and open that up. You can be putting a stent to cross really large branches to treat that stenosis and in this case choose not do that and she clinically did very well, but that can a judgement call. >> That's very nice, so can I,

it looks like you went, you don't have a pointer, looks like you went, can you show us where the distal end of the stent is? >> So the stent goes through right here and there's a little stenosis just beyond the stent,

we have all these branches here, and sort of make that look any better we would have to send out to hear and I am at that point worried about the long term effect on these branches, and you obviously wanna get a pressure a grading at this point, I don't have those numbers in front of me, but we felt comfortable

that we had [UNKNOWN] As [INAUDIBLE] is selling and left it at that and she did clinically great. A little bit later picture to showing the filling of those branches pretty briskly. Went ahead and treated the renal artery, controversial I know, this

is a drive by, okay, I'm guilty, it's a drive by renal, but given the severe hypertension and the fact that this estimated nearly killed her, I thought it was a reasonable thing to do, and that's just a follow up CT, she had about a year later, there's

the renal stent, estimate stent all looking pretty good. All right, I think I'll stop there and give a couple of minutes

- These are my disclosures, as it pertains to this talk. FEVAR has become increasingly common treatment for juxtarenal aneurysm in the United States since it's commercial release in 2012. Controversy remains, however, with regard to stenting the SMA when it is treated with a single-wide, 10 mm scallop in the device.

You see here, things can look very similar. You see SMA treated with an unstented scallop on the left and one treated with the stented SMA on the right. It has been previously reported by Jason Lee that shuttering can happen with single-wide scallops of the SMA and in their experience

the SMA shuttering happens to different degree in patients, but is there in approximately 50% of the patients. But in his experience, the learning curve suggests that it decreases over time. At UNC, we use a selective criteria for stenting in the SMA. We will do a balloon test in the SMA,

as you see in the indication, and if the graft is not moved, then our SMA scallop is appropriate in line. If we have one scallop and one renal stent, its a high likelihood that SMA scallop will shift and change over time. So all those patients get stented.

If there is presence of pre-existing visceral stenosis we will stent the SMA through that scallop and in all of our plans, we generally place a 2 mm buffer, between the bottom edge of the scallop and the SMA. We looked over our results and 61 Zenith fenestrated devices performed over a short period of time.

We looked at the follow-up out up to 240 days and 40 patients in this group had at least one single wide scallop, which represented 2/3 of the group. Our most common configuration as in most practices is too small renal fenestrations and one SMA scallop.

Technically, devices were implanted in all patients. There were 27 patients that had scallops that were unstented. And 13 of the patients received stented scallops. Hospital mortality was one out of 40, from a ruptured hepatic artery aneurysm post-op.

No patients had aneurysm-related mortality to the intended treated aneurysm. If you look at this group, complications happen in one of the patients with stented SMA from a dissection which was treated with a bare metal stent extension at the time

of the initial procedure. And in the unstented patients, we had one patient with post-op nausea, elevated velocities, found to have shuttering of the graft and underwent subsequent stenting. The second patient had elevated velocities

and 20-pound weight loss at a year after his treatment, but was otherwise asymptomatic. There is no significant difference between these two groups with respect to complication risk. Dr. Veith in the group asked me to talk about stenting choice

In general, we use the atrium stent and a self-expanding stent for extension when needed and a fenestrated component. But, we have no data on how we treat the scallops. Most of those in our group are treated with atrium. We do not use VBX in our fenestrated cases

due to some concern about the seal around the supported fenestration. So Tips, we generally calculate the distance to the first branch of the SMA if we're going to stent it. We need to know the SMA diameter, generally its origin where its the largest.

We need to position the imaging intensifier orthogonal position. And we placed the stent 5-6 mm into the aortic lumen. And subsequently flare it to a 10-12 mm balloon. Many times if its a longer stent than 22, we will extend that SMA stent with a self-expanding stent.

So in conclusion, selective stenting of visceral vessels in single wide scallops is safe in fenestrated cases during this short and midterm follow-up if patients are carefully monitored. Stenting all single wide scallops is not without risk and further validation is needed

with multi-institution trial and longer follow-up

- Thank you, and thank you Dr. Veith for the opportunity to present. So, acute aortic syndromes are difficult to treat and a challenge for any surgeon. In regionalization of care of acute aortic syndromes is now a topic of significant conversation. The thoughts are that you can move these patients

to an appropriate hospital infrastructure with surgical expertise and a team that's familiar with treating them. Higher volumes, better outcomes. It's a proven concept in trauma care. Logistics of time, distance, transfer mortality,

and cost are issues of concern. This is a study from the Nationwide Inpatient Sample which basically demonstrates the more volume, the lower mortality for ruptured abdominal aortic aneurysms. And this is a study from Clem Darling

and his Albany Group demonstrating that with their large practice, that if they could get patients transferred to their central hospital, that they had a higher incidence of EVAR with lower mortality. Basically, transfer equaled more EVARs and a

lower mortality for ruptured abdominal aortic aneurysms. Matt Mell looked at interfacility transfer mortality in patients with ruptured abdominal aortic aneurysms to try to see if actually, transfer improved mortality. The take home message was, operative transferred patients

did do better once they reached the institution of destination, however they had a significant mortality during transfer that basically negated that benefit. And transport time, interestingly did not affect mortality. So, regional aortic management, I think,

is something that is quite valuable. As mentioned, access to specialized centers decrease overall mortality and morbidity potentially. In transfer mortality a factor, transport time does not appear to be. So, we set up a rapid transport system

at Keck Medical Center. Basically predicated on 24/7 coverage, and we would transfer any patient within two hours to our institution that called our hotline. This is the number of transfers that we've had over the past three years.

