Create an account and get 3 free clips per day.
Chapters
Round Ligament Supply | Advanced UFE
Round Ligament Supply | Advanced UFE
2016anatomicaortogramarteriogramarterychaptercontralateralembolizeexternalhemorrhagehypogastriciliacligamentmesentericpelagepostpartumroundsbvSIRuterus
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
Value Of An OTS t-Branched Graft To Treat TAAAs: How Often Is It Possible Based On Results From 3 Large Centers
adjuvantaneurysmsaorticapplicabilityarteryBEVARbridgingceliaccorddiameterendograftsendoleakendovascularevarexpandGORE MedicalGore Viabahn VBXgraftsiliacischemialimitationsmajoritymultiorganobservationalOpen AAA repairorificeparaplegiapatientpatientspercutaneouslyperformedprospectiveproximalrenalrenal arteryspinalstemstenosisstentstent graft systemstentedtherapeuticthrombectomythrombocytopeniatreatedvesselvisceralZenith T-Branch (Cook Medical)
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
Advantages Of Cook Zenith Spiral Z Limbs For EVARs Landing In The External Iliac Artery
aneurysmarterybuttockclaudicationCook ZenithdeployedendograftendoleaksevarevarsexcellentfinalgrafthelicalhypogastriciliacjapaneselandinglimbobservationalocclusionoperativepatencypatientspercentrenalrequiredspiralSpiral Z graftstenosisstentStent graftstentsstudytripleVeithzenith
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
Technical Tips And Multicenter Results With The Use Of Bilateral Gore IBDs In Patients With Bilateral Common Iliac Aneurysms
adjunctiveanatomicaneurysmaneurysmalaortoiliacarteryasymptomaticbilateralbranchbuttockcalcificationclaudicationcoildeviceembolizingendoleakserectileevarexperienceexternalflowfluoroscopygoreGORE ExcluderGORE Medicalhypogastriciatrogeniciliaciliac arteryIliac branch systeminternalinternal iliacipsiipsilaterallengthlimblimitationsmaneuversmulticenterocclusionocclusionspatencypatientperioperativeproceduralsacrificeshorterstentstentingtechnicaltherapeuticthrombectomytortuositytreatedtype
Long-Term Histologic Evaluation Of Resected AVMs In Head And Neck Post-Onyx Embolization
Long-Term Histologic Evaluation Of Resected AVMs In Head And Neck Post-Onyx Embolization
avmsdosedosimetersembolizationendothelialgiantheadhistologicinflammatoryinterstitialLiquid embolization systemlymphaticMedtronicminimalneckonyxradiationrecanalizationresectskinvenousvesselvesselsvialswallwalled
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
Tips And Tricks To Use Endoanchors Optimally And Avoid Failures
Tips And Tricks To Use Endoanchors Optimally And Avoid Failures
anatomicangulatedaorticapproacharterychallengingdeploydeploymentEndoanchor systemendoleakendoleaksendovascularevargraftHeli-FXimaginginfrarenalintraoperativelevelMedtronicneckpatientspreventprophylacticprotectiveproximalrenalstenttherapeuticthrombustreatmentvisceral
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
New ESVS Guidelines For Treatment Of Occlusive Disease Of The Celiac Trunk And SMA: What Do They Tell Us About The Best Current Treatment
acuteaneurysmangiographyarteriarterialbowelclinicianembolicembolusendovascularESVSguidelinesimagingischaemialactatemesentericrecommendationrepairrevascularisationthrombotic
Why Is Vertebral Artery Perfusion Important During TEVAR: With Normal And Abnormal Anatomy
Why Is Vertebral Artery Perfusion Important During TEVAR: With Normal And Abnormal Anatomy
aberrantanastomosisaneurysmaorticarcharterycerebellarcommoncontralateraldiseasedominantductevaluatehypoplasiaindicationsipsilateralischemialaryngealleftliteraturemycoticoccludedocclusiveoriginpatencyPatentperfusionperioperativepicaposteriorpreserverecurrentrevascularizationroutinesubclaviansupraclavicularterminationTEVARthoracicvertebralvertebral artery
In Patients With A Symptomatic Carotid Stenosis On One Side And A Contralateral ICA Occlusion, CAS Has A Higher Stroke Rate Than CEA In A Population Based Analysis
In Patients With A Symptomatic Carotid Stenosis On One Side And A Contralateral ICA Occlusion, CAS Has A Higher Stroke Rate Than CEA In A Population Based Analysis
antiplateletarteryasymptomaticcarotidCASCEAcombinecongestivecontralateraldifferenceendarterectomyipsilateralmedicaidmedicaremodifierocclusionpatientsrandomizedregressionrevascularizationrisksilvastentstentingstentsstrokestudysymptomaticTherapeutic / Diagnosticversus
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
Sandwich Technique For Treating AAAs Involving The Common Iliac Bifurcations: Experience With 151 Hypogastric Revascularizations: Lessons Learned
aneurysmarterybrachialcathetercentimeterclaudicationcomorbiditycomplicationsdiameterendograftendoleaksgorehypogastriciliaciliac arteryischemialatexlimblumenmajoritymidtermmortalityocclusionorthostaticpatientsperformedreinterventionrevascularizationssandwichstenttechniquetherapeutictreattypeviabahnwish Technique
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
How To Treat Labial Varices: Sclerotherapy, USG Sclerotherapy And Or Phlebectomy
anesthesiaanteriorcomplaintsdyspareuniahemorrhageiliacincisionincludelabialLabial Varices + Leg VVligationLocal SclerotherapymalformationpatientpelvicperforatorsperformedphlebectomypolidocanolposteriorpostpartumrefluxrefluxingsaphenofemoralsclerosclerotherapysulfatesuperficialsymptomaticsymptomstetradecylultrasoundvaricositiesveinsVeithvenogramvenousversusvulvar
Surveillance Protocol And Reinterventions After F/B/EVAR
Surveillance Protocol And Reinterventions After F/B/EVAR
aneurysmangiographicaorticarteryBbranchbranchedcatheterizationcatheterizedceliaccommoncommon iliacembolizationembolizedendoleakendoleaksevarFfenestratedfenestrationFEVARgastricgrafthepatichypogastriciiiciliacimplantleftleft renalmayomicrocatheternidusOnyx EmbolizationparaplegiapreoperativeproximalreinterventionreinterventionsrenalrepairreperfusionscanstentStent graftsuperselectivesurgicalTEVARtherapeuticthoracicthoracoabdominaltreatedtypeType II Endoleak with aneurysm growth of 1.5 cmVeithvisceral
The LEOPARD Trial: One Year Results Comparing The Endologix AFX/AFX2 Endograft to Proximal Fixation Endografts
The LEOPARD Trial: One Year Results Comparing The Endologix AFX/AFX2 Endograft to Proximal Fixation Endografts
AFXanatomicanesthesiaaneurysmcommerciallycontemporarycontroldatadevicedevicesdifferenceendoleakendoleaksEndologixEndovascular AAA delivery systemendpointenrollmentevarfixationfreedomiliacincidenceinfrarenalMedtronicmortalitynoticeocclusionpatientsperformedperiproceduralrandomizationrandomizerandomizedreinterventionstherapeutictrialtrialsVeith
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
With Large Iliac Arteries, When Are Flared Limbs Acceptable And When Are IBDs Needed For Good Results
Anaconda / Cook / Gore / Medtronicanatomicalaneurysmarterycommoncommon iliaccomplicationcomplicationscontrastdevicesembolizationendograftendovascularevarFL DeviceflaredIBD (Gore-IBE) / IBD (Cook-ZBIS)iliaciliac arteryimplantedinterventionallatelimbsliteratureobservationaloutcomeperioperativesuboptimaltechnicallytherapeuticurokinase
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
Advantages Of The Gore VBX Balloon Expandable Stent-Graft For F/EVAR, Ch/EVAR And Aorto-Iliac Occlusive Disease
anatomiesaneurysmaneurysmsaortobifemoralaortoiliacarterybrachialbranchcatheterizedCHcustomizablecustomizedistallyendovascularevarexcellentFfenestratedFenestrated GraftfenestrationflarefollowupGORE MedicalGore Viabahn VBXgraftgraftshypogastriciliaciliacsmodelingoccludedocclusiveparallelpatencyperfusionproximalpseudoaneurysmPseudoaneurysm of the proximal juxtarenal graft anastomosisptferenalsSelective Catheterization of the Right CIA to Hypogastric Arterystenosisstentstent graft systemstentstherapeuticVBX Stent Graftvesselvesselsvisceral
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
New Information With Longer Follow-Up From The Multicenter Trial Of The Gore IBD For Iliac Aneurysms
anatomicaneurysmaneurysmsarterybilateralbranchbuttockclaudicationclinicalcontralateraldatadevicedevicesdysfunctionembolizationendoleakendoleaksevarexpansionsfreedomgoreGORE ExcluderGORE Medicalhypogastriciliaciliac branchIliac branch systemimportantlyincidenceinternalinternal iliacipsilateralocclusionsoutcomespatencypatientspivotalratesregistryreinterventiontechnicaltherapeutictrialtypeVeith
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
How To Treat By EVAR Complex Aorto-Iliac AAAs In Patients With Renal Transplants, Horseshoe Or Pelvic Kidneys: Technical Tips
accessoryaneurysmalaneurysmsantegradeaorticapproacharteriesarteryatypicalbifurcationbypasscontralateraldistalembolizationendoendograftingendovascularevarfairlyfemoralfenestratedflowfollowuphybridhypogastriciliacincisionmaintainmaneuversmultipleocclusiveOpen Hybridoptionspatientspelvicreconstructionreconstructionsreinterventionsrenalrenal arteryrenalsrepairsurvival
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
anterioraortobifemoralarteryatheroscleroticbifurcationcarotidcarotid arteryclassiccommondebrisemphasizeendarterectomyexternalexternal carotidfemoropoplitealhoarsenessincisioninternalinternal carotidloopmaneuvermiceminimaloperationpatientpatientsposteriorproximalpullingremovesafelyshuntsutureVeithvesselvisualizationwound
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
Status Of Aortic Endografts For Occlusive Disease: Indications, Precautions, Technical Tips And Value
abisaccessacuteAFX ProthesisantegradeanterioraortaaorticaortoiliacarteriogramarteryaxillaryballoonbrachialcalcifiedcannulationcircumferentialcutdowndilatordiseasedistallyendarterectomyEndo-graftendograftendograftsEndologixexcluderExcluder Prothesis (W.L.Gore)expandableextremityfemoralfemoral arterygraftiliacintimallesionslimboccludeoccludedocclusionocclusiveOpen StentoperativeoptimizedoutflowpatencypatientspercutaneouspercutaneouslyplacementpredilationproximalrequireriskRt CFA primary repair / Lt CFA Mynx Closure devicesheathstentstentssymptomstasctechnicaltherapeuticvessels
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
Are Mesh Covered Stents Living Up To Their Potential For Improving CAS Outcomes: Results Of A RCT
assessmentbilateralbiomarkersCASCGuardcomparingcontracontralateraldetectabledetecteddifferenceemboliembolicEmbolic Prevention StentembolismenrolledhoursInspireMD)ipsilateralischemiclesionmaximalmicroneuroneurologicaloperativelypatientpatientsperformedperioperativeplaquepostpostoperativepredilationpreoperativeproteinrandomizedratescoresilentstenosisstentstentssubclinicaltesttherapeuticwallstentWALLSTENT (Boston Scientific) - Endoprosthesis / FilterWire (Boston Scientific) - Embolic Protection System
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
Single Branch Carotid Ch/TEVAR With Cervical Bypasses: A Simple Solution For Some Complex Aortic Arch Lesions: Technical Tips And Results
accessaccurateaorticarcharterycarotidcarotid arteryCarotid ChimneychallengingchimneyChimney graftcommoncommonlycoveragedeployeddeploymentdevicedissectionselectiveembolizationemergentlyendograftendoleakendovascularexpandableleftmaximummorbidityocclusionpatientsperformedpersistentpublicationsretrogradesealsheathstentssubclaviansupraclavicularTEVARtherapeuticthoracictype
The ZFEN And ZFEN Plus Endografts From Cook For F/EVAR: Changes In The ZFEN Plus And Its Advantages, Limitations And Status In The US And Elsewhere
The ZFEN And ZFEN Plus Endografts From Cook For F/EVAR: Changes In The ZFEN Plus And Its Advantages, Limitations And Status In The US And Elsewhere
anatomicangulationapprovalarteriesbowelbuildCook MedicaldeviceendoleaksevarFfenestratedFenestrated AAA endovascular graftfenestrationfenestrationsiliacinfrarenalischemiajunctionalmesentericneckoutcomespatencyPatentpatientsreasonablereinterventionrenalrenalssealstenosesstenttherapeuticvesselsvisceralZFEN
Why CREST 2 And ACST 2 May Have Little Definitive Value Although They May Provide Useful Information
Why CREST 2 And ACST 2 May Have Little Definitive Value Although They May Provide Useful Information
annualaveragebenefitcarotidCASCEAcurrentembolizeeventharmfulhemorrhageindicationinterventionipsilateralmarkersmedicaloptimalpatientsproceduralprocedurerateregistriesrevascularizationriskstenosisstentstentingstratificationstrokesuboptimaltrailunderpoweredvascularversus
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
Do Re-Interventions Cause EVAR Infections
Do Re-Interventions Cause EVAR Infections
52 mm AAAAAA EndoprothesisanterioraortoentericbacteremiacatheterembolizationendograftendoleakendovascularevarexcluderexplantfluidglutealgoreGore Excluder cuffgraftiliacinfectioninfectionsinguinalInterventionsmedicaremortalityonsetperioperativeprophylacticpurulentreadmissionsriskscansecondaryseedingsteriletherapeuticunderwent
Transcript

