Create an account and get 3 free clips per day.
Chapters
Saddle PE (Submassive)|Thrombolysis (Catheter-directed)|38|Female
Saddle PE (Submassive)|Thrombolysis (Catheter-directed)|38|Female
2016acceleratedacutebenefitcathetercentralclinicalclotconventionaldoseenrolledessentiallyfocusingheparinlungperfusionpressureseattlesegmentalSIRthrombolysisthrombolyticthrombustransducersultrasound
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
How Can Medical Holograms And 3D Imaging Be Helpful During Endovascular Procedures
3D medical imagingaortaaugmentedcardiaccatheterCoreValve (Medtronic) - Transcatheter Aortic Valve Delivery Catheter System / TAVIguide (FEops) - Simulation technology / Holoscope (RealView Imaging) - 3D medical imagingDigital Light ShapingdynamicfloatingfocalfocusinteractmitralneedlepatientRealView ImagingsliceTherapeutic / DiagnosticvalveVeith
Finish Treatment Of Acute DVT In The Lab
Finish Treatment Of Acute DVT In The Lab
6-10 F AspiraxacuteAnti-coagulants & compressing stockingaspirateCDTclinicalDescending DVT - May Turner SYndromedevicedevicesDVTfemoralfollowfrenchiliofemoralmechanicalMechanical thrombectomymulticenterpatencypatientpatientsPharmacological ThrombectomypoplitealprofundaproximalseverestentsstudysubacuteswellingsymptomssyndromethrombectomythrombolysisthrombolyticthrombusTrans-Popliteal Accesstraumatictreatedtreatmentunderlyingvein
Status Of Dual Layer Stents For CAS: Is Acute Occlusion An Issue And How To Avoid It
Status Of Dual Layer Stents For CAS: Is Acute Occlusion An Issue And How To Avoid It
acuteadequateantiplateletappositionarterybridgingcarotidcarotid stentcerebrovascularclopidogreldeploymentdualhighlightintravenouslylayermaneuvermeaningmedicationobservedocclusionpatientpatientsperformedporepredisposingpreparationpublicationsRoadSaverstenosisstentstentingstrokeTerumo interventional systemstherapythrombogenicthrombogenicityVeithwallstent
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
Results Of A Multicenter Italian Registry Of Real World CAS With The C-Guard Mesh Covered Stent: The IRONGUARD 2 Study
brachialC-GuardcarotidCASCovered stentcumulativedemographicdeviceembolicembolic protection deviceenrolledexternalInspire MDminormyocardialneurologicneurologicalocclusionongoingpatientsproximalratestenosisstenttiastranscervicaltransfemoral
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
What Morphological Changes On CT After EVAR Predict The Need For Re-Interventions: From The DREAM Trial
analysisaneurysmangulationaorticdiameterendograftendoleakendoleaksendovascularevariliaclengthlimbmaximalneckpatientspredictpredictivepredictspreoperativeproximalreinterventionsscanssecondaryshrinkagestenosisstenttherapeuticthrombus
Treating Venous Thromboembolism Without Lytic Medications
Treating Venous Thromboembolism Without Lytic Medications
amountaspirateaspirationassistedcatheterclotcreatedevicedevicesfocalfrenchiliacmechanicalpatientpulmonaryrheolyticstentsuctionthrombustypetypesvacuumveinvenous
Is Coronary Stenting (PCI) Overused As The ORBITA RCT (Comparing Stenting To Medical Treatment Suggests)
Is Coronary Stenting (PCI) Overused As The ORBITA RCT (Comparing Stenting To Medical Treatment Suggests)
anginacabgcoronarydiseaseexerciseinterventionalistsischemiaischemicmedicalobservationaloptimaloptimizedpatientsPCIplaceborevascularizationsymptomstherapeutictherapytrialunderpoweredversus