About 250 acute aortic transfers at any given... On a year, about 20 to 30 a month. This is a study that we looked at, that transport process. 183 patients, this is early on in our experience. We did have two that expired en route. There's a listing of the various

pathologies that we treated. These patients were transferred from all over Southern California, including up to Central California, and we had one patient that came from Nevada. The overall mortality is listed here. Ruptured aortic aneurysms had the highest mortality.

We had a very, very good mortality with acute aortic dissections as you can see. We did a univariate and multivariate analysis to look at factors that might have affected transfer mortality and what we found was the SVS score greater than eight

had a very, very significant impact on overall mortality for patients that were transferred. What is a society for vascular surgery comorbidity score? It's basically an equation using cardiac pulmonary renal hypertension and age. The asterisks, cardiac, renal, and age

are important as I will show subsequently. So, Ben Starnes did a very elegant study that was just reported in the Journal of Vascular Surgery where he tried to create a preoperative risk score for prediction of mortality after ruptured abdominal aortic aneurysms.

He found four factors and did an ROC curve. Basically, age greater than 76, creatinine greater than two, blood pressure less than 70, or PH less than 7.2. As you can see, as those factors accumulated there was step-wise increased mortality up to 100% with four factors.

So, rapid transport to regional aortic centers does facilitate the care of acute aortic syndromes. Transfer mortality is a factor, however. Transport mode, time, distance are not associated with mortality. Decision making to deny and accept transfer is evolving

but I think renal status, age, physiologic insult are important factors that have been identified to determine whether transfer should be performed or not. Thank you very much.

So I think when it comes to distal bypasses and ultra-distal bypasses it's all about how we make our decision. We know now that early intervention these patients have better outcome. We use waveform analysis to make our decision about how critical their skin is

we use different topical anesthesia depending the patient's fitness. I think this is just one important point that patient's with dark skin did not show all the full range of skin changes and patients get this dark foot sign

even before they start necrosing their skin. It's very important how we give our anesthetics we use vascular anesthesia with special interest prevascular disease because these patients are quite labile. We use even sometimes inotropes during the procedure

and post operative to maintain a good blood pressure. We believe that short bypasses have got better outcomes. Dr. Veith, have already published in the 80s about short bypasses also doing now the Tibiotibial bypasses on the look anesthetic. Some patients with very high risk for general anesthesia.

And our study we showed that the majority of our patients, who had ultra-distal bypasses had the bypasses from either popliteal or SFA artery. We use different techniques to improve on how to take our bypasses from the proximal anastomosis distally. So we use hybrid revascularization, we use drug-eluting

balloons, and stenting of the SFA and popliteal artery, so we can perform our bypass from the popliteal level. We even use Remote Endarterectomy to improve on our length of the inflow. So by doing remote endarterectomy of the SFA

and popliteal artery, we can take the bypass quite distally from the popliteal artery to the foot level. This is a patient who got critical leg ischaemia on the right side limited, venous conduit. We did remote endarterectomy of her SFA and popliteal artery. And then we can

easily take the bypass from the popliteal artery down to the foot level. On the left side, she had hybrid revascularization with SFA stenting and ultra-distal bypass. We use venous conduit in almost all our patients with ultra-distal bypass.

In distal bypasses we can PTFE but the majority of our patients have long saphenous veins or even arm veins. We started using Omniflow in our infected patients for distal bypasses with quite good results. We scan all our veins prior to the procedure

to make sure that we got good quality vein and amount to perform the procedure. We have published in our small veins series less than 3mm, we still have a very good outcome in distal bypasses. Especially when we do tibial bypasses

or dorsalis pedis bypasses we turn the grafts anatomically. You can see in this angiogram the graft going through the interosseous membrane down to the foot level. We put our incision a bit immediately on the foot level so if there is necrosis of the wound on the foot level that we don't expose the graft, especially when we

knew the patient was coming from the lateral aspect through the interosseous membrane. We select our bypasses especially in the foot level using the duplic scanogram, angiogram or CT angiogram. During the procedure we don't clamp our arteries we use the Flo-Rester and Flo-Through prothesis

to stop patients from bleeding while we're doing it. And we've never used tourniquet before all this has been published. Hand held doppler is the only quality control that we do we don't do on-table angiograms and we find this quite useful for our patients.

We can do the debridement and at the same time while we're doing the bypass at the ankle level. As for anticoagulation and antiplatelet therapy We do antiplatelet therapy for all patient with distal and ultra-distal bypass. And we use heparin and warfarin for patients

who have got redo surgery. Graft surveillance for all our patients Unfortunately, we can only afford it in the NHS for one year, but if the patient get an intervention they go for another full year. Salvage angioplasty is essential for these patients

and we treat these patients as quite as a emergency when they present. So, conclusion, Mr. Sherman, ladies and gentlemen, distal and ultra-distal bypasses require good planning. We use veins for all our bypasses when it comes to the foot level and ultra-distal bypasses,

and of course selecting the target vessel in the foot is very important. Graft Surveillance is essential to maintain quality and outcome for these patients. Thank you very much.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- Thank you. Here are my disclosures. Our preferred method for zone one TAVR has evolved to a carotid/carotid transposition and left subclavian retro-sandwich. The technique begins with a low transverse collar incision. The incision is deepened through the platysma

and subplatysmal flaps are then elevated. The dissection is continued along the anterior border of the sternocleidomastoid entering the carotid sheath anteromedial to the jugular vein. The common carotid artery is exposed

and controlled with a vessel loop. (mumbling) The exposure's repeated for the left common carotid artery and extended as far proximal to the omohyoid muscle as possible. A retropharyngeal plane is created using blunt dissection

along the anterior border of the cervical vertebra. A tunneling clamp is then utilized to preserve the plane with umbilical tape. Additional vessel loops are placed in the distal and mid right common carotid artery and the patient is systemically anticoagulated.

