Create an account and get 3 free clips per day.
Chapters
Retroperitoneal Hematomas Are A Big Deal: Etiology, Demographics, Presentation, Treatment And Outcomes
Retroperitoneal Hematomas Are A Big Deal: Etiology, Demographics, Presentation, Treatment And Outcomes
anticoagulationantiplateletarterialatrialcatheterizationcoagulopathycoil embolizationcommoncomorbiditiesdiagnosedendovascularexpiredfactorshematocrithematomashospitalizationiliacinpatientinterventioninvasivemanagementOpen repairpatientspercutaneouspredictiveretroperitonealRetroperitoneal hematoma management - covered stent placementreviewriskspontaneousstentsupportivesurgeonstherapeuticunanticipatedunderwentvascular
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
Altura stent graft systemEndovascular stent graftLombard medicaltherapeutic
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Gore Tag (Gore Medical) / Valiant (Medtronic) / Zenith Alpha (Cook Medical)RelayPlusstent graft systemTerumo Aortictherapeutic
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
2 arch homograftsOpen Ilio-Celiac bypassSacular TAA ; Endograft AbscessTAAA repair with left heart bypassTEVARtherapeutic
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
Cook MedicalEndograft Repair using Steerable SheathGore Excluder TAMBE (Gore Medical) / Xtra-Design (Jotec)Irregular Orifice of the Right Renal Arterystent graft systemtherapeuticZenith T-Branch
Transcript

- [Caron] Good morning again. It may seem mundane to talk about this topic after all the complex aortic talks. However, vascular surgeons are frequently asked to manage retroperitoneal hematomas that occur either spontaneously or following a arterial catheterization procedures.

The presentation of these patients and the risk factors predicting the need for intervention are not well defined in the literature. The majority of the literature consists of case reports and small review series that highlight the role for therapeutic

or operative endovascular intervention, when necessary, reversal of anticoagulation and supportive care. So with these issues in mind one of the fellows at our institution decided to do a study and review the presentation and management of patients identified as having

retroperitoneal hematomas over a three year period at our single institution. We attempted to identify predictive risk factors to aid surgeons and endovascular specialists in determining those patients who will benefit most from intervention.

These were diagnosed radiologically by CT scan over a three year period at our tertiary care center. Hematomas that occurred directly as a result of recent surgery, for example after a colectomy, or as the result of trauma were excluded. Demographics, risk factors, and management were reviewed.

So we came up from our radiology database with 89 patients, 35 were excluded for the reasons I mentioned, and we ended up coincidentally with 27 patients who had spontaneous RPH's and 27 who had undergone a recent

endovascular or percutaneous procedure. A little bit more than half the cohort was female, the mean age was 71 with a wide range of 33 to 94, most of our cases were diagnosed in the inpatient setting, nearly 70% with 12% having outpatient CT scans, and 19 percent diagnosed in the emergency room setting.

Here are our demographics again, and I will point out that comorbidities included end-stage renal disease in 7.8% of malignancy and 20% and known coagulopathy in 5%. A recent procedure involving vascular intervention had been involved and the most common

was cardiac catheterization as you can see here, although some of these patients underwent peripheral vascular or other types of interventions. 63% of the patients were on some sort of anticoagulation therapy with the most common indication being atrial fibrillation, and the most common agent

being intervenous heparin. 57.4% of the patients were on antiplatelet therapy. The indications for CT scans included pain, hypotension, or a drop hematocrit or other concern for bleeding. And you can see here actually the most frequent

indication for imaging was a physical examination or lab concern for hemorrhage. So the interventions, 15% of patients required an invasive procedure, five patients underwent endovascular intervention, with three consisting of covered stent placement,

and two consisting of coil embolization. Two patients underwent open surgical common femoral or external iliac artery repair, and one patient underwent open repair following failed endovascular coiling. We tried to see who would need this management

and we looked at the patients who had, had a catheterization versus the spontaneous hematomas, although there was a trend here, this was not statistically significant. Although nearly 20% of patients who had, had

an arterial intervention did require invasive management. We looked at anticoagulation and we found that actually the patients who were not on anticoagulation had a higher incidence of a need for invasive management, although this may be due to the fact that

anticoagulation was able to be reversed when it was present. So in summary, neither recent arterial intervention or the presence of anticoagulation helped us decide who would need intervention. I think it's very interesting to know that 17.8% of these patients expired on the same admission

on which the RPH was diagnosed, likely reflecting the comorbidities in this inpatient population. This was a retrospective review and it should be noted that vascular surgeons were not involved in the decision-making or management of all these patients.

The literature on RPH following PCI notes other predictive factors such as, sheath size, antiplatelet medications, or anticoagulation. And they also noted a high mortality in these patients of 13%. So in conclusion, most patients

with retroperitoneal hematomas was successfully managed through anticoagulation reversal, transfusion, and supportive care. However, a meaning proportion of these patients require invasive management and this is usually accomplished by and endovascular approach.

The unanticipated significant proportion of these patients who expired in the same hospitalization highlights that it often occurs in patients with significant comorbidities. Thank you for your attention.

- Thank you, Mr. Chairman. Thank you, Dr. Veith for inviting again to this great meeting. It's my disclosures. Well, as we know and heard this meeting, there are some certain limitations of current EVAR (mumbles) anatomical procedure and economical reasons,

and I would like to present a relatively new device which may address current EVAR limitations with a simple low profile system, and basically, ALTURA consists of two parallel stent graft systems. ZEUS No Gate Cannulation is needed and unique features include D-shaped proximal stents

and suprarenal fixation. Multi-purpose (mumbles) possibilities as well, and the system of utilize 14 French delivery system. And as aortic components can be deployed offset to accommodate the offset renals, and then the limbs are also unique

because they're deployed retrograde from distal proximally, and this allows precise positioning, both proximally and distally. Well, as the ALTURA clinical experience includes the very first human implants as well as more recent case performed

with a fully commercial device, and a total of 90 patients with a AAA were enrolled between 2011 and 2015, and follow-ups are taken at 30 days, six months, and annually to five years, and this presentation gives a current status of follow-up, and our results with a 12-month follow-up were published earlier this year.

Our clinical data were collected in total of in 11 sites. It includes 90 patients. And you see here, the patient demographics and anatomy do a typical, which are typical for all EVAR patients and the mean follow-up was 2.7 years. And procedure of success was 99%.

Only one patient, one of the first patient was Gen1 was not implanted, and 50% patients were done percutaneously, and majority of them underwent regional or local anesthesia. So when you look into the results, we see that there was only one case of AAA ruptured,

which occurred at three years due to type II endoleak and sac enlargement as the patient, which refused treatment due to type II endoleak. And all other deaths are paired to no original causes, and two patients had device migration at two years. The same patients appear at three-year period,

and basically these were undersized grafts was sort of our learning curve, and there was no any migration later on. Four patients had type I endoleaks visible on CT, and read by independent committee between 30 days and one year.

None have required secondary treatment and have been no aneurysm enlargement observed. And at one year, not surprisingly for this kind of devices, there was 17% type to endoleaks, but only one patient required secondary procedure due significant sac expansion.

Well, wasn't, of course, what we saw, I expected majority of patients has had shrinkage. There was a four-year period. And this is a patient who was recorded with the type IA endoleak at 30 days, caused by the last calcified nodule,

as you he's here probably none of the other device would tolerate that, but the endoleak did not extended into into the sac and had a leak result spontaneously without sac enlargement through a four-year follow-up period, as we're seeing here. Well, here another patient with type IB endoleak,

due to (mumbles) generation was treated with coils and glue an extension with additional stent graft to external iliac artery. What's interesting was the device. Device can tolerate small distal aortas and five patients who were treated

with small distal aortas and the very first patient was not dilated enough and stents were not deployed, simultaneously causing some stenosis which was easily treated with PTA afterwards, so we learned but it's very great, unique feature to treat the small distal aortas for the device.

And of course, sensing what happening with them, septal endoleaks, because everybody being concerned what happening with that, and nevertheless, there were no septal endoleaks observed during the follow-up period. In conclusion, Mr. Chairman, ladies and gentlemen,

I would like to say this Novel Altura endograft concept has potential to play major role in mainstream EVAR cases and potential benefits include predictability, reposition ability to place the device very, very, very precisely, offset renals, to maximize use of the neck, and low profile

overcomes current and anatomic limitations like tortuous iliacs, narrow bifurcation or access vessels and no limbic inhalation is needed, and basically, I truly believe that this offers option for EVAR day surgery and ruptured aneurysms. Of course, first results are very encouraging.

We need more data. Thank you very much.

- Good Morning. Thank you very much Dr. Veith, it is an honor and I'm very happy to share some data for the first time at this most important meeting in vascular medicine. And I do it in - oops, that's the end of my talk, how do I go to the --

- [Technician] Left button, left, left. - Okay. So, what we heard on Tuesday were some opinions, of course opinions are very important in the medical field, we heard some hypothesis.

But what I think is critical for the decision-making physician is always the facts. And I would like to discuss some facts in relation to CGuard and the state of the field of carotid revascularization today. One of the most important facts for me,

is that treating symptomatic patients is nothing to be proud of, this is not a strength, this is the failure of the system. Unfortunately today we do continue to receive patients on optimum medical therapy

in the ongoing studies, including the paradigm study that I will discuss in more detail. So if you want to dismiss large level scale level one evidence, I think what you should be able to provide methodologically is another piece of large level one scale evidence.