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
How To Use Hybrid Operating Rooms Optimally Beyond Vascular Procedures: How The Availability Of Mobile C-Arms Can Help
accessAscending Aortic Repair - Suture line DehiscenceaugmentbasicallyDirect Percutaneous Puncture - Percutaneous EmbolizationembolizationembolizefusionguidancehybridimagingincisionlaserlocalizationlungmodalitypatientscannedscannerTherapeutic / Diagnostictraumavascular
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
Why Open Endarterectomy Is The Best Treatment For Common Femoral Artery Lesions: It Is Still The Gold Standard In Most Cases Despite What You May Read And Hear
amputationarterycommoncommon femoralembolizationendarterectomyendovascularfemoralfemoral arteryhematomaInterventionsmehtamorbiditymortalitypatencypatientsperioperativeprimaryrestenosisrevascularizationrotationalstentstentingstentssuperficialsurgicalsurvivalTECCO
New Devices For False Lumen Obliteration With TBADs: Indications And Results
New Devices For False Lumen Obliteration With TBADs: Indications And Results
aneurysmangiographyaortaballooningCcentimeterdilatorendograftendovascularEndovascular DevicefenestratedgraftiliacimplantedlumenoccludeoccluderoccludersoccludesremodelingstentStent graftstentstechniqueTEVARtherapeuticthoracicthoracoabdominalVeithy-plugyplug
VICI Stent Trial Update
VICI Stent Trial Update
acuteBoston ScientificchronicdefinitionsdifferencesDVTendpointfeasibilityinclusioning Stent / Venovo (Bard Medical) - Venous Stent System / Abre (Medtronic) - Venous Self-Exping Stent SystemivusnitinolocclusionocclusionspatencypatientspivotalproximalstenttermstherapeuticthrombotictrialsvenousVenous Stent SystemViciZilver Vena (Cook Medical) - Venous Self-Exp
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
Technical Tips For The Management Of Cervical And Mediastinal Iatrogenic Artery Injuries: How To Avoid Disasters
9F Sheath in Lt SCAAbbottaccessarterybrachialcarotidcatheterCordisDual Access (Rt Femora + SC sheath) ttt with suture mediated proglid over 0.035 inch wireendovascularfemoralfrenchgraftiatrogenicimaginginjuriesleftPer-Close suture mediated ProgliderangingsheathstentsubclaviantreatedvarietyvascularvenousvertebralVessel Closure Devicewire
Endovascular Thrombus Removal In Patients With Paget-Schroetter Syndrome: Use Of The Indigo System
Endovascular Thrombus Removal In Patients With Paget-Schroetter Syndrome: Use Of The Indigo System
acuteadjunctiveangiojetbloodcomplicationcomplicationsdeviceDVTextremitykidneyminimizeonsetoutletovernightpatientsPenumbrapriorrenalswellingthoracicthrombolysisthrombusveinsvenous
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
Why A Reinvigoration Of CAS Is Justified By Better Embolic Protection And Newer Mesh Covered Stents; OCT Proves It
carotidcarotid stentCASCEAcerebraldemonstratedembolicendovascularincidenceinteractionmicroembolicplaqueprotectionproximalRoadSaverstentstentingstrengthsTerumo interventional systemstherapeuticunprotected
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
Surgical vs. Endovascular Management Of Cephalic Arch Syndrome
adjunctsanatomicangioplastyarchballoonballoonsbrachiocephaliccephalicdeploymentfistulasfunctionalgoregraftgraftingInterventionspatencypredictorsprimaryradiocephalicrecurrentstenosesstenosisstentStent graftstentingsuperiorsurgicaltranspositionviabahn