The proximal and distal vessel loops are tightened and a transverse arteriotomy is created between the middle and distal vessel loops. A flexible shunt is inserted and initially secured with the proximal and middle vessel loops. (whistling)

It is then advanced beyond the proximal vessel loop and secured into that position. The left common carotid artery is then clamped proximally and distally, suture ligated, clipped and then transected. (mumbling)

The proximal end is then brought through the retropharyngeal tunnel. - [Surgeon] It's found to have (mumbles). - An end-to-side carotid anastomosis is then created between the proximal and middle vessel loops. If preferred the right carotid arteriotomy

can be made ovoid with scissors or a punch to provide a better shape match with the recipient vessel. The complete anastomosis is back-bled and carefully flushed out the distal right carotid arteriotomy.

Flow is then restored to the left carotid artery, I mean to the right carotid artery or to the left carotid artery by tightening the middle vessel loop and loosening the proximal vessel loop. The shunt can then be removed

and the right common carotid artery safely clamped distal to the transposition. The distal arteriotomy is then closed in standard fashion and flow is restored to the right common carotid artery. This technique avoids a prosthetic graft

and the retropharyngeal space while maintaining flow in at least one carotid system at all times. Once, and here's a view of the vessels, once hemostasis is assured the platysma is reapproximated with a running suture followed by a subcuticular stitch

for an excellent cosmetic result. Our preferred method for left subclavian preservation is the retro-sandwich technique which involves deploying an initial endograft just distal to the left subclavian followed by both proximal aortic extension

and a left subclavian covered stent in parallel fashion. We prefer this configuration because it provides a second source of cerebral blood flow independent of the innominate artery

and maintains ready access to the renovisceral vessels if further aortic intervention is required in the future. Thank you.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you again Rex. This is again my disclosure, the same. I think you agree with me that we all do not want these images and after the procedure in our patients or in followup. We might be able to keep this reconstructions patent by continuing accuracy ventricle relation

but there is somehow a disturbance of the venous flow. If we we advocate that 50% stenosis is significant. Flexibility is one reason why we have already the first generation of dedicated venous stents. These are the currently available, excuse me, currently available venous stents

in the European market and despite very different structures, geometries and characteristics they all want to combine the best balance between flexibility, radial force, crush resistance or porosity. So this is not a real scientific way to show

or to evaluate the flexibility but it shows you that there are really differences between the current dedicated venous stents regarding the flexibility and we have closed cell stent, we have open celled stent, we have woven stent, we have laser knitted stent,

we have hybrid or segmented stent. So let us go to one case from our center. We re-cannulized the left iliac tract as you can see here. We used the closed cell stent at the proximal part, lengthen it with a dedicated venous

open cell segmented stent below the ligament going into the common femoral vein as you can see here. So going into the axial plane with duplex we see a very nice cross sectional shape below the artery at the mitonal point. This stent performs very well here

but a few centimeters more distal we have a destroyed cross sectional shape. Going into the detail, the same patient in longitudinal evaluation with stent we see three different diameters and if we take the proximal diameter

you see again the same picture with a minimum diameter of 1.27 maximum diameter of 1.57 giving us a 1.57 square centimeters of area and this is a 1.23 aspect ratio. Taking the kink, the level of the kink, we have the destroyed picture.

Minimum diameter 0.65, maximum diameter of 1.47 giving us only a 0.89 square centimeters and regarding the published and the aspect ratio is 2.3 and regarding this 2008 published paper which showed that area affects outcome and the recent work of Lowell Kabnick

which shows that not only the area but also the aspect ratio affects the outcome. We have to conclude that in this patient, of our center this kink might destroy or might affect the outcome. This is the literature you heard in the last session

already the patency rates of all stents but my message from this table is they included only a small number of patients with short followups as you can see ranging from 10 to 12 but despite very different flexibilities

which we have seen in the second slide we have no significant differences regarding the patency or the outcome and therefore whether more flexibility leads to a better clinical outcome remains still unclear. In conclusion, there is no doubt

that flexibility is important. The flexibility of majority of current venous stents seems to be enough. Till date with currently available studies we cannot answer how much flexibility we need. Where is the threshold

to say this is good and the other is bad? If more flexibility means really better outcome and it is not only the stent, it is more the pattern of disease which affects the outcome. So we started with arterial stents in the venous pathology, we improved to first generation of dedicated venous stents

but we are looking for best stents. Thank you very much.

- So, my topic today is: Antegrade In Situ Fenestration for Fenestrated EVAR: How To Do It. Here are my disclosures. So, Jean Panneton has shown already the validity of retrograde laser fenestration. That is a feasible technique,

an effective option for acute thoracic pathology, with an excellent midterm patency, which it is very easy to do retrograde laser fenestration compared to an anterograde technique. We have done a lot of bench tests to perform all like this (mumbles).

So, the in situ laser fenestration technique is an off-label procedure. It is a bailout solution, and dedicated to emergent cases, patient unfit to open repair, or unfit to CMD device.

And we use this technique for left subclavian arch, and the anterograde technique for visceral arteries, and in a few cases of TEVAR. This is a technique. I use a Heli-FX 16 French. And I use

a 0.9 laser probe. We don't need to use another laser probe for this technique to avoid any larger hole. This is the steps for the technique. I do a primary stenting of the arteries using your effusion.