here we talked about this case yesterday this is the first time i ever saw this

in the UAE case and I had no idea what it was I just went well what the heck is that and it was Jean-Pierre Pelage who in like four nanoseconds said look at that round ligament artery I though geez boy am I dumb anyway so this is a hypogastric arteriogram and this is what

i just told you we could not find the uterine artery so I didn't hypogastric arteriogram and of course I don't know is it was my fellow or I got too enthusiastic and we spilled over a little bit this is the hypogastric spilled over and then we saw

this kind of what the heck is that way out in the middle of nowhere so we you know went on and did the external iliac and you see this thing well geez what the heck is that so this is the round ligament artery and

of course the thing lady has a big uterus so it's actually going laterally but typically it kind of goes over in this direction and this also is a contralateral oblique so if you put it in the AP it would probably be going up in here

somewhere but it comes off either the digital external iliac or from the inferior mesenteric trunk there and it goes over towards the uterus and it's norma goes to the round ligament and it is a potential source of bleeding postpartum you always have to look for this if you have any postpartum hemorrhage you're aortogram you look at the ovarians and you look down at the round ligament arteries as well

and so we got into it used medical picture of it trying to get down there we actually then got into it were able to embolize it that so that this is all this is coming from the round ligament and so as long as you're certain these kind of

anatomic variations that they're not a feeding other things of importance and you can go ahead so I'll just summarize

- So thank you for the kind introduction and thanks for professor Viet for the invitation again this year. So, if we talk about applicability, of course you have to check the eye views from this device and you're limited by few instructions for users. They changed the lengths between the target vessel

and the orifice and the branch, with less than 50 mm , they used to be less than 25 mm. Also keep in mind, that you need to have a distance of more than 67 mm between your renal artery cuff and your iliac bifurcation. The good thing about branch endografts

is that if you have renal artery which comes ... or its orifice at the same level of the SME, you can just advance and put your endorafts a bit more proximally, of course risking more coverage of your aorta and eventually risking high rate

of paraplegia or spinal cord ischemia. Also if your renal artery on one side or if your target vessel is much lower with longer bridging stent grafts which are now available like the VBX: 79 mm or combination of bridging stem grafts, this can be treated as well.

Proximally, we have short extensions like the TBE which only allows 77 or 81 mm. This can also expand its applicability of this device. The suitability has already been proven in.. or assessed by Gaspar and vistas and it came around plus 60%

of all patients with aortic aneurysms. Majority of them are limitations where the previous EVAR or open AAA repair or the narrow diameter reno visceral segment in case of diabetes sections. So, what about the safety of the T-branch device?

We performed an observational study Mister, Hamburg and Milner group and I can present you here the short term results. We looked at 80 patients in prospective or retro prospective manner with the t-branch as instructed for use.

Majority were aneurysms with the type two or type four Crawford tracheal aneurysms, also a few with symptomatic or ruptured cases. Patient characteristics of course, we have the same of the usual high risk cardiovascular profiling,

this group of patients that has been treated. Majority was performed percutaneously in 55%. The procedure time shows us that there is still a learning curve. I think nowadays we can perform this under 200 minutes. What is the outcome?

We have one patient who died post operative day 30, after experiencing multiorgan failure. These are 30 day results. No rupture or conversion to open surgery. We had one patient with cardiac ischemia, seven patients with spinal cord ischemia

and one patient has early branch occlusion. There was both renal arteries were occluded, he had an unknown heparin induced thrombocytopenia and was treated with endovascular thrombectomy and successfully treated as well. Secondary interventions within 30 days were in one patient

stent placement due to an uncovered celiac stent stenosis In one patient there was a proximal type one endoleak with a proximal extension. One patient who had paraplegia or paraparesis, he had a stenosis of his internal iliac artery which stem was stented successfully,

and the paraparesis resolved later on in this patient. And of course the patient I just mentioned before, with his left and right renal artery occlusion. So to conclude, the T-branch has wide applicability as we've seen also before, up to 80% especially with adjuvant procedures.

Longer, more flexible bridging stent grafts will expand the use of this device. Also the TBE proximal extensions allows aortic treatment of diameters for more than 30 mm and I think the limitations are still the diameter at reno visceral segment,

previous EVAR or open AAA repair and having of course multiple visceral arteries. Thank you.

- Thank you, Ulrich. Before I begin my presentation, I'd like to thank Dr. Veith so kindly, for this invitation. These are my disclosures and my friends. I think everyone knows that the Zenith stent graft has a safe and durable results update 14 years. And I think it's also known that the Zenith stent graft

had such good shrinkage, compared to the other stent grafts. However, when we ask Japanese physicians about the image of Zenith stent graft, we always think of the demo version. This is because we had the original Zenith in for a long time. It was associated with frequent limb occlusion due to

the kinking of Z stent. That's why the Spiral Z stent graft came out with the helical configuration. When you compare the inner lumen of the stent graft, it's smooth, it doesn't have kink. However, when we look at the evidence, we don't see much positive studies in literature.

The only study we found was done by Stephan Haulon. He did the study inviting 50 consecutive triple A patients treated with Zenith LP and Spiral Z stent graft. And he did two cases using a two iliac stent and in six months, all Spiral Z limb were patent. On the other hand, when you look at the iliac arteries

in Asians, you probably have the toughest anatomy to perform EVARs and TEVARs because of the small diameter, calcification, and tortuosity. So this is the critical question that we had. How will a Spiral Z stent graft perform in Japanese EIA landing cases, which are probably the toughest cases?

And this is what we did. We did a multi-institutional prospective observational study for Zenith Spiral Z stent graft, deployed in EIA. We enrolled patients from June 2017 to November 2017. We targeted 50 cases. This was not an industry-sponsored study.

So we asked for friends to participate, and in the end, we had 24 hospitals from all over Japan participate in this trial. And the board collected 65 patients, a total of 74 limbs, and these are the results. This slide shows patient demographics. Mean age of 77,

80 percent were male, and mean triple A diameter was 52. And all these qualities are similar to other's reporting in these kinds of trials. And these are the operative details. The reason for EIA landing was, 60 percent had Common Iliac Artery Aneurysm.

12 percent had Hypogastric Artery Aneurysm. And 24 percent had inadequate CIA, meaning short CIA or CIA with thrombosis. Outside IFU was observed in 24.6 percent of patients. And because we did fermoral cutdowns, mean operative time was long, around three hours.

One thing to note is that we Japanese have high instance of Type IV at the final angio, and in our study we had 43 percent of Type IV endoleaks at the final angio. Other things to notice is that, out of 74 limbs, 11 limbs had bare metal stents placed at the end of the procedure.

All patients finished a six month follow-up. And this is the result. Only one stenosis required PTA, so the six months limb potency was 98.6 percent. Excellent. And this is the six month result again. Again the primary patency was excellent with 98.6 percent. We had two major adverse events.

One was a renal artery stenosis that required PTRS and one was renal stenosis that required PTA. For the Type IV index we also have a final angio. They all disappeared without any clinical effect. Also, the buttock claudication was absorbed in 24 percent of patients at one month, but decreased

to 9.5 percent at six months. There was no aneurysm sac growth and there was no mortality during the study period. So, this is my take home message, ladies and gentlemen. At six months, Zenith Spiral Z stent graft deployed in EIA was associated with excellent primary patency

and low rate of buttock claudication. So we have most of the patients finish a 12 month follow-up and we are expecting excellent results. And we are hoping to present this later this year. - [Host] Thank you.

- Thank you. We've all heard that hypogastric artery occlusion can be not so benign as Dr. Snyder mentioned. It's not advancing, there we go. There's the systematic meta-analysis of 61 papers and showing that when you have bilateral occlusion you actually can have worse symptoms

of claudication, even erectile dysfunction. There are these known commercially available devices but should we be doing bilateral cases? There's certainly increased complexity inherent in this and anatomic limitations and cost. We choose to look at a multicenter experience

of 24 centers, 47 patients. Here are the contributing contributors. When we published our experience these are the 47 patients using the GORE IBE device both in Europe and the United States with 6.5 month follow up. The aortic diameters, some of the characteristics.

You can see here that 23% had exclusive iliac aneurysm treatment in the absence of a AAA. Four had aneurysmal or ectatic internal iliac arteries. These are sometimes treated by coil embolizing the first branch and extending the internal branch into a first order branch, there you can see.

But anatomic limitations persist and you can see especially with lengths. You need quite a long length for that ipsilateral side with its device in order to do the bilateral case. These are the IFUs, 165 for the contra and 195 for the ipsi. In our experience you can see that actually 194 on the ipsi

and 195 is what we found as a mean. This seems prohibitive. Some of the tips and tricks to accommodate the shorter lengths are shown here. We can maximize overlap, and we can see that from 195 we can drop this

by maximizing the overlap to 175. We can certainly cross the limbs, that eats up some length. Intrinsic tortuosity can eat up the distance. We can see we can recreate the flow divider, bring up the flow divider higher, match the two limbs. That also can cut down the distance.

Finally in some of these patients we had shorter bridging stents, the endurant stent in particular is a little shorter instead of the 100 millimeter Gore limb and that can also shorten the distance. More about the procedural outcomes. You can see here great technical success.

There were no type one or type three endoleaks. There were some adjunctive stenting in some patients, four patients, because of some kinking and distal dissection. One technical failure's worth pointing out. This is a patient who has heavy calcification

in the iliac system here. Couldn't cannulate, the internal iliac artery required coil embolization. You can see this patient, we had to sacrifice that internal and extend into the external. Complications at 30 days are very acceptable.