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
Midterm Comparative Results Of CAS With 2 Mesh Covered Stents - The C-Guard (InspireMD) And The Roadsaver (Terumo)
activityarterycarotidcarotid arterycarotid stentCASCGuard (InspireMD) - Embolic Prevention Stentconventionalembolizationexternalexternal carotidincidenceipsilateralischemiclesionlesionsocclusionpatencypatientplaquereportedrestenosisriskRoadSaverstenosisstentstentsterumoTerumo interventional systemsTherapeutic / Diagnostic
Histology of In-stent Stenosis
Histology of In-stent Stenosis
angioplastiedangioplastyAnti-platelet therapyanticoagulationascendingbiopsyBoston ScientificcalcificationcontrastdiffuseDiffuse severe in-stent stenosisEndoprosthesisextendingfemoralfollowupfreshhistologyiliacintimalmaximalnitinolocclusionorganizingoutflowoverlappingpoplitealPost- thrombotic SyndromePTArecanalizationreliningRelining with WallstentsstenosisstentstentingstentssuperficialTherapeutic / DiagnosticthickeningthrombolysisthrombustimelineVeithvenogramwallstentwallstents
Update On The Value Of Tight Glucose Control To Minimize SCI From TEVAR And F/B/EVAR Treatment Of TAAAs
Update On The Value Of Tight Glucose Control To Minimize SCI From TEVAR And F/B/EVAR Treatment Of TAAAs
acuteaneurysmaneurysmsantihypertensivebloodclinicalcorddecreaseeffectselevatedendovascularextremityglucosehourshydrationhyperglycemiainfusioninitiationinsulinischemiclevelslowerMBEVARmultimodalneuronalparaplegiapatientsperfusionpostoperativepreoperativeprotocolproximalspinalsubarachnoidtherapeuticthoracoabdominalundergoingunderwentVeithweakness
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
Is An Open Popliteal Vein A Prerequisite For Success; Does PMT Now Lead To Over-Stenting
acuteangiojetBoston ScientificclotdevicediscretionDVTiliacmechanicalmechanical thrombectomy deviceoperativeoutflowpatencyPatentpatientspoplitealratestentstentingstentstherapeutictherapiestherapythrombolysisthrombustreatmentvein
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
Intraop Completion Control Study by Duplex or Angiography is a MUST After CEA
authorscarotidCASCEAclinicalcompletioncrestdatadecreasediagnosticduplexendarterectomyindicationsintraoperativemanuscriptmonitoringmultivariateneurologicpatientsrandomizedrateselectiveshuntstrokestudyunivariatevascular
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
answeranticoagulationattractendpointevidenceexcisionhemostasislimbocclusionpatientsthoracicthrombolysistpaulceruppervcssvenousvillalta
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
Update On The Value Of Tack Assisted Balloon Angioplasty (TOBA) : Results Of The TOBA II Study
adjudicatedanchoringbailoutclinicaldissecteddissectionDissection repair devicedissectionsefficacyendovascularenrollenrolledfreedomimplantimprovementIntact MedicallengthlesionlesionsnitinolpatencypatientsPOBAprimaryradiopaqueregardrestenoticstenosisstentTack endovascular systemtargettherapeuticvessel
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
Routine Use Of Ultrasound To Avoid Complications During Placement Of Tunneled Dialysis Catheters: Analysis Of 2805 Cases
angioplastyarteryballoonBalloon angioplastycannulationcathetercentralchronicallycomplicationsDialysisguidancejugularlesionliteraturemechanicaloccludedpatientsperformedplacementportionroutineroutinelystenoticsubsequenttunneledultrasoundunderwentveinwire
Transcript