And then I do the endovascular exclusion. I position the steerable sheath at the level of the targeted artery and then do laser fenestration. This is a pre-stenting. And then the graft deployment

at the level of the seating zone. This was a type 1A endoleak after EVAR. The next step is to do the laser fenestration. You can see the tip of the laser probe. (Mumbles)

You could see the tip of the laser probe coming in the lumen of the SMA. And, we'll then, after this laser fenestration, quite easy, we'll then do

an enlargement of the ULL, using first a small cutting balloon and then do a progressive dilation using a bigger balloon, four millimeter, and then a six millimeter balloon.

The next step is to do, like, what we do for fenestrated cases, we do the bridging covered stent. Yeah, at the level of the SMA, and then the flairing, to have a good sealer

of the proximal part of the bridging stent. After the SMA, we then do the renal fenestration. And we used to stop with the celiac trunk. Our main indications are juxta para renal aneurysm, or type 1A Endoleak when there is a straight aorta. And in a few cases, thoracoabdominal aortic aneurysms.

This is an example of a type 1A endoleak, as I have presented. This is our first trial with 16 patients, treated on between three years. And we have now 29 patients with laser fenestration EVAR,

66 fenestrations, 5% of aortic aneurysm treated in our center. The median ischemic time is 12 minutes for the SMA, one hour for the renal arteries, and around two hours for the celiac trunk. The fenestration success rate is 95%.

Here are the outcomes. There was no mortality, even for very old patients. 16% of transitory dialysis. No spinal cord ischemia, one case of pneumonia, and the short follow-up of 22 months with 24 re-operations

in seven patients. Here are my conclusion. The laser fenestration EVAR must not be used for elective cases. In our strategy, the best options for urgent thoracoabdominal is to use

an off-the-shelf graft, like the T-branch. If a custom-made device graft is not available, the laser fenestration will be our reference treatment, and you don't need any brachial or axillary approach for this technique. Thank you very much.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Thank you, Ulrich. Before I begin my presentation, I'd like to thank Dr. Veith so kindly, for this invitation. These are my disclosures and my friends. I think everyone knows that the Zenith stent graft has a safe and durable results update 14 years. And I think it's also known that the Zenith stent graft

had such good shrinkage, compared to the other stent grafts. However, when we ask Japanese physicians about the image of Zenith stent graft, we always think of the demo version. This is because we had the original Zenith in for a long time. It was associated with frequent limb occlusion due to

the kinking of Z stent. That's why the Spiral Z stent graft came out with the helical configuration. When you compare the inner lumen of the stent graft, it's smooth, it doesn't have kink. However, when we look at the evidence, we don't see much positive studies in literature.

The only study we found was done by Stephan Haulon. He did the study inviting 50 consecutive triple A patients treated with Zenith LP and Spiral Z stent graft. And he did two cases using a two iliac stent and in six months, all Spiral Z limb were patent. On the other hand, when you look at the iliac arteries

in Asians, you probably have the toughest anatomy to perform EVARs and TEVARs because of the small diameter, calcification, and tortuosity. So this is the critical question that we had. How will a Spiral Z stent graft perform in Japanese EIA landing cases, which are probably the toughest cases?

And this is what we did. We did a multi-institutional prospective observational study for Zenith Spiral Z stent graft, deployed in EIA. We enrolled patients from June 2017 to November 2017. We targeted 50 cases. This was not an industry-sponsored study.

So we asked for friends to participate, and in the end, we had 24 hospitals from all over Japan participate in this trial. And the board collected 65 patients, a total of 74 limbs, and these are the results. This slide shows patient demographics. Mean age of 77,

80 percent were male, and mean triple A diameter was 52. And all these qualities are similar to other's reporting in these kinds of trials. And these are the operative details. The reason for EIA landing was, 60 percent had Common Iliac Artery Aneurysm.

12 percent had Hypogastric Artery Aneurysm. And 24 percent had inadequate CIA, meaning short CIA or CIA with thrombosis. Outside IFU was observed in 24.6 percent of patients. And because we did fermoral cutdowns, mean operative time was long, around three hours.

One thing to note is that we Japanese have high instance of Type IV at the final angio, and in our study we had 43 percent of Type IV endoleaks at the final angio. Other things to notice is that, out of 74 limbs, 11 limbs had bare metal stents placed at the end of the procedure.

All patients finished a six month follow-up. And this is the result. Only one stenosis required PTA, so the six months limb potency was 98.6 percent. Excellent. And this is the six month result again. Again the primary patency was excellent with 98.6 percent. We had two major adverse events.

One was a renal artery stenosis that required PTRS and one was renal stenosis that required PTA. For the Type IV index we also have a final angio. They all disappeared without any clinical effect. Also, the buttock claudication was absorbed in 24 percent of patients at one month, but decreased

to 9.5 percent at six months. There was no aneurysm sac growth and there was no mortality during the study period. So, this is my take home message, ladies and gentlemen. At six months, Zenith Spiral Z stent graft deployed in EIA was associated with excellent primary patency

and low rate of buttock claudication. So we have most of the patients finish a 12 month follow-up and we are expecting excellent results. And we are hoping to present this later this year. - [Host] Thank you.

- Thank you Mr Chairman, ladies and gentlemen. These are my disclosure. Open repair is the gold standard for patient with arch disease, and the gupta perioperative risk called the mortality and major morbidity remain not negligible.

Hybrid approach has only slightly improved these outcomes, while other off-the-shelf solution need to be tested on larger samples and over the long run. In this scenario, the vascular repair would double in the branch devices as emerging, as a tentative option with promising results,

despite addressing a more complex patient population. The aim of this multi-center retrospective registry is to assess early and midterm results after endovascular aortic arch repair. using the single model of doubling the branch stent graft in patient to fit for open surgery.