The third fact is conventional carotid stents do have a problem, we heard about this from Dr. Amor. This is the problem of carotid excess of minor strokes, say in the CREST study. The fact # 4 is that Endarterectomy excludes the problem of the carotid block from the equation

so carotid stents should also be able to exclude the plaque, and yes there is a way to do it one of the ways to do it is the MicroNet covered embolic prevention stent system. And there is intravascular evidence from imaging we'll hear more about it later

that yes it can do this effectively but, also there is evidence from now more that 3 studies with magnetic resonance imaging that show the the incidence of ipslateral embolization is very low with this system. The quantity of the material is very low

and also the post procedural emoblisuent issue is practically eliminated. And this is some examples of intervascular imaging just note here that one of the differences between different systems is that, MicroNet can adapt to simple prolapse

even if it were to occur, making this plaque prolapse protected. Fact # 6 that I think is also very important is that the CGUARD system allows routine endovascular reconstruction of the carotid bifurcation and here is what I mean

as a routine CEA-like effect of endovascular procedure you can minimize residual stenosis by using larger balloons and larger pressure's than we would've used with conventional carotid stent and of course there is not one patient that this can be systematically achieved with different types of plaques

different types of protection systems and different patient morphologies Fact # 7 is that the level of procedural risk is the critical factor in decision making lets take asymptomatic carotid stenosis How does a thinking physician decide between

pharmacotherapy and intervention versus isolated pharmacotherapy. The critical factor is the risk of procedure. Part of the misunderstandings is the fact that we talk often of different populations This contemporary data the the vascular patients

are different from people that we see in the street Of coarse this is what we would like to have this is what we do not have, but we can apply and have been applying some of the plaque risk criteria Fact # 8 is that with the CGUARD system

you can achieve, systematically complication level of 1%, peri procedurally and in 30 days There is accumulating evidence from more than 10 critical studies. I would like to mention, Paradigm and Paradigm in-stent study because

this what we have been involved in. Our first 100 patient at 0.9% now in nearly 300 patients, the event rate is 1.2% and not only this is peri procedural and that by 30 days this low event rate. But also this is sustained through out

now up to 3 years This is our results at 36 months you can see note here, very normal also in-stent velocities so no signal of in-stent re stenosis, no more healing no more ISR signal. The outcome Difference

between the different stent types it is important to understand this will be driven by including high risk blocks and high risk patients I want to share with you this example you see a thrombus containing

a lesion so this patient is not a patient to be treated with a filter. This is not a patient to be treated with a conventional carotid stent but yes the patient can be treated endovascularly using MicroNet covered embolic prevention stent and this is

the final result. You can see that the thrombus is trapped behind the stent MicroNet and Final Fact there's more than that and this is the data that I am showing you for the first time today, there are unmet needs on other vascular territories

and CGUARD is perfectly fit, to meet some of those need. This is an example of a Thrombus containing a lesion in the iliac. This is the procedural result on your right, six months follow up angiogram. This is a subclavian with a lot of material here

again you can preform full endoovascular reconstruction look at the precession` of the osteo placement This is another iliac artery, you can see again endovascular reconstruction with normal 6 month follow up. This is another nasty iliac, again the result, acute result

and result in six months. This is another type of the problem a young man presented with non st, acute myocardial infarction you can see this VS grapht here has a very large diameter. It's not

fees able to address the native coronary issue here So this patient requires treatment, how to this patient: the reference diameter is 7.5 I treated this patient with overlapping CGUARD's This is the angio at 3 months , and this is the follow up at 6 months again

look at the precision of the osteo placement of the device ,it does behave like a balloon, expandable. Extending that respect, this highly calcific lesion. This is the problem with of new atherosclerosis in-stent re stenosis is wrongly perceived as

the proliferation of atheroscleroses tissue with conventional stents this can be the growth of the atherosclerotic plaque. This is the subclavian, this is an example of the carotid, the precise stent, 10 years down the line, symptomatic lesion here

This is not re stenosis this is in-stent re stenosis treated with CGUARD and I want to show you the final result at 2 years. I want to thank you for your attention. Say that also, there is the issue of aneurism that can be effectively addressed , Thank you

- Yeah, thank you Mr. Chairman. These are my disclosures. Well, we know that the Heli-FX EndoAnchor System provide fixation and seal in aortic necks, and it can prevent or resolve migration or endoleaks. It's important to have an even spacing around aortic circumference and

to resolve type 1A endoleaks, you need successful, of course, deployment of EndoAnchors and adequate penetration into the aortic wall. The objectives for this study was to quantify the EndoAnchor penetration into the aortic wall in patients undergoing EVAR

and to assess the predictors of successful penetration and to associate that with postprocedural type 1A endoleaks. We searched in the ANCHOR database, and we included patients that has been treated for a type 1A endoleak, and we had to have a good quality

first postprocedure contrast-enhanced CT scan without any artifacts due to metal or glue, and without implantation of adjuvant aortic extension cuffs or stents. And then we selected two patient cohorts, patients with successful treatment

after the implantation of EndoAnchors for a type 1A endoleak, and patients with a persistent type 1A endoleak after the EndoAnchor implantation. Well, this is to show how we determined the position of the EndoAnchors, this is a good penetrating EndoAnchor

more than two millimeters in the aortic wall. This is borderline, and this means there is still a gap between the endograft and the aortic wall or the EndoAnchor itself is penetrating less than two millimeters. And this of course, a non-penetrating EndoAnchor.

The good ones are green, the borderlines are orange, and the non-penetrating are flagged red. Here are results, the anatomical criteria to predict type 1A endoleaks, as you can see here, at the left, in the type 1A endoleak patients, there is a larger aortic diameter

with a median of 30 millimeters, and neck length is shorter, less than one centimeter, compared to the patients with no endoleak. Then about the EndoAnchor penetration, in the patients with a persistent type 1A endoleak, there are significantly more EndoAnchors

which are borderline or non-penetrating. What are the predictors for a successful EndoAnchor penetration. Well, protective factors, oversizing of the endograft compared to the diameter of the infrarenal aortic neck, and the use of the endurant stents.

Independent risk factors are the aortic diameter at the lowest renal artery, and five and 10 millimeters below more than 30 millimeters, a significantly neck thrombus and calcium around the circumference and also a more than two millimeter thickness.

Predictors for a type 1A endoleak, protective factors is the neck length more than one centimeter, and good penetrating EndoAnchors and risk factors for a type 1A endoleak is, again, the aortic diameter five millimeters

below the lowest renal artery more than 30 millimeters, and also boerderline and non-penetrating EndoAnchors and in this logistic regression model, a non-penetrating EndoAnchor is really predictive for a type 1A endoleak, or a persistent type 1A endoleak. A few cases, this is an excellent job,

there are four EndoAnchors placed, and they all penetrate well, although they are not circumferentially divided around the circumference. The majority of the problems in the patients in the ANCHOR database, if a persistent type 1A endoleak

is mainly due to an incorrect indication, these are EndoAnchors red and orange, non-penetrating and borderline. That is because they are above the fabric, or they are in a no-neck aneurysm, so the indication is not correct.

This is again, a patient with an undersized endograft, of course, the EndoAnchors will never penetrate the aortic wall at a post-serial part of the aorta. This is another example of misdeployment, a huge load of calcium and thrombus, and again, to defined a no-neck aneurysm,

and again, well it's obvious that the EndoAnchors will not do their job. These are then the EndoAnchor distribution in successfully treated type 1A endoleaks at the left, 332 EndoAnchors, but if you select only the patients

with an EndoAnchor which are inside recommended use at the right, you can see that more than 90% of those EndoAnchors are good penetrating. Here are the patients at the left with a persistent type 1A endoleak, 248, and you can see the majority is red or orange,

and that means that majority of those patients had an EndoAnchor deployment beyond the recommended use. So to conclude, good EndoAnchor penetration is less likely when there is large aortic diameter, the EndoAnchor is not perpendicular to the stentgraft during deployment,

and it's beyond the recommended use, more than two millimeters of thrombus, not in the infrarenal neck, or a gap more than two millimeters. And in borderline or non-penetrating EndoAnchor, it's predictive for a type 1A endoleak.

Thank you very much.

- Thank you Rod and Frank, and thanks Doctor Veeth for the opportunity to share with you our results. I have no disclosures. As we all know, and we've learned in this session, the stakes are high with TEVAR. If you don't have the appropriate device, you can certainly end up in a catastrophe

with a graph collapse. The formerly Bolton, now Terumo, the RelayPlus system is very unique in that it has a dual sheath, for good ability to navigate through the aortic arch. The outer sheath provides for stability,

however, the inner sheath allows for an atraumatic advancement across the arch. There's multiple performance zones that enhance this graph, but really the "S" shape longitudinal spine is very good in that it allows for longitudinal support.

However, it's not super stiff, and it's very flexible. This device has been well studied throughout the world as you can see here, through the various studies in the US, Europe, and global. It's been rigorously studied,

and the results are excellent. The RelayPlus Type I endoleak rate, as you can see here, is zero. And, in one of the studies, as you can see here, relative to the other devices, not only is it efficacious, but it's safe as well,

as you can see here, as a low stroke rate with this device. And that's probably due to the flexible inner sheath. Here again is a highlight in the Relay Phase II trial, showing that, at 27 sites it was very effective, with zero endoleak, minimal stent migration, and zero reported graph collapses.

Here again you can see this, relative to the other devices, it's a very efficacious device, with no aneurism ruptures, no endoleaks, no migration, and no fractures. What I want to take the next couple minutes to highlight, is not only how well this graph works,

but how well it works in tight angles, greater than 90 degrees. Here you can see, compliments and courtesy of Neal Cayne, from NYU, this patient had a prior debranching, with a ascending bypass, as you can see here.

And with this extreme angulation, you can see that proximally the graph performs quite well. Here's another case from Venke at Arizona Heart, showing how well with this inner sheath, this device can cross through, not only a tortuous aorta, but prior graphs as well.

As you can see, screen right, you can see the final angiogram with a successful result. Again, another case from our colleagues in University of Florida, highlighting how this graph can perform proximally with severe angulation

greater than 90 degrees. And finally, one other case here, highlighting somebody who had a prior repair. As you can see there's a pseudoaneurysm, again, a tight proximal, really mid aortic angle, and the graph worked quite well as you can see here.

What I also want to kind of remind everybody, is what about the distal aorta? Sometimes referred to as the thoracic aorta, or the ox bow, as you can see here from the ox bow pin. Oftentimes, distally, the aorta is extremely tortuous like this.