One groin infection. You can see that radiographing clinical follow up. One patient with new buttock claudications, a patient who lost the internal iliac artery as I'll mention to you in a minute. The other one was asymptomatic

but also one internal iliac artery lost. No aneurysm related deaths. You can see there's some type two endoleaks but not type one or three endoleaks. More about limb occlusions. This is the external iliac limb.

You can see there were three external iliac limb occlusions, two in the perioperative period and one at six months which presented with claudication requiring a Fem-Fem. The two in the perioperative period, one was a thrombectomy and stent that was treated nicely. The other one was really an iatrogenic limb occlusion

because the internal branch was deployed inadvertently high jailing the external and causing the operators to have to go back and essentially sacrifice that internal in order to preserve flow to the external. You can see that this a patient who in fact did have the claudication symptoms, this is that one patient.

As far as internal iliac limb occlusion in addition to the one we just described there was one asymptomatic incidental find of a limb occlusion at six months. This is a comparison of what Dr. Snyder just discussed, the pivotal trial with expanded access to the global experience I just presented.

You can see when you look at fluoroscopy time, for instance, contrast media used or procedural duration that there is, of course, some increase requirement in the bilateral cases but I would argue that this is not prohibitive. Cost, however, may in fact be an issue.

Certainly this can be a quite costly procedure when we start doing bilateral cases. There are, in fact, new procedure codes that Gore has provided that can offset some of this cost especially for the hospital cost, but nonetheless this is something to be considered.

So in conclusion, preservation of bilateral internal iliac artery with a Gore IBE can be performed safely with excellent technical results and short term patency rates. Only one new onset of buttock claudication occurred in that inadvertent limb jailing. Limb and branch occlusions are rare but can be treated

successfully with stenting most of the time. Some anatomic limitations exist but a number of maneuvers can permit technical success even in shorter length aortoiliac segments. Contrast fluoroscopy and length of case do not appear to be prohibitive.

However, cost remains an issue. Thank you.

[Mollie Meek] We are going to talk about our histology of head and neck AVMs after Onyx embolization. Like I said previously, we were in love with Onyx at the end of the 2000's. So we used lots and lots of Onyx, and then the patients generally went for resection.

Sometimes immediately, and sometimes years after the embolization. We are not as in love with Onyx anymore, and our hospital was certainly not in love with us using Onyx the way we were using it in the past, because it was super expensive,

and they weren't getting reimbursed for the multiple vials we were using. I had no disclosures. If I have time, I'll talk to you about radiation dose. The most important part is the pathological response. This is a slide of a typical AVM.

You see the thick walled arterial portion of the vascular channels and the thinner walled venous portion. This is just a higher magnification. I am not a pathologist. So when we did our scoring of our specimens,

we scored some acute and inflammatory changes, some chronic inflammatory changes, and then the amount of recanalization that we saw. What we found is that recanalization was extremely common. We saw it in 13 of our 18 specimens,

and the specimens that had minimal inflammatory changes had minimal recanalization. That's the take home message. This is a specimen with Onyx in cast material in the vessels. Trying not to blind our moderators like I did earlier.

This is a really pretty picture of the vessel wall, the Onyx material, and a brand new vessel in the middle of this old vessel. This is what just sort of a scout image of what their faces looked like.

One of, a sample. This is like a longitudinal slice of a vessel. So this is vessel wall on one side, vessel wall on the other side, Onyx material, and then new vessel formation

and interstitial tissue stuff in the middle of that old, big vessel. These are just some pictures. Another example of Onyx with vessels inside the Onyx. We saw a fair amount of giant cell formation, which you can kind of see these clusters

of multi nucleated things, are the giant cells. They come in and clean up the Onyx material. These are just more Onyx specimens. Here's a nice picture of giant cell. We also counted vessel wall necrosis in our tabulations.

And you can see this Onyx material is in the endothelial cells, and it kills the endothelial cells. So we did see some vessel wall necrosis. So the short story is there's no definitive time for the recanalization,

but we think it takes about a year for you to really see nicely formed vessels in the Onyx. And in our experience in the head and neck, it was common. It may be different in other locations, because obviously your head and neck

has different lymphatic ratios and inflammatory things, and there's all kinds of differences between the head and neck, and say your arm or your leg. The second part of this is your radiation dose,

which has been touched on a little bit. The plug and push technique, part of why I don't like it, and why I don't like using Onyx, is it's just slow. You have to wait, and wait.

And it takes a lot of x-ray penetration, because your computer is going to try to up your dose because you've got the black Onyx in the x-ray beam, if that makes any sense. Your machine's going to try to help you, and it amps up your dose

really quickly if you're not careful. And for our head and neck patients, obviously we're doing AP and lateral views. This is our equipment. We put dots, radiation dosimeters on peoples' heads

and one in their oropharynx before our treatments, and we did calculations of a sequence of patients. You can see the ages of the patients in the group, and the number of the patients. This was just for a short time period we did this.

This is the important part, that the AVMs have a much higher skin entrance dose than the venous malfs. Part of that is we don't put on in venous mals. Sometimes I will put glue in a venous mal if a surgeon wants to resect it

because they like the way it comes out when you do that. But otherwise I generally just use alcohol in venous mals. And then these were on X AVMs at this point in time when we collected this data. Some alcohol.

This is a reminder about the dosimetry. And this was the number of sessions, embolization sessions versus the skin entrance dose. And just some more pictures of yeah. So Onyx is not permanent in my histologic experience.

Watch out for wound healing issues and recanalization, and watch out for skin burns. That's it. Thanks.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you chairman, ladies and gentlemen, thanks for the organizing committee for the opportunity and the kind invitation. These are my disclosure regarding this topic. We know that several anatomic factors can be considered in order to identfy the challenging proximal aortic neck and and the risk of

Type one endoleak after EVAR. And we all agree that this is a condition that we would like to prevent after any of our standard EVAR repair. So we know that advance treatment we have illustrated and also with a chimney can be successful and prevent

such kind of complication, and today we do have another option that has already been presented it uses Heli-FX EndoAnchor in order to stabilize and fix the graft just at the level below the renal artery. This kind of approach can be used as a therapeutic approach

to solve proximal type one endoleak a different follow up interval after EVAR. But for sure the more interest is the application of this new technology of endosuturing is the prophylactic use to prevent any changes of the aortic proximal neck.

The advantages of using such kind of technique is mainly based on the possibility to maintain infrarenal sealing and to prevent any involvement of visceral vessels. Such not precluding any potential additional intervention like more complex like Ch-EVAR or f-EVAR.

What about the tips and tricks? As for any endovascular treatment any patient selection represents one of the most important aspect for each kind of treatment and we all know to respect that these kind of technology require a minimum length of the regular diameter

at the level of the renal artery. For sure the short neck is the one of the principle indication for the prophylactic use of EndoAnchors, you can see here that according to the instruction for use you can select patients with a neck less than 10 millimeter down to four millimeters.

Obviously angulated aortic neck but also wide neck which has been recently discussed as protective factor to prevent neck dilation during the follow up. Tapering of the proximal aortic neck is another good indication for the use of primary EndoAnchors with Heli-FX system, and you can see here that

also been reported to be an increased protective effect of EndoAnchors in patients treated with this approach in terms of sac regression. Obviously you have also to consider when not to use this solution because EndoAnchors does not create a new neck so you cannot include your patients with no neck

or a large amount of thrombus or calcium or large gap because as already discussed it prevents the penetration of the anchors into the aortic wall. Precise endo graph deployment at the level of the renal artery is of paramount importance if you approach short neck, if you lose

millimeters over there it doesn't really make sense to fix the graft into the unhealthy proximal aortic neck. And obviously when you think about the web deploy your EndoAnchor the more proximal part of the fabric of the extended graft is the ideal position in order to be sure to penetrate into the aortic neck.

And this another example you can see here the line very proximal in the first stent of the extended graft where you can deploy the EndoAnchors. If you lose any anchors during the repair is something that can happen after several number of EndoAnchors but you can manage,

you can recapture the EndoAnchors with the snare and remove without more complex distal complication and embolization. So finally if you approach a very challenging neck it is very important to increase the deployment procedure now you can do this kind of approach

with advance imaging software like in this case with the fusion. You cannot on the work station in the OR pre-plan where to deploy the EndoAnchors. You can see here for example a case with a six EndoAnchors so you can just fix on the pre-plan,

and then you fuse your image, you go live into the OR you have your target at the level of the renal artery and what you have to do is just center your target with your EndoAnchor delivery system. And obviously if you have also you can also scan and have an intraoperative control with then a CT

to be sure you're fixing the appropriate way with your case. So in conclusion, chairman, ladies and gentlemen. The endovascular fixation is effective in preventing proximal Type one endoleaks in selected patients with challenging neck anatomy. And obviously meticulous planning

and advanced intraoperative imaging are crucial for technical success. Thank you very much for your kind attention.

- Thank you so much. I have no disclosures. These guidelines were published a year ago and they are open access. You can download the PDF and you can also download the app and the app was launched two months ago

and four of the ESVS guidelines are in that app. As you see, we had three American co-authors of this document, so we have very high expertise that we managed to gather.

Now the ESVS Mesenteric Guidelines have all conditions in one document because it's not always obvious if it's acute, chronic, acute-on-chron if it's arteri

if there's an underlying aneurysm or a dissection. And we thought it a benefit for the clinician to have all in one single document. It's 51 pages, 64 recommendations, more than 300 references and we use the

ESC grading system. As you will understand, it's impossible to describe this document in four minutes but I will give you some highlights regarding one of the chapters, the Acute arterial mesenteric ischaemia chapter.

We have four recommendations on how to diagnose this condition. We found that D-dimer is highly sensitive so that a normal D-dimer value excludes the condition but it's also unfortunately unspecific. There's a common misconception that lactate is

useful in this situation. Lactate becomes elevated very late when the patient is dying. It's not a good test for diagnosing acute mesenteric ischaemia earlier. And this is a strong recommendation against that.

We also ask everyone uses the CTA angiography these days and that is of course the mainstay of diagnoses as you can see on this image. Regarding treatment, we found that in patients with acute mesenteric arterial ischaemia open or endovascular revascularisation

should preferably be done before bowel surgery. This is of course an important strategic recommendation when we work together with general surgeons. We also concluded that completion imaging is important. And this is maybe one of the reasons why endovascular repair tends to do better than

open repair in these patients. There was no other better way of judging the bowel viability than clinical judgment a no-brainer is that these patients need antibiotics and it's also a strong recommendation to do second look laparotomoy.

We found that endovascular treatment is first therapy if you suspect thrombotic occlusion. They had better survival than the open repair, where as in the embolic situation, we found no difference in outcome.

So you can do both open or endo for embolus, like in this 85 year old man from Uppsala where we did a thrombus, or the embolus aspiration. Regarding follow up, we found that it was beneficial to do imaging follow-up after stenting, and also secondary prevention is important.

So in conclusion, ladies and gentlemen, the ESVS Guidelines can be downloaded freely. There are lots of recommendations regarding diagnosis, treatment, and follow-up. And they are most useful when the diagnosis is difficult and when indication for treatment is less obvious.