Second case, took a little bit more effort here. So it's a 38-year-old woman with acute shortness of breath, chest pain, sporadic light headedness with exhaustion.

She also had right calf pain and swelling, it turned out to be a DVT. This was all after 11 laparoscopic gastric bandings surgery one week ago. So a PE particle CT shows a [UNKNOWN] there extending into lumbar

and segmental vessels. Again focusing on the heart obvious left for a set of deviation, elevated RV to LV ratio. A patient in that criteria for a submassive PE, nobody was interested in systemic thrombolysis given the recent surgery.

So we decided to go do a catheter directed thrombolysis in this young woman. So initially, angiographic images show, just re demonstrate the thrombus seen on CT but you'll also see that there's more types of perfusion at the right lung base and left of her lung

zone. The PA pressure was elevated. We started thrombolysis with the catheter on the right side, and after 20 hours you'll note that there is improved perfusion at the right lung base. However there is a lot of central clot blood in there and the PA pressure

was not appreciably changed. So we kept on going with the catheter on the right side and at 42 hours, pretty similar appearance actually to the prior angiogram. And the PA pressure was not appreciably changed. At 60 hours though we started to see marked improvement in that central thrombus and the PA pressure started correspondingly improved.

84 hours the central clot thrombus has essentially got there's a little bit of segmental thrombus in the right of the lobe. The PA pressure was getting towards normal. So we swung the catheter over to left side, and again they're considering continuing thrombolysis.

We saw here that the central clot and [INAUDIBLE] clot that side was also essentially resolved more or less homogeneous perfusion of the left lung. So PA pressure was better patient was feeling much better we stopped at that point. She was discharged home on seventh day and therapeutic Lovenox.

She was [INAUDIBLE] outside institution but was asymptomatic on a 60-day follow up with us in our clinic. I just wanted to briefly contrast our technique with those in the published literature. So flow-directed CDT seems effective in our institutional experience but I think a valid question at this point is can we do better?

For example what is the optimal catheter to use and what is the appropriate thrombolytic dose and duration? Focusing on the catheter so ULTIMA and SEATTLE II both use ultrasound assisted thrombolysis. It's an attracted device, ultrasound disaggregates uncross-linked fibrin fibrous. Increases

permeability to clot thrombolysis and it's also FDA approved for medication. But I think it's important at this point if we ever get the benefit of USAT over conventional CDT has not been established in clinical trials. There was however, a prospective randomized controlled trial of USAT versus conventional CDT for acute iliofemoral DVT.

Half of the patients had EkoS placed and turned on and others had the head tuned off. And so essentially functioned as the infusion catheter is affixed to this regiment. And they saw no difference in primary or secondary end points. For example, thrombus load reduction, need for adjunctive angioplasty

or stenting, incidents of complications, three month patency and incidents of post thrombotic syndrome. Now, granted this trial was power to see a 50% difference. And it's possible that if they enrolled more patients. There was seen a difference,

but the obviously felt like that was unlikely given the similarity between the groups. Why do I think this is irrelevant? So, in DVT the transducers are typically embedded in the clot. In PE lesion/g in a my experience, I think it's difficult to achieve that,

I think the majority ensure the transducers are often remote from thrombus, for example in a different lobe entirely or proximal adjacent to the thrombus. And given that the effect of ultrasound is local if no benefit was demonstrated in the DVT thrombolysis then it isn't clear to me

at this point if there is a benefit for a PE. There may well be a benefit but it just is a value driven measure in our institution. We have not yet adopted in the USAT in our practice. Secondly I just wanted to briefly touch on thrombolytic dose and duration.

So ULTIMA and SEATTLE II fixed those therapies and duration, lasting less than recorded 24 hours. And I think an unresolved question is there an advantage to longer thrombolysis so anecdotally I feel like reducing reductions in PA pressure and thrombus burden with continued CDT after 24 hours.

This may be impart attributable to heparin catch up as patients who are on heparin will have an improved thrombus burden and PA pressure over time although I think it's important to note that in SEATTLE II they saw that same PA pressure the end of USAT, and that transgressing echo 24 hours after the procedure.

So it is possible that we get a more accelerated PA pressure reduction with continuing CDT over 24 hours. But there are clear disadvantages to longer thrombolysis for example length and ICU statements which is gonna be a very important factor in adoption of CDT ICU stay time and hospital time for example. There's probably an increase bleeding risk at this time there's

no clinical benefit to accelerated PA pressure reduction. We recently enrolled in the PERFECT registry and comparing our results to others in the published literature may help me to share light on

- Good morning, thank you very much to Dr. Veith and Professor Veith and the organizers. So this is real holography. It's not augmented reality. It's not getting you separated from the environment that you're in. This is actually taking the 3D out of the screen

so the beating heart can be held in the palm of your hand without you having to wear any goggles or anything else and this is live imaging. It can be done intra-procedure. This is the Holoscope-i and the other one is the Holoscope-x

where in fact you can take that actually 3D hologram that you have and you can implant it in the patient and if you co-register it correctly then you can actually do the intervention in the patient

make a needle tract to the holographic needle and I'm going to limit this to just now what we're actually doing at the moment and not necessarily what the future can be. This is ultimate 3D visualization, true volumes floating in the air.

This is a CT scan. So it started working, So we get rid of the auto-segmented and you can just interact. It's floating 45 centimeters away from you and you can just hold the patient's anatomy here and you can slice into the anatomy.