Here's one of our patients, Diana, that we treated about a year and a half ago. As you can see here, not only you're going to see the graph performs quite well proximally, but also distally, as well. Here Diana had a hell of an angle, over 112 degrees,

which one would think could lead to a graph collapse. Again, highlighting this ox bow kind of feature, we went ahead and placed our RelayPlus graph, and you can see here, it not only performs awesome proximally, but distally as well. And again, that's related to that

"S" shaped spine that this device has. So again, A, it's got excellent proximal and distal seal, but not only that, patency as well, and as I mentioned, she's over a year and a half out. And quite an excellent result with this graph. So in summary, the Terumo Aortic Relay stent graph is safe,

effective, it doesn't collapse, and it performs well, especially in proximal and distal severe angulations. Thank you so much.

- Thank you very much for the presentation. Here are my disclosures. So, unlike the predecessor, Zenith Alpha has nitinol stents and a modular design, which means that the proximal component has this rather gentle-looking bear stents and downward-looking barbs.

And the distal part has upward-looking barbs. And it is a lower-profile device. We reported our first 42 patients in 2014. And now for this meeting we updated our experience to 167 patients operated in the last five years.

So this includes 89 patients with thoracic aneurysms. 24 patients in was the first step of complex operations for thoracoabdominals. We have 24 cases in the arch, 19 dissections, and 11 cases were redos. And this stent graft can be used as a single stent graft,

in this case most of the instances the proximal component is used or it can be used with both components as you can see. So, during the years we moved from surgical access to percutaneous access and now most of the cases are being done percutaneously

and if this is not the case, it's probably because we need some additional surgical procedures, such as an endarterectomy or in cases of aorto-iliac occlusive disease, which was present in 16% of our patients, we are going to need the angioplasty,

this was performed in 7.7% of cases. And by this means all the stent grafts were managed to be released in the intended position. As far as tortuosity concerned, can be mild, moderate, or severe in 6.6% of cases and also in this severe cases,

with the use of a brachio-femoral wire, we managed to cross the iliac tortuosity in all the cases. Quite a challenging situation was when we have an aortic tortuosity, which is also associated with a previous TEVAR. And also in this instances,

with the help of a brachio-femoral wire, all stent grafts were deployed in intended position. We have also deployed this device both in chronic and acute subacute cases. So this can be the topic for some discussion later on. And in the environment of a hybrid treatment,

with surgical branching of the supoaortic tranch, which is offered to selected patients, we have used this device in the arch in a number of cases, with good results. So as far as the overall 30-day results concerned, we had 97.7% of technical success,

with 1.2% of mortality, and endoleaks was low. And so were reinterventions, stroke rate was 1.2%, and the spinal cord injury was 2.4%. By the way we always flash the graft with CO2 before deployment, so this could be helpful. Similar results are found in the literature,

there are three larger series by Illig, Torsello, and Starnes. And they all reported very good technical success and low mortality. So in conclusion, chairmen and colleagues, Zenith Alpha has extended indications

for narrow access vessels, provide safe passage through calcified and tortuous vessels, minimize deployment and release force, high conformability, it does retain the precision and control of previous generation devices,

however we need a longer term follow up to see this advantages are maintained over time. Thank you very much.

- Thank you, and thanks to Dr. Veith for the opportunity to share some of our data. These are my disclosures, some devices presented here are investigational and I want to acknowledge my friend Gustavo, who actually shared some of the slides that we'll show. And I want to reference some of his papers. So a spinal cord ischemia has been presented here

as a devastating complication, after both open and endovascular repair of thoracoabdominal aortic aneurysms. The spinal drains are routinely used to ameliorate the frequency and also the severity of spinal cord ischemia, the problem with this trains is that they may result inherent morbidity and mortality.

Now, intraoperative neuromonitoring has been used to not only monitor, but also to manage potential cases of spinal cord ischemia, this is a study by the group at the Mayo Clinic, led by Gustavo. 49 patients, of which 90% had thoracoabdominal aortic aneurysms, all these patients have spinal drain splice,

spinal cord ischemia was seen in six patients. But interestingly, 63% of the patients had significant decrease in the amplitude of both motor and somatosensory evoked potentials. And interestingly all of these changes came back to baseline except in one patient once

their lower legs were reperfused. However, and despite all of these papers that have, you know, talk about the use of spinal drains for endovascular reparative thoracoabdominal aortic aneurysms against the effectiveness of the spinal drains has not been shown.

And the aim of our study was to assess the outcomes of spinal cord protection without the routine use of spinal drains. We actually has some complications in this report, we decided that we were going to use only selectively in our series, the device is used for this in patients

were all part of a physician-sponsored investigational device exemption, demonstrating branch devices were used including the drainage device. We use a similar protocol as the one described by the Mayo Clinic group, which rely on permissive hypertension maintaining the maps above 90 or 100,

and the systolic pressures above 140. However, as mentioned, we did not place spinal drains routinely, the spinal drains were only considered in those patients that had persistent motor evoked potential deficits, at the end of the procedure. Once the legs have been reperfused, we did not use

conduits, we did percutaneous access in all patients. But of note, we did use endo conduits in all patients that have significant iliocclusive disease, not only to be able to deliver the device, but also to maintain flow to the lower extremities, to avoid distal ischemia. So 34 patients were enrolled in this study,

all patients had intraoperative neuromonitoring, and select spinal drains were placed. 10 patients, 29%, were extent 4 thoracoabdominal repairs, and 24 were extent type one to three. Important all patients with type one and three thoracoabdominal aneurysms underwent a staged repair.

We use in 20% of the cases off-the-shelf device is specifically the debranch, and 80% underwent custom made devices, all these devices were pre-loaded with wires. So, of these patients, 73 were male, 9% Type I, 38% Type II, 24% were Type III,

and 29% were Type IV. We saw significant changes in the evoked potentials in 80% of the patients. In all of them those changes came back to baseline except in one patient, who actually had a spinal drain at the end of the procedure.

30-day mortality in two patients, spinal drain was required eventually in only four patients, that's 12%. One because of sustained changes in the motor evoked potentials, spinal cord ischemia occurred in four patients, in all cases secondary to hypertension. After a procedure, in these cases two were permanent,

the cases had spinal drain splice, however, the deficit persisted, two had transient paraplegia, one resolved with permissive hypertension, and one resolved with a spinal drainage, I mean, the spinal drain was only effective in half of those patients. We did have two cases of intracranial bleeding,

associated with hypertension. So in conclusions, we don't believe that the spinal drains are necessary in all patients. A standard protocol that relies on perioperative maintenance of adequate blood pressure in intraoperative neuralmonitoring is however required.

And we believe that tight blood pressure control is mandatory to avoid possible complications related to uncontrolled hypertension, thank you.

- Rifampin-soaked endografts for treating prosthetic graf y work? I have no conflicts of interest. Open surgery for mycotic aneurysms is not perfect. We know it's logical, but it has a morbidity mortality of at least 40% in the abdomen and higher in the chest.

Sick, old, infected patients do poorly with major open operations so endografts sound logical. However, the theoretical reasons not to use them is putting a prosthetic endograft in an infected aorta immediately gets infected. Not removing infected tissue creates

an abcess in the aorta outside the endgraft and of course you have to replace the aorta in aorto-enteric fistulas. So, case in point, saccular aneurysm treated with a TEVAR and two weeks later as fever and abdominal pain.

You start out like this, you put an EVAR inside you get an abcess. Ended up with an open ilio-celiac open thoraco with left heart bypass. Had to sew two arches together. But what about cases where you can't

or you shouldn't do open? For example, 44 year old IV drug user, recurrent staph aureus endocarditis, bacteremia, had a previous aorto-bifem which was occluded, iliac stents, many many laparotomies ending in short bowel syndrome and an ileostomy.

CT scan and a positive tag white cell scan shows this. It's two centimeters, it's okay, treat it with antibiotics. Unfortunately, 10 days later it looks like this, so open repair. So, we tried for hours to get into the abdomen. The abdomen was frozen and, ultimately,

we ended up going to endografts so I added rifampin to it, did an aorta union and a fem fem and it looked like this and I said well, we'll see what happens. She's going to die. Amazingly, at a year the sac had totally shrunk. I remind you she was on continuous treatment.

She had her heart replaced again for the second time and notice the difference between the stent at one year to the sac size. So adding rifampin to prosthetic Dacron was first described in the late 1980's and inhibits growth in vivo and in vitro.

So I used the same concentration of 60 milligrams per milliliter. That's three amps of 600, 30 CC's water injected into the sheath. We published this awhile back. You can go straight into the sheath in a Cook.

Looks like this, or you can pre deploy a bit of little Medtronic and sort of trickle it in with an angiocatheter. So the idea that endografts in infected aortas immediately become infected, make it worse. I don't think it's true.

It may be false. What about aorto-enteric fistulas? This person showed up 63 year old hemorrhagic shock, previous Dacron patch, angioplasty to the aorta a few years ago, aorto-duodenal fistula not subtle. Nice little Hiroshima sign

and occluded bilateral external iliac arteries. Her abdomen looked like this. Multiple abdominal hernias, bowel resections, and had a skin graft on the bowel. Clearly this was the option. I'm not going to tell you how I magically got in there

but let's just leave it at that I got an endograft in there, rifampin soaked, sealed the hole and then I put her on TPN. So the idea that you have to resect and bypass, I'll get back to her soon, I think it's false. You don't necessarily have to do it every time. What about aorto-esophageal hemorrhagic shock, hematemesis?

Notice the laryng and esophageus of the contrast, real deal fistula. Put some TEVARs in there, and the idea was to temporize and to do a definitive repair knowing that we wouldn't get away with it. On post update nine, we did a cervical esophagostomy

and diverted the esophagus with the idea that maybe he could heal for a little while. He went home, we were going to repair him later, but of course he came back with fever, malaise, and of course gas around the aneurysm and we ended up having to fix him open.