Please read the other chapters, too and please come to Hamburg next year for the ESVS meeting. Thank You

- Thank you, Dr. Veith, for this kind invitation. Aberrant origin of the vertebral artery is the second most common aortic arch anomaly. It is more common in patients with thoracic aortic disease when compared to the general population. It's usually of no clinical significance,

except when encountered while treating cerebro-vascular disease or aortic arch pathology. And that's when critical decision-making to preserve its perfusion becomes necessary. This picture illustrates the most common

types of aortic arch anomalies. Led by bovine arch, isolated vertebral artery, and aberrant right side. In this study, it shows a significant correlation with thoracic aortic disease. We first should evaluate the origin

of the vertebral artery. On the right side of the screen you can see the most common type and it's when it's between the left subclavian and the left common carotid artery origin. This is an example of the left vertebral artery

aberrant associated with a mycotic aneurysm of the aortic arch. And this one is a right aberrant vertebral artery associated with a descending thoracic aneurysm and center retroesophageal location. We then look at the variation of

the vertebral artery and posterior circulation. Most commonly dominant left or hypoplasia of the right vertebral artery as shown in the picture. For termination in the posterior inferior cerebellar artery, or PICA.

Or occlusive lesion on the right side, which necessitates perfusion of the left side. This study shows that vertebral artery variations that could need perfusion is up to 30% of patients

with thoracic aortic disease. There are, unfortunately, minimal literature in the vascular, mostly case reports or series. And most of this says procedure data comes from the neurosurgical literature for occlusive disease that shows in this study,

for example, low morbidity, mortality. Complications include thoracic duct injury, recurrent laryngeal nerve, Horner's and CVAs. And they showed high patency rates. The SVS guidelines for left subclavian revasculatization, although low quality,

shows they indicated routine revascularization and they mention some of the indications for left vertebral artery revasculatization. And extrapolating from that, from those guidelines, we summarize the indications for vertebral artery

revascularization dominant ipsilateral left or hypoplastic right. Incomplete circle of Willis, or termination of the left in the PICA artery. Diseased or occluded contralateral vertebral artery.

Extensive aortic coverage or inability to evaluate the circle of Willis prior to intervention. Some technical tips, we use a routine supraclavicular incision. We identify the vertebral artery posterior-medial

location to the common carotid. We carefully preserve the recurrent laryngeal nerve or non-recurrent laryngeal nerve, which is common in aortic arch anomalies. Thoracic duct on the left side. Transpose it to the posterior surface

of the common carotid. And then clamp distal to the anastomosis and to avoid prolonged ischemia to the posterior circulation. This is a completion aortagram that shows patent left vertebral artery transposed

to the common carotid. And then one month follow-up shows that the left vertebral artery is patent with a complete repair of the aorta. So in our experience, we did six vertebral transpositions over

the last couple years, four on the left, two on the right. No perioperative complications. One lost follow-up. And up to 27 months of the patent vessels. In summary, aberrant vertebral artery is uncommon

finding, but associated with thoracic aortic disease. The origin and the course of the vertebral artery should be thoroughly evaluated prior to treatment. Revascularization should be considered in certain situations to avoid

posterior circulation ischemia. But more data is needed to establish guidelines. Thank you.

- Thank you Dr. Veith, again. So we have a small percentage of patients with contralateral occlusion in some of the earlier randomized trials who might have done a little bit worse than a patient who did not have contralateral occlusion. Then we got studied by Perler, Mattos, and Da Silva

in the early 90s, showing that actually they can do carotid endarterectomy very safely in patients with contralateral occlusion. Sapphire started it all with all the future randomized trial or even the industry sponsored trial showing that contralateral occlusion has a high risk

for carotid endarterectomy, and that's making it an inclusion criteria in carotid stenting. In this particular study for instance you see that patients had about 60% higher risk of stroke, and TIA or death even if they have contralateral occlusion. Further, a newer study by Brewsters and the ICSS,

they really showed no difference as far as the performance of carotid artery stenting versus endarterectomy. So the Center of Medicare and Medicaid today actually use contralateral occlusion as an indication for carotid artery stenting and reimburse in the United States as a high-risk criteria.

We wanted to see what happened in a real-world outcome, and comparing the safety and efficiency of carotid endarterectomy versus stenting in patients who have contralateral occlusion. So we used the Vascular Quality Initiative with a cut from 2005, 2016, and we included all patients

who underwent carotid endarterectomy who had stenting who also have contralateral occlusion. Our outcome was 30-day stroke, death, MI in combination of all of the above. We also look at two-year ipsilateral stroke and combination of stroke and death.

We did the usual statistical analysis with a regression model and then also long term with Kaplan-Meier up to two years. So that made it the largest study to date on patients with contralateral occlusion, 4300 patients. 1000 of them approximately got a carotid stent,

and the rest received CEA. As you can see here, not a lot of differences except that there was more congestive heart failure, COPD, as expected in the carotid stent. There were a history of stroke, prior stroke, not acute stroke more in the endarterectomy group.

Again, as expected, more people were on dual antiplatelet therapy as required in the carotid stent group, as well as statin, but there was more beta-blockers for instance preoperatively in the group that got endarterectomy.

There was also more prior revascularization in the carotid stent group. Nothing surprising here, but what you can see is within the endarterectomy only about 70% got shunts, so 30% without even a shunt, but 30% had EEG monitoring. This is what the results showed, you can see

that there was really no difference in the outcome as far as stroke in the asymptomatic group, but a very obvious difference in the symptomatic patients with three-fold increase in the risk of stroke at 30 days and six-fold increase in the risk of mortality. These are patients basically

getting stents versus endarterectomy, and if you combine these, that risk was three-fold. In the regression model, you can see here not much of a difference in the asymptomatic patients, not statistically significant, but 2.9 odd ratio for stroke, and six for death.

When we look at the Kaplan-Meiers and the Cox hazard model, you can see in the asymptomatic group as far as ipsilateral stroke there was really no difference, and same with the symptomatic patients. But when we combine stroke and death, that risk was 40% higher in asymptomatic patients

and 90% higher in the symptomatic group. You can see that obviously on the Kaplan-Meier curve. Of course it's a limited study, by nature of retrospective, and selection biases as well as not completely having accurate data entry with any registry. We don't really have any data on what happened in the brain,

we don't have any information on what happens if you do medical management as well. So in conclusion, symptomatic status was an effect modifier here as far as the performance of carotid endarterectomy and stenting in patients with contralateral occlusion.

The two procedures were equivalent in asymptomatic patients except for two-year ipsilateral stroke where the risk was increased with stenting. Endarterectomy is superior to CAS as far as asymptomatic patients. Thank you so much.

- Thank you. I have a little disclosure. I've got to give some, or rather, quickly point out the technique. First apply the stet graph as close as possible to the hypogastric artery.

As you can see here, the end of distal graft. Next step, come from the left brachial you can lay the catheter in the hypogastric artery. And then come from both

as you can see here, with this verge catheter and you put in position the culver stent, and from the femoral you just put in position the iliac limb orthostatic graft.

The next step, apply the stent graft, the iliac limb stent graft, keep the viabahn and deployed it in more the part here. What you have here is five centimeter overlap to avoid Type I endoleak.

The next step, use a latex balloon, track over to the iliac limb, and keep until the, as you can see here, the viabahn is still undeployed. In the end of the procedure,

at least one and a half centimeters on both the iliac lumen to avoid occlusion to viabahn. So we're going to talk about our ten years since I first did my first description of this technique. We do have the inclusion criteria

that's very important to see that I can't use the Sandwich Technique with iliac lumen unless they are bigger than eight millimeters. That's one advantage of this technique. I can't use also in the very small length

of common iliac artery and external iliac artery and I need at least four millimeters of the hypogastric artery. The majority patients are 73 age years old. Majority males. Hypertension, a lot of comorbidity of oldest patients.

But the more important, here you can see, when you compare the groups with the high iliac artery and aneurismal diameter and treat with the Sandwich Technique, you can see here actually it's statistically significant

that I can treat patient with a very small real lumen regarding they has in total diameter bigger size but I can treat with very small lumen. That's one of the advantages of this technique. You can see the right side and also in the left side. So all situations, I can treat very small lumen

of the aneurysm. The next step so you can show here is about we performed this on 151 patients. Forty of these patients was bilateral. That's my approach of that. And you can see, the procedure time,

the fluoroscope time is higher in the group that I performed bilaterally. And the contrast volume tends to be more in the bilateral group. But ICU stay, length of stay, and follow up is no different between these two groups.

The technical success are 96.7%. Early mortality only in three patients, one patient. Late mortality in 8.51 patients. Only one was related with AMI. Reintervention rate is 5, almost 5.7 percent. Buttock claudication rate is very, very rare.

You cannot find this when you do Sandwich Technique bilaterally. And about the endoleaks, I have almost 18.5% of endoleaks. The majority of them was Type II endoleaks. I have some Type late endoleaks

also the majority of them was Type II endoleaks. And about the other complications I will just remark that I do not have any neurological complications because I came from the left brachial. And as well I do not have colon ischemia

and spinal cord ischemia rate. And all about the evolution of the aneurysm sac. You'll see the majority, almost two-thirds have degrees of the aneurysm sac diameter. And some of these patients

we get some degrees but basically still have some Type II endoleak. That's another very interesting point of view. So you can see here, pre and post, decrease of the aneurysm sac.

You see the common iliac artery pre and post decreasing and the hypogastric also decreasing. So in conclusion, the Sandwich Technique facilitates safe and effective aneurysm exclusion

and target vessel revascularization in adverse anatomical scenarios with sustained durability in midterm follow-up. Thank you very much for attention.

- Like to thank Dr. Veith and the committee for asking me to speak. I have no conflicts related to this presentation. Labial and vulvar varicosities occur in up to 10% of pregnant women, with the worst symptoms being manifested in the second half of the pregnancy.

Symptoms include genital pressure and fullness, pruritus, and a sensation of prolapse. These generally worsen with standing. Management is usually conservative. Between compression hose, cooling packs, and exercise, most women can make it through to the end of the pregnancy.

When should we do more than just reassure these women? An ultrasound should be performed when there's an early presentation, meaning in the first trimester, as this can be an unmasking of a venous malformation. If there are unilateral varicosities,

an ultrasound should be performed to make sure that these aren't due to iliac vein thrombosis. If there's superficial thrombosis or phlebitis, you may need to rule out deep venous extension with an ultrasound. When should we intervene?

You may need to intervene to release trapped blood in phlebitis, or to give low molecular weight heparin for comfort. When should a local phlebectomy or sclerotherapy be performed? Should sclerotherapy be performed during pregnancy?

We know very little. Occasionally, this is performed in a patient who is unknowingly pregnant, and there have been no clear complications from this in the literature. The effectiveness of sclero may also

be diminished in pregnancy, due to hormones and increased venous volume. Both polidocanol and sodium tetradecyl sulfate say that there is no support for use during pregnancies, and they advise against it. So what should you do?

This following case is a 24 year old G2P1, who was referred to me at 24 weeks for disabling vaginal and pelvic discomfort. She couldn't go to work, she couldn't take care of her toddler, she had some left leg complaints, but it was mostly genital discomfort and fullness,

and her OB said that he was going to do a pre-term C-section because he was worried about the risk of hemorrhage with the delivery. So this is her laying supine pre-op, and this is her left leg with varicosities visible in the anterior and posterior aspects.

Her ultrasound showed open iliac veins and large refluxing varicosities in the left vulvar area. She had no venous malformation or clot, and she had reflux in the saphenofemoral junction and down the GSV. I performed a phlebectomy on her,

and started with an ultrasound mapping of her superficial veins and perforators in the labial region. I made small incision with dissection and tie ligation of all the varicosities and perforators, and this was done under local anesthesia

with minimal sedation in the operating room. This resulted in vastly improved comfort, and her anxiety, and her OB's anxiety were both decreased, and she went on to a successful delivery. So this diagram shows the usual location of the labial perforators.