All patient are treated in Italy, with this technique. We're included in this registry for a total of 24 male patient, fit for open surgery. And meeting morphological criteria for double branch devices.

This was the indication for treatment and break-down by center, and these were the main end points. You can see here some operative details. Actually, this was theo only patient that did not require the LSA

re-revascularization before the endovascular procedure, because the left tibial artery rising directly from the aortic arch was reattached on the left common carotid artery. You can see here the large window in the superior aspect of the stent graft

accepting the two 13 millimeter in the branches, that are catheterized from right common carotid artery and left common carotid artery respectively. Other important feature of this kind of stent graft is the lock stent system, as you can see, with rounded barbs inside

the tunnels to prevent limb disconnection. All but one patient achieved technical success. And two of the three major strokes, and two retrograde dissection were the cause of the four early death.

No patient had any type one or three endoleak. One patient required transient dialysis and four early secondary procedure were needed for ascending aorta replacement and cervical bleeding. At the mean follow-up of 18 months,

one patient died from non-aortic cause and one patient had non-arch related major stroke. No new onset type one or three endoleak was detected, and those on standard vessel remained patent. No patient had the renal function iteration or secondary procedure,

while the majority of patients reported significant sac shrinkage. Excluding from the analysis the first six patients as part of a learning curve, in-hospital mortality, major stroke and retrograde dissection rate significant decrease to 11%, 11% and 5.67%.

Operative techniques significantly evolve during study period, as confirmed by the higher use of custom-made limb for super-aortic stenting and the higher use of common carotid arteries

as the access vessels for this extension. In addition, fluoroscopy time, and contrast median's significantly decrease during study period. We learned that stroke and retrograde dissection are the main causes of operative mortality.

Of course, we can reduce stroke rate by patient selection excluding from this technique all those patient with the Shaggy Aorta Supra or diseased aortic vessel, and also by the introduction and more recent experience of some technical points like sequentIal clamping of common carotid arteries

or the gas flushing with the CO2. We can also prevent the retrograde dissection, again with patient selection, according to the availability of a healthy sealing zone, but in our series, 6 of the 24 patients

presented an ascending aorta larger than 40 millimeter. And on of this required 48-millimeter proximal size custom-made stent graft. This resulted in two retrograde dissection, but on the other hand, the availability on this platform of a so large proximal-sized,

customized stent graft able to seal often so large ascending aorta may decrease the incidence of type I endoleak up to zero, and this may make sense in order to give a chance of repair to patients that we otherwise rejected for clinical or morphological reasons.

So in conclusion, endovascular arch repair with double branch devices is a feasible approach that enrich the armamentarium for vascular research. And there are many aspects that may limit or preclude the widespread use of this technology

with subsequent difficulty in drawing strong conclusion. Operative mortality and major complication rates suffer the effect of a learning curve, while mid-term results of survival are more than promising. I thank you for your attention.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- I'd like to share with you our experience using tools to improve outcomes. These are my disclosures. So first of all we need to define the anatomy well using CTA and MRA and with using multiple reformats and 3D reconstructions. So then we can use 3D fusion with a DSA or with a flouro

or in this case as I showed in my presentation before you can use a DSA fused with a CT phase, they were required before. And also you can use the Integrated Registration like this, when you can use very helpful for the RF wire

because you can see where the RF wire starts and the snare ends. We can also use this for the arterial system. I can see a high grade stenosis in the Common iliac and you can use the 3D to define for your 3D roadmapping you can use on the table,

or you can use two methods to define the artery. Usually you can use the yellow outline to define the anatomy or the green to define the center. And then it's a simple case, 50 minutes, 50 minutes of ccs of contrast,

very simple, straightforward. Another everybody knows about the you know we can use a small amount of contrast to define the whole anatomy of one leg. However one thing that is relatively new is to use a 3D

in order to map, to show you the way out so you can do in this case here multiple segmental synosis, the drug-eluting-balloon angioplasty using the 3D roadmap as a reference. Also about this case using radial fre--

radial access to peripheral. Using a fusion of image you can see the outline of the artery. You can see where the high grade stenosis is with a minimum amount of contrast. You only use contrast when you are about

to do your angiogram or your angioplasty and after. And that but all everything else you use only the guide wires and cathers are advanced only used in image guidance without any contrast at all. We also been doing as I showed before the simultaneous injection.

So here I have two catheters, one coming from above, one coming from below to define this intravenous occlusion. Very helpful during through the and after the 3D it can be helpful. Like in this case when you can see this orange line is where

the RF wire is going to be advanced. As you can see the breathing, during the breathing cycle the pleura is on the way of the RF wire track. Pretty dangerous stuff. So this case what we did we asked the anesthesiologist

to have the patient in respiratory breath holding inspiration. We're able to hyperextend the lungs, cross with the RF wire without any complication. So very useful. And also you can use this outline yellow lines here

to define anatomy can help you to define where you need to put the stents. Make sure you're covering everything and having better outcomes at the end of the case without overexposure of radiation. And also at the end you can use the same volt of metric

reconstruction to check where you are, to placement of the stent and if you'd covered all the lesion that you had. The Cone beam CT can be used for also for the 3D model fusion. As you can see that you can use in it with fluoro as I

mentioned before you can do the three views in order to make sure that the vessels are aligned. And those are they follow when you rotate the table. And then you can have a pretty good outcome at the end of the day at of the case. In that case that potentially could be very catastrophic

close to the Supra aortic vessels. What about this case of a very dramatic, symptomatic varicose veins. We didn't know and didn't even know where to start in this case. We're trying to find our way through here trying to

understand what we needed to do. I thought we need to recanalize this with this. Did a 3D recan-- a spin and we saw ours totally off. This is the RFY totally interior and the snare as a target was posterior in the ASGUS.