So the problem with aorto-enteric fistulas is when you put an endograft in them it's sort of like a little boomerang. You get to throw them out and it's nice and it sails around but in the end you have to catch it. So, in the long term the lady I showed you before,

a year and a half later she came back with a retroperitoneal abscess. However, she was in much better shape. She wasn't bleeding to death, she'd lost weight, she'd quit smoking. She got an ax-bi-fem, open resection,

gastrojejunostomy and she's at home. So, I think the idea's, I think it's false but maybe realistically what it is, is that eventually if you do aorto-enteric fistulas you're going to have to do something and maybe if you don't remove the infection

it may make it worse. So in conclusion, endografts for mycotic aneurysms, they do save lives. I think you should use them liberally for bad cases. It could be a bad patient, a bad aorta, or bad presentation. Treat it with antibiotics as long as possible

before you put the endograft in and here's the voodoo, 60 milligrams per mil of rifampin. Don't just put in there, put it in with some semblance of science behind it, put it on Dacron, it may even lead to complete resolution. And I've also added trans-lumbar thoracic pigtail drains

in patients that I literally cannot ever want to go back in. Put 'em in for ten days wash it out. TPN on aorto-enterics for a month, voodoo, I agree, and I use antibiotics for life. Have a good plan B because it may come back in two weeks or two years, deploy them low

or cut out the super renal fixations so you can take them out a little easier. Thank you.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- Thank you, honored to present this work on behalf of our group at the VA, the Michael E. DeBakey VA in Houston, led by Dr. Kougias. Disclosures are here, Dr. Kougias does consultation for Cook Medical. So compared to EVAR, FEVAR has greater lower extremity ischemic times due to larger sheaths,

visceral cannulation, complexity of procedures. And lower extremity complications have been reported as high as 15%, but there's not been a careful analysis of this. So we decided to look at the incidence of lower extremity sensory or motor deficit

after FEVAR, and to look specifically at lower extremity ischemic time, iliac artery occlusive disease, and lower extremity neurologic impairment after FEVAR. So this is a retrospective study over a four-year period. Early experience with our FEVAR cases was included,

and we generally used bilateral femoral access. Iliac stenotic lesions were dilated when required to allow an 18 or 20 French sheath to be placed. Graft alignment was achieved by centering the graft over at least two sheaths in the visceral arteries

before releasing the diameter-reducing wire. Visceral stents were used for all fenestrations and selectively for some scallops. We used perfusion adjunct techniques selectively, such as antegrade 7 French sheath placement into the FSA or sometimes a Dacron conduit into the common

femoral artery, which allows you to retract the sheath. A primary outcome was neurologic impairment. Secondary outcomes were major amputations and ability to ambulate at 30 days after surgery. We measured continuous lower extremity ischemic time from the time of the large sheath insertion into

the femoral artery until it was removed. If we used perfusion adjuncts, we measured the time from the sheath insertion to the perfusion initiation via the adjunctive modality, and the longest ischemic time for each extremity was recorded. We measured common iliac artery lumen diameters.

It was the distance of inner wall to inner wall, the narrowest segment of each common iliac artery. And we entered this as a binary variable based on eight millimeters. Statistics, we did both uni- and multivariate analysis, and I'll just run through that here quickly.

And we did an interaction model looking at the association between lower extremity ischemic time, size of the residual patent common iliac artery lumen versus neurologic impairment in the lower extremities. So there was 101 FEVAR patients with 202 limbs.

Percutaneously done in 16% of cases, we used perfusion adjuncts based on understanding of the case and how long it was going to take. Conduit in eight cases, and antegrade SFA sheath placement in three cases. The configurations are shown here.

Majority were one scallop and two fens, and the ischemic times are shown there. Operative time was about three hours was the average, but the standard deviation was 122 minutes. You can see the fluid requirements there. We looked at intra- and postoperative transfusions.

Then we looked at patients with neurologic impairment. So there were 18 patients who had some neurologic impairment postoperatively. 12 of these patients has mild sensory loss, eight has complete sensory loss, and only two had motor dysfunction.

The deficits tended to resolve within four days, almost all within 14 days. But we had four limbs with persistent sensory deficits, and only one with a persistent motor deficit. Two patients could not ambulate normally at 30 days. No patient underwent an amputation.

If you look at the univariate analysis, limb ischemic time, common iliac lumen less than eight millimeters, intraoperative blood loss, change in hemoglobin, and total transfusion all seem to indicate lower extremity motor dysfunction or sensory dysfunction.

But on multivariate analysis, there are only two factors: limb ischemic time and common iliac artery diameter less than eight millimeters. If you looked at the interaction model we prepared, if the common iliac artery diameter was less than eight millimeters after about two and

a half hours of continuous ischemia, the incidence of neurologic impairment went up. This went up more slowly if it was more than three hours if the iliac artery diameter is greater than eight millimeters. So, in conclusion, lower extremity permanent

neurologic impairment is very low after FEVAR, but there is a relatively high instance of reversible neurologic impairment associated with two things: extremity ischemic time and the presence of pre-existing occlusive disease in the common iliac artery.

We acknowledge this was a single center study. We weren't able to look at extent of aortic coverage or associated spinal cord ischemia, but we conclude that when you anticipate long ischemic times based on the iliac artery diameter, you should consider adjunctive perfusion techniques.

Thank you.

- Thank you Louie, that title was a little too long for me, so I just shortened it. I have nothing to disclose. So Takayasu's arteritis is an inflammatory large vessel vasculitis of unknown origin. Originally described by Dr. Takayasu in young Japanese females.

The in-di-gence in North America is fairly rare. And its inflammation of the vessel wall that leads to stenosis, occlusion or aneurysmal formation. Just to review, the Mayo Clinic Bypass Series for Takayasu's, which was presented last year, basically it's 51 patients, and you can see

the mean age was 38. And you can see the breakdown based on race. If you look at the early complication rate and we look at specific graft complications, you had two patients who passed away, you had two occlusions, one stenosis, one graft infection.

And one patient ruptured from an aneurysm at a distant site than where the bypass was performed. If you look at the late complications, specifically graft complications, it's approximately 40%. Now this is a long mean follow up: this is 74 months, a little over six years.

But again, these patients recur and their symptoms can occur and the grafts are not perfect. No matter what we do we do not get superb results. So, look at the graft outcomes by disease activity. We had 50 grafts we followed long-term. And if you look at the patency, primary patency

right here of active disease versus non-ac it's significantly different. If you look at the number of re-interventions it's also significantly different. So basically, active disease does a lot worse

than non-active disease. And by the way, one of our findings was that ESR is not a great indicator of active disease. So we're really at a loss as to what to follow for active or non-active disease. And that's a whole 'nother talk maybe for another year.

So should endovascular therapy be used for Takayasu's? I'd say yes. But where and when? And let's look at the data. And I have to say, this is almost blasphemy for me

to say this, but yes it should be used. So let's look at some of the larger series in literature and just share them. 48 patients with aortic stenosis fro all were treated with PTA stenting.

All were pre-dilated in a graded fashion. So they started with smaller balloons and worked up to larger balloons and they used self expanding stents in all of them. The results show one dissection, which was treated by multiple stents and the patient went home.

And one retro-paret-tin bleed, which was self limiting, requiring transfusion. Look at the mean stenosis with 81% before the intervention. Following the intervention it was 15%. Systolic gradient: 71 milligrams of mercury versus 14. Kind of very good early results.

Looking at the long term results, ABI pre was .75, increased to .92. Systolic blood pressure dropped significantly. And the number of anti-hypertensive meds went from three to 1.1. Let's look at renal arteries stenosis.

All had a renal artery stenosis greater than 70%. All had uncontrolled hypertension. They were followed with MRI or Doppler follow up of the renal arteries. So, stents were used in 84% of the patients. Restenosis occurred in 50% of them.

They were, all eight were treated again, two more developed restenosis, they ended up losing one renal artery. So at eight years follow up, there's a 94% patency rate. What about supra-aortic lesions? And these are lesions that scare me the most for endovascular interventions.

Carotids, five had PTA, two had PTA plus stent. Subclavian, three PTA, two PTA. One Innominate, one PTA plus stent. One early minor stroke. I always challenge what a minor stroke is? I guess that's one that happens to your ex mother-in-law

rather than your mother, but we'll leave it that way. Long term patency at three years, 86%. Secondary patency at three years, 76%. Fairly good patency. So when Endo for Takayasu's, non-active disease is best. The patient is unfit for open surgery.

I believe short, concentric lesions do better. In active disease, if you have to an urgent or emergent, accept the short term success as a bridge to open repair. If you're going to do endovascular, use graded balloons or PTAs, start small. Supra-aortic location, short inflation times

I think are safer. And these three, for questions for the future. I guess for the VEITHsymposium in three years. Thank you.

- Sam, Louis, thank you very much. I also kind of reduced the title to make it fit in a slide. Those are my disclosures. We've switched to using a hybrid room routinely a couple of years ago and what happened then is that we started using 3D imaging

to guide us during the procedure using a fusion overlay. Obviously this was a huge benefit but the biggest benefit was actually 3D imaging at the end of the procedure so rather than doing an AP fluoro run, we would do a 3D acquisition in a cone beam CT

and have those reconstructions available to check technical success and to fix any issues. We've been using this technique to perform translumbar type 2 endoleak treatment and what we do is we do a cone beam CT non contrast and we fuse the pre-op CT on top of this cone beam CT

and it's actually quite easy to do because you can do it with the spine but also obviously with the endograft so it's a registration on the graft on top of the endograft and then the software is really straightforward. You just need to define a target in the middle

of the endoleak. You need to define where you want to puncture the skin and then the system will automatically generate to you a bull-eye view which is a view where you puncture the back of the patient and the progression view you obviously see the needle

go all the way to your target. And what is interesting is that if you reach the target and if you don't have a backflow so you're not in the endoleak, you have this stereo 3D software which is interesting because you do two lateral fluoro runs

and then you check the position of the needle and then it shows you on the pre-op CT where you are. So here in this specific patient, I didn't advance the needle far enough. I was still in the aortic wall,

that's why I didn't get backflow so I just slightly advanced the needle and I got backflow and I could finish the embolization by injecting contrast, close and then ONYX to completely exclude this type 2 endoleak. So now let's go to our focus today is fenestrated endograft.