Here she is pre-op, and then here she is a week post-op. Well, what about postpartum varicosities? These can be associated with pelvic congestion, and the complaints can often be split into local, meaning surface complaints, versus pelvic complaints.

And this leads into a debate between a top down treatment approach, where you go in and do a venogram and internal coiling, versus a bottom up approach, where you start with local therapy, such as phlebectomy or sclero.

Pelvic symptoms include aching and pressure in the pelvis. These are usually worse with menstruation, and dyspareunia is most pronounced after intercourse, approximately an hour to several hours later. Surface complaints include vulvar itching, tenderness, recurrent thrombophlebitis, or bleeding.

Dyspareunia is present during or at initiation of sexual intercourse. I refer to this as the Gibson Algorithm, as Kathy Gibson and I have talked about this problem a lot, and this is how we both feel that these problems should be addressed.

If you have an asymptomatic or minimally symptomatic patient who's referred for varicosities that are seen incidentally, such as during a laparoscopy, those I don't treat. If you have a symptomatic patient who has pelvic symptoms, then these people get a venogram with coils and sclerotherapy as appropriate.

If they are not pregnant, and have no pelvic symptoms, these patients get sclero. If they are pregnant, and have no pelvic symptoms, they get a phlebectomy. In conclusion, vulvar varicosities are a common problem, and usually conservative management is adequate.

With extreme symptoms, phlebectomy has been successful. Pregnancy-related varicosities typically resolve post-delivery, and these can then be treated with local sclerotherapy if they persist. Central imaging and treatment is successful for primarily pelvic complaints or persistent symptoms.

Thank you.

- Thank you Mr. Chairman. Ladies and gentleman, first of all, I would like to thank Dr. Veith for the honor of the podium. Fenestrated and branched stent graft are becoming a widespread use in the treatment of thoracoabdominal

and pararenal aortic aneurysms. Nevertheless, the risk of reinterventions during the follow-up of these procedures is not negligible. The Mayo Clinic group has recently proposed this classification for endoleaks

after FEVAR and BEVAR, that takes into account all the potential sources of aneurysm sac reperfusion after stent graft implant. If we look at the published data, the reported reintervention rate ranges between three and 25% of cases.

So this is still an open issue. We started our experience with fenestrated and branched stent grafts in January 2016, with 29 patients treated so far, for thoracoabdominal and pararenal/juxtarenal aortic aneurysms. We report an elective mortality rate of 7.7%.

That is significantly higher in urgent settings. We had two cases of transient paraparesis and both of them recovered, and two cases of complete paraplegia after urgent procedures, and both of them died. This is the surveillance protocol we applied

to the 25 patients that survived the first operation. As you can see here, we used to do a CT scan prior to discharge, and then again at three and 12 months after the intervention, and yearly thereafter, and according to our experience

there is no room for ultrasound examination in the follow-up of these procedures. We report five reinterventions according for 20% of cases. All of them were due to endoleaks and were fixed with bridging stent relining,

or embolization in case of type II, with no complications, no mortality. I'm going to show you a couple of cases from our series. A 66 years old man, a very complex surgical history. In 2005 he underwent open repair of descending thoracic aneurysm.

In 2009, a surgical debranching of visceral vessels followed by TEVAR for a type III thoracoabdominal aortic aneurysms. In 2016, the implant of a tube fenestrated stent-graft to fix a distal type I endoleak. And two years later the patient was readmitted

for a type II endoleak with aneurysm growth of more than one centimeter. This is the preoperative CT scan, and you see now the type II endoleak that comes from a left gastric artery that independently arises from the aneurysm sac.

This is the endoleak route that starts from a branch of the hepatic artery with retrograde flow into the left gastric artery, and then into the aneurysm sac. We approached this case from below through the fenestration for the SMA and the celiac trunk,

and here on the left side you see the superselective catheterization of the branch of the hepatic artery, and on the right side the microcatheter that has reached the nidus of the endoleak. We then embolized with onyx the endoleak

and the feeding vessel, and this is the nice final result in two different angiographic projections. Another case, a 76 years old man. In 2008, open repair for a AAA and right common iliac aneurysm.

Eight years later, the implant of a T-branch stent graft for a recurrent type IV thoracoabdominal aneurysm. And one year later, the patient was admitted again for a type IIIc endoleak, plus aneurysm of the left common iliac artery. This is the CT scan of this patient.

You will see here the endoleak at the level of the left renal branch here, and the aneurysm of the left common iliac just below the stent graft. We first treated the iliac aneurysm implanting an iliac branched device on the left side,

so preserving the left hypogastric artery. And in the same operation, from a bowl, we catheterized the left renal branch and fixed the endoleak that you see on the left side, with a total stent relining, with a nice final result on the right side.

And this is the CT scan follow-up one year after the reintervention. No endoleak at the level of the left renal branch, and nice exclusion of the left common iliac aneurysm. In conclusion, ladies and gentlemen, the risk of type I endoleak after FEVAR and BEVAR

is very low when the repair is planning with an adequate proximal sealing zone as we heard before from Professor Verhoeven. Much of reinterventions are due to type II and III endoleaks that can be treated by embolization or stent reinforcement. Last, but not least, the strict follow-up program

with CT scan is of paramount importance after these procedures. I thank you very much for your attention.

- Thanks to Dr. Veith again for allowing us to present this data. So this is a one year update on the LEOPARD trial. This is my disclosure that's relevant to this trial, at least in terms of serving as the national PI and as a consultant. The acronym stands for looking at EVAR outcomes

with primary analysis of randomized data. This is in fact the first contemporary randomized control trial of EVAR devices in a commercially available setting. Real world population head to head comparison, and you'll notice on the right the unique aspect of this is

half of the patients were randomized to an Endologix AFX device with anatomic fixation. The other half one of three commercially available devices. Either Cook Zenith, Gore Excluder, or Medtronic Endurant. This was across 80 enters in the U.S. with four hundred patients.

We chose to have a primary composite endpoint of one year survival with aneurysm related complications and ARC. This includes the following 30 day procedural death, occlusion migration. The thing that is different is we included all endoleak in this in addition to aneurysm enlargement

greater than five millimeters. And of course, reintervention. So the total enrollment was 455 patients, roughly half in each group. You can see the breakdown here between Endurant, Excluder, and Zenith.

For the individual investigators when they agreed to randomize in the trial the randomization was between an Endologix device and one of the other and that was consistent throughout the trial so they had to choose upfront which of those three devices they would use.

These are the patient demographics for the trial as for most infrarenal AAA trials this was predominantly elder, elderly white males. ASA classification predominantly three, four, and even five. There was a high incidence with smoking, co-morbidities but notice a fairly low incidence

of family history of aneurysm disease. These were, in fact, fairly large aneurysms, five and a half centimeters in diameter. They did have routinely reasonable neck anatomy and iliac landing zones, although I call your attention to the fact that in both groups about a quarter

of these patients were outside the instructions for use for the respective devices so I think that's important when thinking about results. When we looked at periprocedural characteristics including things like total procedure time, anesthesia time, contrast volume used there was a tendency

towards shorter times in the anatomic fixation group but this has not proven statistically significant. You'll also note that two thirds of these were performed percutaneously. The vast majority under a general anesthetic. No ICU time and one day in the hospital on average.

So here is the one year data for freedom from aneurysm related complications. You'll notice the blue on the top is the anatomic fixation or the Endologix group, the red is the composite of all others. This was also looked at by individual devices although the

trial was designed to combine all three of these together. There was no difference when combining the three or when looking at them separately. We looked at both freedom from all-cause mortality and freedom from aneurysm related mortality and again I apologize for the size.

This data is complete for the one year but we will continue to follow this out through two, three, and five years. And you'll notice there is no difference between the groups either for all-cause or aneurysm related mortality. When we look specifically at endoleak, no difference in type one endoleak.

There was a trend towards fewer type two endoleaks which we had seen previously in other institutions, but again, at least out to three years was about a 5% difference and freedom from type three endoleak was not significantly different. When we looked at things like freedom from conversion

and freedom from rupture, again, at that one year time point there was no significant difference. Freedom from graph limb occlusion, again a little bit lower on the anatomic fixation just given the nature of the device, but again not significantly different.

And freedom from reinterventions at one year absolutely no difference. So in conclusion we do believe there's a critical need for level one evidence in contemporary real-word patients using commercially available devices. The LEOPARD study is the first randomized control trial

comparing contemporary devices in a real-world setting, and we believe this will provide very important data for future randomized control trials as the control arm. The one year ARC shows no difference between anatomic fixation with very similar performance but further analysis needs to be performed to evaluate

potential benefits between the two types of graphs. Thank you for your attention.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Mr Chairman, dear colleagues. I've nothing to disclose. We know that aneurysm or dilation of the common iliac artery is present in almost 20% of cases submitted to endovascular repair and we have a variety of endovascular solution available. The first one is the internal iliac artery

embolization and coverage which is very technically easy but it's a suboptimal choice due to the higher risk of thrombosis and internal iliac problems. So the flared limbs landing in the common iliac artery is technically easy,

however, the results in the literature are conflicting. Iliac branch devices is a more demanding procedure but has to abide to a specific anatomical conditions and is warranted by good results in the literature such as this work from the group in Perugia who showed a technical success of almost 100%

as you can see, and also good results in other registries. So there are unresolved question about this problem which is the best choice in this matter, flared limbs or iliac branch devices. In order to solve this problem, we have looked at our data,

published them in Journal Vascular Interventional Neurology and this is our retrospective observational study involving treatment with either flared limbs or IBD and these are the flared limbs devices we used in this study. Anaconda, Medtronic, Cook and Gore.

And these are the IFU of the two IBD which were used in this study which were Gore-IBE and Cook-ZBS. So we looked at the 602 EVAR with 105 flared limbs which were also fit for IBD. And on the other side, we looked at EVAR-IBD

implanted in the same period excluding those implanted outside the IFU. So we ended up with 57 cases of IBD inside the IFU. These are the characteristics of the two groups of patients. The main important finding was the year age which was a little younger in the IBD group

and the common iliac artery diameter which was greater, again in the IBD group. So this is the distribution of the four types of flared limbs devices and IBD in the two groups. And as you can see, the procedural time and volume of contrast medium was significantly

higher in the IBD group. Complications did not differ significantly however, overall there were four iliac complication and all occurred in the flared limbs group. When we went to late complications, putting together all the iliac complication, they were significantly

greater in the flared limbs group compared with the IBD with zero percent complication rate. Late complications were always addressed by endovascular relining or relining and urokinase in case of infusion, in case of thrombosis. And as you can see here, the late outcome

did not differ significantly in the two groups. However, when we put together all the iliac complication, the iliac complication free survival was significantly worse in the flared limbs group. So in conclusion, flared limbs and IBD have similar perioperative outcomes.

IBD is more technically demanding, needs more contrast medium and time obviously. The complications in flared limbs are all resolvable by endovascular means and IBD has a better outcome in the long term period. So the take-home message of my presentation

is that we prefer IBD in young patients with high life expectancy and in the presence of anatomical risk factors of flared limbs late complications. Thank you for your attention.