Totally different, different plans. Eventually we found where we needed to be. We fused with the CAT scan, CT phase before, found the right spot and then were able to use

Integrated registration for the careful recanalization above the strip-- interiorly from the Supraaortic vessels. As you can see that's the beginning, that's the end. And also these was important to show us where we working.

We working a very small space between the sternal and the Supraaortic vessels using the RF wire. And this the only technology would allowed us to do this type of thing. Basically we created a percutaneous in the vascular stent bypass graft.

You can you see you use a curved RF wire to be able to go back to the snare. And that once we snare out is just conventional angioplasty recanalized with covered stents and pretty good outcome. On a year and a half follow-up remarkable improvement in this patient's symptoms.

Another patient with a large graft in the large swelling thigh, maybe graft on the right thigh with associated occlusion of the iliac veins and inclusion of the IVC and occlusion of the filter. So we did here is that we fused the maps of the arterial

phase and the venous phase and then we reconstruct in a 3D model. And doing that we're able to really understand the beginning of the problem and the end of the problem above the filter and the correlation with the arteries. So as you can see,

the these was very tortuous segments. We need to cross with the RF wire close to the iliac veins and then to the External iliac artery close to the Common iliac artery. But eventually we were able to help find a track. Very successfully,

very safe and then it's just convention technique. We reconstructed with covered stents. This is predisposed, pretty good outcome. As you can see this is the CT before, that's the CT after the swelling's totally gone

and the stents are widely open. So in conclusion these techniques can help a reduction of radiation exposure, volume of contrast media, lower complication, lower procedure time.

In other words can offer higher value in patient care. Thank you.

- Thank you very much for the kind introduction and thank you very much to you Frank for being here once again to this outstanding symposium. So I have to report a rather rear technique, it's a revival of a technique, and to be honest it's a technique which originally comes from Cardiology. Cardiologist intervented the technique of Crush-Stenting.

Combining balloon expandable stents and we do this also in endovascular therapy for the reconstruction for example of the aortic bifurcation. Combining self expanding stents and balloon expandable stents. We do this sometimes in complications

or for complication management in emergency situations, combining balloon expandable stents, each other. And sometimes we use it if we have malplaced a stent in the distal SFA, we have crush with self expanding stent with another one and we've reported these kind of complications in one of our booklets.

But how to deal with occluded self expanding stents we implanted previous many months ago in the distal popliteal artery or in the SFA, usually we use standard debulking techniques. We use DCBs if we can pass the lesion intraluminally. But if this fails, then we might come into trouble

and then probably we have to go around the stent. That means we have to perform the so called pier technique and probably we have to trespassing pier wise the subintimal space to create a neo-lumen. This was almost reported 10 year ago with one case report but probably it was not that recognized.

There was another case report in Japan some years ago and it was called the |Double-Barrel Restenting technique. We nowadays use this called crush stenting technique with for example Hydrophilic Guide Wires with support catheters, we combine them. Very often we have to use the so called re-entry technique

and then once we have created the neo-lumen, we use balloon angioplasty. Then we implant a stent and we mainly use self expanding stent probably the interwoven nitinol stent. We feel this might be the most appropriate stent to overcome this situation.

But we need to use dual antiplatelet immediately in these cases and this is necessary for the use of self expanding stents, nitinol stents, for carbon stents for example, like the Viabahn as mentioned earlier for the interwoven nitinol stent. Once again dual antiplatelet therapy is of utmost importance

in order to avoid any re-occlusion of these things, you see we always perform different planes of the file angiogram, and at least one plane with the bended knee for 90 degree. And while doing that we can see how the stent works and if we need probably another stent proximally or distally

in order to support this technique for technical successful outcome. So my conclusions are rather clear, crush stenting is really a rear exception, it is a challenge, it can be a challenge. You need to dedicate to technique,

you need dedicated devices, you have to go for the pier technique, you have to be ready for re-entry devices and you need then an aggressive re-stenting of the neo-lumen and we call it crush stenting combined with intermediate dual antiplatelet therapy.

And probably the advantages are clear, you have a high technical success endovascular means. You have high intermediate term patency rates in these small patient populations. And the stents which are required for this are self expanding stents and I probably would go for

interwoven nitinol stent. Thank you very much for your attention high appreciate it. (audience applauds)

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- Thank you. I have a little disclosure. I've got to give some, or rather, quickly point out the technique. First apply the stet graph as close as possible to the hypogastric artery.

As you can see here, the end of distal graft. Next step, come from the left brachial you can lay the catheter in the hypogastric artery. And then come from both

as you can see here, with this verge catheter and you put in position the culver stent, and from the femoral you just put in position the iliac limb orthostatic graft.

The next step, apply the stent graft, the iliac limb stent graft, keep the viabahn and deployed it in more the part here. What you have here is five centimeter overlap to avoid Type I endoleak.

The next step, use a latex balloon, track over to the iliac limb, and keep until the, as you can see here, the viabahn is still undeployed. In the end of the procedure,

at least one and a half centimeters on both the iliac lumen to avoid occlusion to viabahn. So we're going to talk about our ten years since I first did my first description of this technique. We do have the inclusion criteria

that's very important to see that I can't use the Sandwich Technique with iliac lumen unless they are bigger than eight millimeters. That's one advantage of this technique. I can't use also in the very small length

of common iliac artery and external iliac artery and I need at least four millimeters of the hypogastric artery. The majority patients are 73 age years old. Majority males. Hypertension, a lot of comorbidity of oldest patients.