You see this patient that were treated with a fenestration and branches. You can see that the selective angio in the left renal looks really good but if on the cone beam CT at the end of the procedure we actually had a kink on the left renal stent

so because I had depicted it right away at the end of the procedure I could fix it right away so this is not a secondary procedure. This is done during the index procedure so I'll go directly to what we did is we reinflated a ballon,

we re-fed the balloon and then had a nice result but what happen if you actually fail to catheterize? This was the case in this patient. You see the left renal stent is completely collapsed. I never managed to get a wire from the aortic lumen and back into the renal artery

so we position the patient in the lateral position, did a cone beam CT and used the same software so the target is now the renal artery just distal to this crushed renal stent and we punctured this patient back in the target and so you can see is right here

and you can see that the puncturing the back. We've reached the renal artery, pushed a wire through the stent now in the artery lumen and snared the wire and over this through and through wire coming out from the back we managed

to reopen this kinked left renal stent. You can see here the result from this procedure and this was published a couple of years, two years ago. Now another example, you can see here the workflow. I'm actually advancing the needle in the back

of the patient, looking at the screen and you can see in this patient that had a longer renal stent I actually punctured the renal stent right away because at the end of the procedure I positioned another covered stent inside

to exclude this puncture site and then, oops sorry, and then, can we go to the, yeah great thank you. And then I advance the wire again through this kinked renal stent into the endograft lumen and this is a snare from the groin

and I got the wire out from the groin. So you see the wire is coming from the back of the patient here, white arrow, to the groin, red arrow and this is the same patient another view and over this through and through wire

we manged to re advance and reopen this stent and we actually kinked the stent by getting the system of branched endograft through a previous fenestrated repair and fortunately my fellow told me at the end of the procedure we should check the FEVAR

with a cone beam CT and this is how we depicted this kink. So take home message, it's a very easy, straightforward workflow. It's a dedicated workflow that we use for type 2 endoleak embolization. We have this intermediate assessment with Stereo 3D

that helps us to check where we are so with 3D imaging after the learning curve it's become routine and we have new workflows like this way of salvaging a kinked renal stent. Thank you very much for your attention.

- Thank you, Mr. Chairman. Good morning ladies and gentleman. I have nothing to disclose. Reportedly, up to 50 percent of TEVARs need a left subclavian artery coverage. It raises a question should revascularization cover the subclavian artery or not?

It will remain the question throughout the brachiograph available to all of us. SVS guidelines recommend routine revascularization in patients who need elective TEVAR with the left subclavian artery coverage. However, this recommendation

was published almost ten years ago based on the data probably even published earlier. So, we did nationwide in patient database analysis, including 7,773 TEVARs and 17% of them had a left subclavian artery revascularization.

As you can see from this slide, the SVS guideline did affect decision making since it was published in 2009, the left subclavian artery revascularization numbers have been significantly increased, however, it's still less than 20%.

As we mentioned, 50% of patient need coverage, but only less than 20% of patient had a revascularization. In the patient group with left subclavian artery revascularization, then we can see the perioperative mortality and morbidities are higher in the patient

who do not need a revascularization. We subgroup of these patient into Pre- and Post-TEVAR revascularization, as you can see. In a Post-TEVAR left subclavian revascularization group, perioperative mortality and major complications are higher than the patient who had a revascularization before TEVAR.

In terms of open versus endovascular revascularization, endovascular group has fewer mortality rate and major complications. It's safer, but open bypass is more effective, and durable in restoring original profusion. In summary, TEVAR with required left subclavian artery

revascularization is associated with higher rates of perioperative mortality and morbidities. Routine revascularization may not be necessary, however, the risks of left subclavian artery coverage must be carefully evaluated before surgery.

Those risk factors are CABG using LIMA. Left arm AV fistula, AV graft for hemodialysis. Dominant left vertebral artery. Occluded right vertebral artery. Significant bilateral carotid stenosis.

Greater than 20% of thoracic aorta is going to be or has been covered. And a history of open or endovascular aneurysm repair. And internal iliac artery occlusion or it's going to be embolized during the procedure. If a patient with those risk factors,

and then we recommend to have a left subclavian artery revascularization, and it should be performed before TEVAR with lower complications. Thank you very much.

- Good morning, I want to thank Professor Vitta for the privilege of presenting on behalf of my chief, Professor Francesco Speziale, the result from the EXTREME Trial on the use of the Ovation stent graft. We know that available guidelines recommend to perform EVAR in patient presenting at least a suitable

aortic neck length of >10mm, but in our experience death can be a debatable indication because it may be too restrictive, because we believe that some challenging necks could be effectively managed by EVAR. This is why when we published our experience 2014,

on the use of, on EVAR, on the use of different commercially available device on-label and off-label indication, we found no significant difference in immediate results between patient treated in and out IFU, and those satisfactory outcomes were maintained

during two years of follow-up. So, we pose ourself this question, if conventional endografts guarantee satisfactory results, could new devices further expand EVAR indication? And we reported our experience, single-center experience, that suggests that EVAR by Ovation stent-graph can be

performed with satisfactory immediate and mid-term outcomes in patient presenting severe challenging anatomies. So, moving from those promising experiences, we started a new multi-center registry, aiming to demonstrate the feasibility of EVAR by Ovation implantation in challenging anatomies.

So, the EXTREME trial was born, the expanding indication for treatment with standard EVAR in patient with challenging anatomies. And this is, as I said, a multi-center prospective evaluation experience. The objective of the registry was to report the 30-day and

12 month technical and clinical success with EVAR, using the Ovation Stend-Graft in patient out of IFU for treatment by common endograft. This is a prospective, consecutively-enrolling, non-randomized, multi-center post market registry, and we plan to enroll at least 60 patients.

We evaluated as clinical endpoints, the freedom from aneurysm-related mortality, aneurysm enlargement and aneurysm rupture. And the technical endpoint evaluate were the access-related vascular complications, technical success, and freedom from Type I and III endoleaks, migration,

conversion to open repair, and re-interventions. Between March 17 and March 18, better than expected, we enrolled 122 patients across 16 center in Italy and Spain. Demographics of our patient were the common demographic for aneurysm patients.

And I want to report some anatomical features in this group. Please note, the infrarenal diameter mean was 21, and the mean diameter at 13mm was 24, with a mean aortic neck length of 7.75mm. And all grafts were released accorded to Ovation IFU. 74 patients out of 122

presented an iliac access vessel of <7mm in diameter. The technical success reported was 98% with two type I endoleak at the end of the procedure, and 15 Type II endoleaks. The Type I endoleak were treated in the same procedure

by colis embolization, successfully, and at one month, we are no new Type Ia endoleaks, nine persistent Type II endoleaks, and two limb occlusion, requiring no correction. I want to thank my chief for the opportunity of presenting and, of course, all collaborators of this registry,

and I want to thank you for your attention, and invite you, on behalf of my chief, to join us in Rome next May. Thank you.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

- Yes, thank you very much. And it's a pleasure to discuss this topic. My disclosure's obvious. And I want, this is the layout and I want to start with some sensible arguments that tell us to chose the best option for our patients and that we have to take extension of disease

into consideration. And for those patients who expect to live longer go for a durable repair. And I want to show you a quick few examples that are important. This is a standard fenestrated graft with a type one

endoleak so an indication mistake that we had to repair with a very complex graft within a branches. And fortunately it went well and now it seals off completely. This is another case and again this standard EVAR. It should probably have never been done.

You can see where the graft lies. And we look at the proximal sealing zone and we like to look at the sagittal images and we want to have a durable repair and here because it's fairly easy we do a full fenestration graft.

This is another case and again I'm appealing at be careful with your indications. You can see the aneurysm and you look at the infrarenal neck while for us this is not a infrarenal neck at all. This is a diseased Aorta. And where in the old days we would probably have done

a standard FEVAR we now aim look at the red line for a longer sealing zone to make sure that it is durable. And this is the CT Scan at five years. You can now probably say that this aneurysm has been cured as this proximal landing zone has been stable for all these years.

And almost the same case with one little difference you can see the infrarenal neck that it none existing. You can see the sagittal view, it seems to tell you yes, a triple FEVAR will work. But we didn't take into account that the descending Thoracic Aorta was dilated.

You can see it here, 36, 37 millimeters. And we planned this triple FEVAR, we were happy with it. But if you follow this patient you will see that if he lives long enough this is not a suitable landing zone. So we should have done a more impressive repair going a little bit higher

because this is a complex case to repair. And we repaired it with another fenestrated graft up to the Thoracic Aorta, as you can see it's not easy. And the end result was fine but this of course is a far more complex and extensive repair. I don't know if I jumped one, yes.

So a little bit of scientific evidence because we moved away from double fenestrated towards triple fenestrated and we asked ourselves is triple and quadruple fenestrated associated with a higher mortality and mobility? And you can see our series here and the updated figures with more than 200 patients in each arm.

But more importantly look at the changes overtime. A standard fenestrated repair in blue has virtually disappeared in our center. And that is because we aim to have a longer sealing zone. You can see the evolution of the sealing zone going from so to speak 25 millimeters to 45 millimeters

to make sure that these patients have a durable repair. If you look at the results while it's fairly simple because there are no statistical significant differences with regard to technical success 30-day mortality was 0.7% in 454 patients so no statistical differences.

You can imagine the target vessel patency are fine. We only have two problems with a SMA, one with each group and all the other SMA's are doing very well. And actually interestingly, no difference in freedom from re-intervention. And if you look at the estimated survival

interestingly at three years the survival was higher in the complex group compared to the standard FEVAR group. But the over statistics don't show any difference of course. So really, my take home message and the lessons we learnt is that standard EVAR not FEVAR, standard EVAR should only be done in good neck anatomy.