- I'm going to take it slightly beyond the standard role for the VBX and use it as we use it now for our fenestrated and branch and chimney grafts. These are my disclosures. You've seen these slides already, but the flexibility of VBX really does give us a significant ability to conform it

to the anatomies that we're dealing with. It's a very trackable stent. It doesn't, you don't have to worry about it coming off the balloon. Flexible as individual stents and in case in a PTFE so you can see it really articulates

between each of these rings of PTFE, or rings of stent and not connected together. I found I can use the smaller grafts, the six millimeter, for parallel grafts then flare them distally into my landing zone to customize it but keep the gutter relatively small

and decrease the instance of gutter leaks. So let's start with a presentation. I know we just had lunch so try and shake it up a little bit here. 72-year-old male that came in, history of a previous end-to-side aortobifemoral bypass graft

and then came in, had bilateral occluded external iliac arteries. I assume that's for the end-to-side anastomosis. I had a history of COPD, coronary artery disease, and peripheral arterial disease, and presented with a pseudoaneurysm

in the proximal juxtarenal graft anastomosis. Here you can see coming down the thing of most concern is both iliacs are occluded, slight kink in the aortofemoral bypass graft, but you see a common iliac coming down to the hypogastric, and that's really the only blood flow to the pelvis.

The aneurysm itself actually extended close to the renal, so we felt we needed to do a fenestrated graft. We came in with a fenestrated graft. Here's the renal vessels here, SMA. And then we actually came in from above in the brachial access and catheterized

the common iliac artery going down through the stenosis into the hypogastric artery. With that we then put a VBX stent graft in there which nicely deployed that, and you can see how we can customize the stent starting with a smaller stent here

and then flaring it more proximal as we move up through the vessel. With that we then came in and did our fenestrated graft. You can see fenestrations. We do use VBX for a good number of our fenestrated grafts and here you can see the tailoring.

You can see where a smaller artery, able to flare it at the level of the fenestration flare more for a good seal. Within the fenestration itself excellent flow to the left. We repeated the procedure on the right. Again, more customizable at the fenestration and going out to the smaller vessel.

And then we came down and actually extended down in a parallel graft down into that VBX to give us that parallel graft perfusion of the pelvis, and thereby we sealed the pseudoaneurysm and maintain tail perfusion of the pelvis and then through the aortofemoral limbs

to both of the common femoral arteries, and that resolved the pseudoaneurysm and maintained perfusion for us. We did a retrospective review of our data from August of 2014 through March of 2018. We had 183 patients who underwent endovascular repair

for a complex aneurysm, 106 which had branch grafts to the renals and the visceral vessels for 238 grafts. When we look at the breakdown here, of those 106, 38 patients' stents involved the use of VBX. This was only limited by the late release of the VBX graft.

And so we had 68 patients who were treated with non-VBX grafts. Their other demographics were very similar. We then look at the use, we were able to use some of the smaller VBXs, as I mentioned, because we can tailor it more distally

so you don't have to put a seven or eight millimeter parallel graft in, and with that we found that we had excellent results with that. Lower use of actual number of grafts, so we had, for VBX side we only had one graft

per vessel treated. If you look at the other grafts, they're anywhere between 1.2 and two grafts per vessel treated. We had similar mortality and followup was good with excellent graft patency for the VBX grafts.

As mentioned, technical success of 99%, mimicking the data that Dr. Metzger put forward to us. So in conclusion, I think VBX is a safe and a very versatile graft we can use for treating these complex aneurysms for perfusion of iliac vessels as well as visceral vessels

as we illustrated. And we use it for aortoiliac occlusive disease, branch and fenestrated grafts and parallel grafts. It's patency is equal to if not better than the similar grafts and has a greater flexibility for modeling and conforming to the existing anatomy.

Thank you very much for your attention.

- [Doctor] Thank you Tom and thanks Dr Veith for the invitation to be here again. These are my disclosures, so hypogastric embolization is not benign, patients can develop buttock claudication, higher after bilateral sacrifice, it can be persistent in up to half of patients. Sexual dysfunction can also occur, and we know that

there can be catastrophic complications but fortunately they're relatively rare. So now these are avoidable, we no longer have to coil and cover in many patients and we can preserve internal iliac's with iliac branch devices like you just heard. We had previously published the results of looking from

the pivotal trial, looking at the Gore IBE device with the six month primary end point showing zero aneurysm-related morality, high rates of technical success, 95% patency of the internal iliac limb, no type one or type three endoleaks and 98% freedom from reintervention. Importantly on the side of the iliac branch device, there

was prevention of new-onset of buttock claudication in all patients, and importantly also on the contralateral side in patients with bilateral aneurysms that were sacrificed, the incidents in a prospect of trial of the development of buttock claudication was 28%, confirming the data from those prior series.

And this is in line with the results of EVAR using iliac branch device published by many others showing low rates of mortality, high rates of technical success and also good patency of the devices. In press now we have results with follow-up out through two years, in the Gore IBE trial, we also compared

those findings to outcomes in a real world experience from the great registry, so 98 patients from the pivotal and continued access arm's of the IBE trial and also 92 patients who underwent treatment with the Gore IBE device in the great registry giving us 190 patients with 207 IBE devices implanted.

Follow-up was up to three years, it was an longer mean follow-up in the IDE study with the IBE device. Looking at outcomes between the clinical trial and the real world experience, they were very similar. There was no aneurysm-related mortality, there was no recorded new-onset ipsilateral buttock claudication,

this is all from the IDE trial since we didn't have that information in the great registry, and looking at the incidence of reinterventions, it was similar both in the IDE clinical trial experience and also in the great registry as well. Looking at patency of the internal iliac limb, it was

93.6%, both at 12 months and 24 months in the prospective US IBE pivotall trial and importantly all the internal iliac limb occlusions occurred very early in the experience likely due to technical or anatomic factors. When we look at the incidence of type two endoleaks, we had previously noted there was a very high incidence of

type two endoleaks, 60% at one month, this did tail off a bit over time but it was still 35% at two years. A total of five patients in the pivotal IBE trial had a reintervention for type two endoleak through two years, and despite that high incidence of type two endoleak, overall the incidence of aortic aneurysm sac expansion

of more than five millimeters has been rare and low at two and nine percent at 12 and 24 months, and there's been no expansions of the treated common iliac artery aneurysm sac's at either 12 or 24 months. Freedom from reintervention has been quite good, 90.4% through two years in the trial and most of these

re-interventions were type two endoleaks. We now have some additional data out through three years in about two thirds of the patients we have imaging data available now through three years in the pivotal IBE trial, there have been no additional events, device related events reported since the two year data and through three years

we have no recorded type one or type three endoleaks, no aneurysm ruptures, no incidences of migration, very high rates of patency of the external and internal iliac arteries, good freedom from re-intervention and good freedom from common iliac artery aneurysm sac enlargement. And I think, in line with these findings, the guidelines

now from the SVS are to recommend preservation of the internal iliac arteries when ever present and that's a grade 1A recommendation, thank you.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- Good morning, thank you, Dr. Veith, for the invitation. My disclosures. So, renal artery anomalies, fairly rare. Renal ectopia and fusion, leading to horseshoe kidneys or pelvic kidneys, are fairly rare, in less than one percent of the population. Renal transplants, that is patients with existing

renal transplants who develop aneurysms, clearly these are patients who are 10 to 20 or more years beyond their initial transplantation, or maybe an increasing number of patients that are developing aneurysms and are treated. All of these involve a renal artery origin that is

near the aortic bifurcation or into the iliac arteries, making potential repair options limited. So this is a personal, clinical series, over an eight year span, when I was at the University of South Florida & Tampa, that's 18 patients, nine renal transplants, six congenital

pelvic kidneys, three horseshoe kidneys, with varied aorto-iliac aneurysmal pathologies, it leaves half of these patients have iliac artery pathologies on top of their aortic aneurysms, or in place of the making repair options fairly difficult. Over half of the patients had renal insufficiency

and renal protective maneuvers were used in all patients in this trial with those measures listed on the slide. All of these were elective cases, all were technically successful, with a fair amount of followup afterward. The reconstruction priorities or goals of the operation are to maintain blood flow to that atypical kidney,

except in circumstances where there were multiple renal arteries, and then a small accessory renal artery would be covered with a potential endovascular solution, and to exclude the aneurysms with adequate fixation lengths. So, in this experience, we were able, I was able to treat eight of the 18 patients with a fairly straightforward

endovascular solution, aorto-biiliac or aorto-aortic endografts. There were four patients all requiring open reconstructions without any obvious endovascular or hybrid options, but I'd like to focus on these hybrid options, several of these, an endohybrid approach using aorto-iliac

endografts, cross femoral bypass in some form of iliac embolization with an attempt to try to maintain flow to hypogastric arteries and maintain antegrade flow into that pelvic atypical renal artery, and a open hybrid approach where a renal artery can be transposed, and endografting a solution can be utilized.

The overall outcomes, fairly poor survival of these patients with a 50% survival at approximately two years, but there were no aortic related mortalities, all the renal artery reconstructions were patented last followup by Duplex or CT imaging. No aneurysms ruptures or aortic reinterventions or open

conversions were needed. So, focus specifically in a treatment algorithm, here in this complex group of patients, I think if the atypical renal artery comes off distal aorta, you have several treatment options. Most of these are going to be open, but if it is a small

accessory with multiple renal arteries, such as in certain cases of horseshoe kidneys, you may be able to get away with an endovascular approach with coverage of those small accessory arteries, an open hybrid approach which we utilized in a single case in the series with open transposition through a limited

incision from the distal aorta down to the distal iliac, and then actually a fenestrated endovascular repair of his complex aneurysm. Finally, an open approach, where direct aorto-ilio-femoral reconstruction with a bypass and reimplantation of that renal artery was done,

but in the patients with atypical renals off the iliac segment, I think you utilizing these endohybrid options can come up with some creative solutions, and utilize, if there is some common iliac occlusive disease or aneurysmal disease, you can maintain antegrade flow into these renal arteries from the pelvis

and utilize cross femoral bypass and contralateral occlusions. So, good options with AUIs, with an endohybrid approach in these difficult patients. Thank you.

- Ladies and gentlemen, I would like to thank Professor Veith for his kind invitation. A minimally invasive carotid endarterectomy. I have nothing to disclose. Here you can see the same patient operating with the classic carotid endarterectomy with normal incision and on the other side,

you will see the patient, the same patient after the minimal incision carotid endarterectomy. So ladies and gentlemen, if one can safely perform carotid endarterectomy by minimal incision, let's do it routinely. The technique of minimal incision carotid endarterectomy.

The incision must be done over a carotid bifurcation. In slim patient, it is easy to determine the location just by the palpation. By routinely, I advise to mark bifurcation by using ultrasound. Reaching the artery by tissue separation

along the border of sternocleidomastoid muscle. Once the artery is visualized, apply the vessel loop on the external carotid artery. If it is needed, on the thyroid artery. Pulling the external carotid artery vessel loop up to the opposite side,

and releasing posterior part of bifurcation enables visualization and applying vessel loop on the common carotid artery, about 15 millimeter down the bifurcation. Pulling the external carotid artery vessel loop down into the opposite side reveals anterior and posterior

portion of internal carotid artery. What is the most important? The vessel loop on the internal carotid artery must be located above atherosclerotic plague. Temporary clamping of internal carotid artery for 30 seconds should show if the shunt is needed.

If there is no neurological signs, we continue pulling all vessel loops to elevate the artery to the level of the skin. Typically, longitudinal incision from common carotid artery to internal carotid artery is performed. The main important maneuver

that led to perform this operation correctly and safely, this is eversion-like movement. After arteriotomy, I squeeze the artery, internal carotid artery, usually on the level of the end of the atherosclerotic plague, usually using the forceps.

I make eversion-like movement. This led me easily and safely remove that atherosclerotic plague from the internal carotid artery. Always allow one two second backflow from internal carotid artery

to remove potential debris by the blood flow. The same, unclamping common carotid artery for a short period of time to remove potential debris from the proximal part. Should a shunt be indicated, it is easy and quick to insert.

As a first step, the shunt is inserted into internal carotid artery. It is necessary to slightly loosen internal carotid vessel loop. In the same way, I put the shunt into the common carotid artery if it is needed.