But the more important, here you can see, when you compare the groups with the high iliac artery and aneurismal diameter and treat with the Sandwich Technique, you can see here actually it's statistically significant

that I can treat patient with a very small real lumen regarding they has in total diameter bigger size but I can treat with very small lumen. That's one of the advantages of this technique. You can see the right side and also in the left side. So all situations, I can treat very small lumen

of the aneurysm. The next step so you can show here is about we performed this on 151 patients. Forty of these patients was bilateral. That's my approach of that. And you can see, the procedure time,

the fluoroscope time is higher in the group that I performed bilaterally. And the contrast volume tends to be more in the bilateral group. But ICU stay, length of stay, and follow up is no different between these two groups.

The technical success are 96.7%. Early mortality only in three patients, one patient. Late mortality in 8.51 patients. Only one was related with AMI. Reintervention rate is 5, almost 5.7 percent. Buttock claudication rate is very, very rare.

You cannot find this when you do Sandwich Technique bilaterally. And about the endoleaks, I have almost 18.5% of endoleaks. The majority of them was Type II endoleaks. I have some Type late endoleaks

also the majority of them was Type II endoleaks. And about the other complications I will just remark that I do not have any neurological complications because I came from the left brachial. And as well I do not have colon ischemia

and spinal cord ischemia rate. And all about the evolution of the aneurysm sac. You'll see the majority, almost two-thirds have degrees of the aneurysm sac diameter. And some of these patients

we get some degrees but basically still have some Type II endoleak. That's another very interesting point of view. So you can see here, pre and post, decrease of the aneurysm sac.

You see the common iliac artery pre and post decreasing and the hypogastric also decreasing. So in conclusion, the Sandwich Technique facilitates safe and effective aneurysm exclusion

and target vessel revascularization in adverse anatomical scenarios with sustained durability in midterm follow-up. Thank you very much for attention.

- Thank you and thanks again Frank for the kind invitation to be here another year. So there's several anatomic considerations for complex aortic repair. I wanted to choose between fenestrations or branches,

both with regards to that phenotype and the mating stent and we'll go into those. There are limitations to total endovascular approaches such as visceral anatomy, severe angulations,

and renal issues, as well as shaggy aortas where endo solutions are less favorable. This paper out of the Mayo Clinic showing that about 20% of the cases of thoracodynia aneurysms

non-suitable due to renal issues alone, and if we look at the subset that are then suitable, the anatomy of the renal arteries in this case obviously differs so they might be more or less suitable for branches

versus fenestration and the aneurysm extent proximally impacts that renal angle. So when do we use branches and when do we use fenestrations? Well, overall, it seems to be, to most people,

that branches are easier to use. They're easier to orient. There's more room for error. There's much more branch overlap securing those mating stents. But a branch device does require

more aortic coverage than a fenestrated equivalent. So if we extrapolate that to juxtarenal or pararenal repair a branched device will allow for much more proximal coverage

than in a fenestrated device which has, in this series from Dr. Chuter's group, shows that there is significant incidence of lower extremity weakness if you use an all-branch approach. And this was, of course, not biased

due to Crawford extent because the graft always looks the same. So does a target vessel anatomy and branch phenotype matter in of itself? Well of course, as we've discussed, the different anatomic situations

impact which type of branch or fenestration you use. Again going back to Tim Chuter's paper, and Tim who only used branches for all of the anatomical situations, there was a significant incidence of renal branch occlusion

during follow up in these cases. And this has been reproduced. This is from the Munster group showing that tortuosity is a significant factor, a predictive factor, for renal branch occlusion

after branched endovascular repair, and then repeated from Mario Stella's group showing that upward-facing renal arteries have immediate technical problems when using branches, and if you have the combination of downward and then upward facing

the long term outcome is impaired if you use a branched approach. And we know for the renals that using a fenestrated phenotype seems to improve the outcomes, and this has been shown in multiple trials

where fenestrations for renals do better than branches. So then moving away from the phenotype to the mating stent. Does the type of mating stent matter? In branch repairs we looked at this

from these five major European centers in about 500 patients to see if the type of mating stent used for branch phenotype grafts mattered. It was very difficult to evaluate and you can see in this rather busy graph

that there was a combination used of self-expanding and balloon expandable covered stents in these situations. And in fact almost 2/3 of the patients had combinations in their grafts, so combining balloon expandable covered stents

with self expanding stents, and vice versa, making these analyses very very difficult. But what we could replicate, of course, was the earlier findings that the event rates with using branches for celiac and SMA were very low,

whereas they were significant for left renal arteries and if you saw the last session then in similar situations after open repair, although this includes not only occlusions but re-interventions of course.

And we know when we use fenestrations that where we have wall contact that using covered stents is generally better than using bare stents which we started out with but the type of covered stent

also seems to matter and this might be due to the stiffness of the stent or how far it protrudes into the target vessel. There is a multitude of new bridging stents available for BEVAR and FEVAR: Covera, Viabahn, VBX, and Bentley plus,

and they all seem to have better flexibility, better profile, and better radial force so they're easier to use, but there's no long-term data evaluating these devices. The technical success rate is already quite high for all of these.

So this is a summary. We've talked using branches versus fenestration and often a combination to design the device to the specific patient anatomy is the best. So in summary,

always use covered stents even when you do fenestrated grafts. At present, mix and match seems to be beneficial both with regards to the phenotype and the mating stent. Short term results seem to be good.