For us, triple FEVAR has replaced double FEVAR and if you have problems higher up you better start immediately with quadruple FEVAR to be able to extend later. And the goal of all of that is to achieve more durable results

and an easier repair in case of extension of disease. Thank you very much for your attention.

- Mister Chairman, ladies and gentlemen. Good morning. I am excited to present some of the data on the new device here. These are my disclosure. There are opportunities to improve current TEVAR devices. One of that is to have a smaller device,

is a rapid deployment that is precise, and wider possibilities to have multiple size matrix to adapt to single patient anatomy. The Valiant device actually tried to meet all these unmet needs, and nowadays the Navion has been designed on the platform

of the Valiant Captivia device with a completely different solution. First of all, it's four French smaller than the Valiant Captivia, and now it's 18 French in outer diameter for the smallest sizes available.

The device has been redesigned with a shorter tip and longer length of the shaft to approach more proximal diseases, and the delivery system deploys the graft in one step that is very easy to accomplish and precise.

The fabric has been changed with nowadays the Navion having the multi-filament weave of the Endurant that already demonstrates conformability, flexibility, and long-term durability of the material. It's coming with a wide matrix of options available. In terms of length, up to 225 mm.

Diameters as small as 20 mm, and tapered device to treat particular anatomical needs. But probably the most important innovation is the possibility to have two proximal configuration options: the FreeFlo and the CoveredSeal.

Both tied to the tip of the device with the tip-capture mechanism that ensures proximal deployment of the graft that is very accurate. This graft is being under trial in a global trial

that included 100 patients all over the world. The first 87 patients have been submitted for primary endpoint analysis. 40% of the patients were females. High risk patients showed here by the ASA class III and IV. Most of the patients presented

with a fusiform or saccular aneurysm, and the baseline anatomy is quite typical for these kinds of patients, but most of the patients have the very tortuous indices, both at the level of the access artery tortuosity and the thoracic aorta tortuosity.

Three-fourths of the patients had been treated with a FreeFlo proximal end of the graft, while one-fourth with the CoveredSeal. Complete coverage of the left subclavian occurred in one-fifth of the patients. Almost all had been revascularized.

Procedure was quite short, less than one and half hour, percutaneous access in the majority of cases. There were no access or deployment failures in this series. And coming to the key clinical endpoints, there were two mortality reported out of 87 patients.

One was due to the retrograde type A dissection at day one, and one was not device related almost at the end of the first month. Secondary procedures were again two. One was in the case of retrograde type A dissection, and the second one in a patient

that had an arch rupture due to septicemia. Type 1a endoleak was reported in only one case, and it was felt to be no adverse event associated so was kept under surveillance without any intervention. Major Adverse Events occurred in 28% of the cases. Notably four patients had a stroke

that was mild and not disabling, regressing in two weeks. Only one case of spinal cord ischaemia that resolved by drainage and therapy in 20 days. In summary, we can say that the design enhancement of Valiant Navion improved upon current generation TEVAR.

Acute performance is quite encouraging: no access or deployment failure, low procedural and fluoro times, low rate of endoleaks, Major Adverse Events in the range expected for this procedure.

Nowadays the graft is USA FDA approved as well as in Europe CE mark. And of course we have to wait the five years results.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- Ladies and gentlemen, I have nothing to disclose when regarding this topic. We know that TIAs are independent predictors of long-term mortality in the general population, however, they've been left underreported in almost all the randomized clinical trial. And we don't know the effect of TIAs on long-term survival

in patient with carotid disease. So what we have done, we have performed a study, looking at the effect of TIAs in populations submitted to carotid revascularization, either with endarterectomy, or stenting, and we achieved a pretty good long term result.

However, patient's with TIAs had a significantly lower survival compared with the patient without cerebral events. Similarly, patient with stroke, these reduce survival, and TIA behaves exactly like stroke in this population.

So, by multivariate analysis, TIA together with stroke, chronic renal failure, and age were independent predictors for late mortality. So, we have seen that TIAs have this effect in patient with carotid disease, but what about silent cerebral event?

The silent cerebral infarction has small, radiologically detected infarction without a history of acute dysfunction. And they're usually associated with a variety of condition. In the general population, these cerebral infarction are present in almost

one fifth of the population, 21%. And they are associated with significantly reduction in the stroke free survival in this population. For that reason, they are considered a high risk of stroke in patient with carotid disease.

So looking at the series of patient submitted carotid revascularization, we have seen that the presence of these silent brain infarction was significantly associated with either transient ischemic event and stroke. So, the important factors,

we wanted to further expand these experiences just looking at these phenomenon. In another series of 743 patients submitted to endarterectomy are looking at all the preoperative CT scan in this population. And again, we have found that significantly

association between silent cerebral infarcts and stroke. And by logistical regression analysis, this feature was independently associated with postoperative stroke. At long-term, this effect was also present in association with ipsilateral stroke.

And stroke combined stroke and death. Again, these effect was independent from all other feature. So what about their effect in stenting? Actually, there are no papers in the literature looking at this effect. So we perform a retrospective analysis on

420 patient submitted to a stenting procedure. And all patients were selected with preoperative evaluation of the brain. So, again, 30 day outcome, was not significantly affected by the presence of silent cerebral infarcts, however, when we look at the patient

with endarterectomy and stenting, we see that while in the endarterectomy group, there is a clear decrease of the stroke rate in patient without silent cerebral infarction. This effect is less pronounced

in the stenting group. So in conclusion, silent cerebral infarction increases the risk of postoperative events in carotid endarterectomy. This increased risk should be considered when in indication to revascularization is given.

In stenting, the effect is less pronounced, due to the higher overall risk of neurological event. Thank you.

- Well, thank you Dr. Veith, and thank you very much for allowing me to speak on the topic. I have no disclosures. This is a nice summary that Dr. Veith is actually second author, that summarize what we know about predicting who will benefit from intervention among the patients with asymptomatic aortic disease.

You look at this eight means that we have, you realize that only one of those related to the fluid deprivation. The rest of them are related to embolic events. And that's very interesting because we know that antiplatelets have very little effect

on prevention of this. That's summarizing that review. Partially because what we focused on is that mechanism of thrombosis which requires platelet activation and attachment to the wall.

And that's where those antiplatelets that we use, act upon. However, you realize if you just look at the any ultrasound, that because of the velocities that we have and the lengths of the stenosis in carotid disease there is no way how the platelets can be attached to that

due to that mechanism. They just fly away too fast and don't have any time to do this. And it's even more because all the studies, basic science, show that at those shear rates that we have in carotid disease

that is more that 70%. There is very little probability of either platelet attachment or Von Willebrand factor attachment, or as a matter of fact even fibrinogen attachment in that particular area. So on the other hand we also know

that at those shear rates that we have, the Von Willebrand factor molecules unfold revealing tens of thousands more adhesive sites that allow them, not only to the platelets but also to the wall at that particular spot. And then the most likely mechanism

of what we dealing with in the carotid disease is this that the Von Willebrand factor attach and this unactivated platelets form conglomerates which can easily, because they don't attach to each other, easily fly. And that is probably one of

the most likely causes of the TIA. So if you look at the antiplatelet that we use on this particular mechanism, is right here. And those aspirin and clopidogrel, and combination of those we usually use, have very little, if any, effect on this particular mechanism.

So if, on the other hand, you can see that, if you specifically address that particular site you may have a much substantial effect. Now, how can we identify it? Well actually, the calculation of near-wall shear rate is quite simple.

All you need is just highest velocity and smallest diameter of the vessel. Of course, it is an estimate and actual shear rate is much higher but that's even more, because you, better than you prevent, more higher rate. Just to demonstrate, you can have the same velocity,

similar velocity, but different diameters. This stenosis technique will give different shear rate, and vice versa. So it's not really duplicating neither one of them. So we decided to look at this. We did a case control study that was published,

still online in the Journal of Vascular Surgery. And what you can see on the ROC curve, that in fact shear rate predicts symptomatic events much better than either velocity or the degree of the stenosis. And we look specifically at this group

with this thresh point of 8,000 per second and you can see that those patients who have those shear rates and the stenosis are 12 times more likely to have ischemic events. We look at the other means like microembolism. It's ongoing study, it's unpublished data that I show you.

And it's a very, very small sample but so far we have the impression that those microemboli that we can decide for, make a decision for intervention, actually happen only in this category of patient that have high shear rate. Based on this, this is our proposed algorithm,

how we deal with this. If you have asymptomatic patients with more than 70% degree of their stenosis and shear rate that exceeds certain level, we think it's about 8,000 per second, that may be an indication for intervention.

On the other hand if you a have lower shear rate then you can use other means. And what we use is microembolis per hour. Then you can duplicate their areas. If TCD on the other hand is normal you can continue best medical therapy and repeat the ultrasound in a year.

It's arbitrary. This is proposal agreed and based on our studies and that's, I'm thankful for the opportunity to share it with you. Thank you very much.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- I wanted to discuss this topic because some of us are more sensitive to DNA damage than others. And it's a complicated ethical issue. I have a disclosure in that I developed a formulation to premedicate patients prior to CT and x-ray. We all know that we stand in fields of radiation for most of our careers,

and we also know that many of us have no hair for example on the outside of our left leg. This is a picture that a bunch of us took for fun demonstrating this. But this is in fact radiation dermatitis. We know that the founders of our field

suffered consequences from the chronic high doses that they received in the 1920's. And they lost digits, they lost ears, they lost noses any many of them died of cancers or cardiovascular disease. The mechanism of injury is the x-rays

impinge upon water molecules in our cells. They create free radicals. These free radicals bind with our DNA and then Oxygen binds with that site resulting in an oxidative injury which can be reduced by the use of anti-oxidants.