Continued suture usually close the arteriotomy. If the diameter of the internal carotid artery is smaller than two millimeter, artificial patch can be easily used. Redon drainage is always used. I make another small incision for the Redon drain

due to very, very small incision for endarterectomy. And continued suture usually closes the wound for good cosmetical effort. Here, you can see the operation step-by-step. What I will now emphasize this group of patient.

This is symptomatic patient with a very soft atherosclerotic plague. In this series, our experience. This is 165 patients allocated into two groups. 122 patients in the minimal incision carotid endarterectomy group,

and 43 patients in classic endarterectomy group. Patients randomly allocated. Here, you can see the results three months, up to three months results. I will like to emphasize there were no nerve injury. Hoarseness and shunt was used in 12%

in minimal incision carotid endarterectomy group. Here, you can see in the first and second column, the results up to September 2017. Third and fourth column, the results up to September 2018. Here you can see some examples. Here you will see some more examples.

Here you will see the scar that is after the operation. So nearly no limitation in neck movement, quick wound healing, short hospital stay, and perfect cosmetic effect. So to conclude, ladies and gentlemen, this is the low risk operation.

This is the operation of quick recovery. Precautions and contraindication, according to my experience seems to be same as for classic carotid endarterectomy. Of course, further study is required. Minimal incision, I also used during the

aortobifemoral and femoropopliteal operations. I hope to show it next year. Ladies and gentlemen, when I was a young surgeon, it was said that big surgeon, big incision. I'd rather suggest, good surgeon should try to make the smallest incision possible.

Data and presented technique will be published. Thank you very much for your attention.

- Thank you for asking me to speak. Thank you Dr Veith. I have no disclosures. I'm going to start with a quick case again of a 70 year old female presented with right lower extremity rest pain and non-healing wound at the right first toe

and left lower extremity claudication. She had non-palpable femoral and distal pulses, her ABIs were calcified but she had decreased wave forms. Prior anterior gram showed the following extensive aortoiliac occlusive disease due to the small size we went ahead and did a CT scan and confirmed.

She had a very small aorta measuring 14 millimeters in outer diameter and circumferential calcium of her aorta as well as proximal common iliac arteries. Due to this we treated her with a right common femoral artery cutdown and an antegrade approach to her SFA occlusion with a stent.

We then converted the sheath to a retrograde approach, place a percutaneous left common femoral artery access and then placed an Endologix AFX device with a 23 millimeter main body at the aortic bifurcation. We then ballooned both the aorta and iliac arteries and then placed bilateral balloon expandable

kissing iliac stents to stent the outflow. Here is our pre, intra, and post operative films. She did well. Her rest pain resolved, her first toe amputation healed, we followed her for about 10 months. She also has an AV access and had a left arterial steel

on a left upper extremity so last week I was able to undergo repeat arteriogram and this is at 10 months out. We can see that he stent remains open with good flow and no evidence of in stent stenosis. There's very little literature about using endografts for occlusive disease.

Van Haren looked at 10 patients with TASC-D lesions that were felt to be high risk for aorta bifem using the Endologix AFX device. And noted 100% technical success rate. Eight patients did require additional stent placements. There was 100% resolution of the symptoms

with improved ABIs bilaterally. At 40 months follow up there's a primary patency rate of 80% and secondary of 100% with one acute limb occlusion. Zander et all, using the Excluder prothesis, looked at 14 high risk patients for aorta bifem with TASC-C and D lesions of the aorta.

Similarly they noted 100% technical success. Nine patients required additional stenting, all patients had resolution of their symptoms and improvement of their ABIs. At 62 months follow up they noted a primary patency rate of 85% and secondary of 100

with two acute limb occlusions. The indications for this procedure in general are symptomatic patient with a TASC C or D lesion that's felt to either be a high operative risk for aorta bifem or have a significantly calcified aorta where clamping would be difficult as we saw in our patient.

These patients are usually being considered for axillary bifemoral bypass. Some technical tips. Access can be done percutaneously through a cutdown. I do recommend a cutdown if there's femoral disease so you can preform a femoral endarterectomy and

profundaplasty at the same time. Brachial access is also an alternative option. Due to the small size and disease vessels, graft placement may be difficult and may require predilation with either the endograft sheath dilator or high-pressure balloon.

In calcified vessels you may need to place covered stents in order to pass the graft to avoid rupture. Due to the poor radial force of endografts, the graft must be ballooned after placement with either an aortic occlusion balloon but usually high-pressure balloons are needed.

It usually also needs to be reinforced the outflow with either self-expanding or balloon expandable stents to prevent limb occlusion. Some precautions. If the vessels are calcified and tortuous again there may be difficult graft delivery.

In patients with occluded vessels standard techniques for crossing can be used, however will require pre-dilation before endograft positioning. If you have a sub intimal cannulation this does put the vessel at risk for rupture during

balloon dilation. Small aortic diameters may occlude limbs particularly using modular devices. And most importantly, the outflow must be optimized using stents distally if needed in the iliac arteries, but even more importantly, assuring that you've

treated the femoral artery and outflow to the profunda. Despite these good results, endograft use for occlusive disease is off label use and therefor not reimbursed. In comparison to open stents, endograft use is expensive and may not be cost effective. There's no current studies looking

into the cost/benefit ratio. Thank you.

- [Professor Veith] Laura, Welcome. - Thank you Professor Veith, thank you to everybody and good morning. It's a great pleasure, to have the possibility to present the result of this randomized trial we performed near Rome in Italy.

Risk of CAS-related embolism was maximal during the first phases of the second procedure, the filter positioning predilation and deployment and post dilatation. But it continues over time with nithinol expansion so that we have an interaction between the stent struts

and the plaque that can last up to 28 or 30 days that is the so called plaque healing period. This is why over time different technique and devices have been developed in order to keep to a minimum the rate of perioperative neurological embolization.

This is why we have, nowadays, membrane-covered stent or mesh-covered stent. But a question we have to answer, in our days are, "are mesh covered stents able to capture every kind of embolism?" Even the off-table one.

This is why they have been designed. That is to say the embolism that occurs after the patient has left the operating room. This is why we started this randomized trial with the aim of comparing the rate of off-table subclinical neurological events

in two groups of patients submitted to CAS with CGuard or WALLSTENT and distal embolic protection device in all of them. We enrolled patient affected by asymptomatic carotid stenosis more than 70% and no previous brain ischemic lesion

detected at preoperative DW-MRI. The primary outcome was the rate of perioperative up to 72 hour post peri operatively in neurological ischemic events detected by DW-MRI in the two CAS group. And secondary outcome measure were the rise of (mumbles)

neuro biomarker as one on the better protein in NSE and the variation in post procedural mini mental state examination test in MoCA test score We enrolled 29 patients for each treatment group. The study protocol was composed by a preoperative DW-MRI and neuro psychometrics test assessment

and the assessment of blood levels of this two neuro biomarkers. Then, after the CAS procedure, we performed an immediate postoperative DW-MRI, we collect this sample up to 48 hours post operatively to assess the level of the neuro biomarkers

then assess 72 hour postoperatively we perform a new DW-MRI and a new assessment of neuro psychometric tests. 58 patient were randomized 29 per group. And we found one minor stroke in the CGuard group together with eight clinically silent lesion detected at 72 hours DW-MRI.

Seven patient presented in WALLSTENT group silent 72 DW-MRI lesion were no difference between the two groups but interestingly two patients presented immediately postoperatively DW-MRI lesions. Those lesion were no more detectable at 72 hours

this give doubts to what we are going to see with DW-MRI. When analyzing the side of the lesion, we found four ipsilateral lesion in the CGuard patient and four contra or bilateral lesion in this group while four ipsilateral were encountered in WALLSTENT patient and three contra or bilateral lesion

in the WALLSTENT group were no difference between the two groups. And as for the diameter of the lesion, there were incomparable in the two groups but more than five lesion were found in five CGuard patients, three WALLSTENT patient

with no significant difference within the two groups. A rise doubled of S1 of the better protein was observed at 48 hours in 24 patients, 12 of them presenting new DW-MRI lesions. And this was statistically significant when comparing the 48 level with the bars of one.

When comparing results between the two groups for the tests, we found for pre and post for MMSE and MoCA test no significant difference even if WALLSTENT patients presented better MoCA test post operatively and no significant difference for the postoperative score for both the neuro psychometric test between the two groups.

But when splitting patients not according to the treatment group but according to the presence of more or less than 5 lesion at DW-MRI, we found a significant difference in the postoperative score for both MMSE and MoCA test between both group pf patients.

To conclude, WALLSTENT and CGuard stent showed that not significant differences in micro embolism rate or micro emboli number at 72 postoperative hours DW-MRI, in our experience. 72 hour DW-MMRI lesion were associated to an increase in neuro biomarkers

and more than five lesion were significantly associated to a decrease in neuro psychometric postoperative score in both stent groups. But a not negligible number of bilateral or contralateral lesions were detected in both stent groups This is very important.

This is why, probably, (mumbles) are right when they show us what really happened into the arch when we perform a transfer more CAS and this is why, maybe,

the future can be to completely avoid the arch. I thank you for your attention.

- Thanks Dr. Weaver. Thank you Dr. Reed for the invitation, once again, to this great meeting. These are my disclosures. So, open surgical repair of descending aortic arch disease still carries some significant morbidity and mortality.

And obviously TEVAR as we have mentioned in many of the presentations has become the treatment of choice for appropriate thoracic lesions, but still has some significant limitations of seal in the aortic arch and more techniques are being developed to address that.

Right now, we also need to cover the left subclavian artery and encroach or cover the left common carotid artery for optimal seal, if that's the area that we're trying to address. So zone 2, which is the one that's,

it is most commonly used as seal for the aortic arch requires accurate device deployment to maximize the seal and really avoid ultimately, coverage of the left common carotid artery and have to address it as an emergency. Seal, in many of these cases is not maximized

due to the concern of occlusion of the left common carotid artery and many of the devices are deployed without obtaining maximum seal in that particular area. Failure of accurate deployment often leads to a type IA endoleak or inadvertent coverage

of the left common carotid artery which can become a significant problem. The most common hybrid procedures in this group of patients include the use of TEVAR, a carotid-subclavian reconstruction and left common carotid artery stenting,

which is hopefully mostly planned, but many of the times, especially when you're starting, it may be completely unplanned. The left common carotid chimney has been increasingly used to obtain a better seal

in this particular group of patients with challenging arches, but there's still significant concerns, including patients having super-vascular complications, stroke, Type A retrograde dissections and a persistent Type IA endoleak

which can be very challenging to be able to correct. There's limited data to discuss this specific topic, but some of the recent publications included a series of 11 to 13 years of treatment with a variety of chimneys.

And these publications suggest that the left common carotid chimneys are the most commonly used chimneys in the aortic arch, being used 76% to 89% of the time in these series. We can also look at these and the technical success

is very good. Mortality's very low. The stroke rate is quite variable depending on the series and chimney patency's very good. But we still have a relatively high persistent

Type IA endoleak on these procedures. So what can we do to try to improve the results that we have? And some of these techniques are clearly applicable for elective or emergency procedures. In the elective setting,

an open left carotid access and subclavian access can be obtained via a supraclavicular approach. And then a subclavian transposition or a carotid-subclavian bypass can be performed in preparation for the endovascular repair. Following that reconstruction,

retrograde access to left common carotid artery can be very helpful with a 7 French sheath and this can be used for diagnostic and therapeutic purposes at the same time. The 7 French sheath can easily accommodate most of the available covered and uncovered

balloon expandable stents if the situation arises that it's necessary. Alignment of the TEVAR is critical with maximum seal and accurate placement of the TEVAR at this location is paramount to be able to have a good result.