Technical results good and reproducible but long term results are lacking and there is very limited comparative data. Thank you. (audience applauding)

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- Oh, thank you, dear colleague, that's a very long title. This is my disclosure, this. We are all very efficient for treating all those patient, but sometimes, especially on the very long recanalization, we may fail to reenter into the very precise distal landing zone,

and that's when we fail, please do not panic. That's how to perfectly reenter into the distal lumen and I think that's the retrograde approach. Distal puncturing is very useful and very efficient, very safe technique to increase the long recanalization. And it needs to be consider very, very rapidly,

very quickly, usually in my daily practice this is in less than 10 minutes after failure to rentry into the distal zone. Thus, we have many site of puncture, of distal punctures, and what is also very important,

this is to have the very dedicated devices. Usually I use a 16-gauge needle, and also this is quite always a sheathless technique. Thus, let me share with you this case and answer to all the question. This is a case with an long occlusion

of on the right side of the SFA. This I've used, as maybe many of us, the crossover technique. The crossing was really not a problem. It was quite difficult, we have used many guidewires

and also many support catheter but we crossed finally to the distal zone, but it was impossible to reenter very precisely and very safely into the distal SFA into the P1 popliteal artery. That's once again no hesitation.

We do a direct puncture into the P1 popliteal artery zone. The patient have been always prepared before, and, as you may see, this is an 16-gauge needle. That's after, once again, we inserts the guidewires and note this is a sheathless technique and directly thereafter the support catheter

and this is so very important to inject to be sure that we are very precise for the punctures. After this is a two team work, one from below and one from above,

and this is the mix between two 3D dissection and the main goal, this is to connect one dissection with the other and also thereafter is to insert one guidewire into the other support catheters to have at the end only one guidewires. And after we use a telepherique technique

by pulling the balloon for the predilitation of the first opening of the SFA by pulling on the guidewires that is exiting on the proximal popliteal arteries. And only at the end you may exchange the way of the guidewires to move it distally

and thereafter you push on the balloon that is inflated during at least three minutes for the distal sealing. And this is the initial control that is quite, very, very bad. By the way, I'm answer

to the other question, "When is it important to stent?" And especially I know that we are into a less metal left behind era, but it's a very, very good indication for sustaining these recanalized long lesion,

especially flow limiting dissection and residual stenosis. And this is what we have made for obtaining this by the end very, very good result. Thus, in conclusion, for the long recanalization, especially if it's very, very calcified,

experience is definitely required. And we needs to be familiar with a lot of guidewire and support catheter of a very good portfolio. The retrograde access that made, this is very safe, and that may increase technically the success rate and the stenting, I mean the scaffolding is quite

always necessary on the long recanalization. And keep in mind that the patience is really the key of all those procedures. Thank you.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Yeah, thank you Dr. Asher, and again, I want to give credit to Dr. Zheng, one of our fellows who put together this work. So duplex surveillance for lower extremity revascularization, I think we all do that for vein grafts. It's less well accepted for prosthetic grafts. It's controversial for peripheral stent grafts,

and it's very controversial for peripheral stents. If we had time, I'd like to poll all of you and ask how many of you do a duplex scan after you put in a peripheral arterial stent, but more importantly, how many would intervene if you find the velocities are increasing.

So why do it? Well, revision of failing stents may yield better patency rates than if you intervene after the stent has occluded. You may not be able to restore patency if the stent has already occluded, I mean,

some of you may think you can always do that, I know I can't always do that. And performing endovascular treatment is obviously easier than converting to open surgery. So we reviewed 172 stents in 30 iliac and 89 fempop arteries.

Some were overlapping stents, so we kind of said there were 119 segments that we analyzed. The treated length for the iliac artery was about seven and a half centimeters, and for fempop, was about 12 centimeters. And we did duplex surveillance

in our accredited vascular lab in our office. We measured the peak systolic velocity, and the PSV ratios, every two centimeters within the stent but also in the adjacent proximal and distal arteries. We considered it an abnormal duplex finding, I think pretty much consistent

with what you would do for a vein graft, also, if you had a focal PSV over 300, uniform PSVs throughout the stent less than 45, or a ratio more than three, we would say that probably corresponds with more than a 75% stenosis

and generally we would intervene. We did the duplex one week after we put in a peripheral stent, and then about every six months. The follow up averaged about two years. So of these 119 stented segments, about half of 'em stayed normal.

All of the duplex criteria stayed normal during the entire follow up, nothing needed to be done. But interestingly, of the other half, they developed at least one abnormal duplex criterion. 40 of the 57 cases we intervened on, but of the 17 other cases we did not intervene,

either due to patient refusal, or the surgeon felt, well, let's just keep an eye on it, five did remain patent for a short follow up, but 12 of the 17 went on to occlude. Of the 12 occluded segments, we found that if there was more than one

abnormal duplex finding and you did not treat, 70%, again the numbers are small, but 70% occluded, compared to if you had the normal duplex findings, only 3% occluded, and this was highly significant. So of the 12 occluded stents, what happened? Well six we didn't do anything,

they were just for claudication, and the patients chose not to have open surgery. But four, we did try to open 'em and could not, and they needed a bypass, mainly for limb salvage. But two, we couldn't do anything, and they ended up with amputations.

So the bottom line in this relatively small series was if a stent occluded, they didn't necessarily do well and you couldn't open 'em up. So in conclusion, duplex surveillance for lower extremity stents, and that's what we're talking about,

can significantly predict stent occlusion based on these criteria, and the absence of any criteria strongly predicted stent patency. We even have a little disagreement, frankly, in my own group about how aggressive to be for these.

I tend to be pretty aggressive and intervene. Maybe during the discussion we can talk about this. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.