I studied this over the last eight or nine years and I looked at the issue of chronic low dose radiation. Now this is different from the data that we collect from Nagasaki and Hiroshima and from Chernobyl and elsewhere. There are cancer risks but there

are also cardiovascular risks. And there are risks from chronic inflammation from increased reactive Oxygen species circulating with our system. I've been in touch with the IAEA recently about this and they didn't actually

realize that we don't wear our badges. So they thought the data they were getting on the doses that we were receiving were accurate. So that was a very interesting conversation with them. So cardiologists have been known

to get lifetime doses of of over one Gray. There's a lot of literature on this in public health literature. For example for every 10 milliSieverts of low dose ionizing radiation and received by patients with acute MI's,

there's a 3% increase in age and sex adjusted cancer risk in the follow-up five years. There's an excellent paper from Kings College London demonstrating that when endovascular surgeons were studied with two specific immunofluorescence tests, P53 and H2 alpha,

they were able to demonstrate that some endovascular surgeons are more sensitive to radiation dose than others. So why would that be? Well it's interesting if you look at this genetically and you look at the repair mechanisms

and in this whole thing I think in fact the lens is kind of the canary in the coal mine. When you get radiation induced cataracts, it's in the posterior chamber of the lens not the middle or anterior, which is where age-related injury occurs.

And this is the germinal layer or reproductive layer. The growth layer in the lens itself. And this is where cataracts develop. And this is really kind of a harbinger I think of injury that occurs elsewhere in our system. We know that when we wear DLDs on our chest,

on our bodies, on our arms, that the dose to the left side of our head is six times higher than to the right. In fact they dosed the left lens as higher than the right. And most of us who have lens replacements have it of the left eye.

This literature from adjacent fields that we may no be aware of. In the flight safety literature for pilots and stewardesses. There's extensive literature on cosmic radiation to flight crews who's doses annually are in the same range as ours.

So when you look at medical staff, you have to look at the overall context of the human in the Angio suite. Many of our medical staff will not be well. They may have chronic cardiac disease. They may be on say drugs for auto

immune disease or Methotrexate. They may have other illnesses such as Multiple Myeloma. They may have antibiotics on board that alter the DNA repair ability like Tetracycline. And they have chronic stress and sleep dysfunction. Cigarettes and alcohol use.

All of these things decrease their ability to repair DNA damage. If you look at DNA repair mechanisms, there are constantly the terms BRCA1 and two, PARP, P53, and ATM that show up. And deficiencies in these,

I'm going to skip all this to show you, can result in increased injury from a same dose being received by two different individuals. Now who is at risk from this is well understood in adjacent fields.

Here are 37 references from the public health literature related to mutations and SNPs or polymorphisms in DNA structure known to cause increased sensitivity to radiation. So I would propose that in, and here are papers on that topic

in adjacent fields that we don't read. So when we talk about personalized medicine for our patients, we need to also think about personalized career choices based on our DNA repair ability when we decide what we do. This has to be done in the context

of empathetic compassionate approach. It may begin with screening based on family history and personal history, and then advance in the right context to genetic screening through mutations and SNPs that can decrease their ability

to repair DNA damage from our occupational exposure. I'll skip all this because I'm out of time. But one other issue to think about, mitochondrial DNA is inherited purely maternally. So maternal DNA damage, mitochondrial DNA damage could be transmitted across generations

in female interventionalists. Also screening is important. It's emotionally complex. It's ethically complex. But it's an important conversation to begin to have. Thank you.

- [Lindsay] I would like to discuss three aspects of radiation safety that hopefully will set the basis for subsequent talks in this session. These are my financial disclosures, none of which are relevant to this talk. Over 100 years ago, radiologists developed finger and hand damage, because they were using

their own hands to adjust the radiation prior to diagnostic studies. Now we are seeing disturbing levels of radiation-induced injury, such as posterior cataract in interventionists. The knowledge of radiation biology, has evolved,

to the point that we can say there are no safe levels of radiation. That's because each of us have individual thresholds to radiation damage. Furthermore, eyes and brain are much more radiosensitive, than was previously thought.

The second concept I would like to discuss is that our protective devices are likely giving us a false sense of security. First we'll talk about aprons, because of ergonomic concerns, protective aprons use various lightweight materials in place of lead.

And they are sold on the basis of being easier on the back, but rarely is there any discussion, of their effectiveness as being a barrier to radiation. When they are looked at independently, there is considerable variable, variability and their effectiveness.

In one study, the thicker of the lightweight aprons, equivalent to 0.5 mm of lead, stopped only up to 1.6% of radiation at 70 kV and 6.7% at 100 kV, from striking our less radiosensitive, but highly-valued anatomies. Lead glasses have even more variability.

In one independent study, glasses claiming the same equivalence varied in degree of attenuation by 35-95% when the beam is directed directly at the glasses. This effect is compounded by the shape of the glasses and the position of one's head in relation to the source.

The traditional glasses with side panel, the ones that make you look like your granddad, are most effective for all geometries, and more commonly used and stylish sport-style glasses are less effective. Caps and hoods are a subject of debate.

An optimized setting using phantoms, a leaded surgical cap only reduced whole brain dose by 3.3%, the leaded cap with side drape by 55%. Again, the effect is dependent on head position in relation to the source. Remember, this is an optimized situation.

In real life, these numbers will be even lower. You will hear later in this session about the benefit of ceiling shields. We will have also added protection extending to the floor. More importantly, remember that if you double the distance that you stand from the source of scatter,

you can 1/4 of the dose, three times 1/9. So if you don't need to stand next to the tube step away. The third and final thing I'd like to discuss is that knowledge and technique are essential. The main source of exposure to you and your staff is scatter radiation.

When the primary beam strikes the table, the patient and the detector, it is scattered circumferentially, most markedly, on the tube side. Practical means to reduce your dose is really effectively described in this article

from JVS in 2012. One of the maneuvers that really increases the dose is tube angulation. When angling the tube, you're effectively making the patient much (mumbles) causing the machine to increase the dose.

LAO angulation markedly increases the dose to anyone standing on the patient's right. In addition, when angling the tube it makes it harder to use various barriers, therefore compounding the effect of angulation. This effect of LAO angulation and how the scatter

is greater than RAO angulation to someone standing on the right was quantified, again in the same article in JVS. So the take home messages I would like you to take from this talk are firstly, there are no safe doses of radiation.

Secondly, all measures to reduce radiation are additive. Just having new equipment does not really suffice. And finally, have all of your protective devices tested by your own physicist. Don't believe what the brochures say. Thank you for your attention.

- Okay, thank you very much. I appreciate the invitation from Dr Veith to discuss this technique and really, this is a how to do it technique. These are my disclosures. So we know that if you're doing a type B dissections that are chronic and you're going to use a fenestrated

device often times you have vessels that are on the false lumen that are not easily accessible. You can see in this picture up above, here's you're flap, this is the right renal artery across the fenestration and you can't really see the actual original fenestration.

There can also be some misalignment between the natural fenestration and where you want to put your fenestration. So this technique allows us to create a neo-fenestration at your site of choice. So here's our stent graft planning in this particular patient.

Here's the dissection flap, here's our graft in the true lumen with the SMA and celiac and the right renal. We've placed the fenestration for the left renal right opposite the left renal artery. And this is a schematic representation of

our in press article. Basically once you've accessed the bottom of the graft you can use a steerable directional sheath and put it right at the level of your fenestration. Use the power wire from Baylis, and what you do is put it right up against the graft.

It's like a cautery, you step on the pedal, it gives a one second burst and that goes across the flap. You can then widen it and then connect your stent graft. This is an example of one of our early cases. Here you can see injection in the true lumen with the right renal, you can't see the left renal,

that's bowel gas and another one of the true lumen branches. You can see with the fusion imaging we've now been able to put the graft, the right renal and the graft expanded. Here you can see an injection and we've got our catheter right up against the left renal fenestration. And here you can next see, the power wire,

the tip of the power wire is just at the edge of the catheter. And if you step on the pedal you can see that the power wire goes across into the false lumen right near here, you can inject your false lumen, you can see your renal

and after that you can see that we've now accessed the artery. We balloon it and then stent it. So these are the tools that are required. You need the power wire generator, you need the power wire itself,

you need a pad on the patient just like a cautery pad, and an Oskar or other steerable sheath is very effective in helping you. A short pulse in one second is usually enough to cross the lumen. Here's a second example.

A patient again with a false lumen, the right renal artery is the one this particular time. You can see the dissection flap is here. We planned the fenestration right opposite the renal artery.

And you can see here similar technique with the catheter. The power wire is already actually been deployed across the channel and then put in place. So this is a relatively simple technique that you can use to access false lumen branches. It allows planning the fenestration on your pre-op plan

close to the target vessel, and it assists you when the natural fenestration is not visible, or misaligned. And it uses an existing technique that we've used for left subclavian in situ fenestration and for some aortic dissection acute cases where you need to fenestrate the false lumen.

Thank you.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Thank you Dr. Melissano for the kind interaction. TEVAR is the first option, or first line therapy for many pathologies of the thoracic aorta. But, it is not free from complications and two possible complications of the arch are the droop effect and the bird-beak. I was very interested as Gore came up with the new

Active Control System of the graft. The main features of this graft, of this deployment system are that the deployment is staged and controlled in putting in the graft at the intermediate diameter and then to the full diameter. The second important feature is that we can

optionally modify the angulation of the graft once the graft is in place. Was very, very interesting. This short video shows how it works. You see the graft at the intermediate diameter, we can modify the angulation also during this stage

but it's not really used, and then the expansion of the graft at the full diameter and the modification of the angulation, if we wished. This was one of the first cases done at our institution. A patient with an aneurysm after Type B dissection. You see the graft in place and you see the graft after

partial deployment and full deployment. Perhaps you can appreciate, also, a gap between the graft and the lesser curvature of the arch, which could be corrected with the angulation. As you can see here, at the completion angiography we have an ideal positioning of the graft inside the arch.