At that point, the left common carotid artery chimney can be deployed under control of the left common carotid artery. To avoid any embolization, the carotid can be flushed, primary repaired, and the subclavian can be addressed

if there is concern of a persistent retrograde leak with embolization with a plug or other devices. The order can be changed for the procedure to be able to be done emergently as it is in this 46 year old policeman with hypertension and a ruptured thoracic aneurism.

The patient had the left common carotid access first, the device deployed appropriately, and the carotid-subclavian bypass performed in a more elective fashion after the rupture had been addressed. So, in conclusion, carotid chimney's and TEVAR

combination is a frequently used to obtain additional seal on the aortic arch, with pretty good results. Early retrograde left common carotid access allows safe TEVAR deployment with maximum seal,

and the procedure can be safely performed with low morbidity and mortality if we select the patients appropriately. Thank you very much.

- Great, thanks Jeff. Welcome everyone. I was actually going to more talk about a wish list for ZFEN plus after some discussion with our industry partners. There's still not quite a final lock yet on the final device so due to various reasons we'll go over kind of a

review of the U.S. fenestrated data and then some of the things that I hope are some of the current limitations. This is our personal experience right now since the approval. 159 commercial ZFEN devices.

Still a reasonable proportion of parallel grafting for urgent or challenging cases. I think everybody acknowledges that obviously creating a seal zone above the renal arteries provides more seal for a standard infrarenal strategy. In fact because the U.S. device the instructions for use

call for a four to 14 millimeter infrarenal neck you wind up adding that in addition to the space that's across the renal arteries as well as the seal generally up to the scallop, or if you're building a large fenestration for the SMA, all the way up to the celiac.

Graft diameters from 22 to 36, the 36 millimeter device being on a 22 French system. The remainder of them being on a 20 French system. Remember that in the U.S. that we can only build three of these holes, if you will, and you can only have two maximum of one of the types meaning the general build

is two small fenestrations for the renals and either a scallop or large fenestration for the superior mesenteric artery. The results of the U.S. prospective trial have been presented and published multiple times in the past but basically in the original study

most of them under general anesthesia. Total amount of procedure time about three to four hours. The device implant time about two hours. Technical success achieved in everyone with all visceral vessels patent on the completion run. 30 day mortality excellent, the one problem

was with bowel ischemia. Major adverse events sort of immediately post op also related to bowel ischemia but no conversion, ruptures, or renal function decline. And at pre-discharge CTA all target vessels patent without any type one or junctional endoleaks.

Hospital stay two to three days. The later follow up paper, follow up out to three years with excellent outcomes related to problems with type one or type three endoleaks and the renal outcomes also excellent. Three patients with renal function deterioration.

But, a reasonable number of renal stent exclusions and stenoses which I do believe should be counted against the technology. And the reninterventions needed in a reasonable number of patients. So a primary patency of 81%

on the Capellan Meyer out to five years. When you look at then sort of early post approval outcomes, which is what we would consider more real world studies, when we looked at the first seven or eight sites that had early access right after approval we looked at this data and it turned out much like

what we would all do if we get our hands on newer technology now. More than two thirds, or just under two thirds of patients actually did not meet the recommended anatomic criteria of a four to 14 millimeter infrarenal neck but despite this the 30 day outcomes

compared to the U.S. data. This is a paper that just came out from the University of Indiana. First hundred patients since the ZFEN approval excellent outcomes but again still a reasonable reintervention rate mainly going after these renal branches.

This was our first one, a very sort of standard infrarenal short neck with a scallop and such built. Most of our builds now are with a large fenestration and bilateral renals. So what do we really need? I think in the newer device.

Well I think everybody wants something that's a little smaller access. We've had to use a reasonable number of both endo and open iliac conduits. I still think the angulation makes things difficult. These cases that have the SMA close to the renals

in the current construct do not allow us to build a device that makes it work for that. We've had to come up with various strategies when the SMA is lower than the higher renal. So I think really the future devices we need to work on the wait time, something with better renal branches

and a smaller access. Thanks.

- Thank you. I have no conflict of interest. Now the first burning question in carotid artery disease management. I agree with the previous speaker somewhat. Is that is who if anyone with asystematic Carotid Stenosis is likely to benefit from a carotid procedure

in addition to current optimal medical intervention? Where I have to ask this question because of significant advances in medical revascularization over the last three to four decades. Particularly since ACAS was published.

Now at most about 4% of persons with asystametic cartonied stenosis will have a stroke caused by the lesion as explained on Tuesday. We just know that its overall harmful and wasteful to do a procedure on all of them.

But stoke risk stratification cannot identify those who now benefit from carotid endocardectomy and stenting is overall more harmful than endocardectomy. There are many proposed markers of high stroke risk in asymptomatic carotenosis patients given just medical treatment.

Including those some of the European society vascular surgeons. But we already know that each of these markers used in isolation they lack sufficient specificity to identify those most likely to benefit from a procedure. In other words they are to common.

And also the event rates with these individual markers are too low. Particularly considering that all of these studies of these markers were done with suboptimal medical treatment. The second burning question.

Is will prevailing carotid trails find a current procedural indication in stroke prevention? Well the answer with respect to ACST-2 is no. Because its just a trail of stinted verse endocaretomy There is no medical treatment only arm. So its not testing the efficacy of these procedures.

It will help to measure harm of one procedure versus another. But this is of little value without a procedurual indication in the first place. The answer of CREST-2 is not too. Because unfortunately there randomizing

average risk patients like those in ACAS. And we already know that to do a procedure on all of these people is going to be futile and harmful. There's no stroke risk stratification before recruitment. An although they are doing some sub group analysis with markers.

Are these powered sufficiently? I haven't seen that is the case so far. If you look at the CREST-2 sample size. There is approximately 85% power to detect differences in peri-procedural stroke or death or later ipsilateral stroke with endocardectomy versus stent

or stenting versus medical treatment. If the average annual event rate in the medical intervention arm is greater than 2.1 or less than .2 compared to .9 in those procedural arms. Now we know from CREST-1 that they did achieve and average annual event rate of .9 with endocardectomy

but not with stenting. The risk there was about twice as high at 1.6. And its highly likely that they will get an annual event rate in the medical intervetion arm within that range. So that means that the overall role

CREST is most likely to show that stenting causes harm and endocardrectomy knows significant difference with the respect to medical intervention on its own. In other words no procedural indication because if stenting is more harmful we won't do it. And if endocardectomy adds no benefit we won't do it.

The same response for ESCT-2 because like CREST-2 its randomizing average surgical risk patients. No stroke risk stratification before recruitment. Not pre-powered for high stroke risk markers that we have been talking about. ACTRIS has the best chance of finding a procedural role

in asystematic carotid stenosis because they are doing stroke restratification before recruitment. Using embolize detection, errands of impaired to cerebral vascular reserve, errands of intraplaque hemorrhage on MRI

and errands of rapid and severe stenosis progression. But the outcome of this will depend on how the data is analyzed. For example these markers be tested separtly or combined. We already know that markers individually lack specificity. And at the moment the trail does appear to underpowered

with the total of only 700 total patients expected. Mean while TCAR is being accessed only in registries plus or minus input in CREST-2. So it appears we have absent or underpowered comparisons with current medical intervention.

So a clinical indication is unlikely to be established with the current research that is planned. Actually procedural trails are premature when it comes to asystametic cartonid stenosis. What we should be doing is first defining current optimal medical treatment.

Measuring its impact. Risk stratifying people. Using procedural trials only if we find a sub group with an ipsilateral stroke rate that is high enough despite current optimal medical treatment. So if anyone would like to help on this path.

Please speak to me afterwards.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Good morning. I'd like to thank everybody who's in attendance for the 7 A.M. session. So let's talk about a case. 63 year old male, standard risk factors for aneurismal disease. November 2008, he had a 52 mm aneurism,

underwent Gore Excluder, endovascular pair. Follow up over the next five, relatively unremarkable. Sac regression 47 mm no leak. June 2017, he was lost for follow up, but came back to see us. Duplex imaging CTA was done to show the sac had increased

from 47 to 62 in a type 2 endoleak was present. In August of that year, he underwent right common iliac cuff placement for what appeared to be a type 1b endoleak. September, CT scan showed the sac was stable at 66 and no leak was present. In March, six months after that, scan once again

showed the sac was there but a little bit larger, and a type two endoleak was once again present. He underwent intervention. This side access on the left embolization of the internal iliac, and a left iliac limb extension. Shortly thereafter,

contacted his PCP at three weeks of weakness, fatigue, some lethargy. September, he had some gluteal inguinal pain, chills, weakness, and fatigue. And then October, came back to see us. Similar symptoms, white count of 12, and a CT scan

was done and here where you can appreciate is, clearly there's air within the sac and a large anterior cell with fluid collections, blood cultures are negative at that time. He shortly thereafter went a 2 stage procedure, Extra-anatomic bypass, explant of the EVAR,

there purulent fluid within the sac, not surprising. Gram positive rods, and the culture came out Cutibacterium Acnes. So what is it we know about this case? Well, EVAR clearly is preferred treatment for aneurism repair, indications for use h

however, mid-term reports still show a significant need for secondary interventions for leaks, migrations, and rupture. Giles looked at a Medicare beneficiaries and clearly noted, or at least evaluated the effect of re-interventions

and readmissions after EVAR and open and noted that survival was negatively impacted by readmissions and re-interventions, and I think this was one of those situations that we're dealing with today. EVAR infections and secondary interventions.

Fortunately infections relatively infrequent. Isolated case reports have been pooled into multi-institutional cohorts. We know about a third of these infections are related to aortoenteric fistula, Bacteremia and direct seeding are more often not the underlying source.

And what we can roughly appreciate is that at somewhere between 14 and 38% of these may be related to secondary catheter based interventions. There's some data out there, Matt Smeed's published 2016, 180 EVARs, multi-center study, the timing of the infection presumably or symptomatic onset

was 22 months and 14% or greater had secondary endointerventions with a relatively high mortality. Similarly, the study coming out of Italy, 26 cases, meantime of diagnosis of the infection is 20 months, and that 34.6% of these cases underwent secondary endovascular intervention.

Once again, a relatively high mortality at 38.4%. Study out of France, 11 institutions, 33 infective endographs, time of onset of symptoms 414 days, 30% of these individuals had undergone secondary interventions. In our own clinical experience of Pittsburgh,

we looked at our explants. There were 13 down for infection, and of those nine had multiple secondary interventions which was 69%, a little bit of an outlier compared to the other studies. Once again, a relatively high mortality at one year. There's now a plethora of information in the literature

stating that secondary interventions may be a source for Bacteremia in seeding of your endovascular graft. And I think beyond just a secondary interventions, we know there's a wide range of risk factors. Perioperative contamination, break down in your sterile technique,

working in the radiology suite as opposed to the operating room. Wound complications to the access site. Hematogenous seeding, whether it's from UTIs, catheter related, or secondary interventions are possible.

Graft erosion, and then impaired immunity as well. So what I can tell you today, I think there is an association without question from secondary interventions and aortic endograft infection. Certainly the case I presented appears to show causation but there's not enough evidence to fully correlate the two.

So in summary, endograft infections are rare fortunately. However, the incidence does appear to be subtly rising. Secondary interventions following EVAR appear to be a risk factor for graft infection. Graft infections are associated without question

a high morbidity and mortality. I think it's of the utmost importance to maintain sterile technique, administer prophylactic antibiotics for all secondary endovascular catheter based interventions. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.