Our experience consisted only on 43 cases done during the last months. Mostly thoracic aneurysm, torn abdominal aneurysm, and patients with Type B aortic dissection. The results were impressive. No mortality, technical success, 100%,

but we had four cases with problems at the access probably due to the large bore delivery system as you can see here. No conversion, so far and no neurological injury in this patient group. We have some patients who came up for the six months follow-up and you see here we detected one Type 1b endoleak,

corrected immediately with a new graft. Type II endoleak which should be observed. This was our experience, but Gore has organized all the registry, the Surpass Registry, which is a prospective, single-arm, post market registry including 125 patients and all these patients

have been already included in these 20 centers in seven different countries in Europe. This was the pathology included, very thorough and generous, and also the landing zone was very different, including zone two down to zone five. The mean device used per patient were 1.3.

In conclusion, ladies and gentlemen, the Active Control System of the well known CTAG is a really unique system to achieve an ideal positioning of the graft. We don't need to reduce the blood pressure aggressively during the deployment because of the intermediate diameter

reached and the graft angulation can be adjusted in the arch. But, it's not reversible. Thank you very much for your attention.

- Thank you very much Germano. Thanks to Dr. Veith for inviting us and allowing us to present this here. This is work that we've done in a group in Hamburg together with Nikolaos Tsilimparis. And these are my disclosures. It's been now, more than 15 years ago

that branched endografting has been introduced as a technique for thoracoabdominal aneurysms. And for about five years we have access to the T-Branch device as we've learned from the presentations before. And as we heard from Mark Farber

there's more companies going into that space. In Europe it's also the JOTEC company, which is CryoLife now, and we will, I believe, see more companies going into this space. So, about access, we've been discussing in the past

very much about whether right or left side is the better, or safer, access for branched TEVAR, and at that moment in this publication from our center, we phrased this, the unavoidable use of an upper extremity access. We show you that we've been believing that it's unavoidable.

But is it really unavoidable? In some cases I believe it should be avoided, because we have aortic branch vessels that are occluded, thrombotic, we have AV-fistulas and LIMA Bypasses that we may risk. And we may have antegrade branches

from previous artery repair which we would judge as almost a no antegrade access option here. So what can we do in those cases? And furthermore, upper extremity access has complications and it comes at a cost.

Not only hematoma and nerve damage, plexus damage at the access site, but also stroke is reported being a complication of arm access. We've looked into our experience from two years and found that about 5% of patients needed

some sort of re-operations from complications of upper extremity access, and this is just one of the more severe complications we had with a brachial on the stick due to too small access vessels. Another point is radiation.

Because radiation also as we've shown here, this is unpublished data, is significantly higher if a operator stands at the arm compared to standing at the groin. Is it really unavoidable? If we think about this as our traditional access,

but how about this? I know this has been used a lot in fenestrated endografting. But we started applying this technology also for branched endografting to avoid upper extremity access. First case that we did was a patient

that had an irregular orifice of the right renal artery and it was only one branch that we didn't want to go through all the hassle with upper extremity access. You see here, steerable sheath. You can very well attach that artery without upper extremity access.

Next case, for fenestrated and branched, then have one branch difficult celiac artery, very small stenotic orifice from a large aneurism, but it was attachable from the groin, a good result. Next case, two branches, two fenestrations. As you can imagine,

it also went well for the SMA and for the celiac with a good result without the need of touching arm, without the need going through the arch. This is a more severe one. This is a redo after EVAR patient with an occluded one-sided iliac lack

and a crossover bypass. This is the SMA. This is the right renal artery. You see that we were able to complete this repair from one access side alone, doing a full four-branch thoracoabdominal repair using steerable sheaths.

This series has been recently published as a case series, but we have extended on that experience. I can tell you in all patients that we tried to do it, it was possible to avoid the upper extremity access. Concluding: Endovascular repair has matured over years

and can, in my view, be considered gold-standard for thoracoabdominal repair. Upper extremity access is avoidable if possible. Success rate of femoral access with steerable sheath is safe. And I thank you very much for your attention.

- Thanks, Germano. Thanks, Gustavo. These are my disclosures as it pertains to this talk. I will be talking about the devices not yet FDA approved in the U.S. for use. We know that with endovascular repair, we need to consider all the aspects

and how we can potentially get this therapy into more people's hands. So, the Gore Company really talked to many of the key opinion leaders about the steps in doing these types of cases, how to make them simple,

they talked about anatomic screening and case planning needs to be thoughtful and careful. We emphasized with them the need to have minimized aortic coverage to limit spinal cord ischemic risk and also to talk about real world applicability

and make sure the device can be used in a wide variety of patients and not in a limited subset. If you look at the other device that has extensive use with off-the-shelf thoracoabdominal repairs, it really involves the t-Branch.

In this case, the device generally requires coverage up through 11 centimeters above the celiac artery. Marcella Ferrara has described ways to limit that with modification of the device but this is it in its current stage. With that, W.L. Gore really came up with a device

that shortened that length. It generally requires about six and a half centimeters of coverage above the celiac artery. It has been designed to work with their balloon-expandable VIABAHN device. You see on the right there,

the device has four preloaded hypo-tubes. That allows for passing four wires in to pre-catheterize each of the branches. That wire system is then brought out through a subclavian access, either right or left, through a DrySeal sheath

that then allows the implantation device in the deployment. The sequential deployment is done with the device being partially open. The portals are then catheterized from above, as you see on the far left,

and the wires placed in that. Once those have been successfully done, the branch stints are placed and then eventually the distal device is deployed and then the distal completion with the bifurcated and iliac components as necessary.

Now the technical aspects of this has been presented at this meeting and has recently been submitted and accepted for publication in JVS. Dr. Oderich is the lead author on this and really comprises the initial 13 implants with the 30-day outcomes.

Now those outcomes really focus on two things, you see the mean procedure time can vary quite a bit. That really depends upon some of the aspects about use of different axillary catheters and thoraco sheaths to get it done. But the other main thing was the blood loss

which can exceed, in a few cases, quite a bit. And that, in this trial, was mainly because they used the 12 French Flexible Cook Ansel Sheath and not the DrySeal. Once we moved to the DrySeal sheath, we see that the number of amount of blood loss

through the central port is a lot less and that's going to limit that in the future trial. Now, currently there have been 16 worldwide implants and this comprises the entire cohort that's been done. You see that early on, we only had access to the retrograde and about a third of the patients

had retrograde renal portals but since that time, mid Spring of 2016, we moved to an anterograde version alone. Most cases are type four thoracos that were done in this initial experience. What about the short-term outcomes?

Well the short-term outcomes are about 18 months. Overall survival 92 percent. One patient presented four months with multi-system failure from three vessels being occluded. The right renal had already been occluded at the time of the initial implant.

Serious adverse events. About 46 percent of patients, which is very typical, acute kidney injury and only 23 percent, and no type one or three endoleaks. There have been seven branch vessel occlusions, four in that one patient that presented acutely,

one patient a year and a half with renal artery occlusions from severe dehydration and one unilateral renal artery occulusion at approximately six months. That was managed with lysis and stenting. No difference in occlusion rates

between anterograde and retrograde. So in conclusion, the TAMBE device has completed its feasibility study with similar results for complete endovascular repair of thoracoabdominal aneurisms. Longer follow-up and a Pivotal study are planned

in pursuit of FDA approval. Thank you.

- I have no disclosures. - So the eye lens is a highly radiosensitive tissue. And the radiation damage is a cataract, this is a cancer-like pathology resulting from mutating events. It's a posterior sub-capsular cataract. And in several studies we have seen quite a large number of interventionalists or vascular surgeons or cardiologists

showing this exact type of posterior lens changes, characteristic of radiation exposure. About half of the interventionalists in this study. The risk increases with duration of work years and decreases with regular use of protection. So the conclusion in this paper was

that radiation injuries to the lens can be avoided. By, for example, reducing the dose. So this is obvious that we should do in every way we can do it. And there are many steps shown in this excellent paper published in the European Journal of Vascular Surgery.

And, on top of that, of course, use radiation shields. And I've been focused today on different eye shields. So we tested the eye dose reduction with several commercially-available protection glasses and shields during realistic endovascular procedures in an experimental setting,

using phantoms and dosimeters at the front of the eyes, the left and the right eyes. And this was an EVAR protocol using a Siemens C-arm. So we tested the more modern sports glasses. The reduction to the left eye was only 15 to 50 percent, or in some glasses just 10 to 15 percent.

So much, much lower than what's promised in the brochure. The fit over glasses protected best, especially if you don't use them over personal glasses. So this is because of the, it's if there is just a small gap between the cheek and the glasses, there's scattered radiation pulsing in there.

And it also scatters on your face up to the eye lens. We also tested visors and you can see the effect of having them at a correct angle. They should be downward-angled, and you have a pretty good protection. But the best of all was the ceiling-mounted shield,

if it's properly used with a very high reduction, 90 to 95 percent. So this is an image from our hospital. I'm in the middle with these fit-over glasses that we have all now beginning to use. So in this paper, it was nicely shown that the position

of the shield also is very important. So it should be very tight to the patient and close to the femoral access. Other protective measures like these surgical drapes, we use them and there is a good additive reduction of radiation exposure

to the chest and hands, shown by this paper. But no one has ever related the reduction to the head or the eye. And the latest addition in our center is this zero-gravity suit that has been shown to significantly reduce radiation exposure

to the whole body, including the head and the eyes. So I think this is a very important new device. In this study, from the London group, we can see that adherence to use these kinds of shields is depressingly low. Use of lead-protective glasses was only 36 percent

among the operators and ceiling-mounted leaded shields, no one uses them, at that time at least. So, in conclusion, there are several radiation protection eyeglasses used today. They offer a highly limited dose reduction, giving a false sense of security.

A proper use of ceiling mounted lead shields is essential for adequate protection to the eye lens. And the protection eyeglasses and visors should only be used as a complement. And consider also using additional devices as full-body protection to maximize your protection, thank you.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.