This is for instance a real CT of an aorta with the aortic valve which they wanted to analyze for a core valve procedure. This is done by Phelps. If you take the information

and they've looked at the final element analysis and interaction between the stem and the tissue. So here you can make measurements in real time. So if you did the 3D rotation and geography and you had the aorta and you wanted to put in a stent graft EVAR TVAR, and you would see,

and you could put in a typical tuber that you would do, and you could see how it, and this is a dynamic hologram, so you can see how it would open up, you can mark where your fenestration's chimney is and all that type of stuff would be. And you can move it around, and you have

a complete intuitive understanding of a, can we go to the next slide please, I can't, it seems to be clicking, thank you. So how do we do all this? Well, to create a hologram, what you need to do is just conceptualize it as printing in light.

Like if you had plastic and you took the XYZ data and you just put it into a 3D printer, and it would print it for you in light, then you'd go, Okay, so I understand, if it was printed for you in plastic then you'd understand. But imagine it's printing in light.

So we have every single piece of light focused, each photon is focused so that you can see it with a naked eye, in a particular place, but the difference is that it's totally sterile, you don't have to take off your gloves, you don't have to use a mouse,

you can interact with it directly. And all the XYZ data is 100% in place, so we've just seen a beautiful demonstration of augmented reality, and in augmented reality, you have to wear something, it isolates you from the environment that you're in, and it's based on

stereoscopy, and stereoscopy is how you see 3D movies, and how you see augmented reality, is by taking two images and fusing them in one focal plane. But you can't touch that image, because if you look at me now, you can see me very well, but if you hold your finger up 45 centimeters

and you focus on your finger, I become blurred. And so, you can only focus in one plane, you can't touch that image, because that image is distant from you, and it's a fused image, so you have the focus plane and you have the convergence plane, and this is an illusion

of 3D, and it's very entertaining, and it can be very useful in medical imaging, but in intra-operative procedures it has to be 100% accurate. So you saw a very beautiful example in the previous talk of augmented reality, where you have gesturing, where you can actually gesture with the image,

you can make it bigger, you can make it smaller. But what RealView does by creating real holography, which is all the XYZ data, is having it in the palm of your hand, with having above 20 focal planes, here, very very close to your eye, and that in another way, of having all those focal planes not only actually lets you

do the procedure but prevents nausea and having a feeling of discomfort because the image is actually there as of having the illusion of the images there. So just to go back, all RealView imaging is doing, is it's not changing your 3D RA cone, BMCT, MRI,

we can do all those XYZ datas and we can use them and we can present them, all we're doing, so you use your acquisition, we're just taking that, and we're breaking open the 3D displays and seeing all that 3D data limited in the 2D screen, let's set it free and have it floating in the air.

So we have the holoscope-i for structural cardiology and electrophysiology, and obviously the holoscope-x, which makes the patient x-rayed, completely visible. So its an over the head, this is now, obviously, free-standing when somebody buys us like Phillips or Siemens, it will be integrated into your lab,

come down from the ceiling, it's an independent system, and you just have a visor that you look through, which just goes up and down whenever you want to use it. You can interact with it the same as you do with your iPhone you can visualize, you can rotate, you can mark, you can slice, you can measure, as I showed you

some examples of it, and you can do this by voice as well, you just talk to it, you say slice and you slice it with your hand, it recognizes everybody's hand, there's no delay for whatever you're imaging. So structural cardiac procedures, this is what

a mitral valve will look like, floating in the air in front of you, you can see the anterior leaflet, the posterior leaflet. And once the catheter is inside and you're guiding the catheter inside the procedure, you can turn on your doppler, you'll be able to see that the catheter

movements, so for someone doing a mitral clip, or whatever, this would be very very useful. This is an electrophysiological procedure, and you can see how the catheter moves, when the catheter will move, and obviously, as my previous speaker was saying, you are appreciating 3D in a 2D screen,

so it's very difficult to appreciate, you'll have to take my word for it. But I think you can see dynamic colography at this quality, that you can interact with, that is something that is very special, we've presented at a number of conferences,

including at Veith, and we've already done a first in man, and the most exciting thing for now, is just this week, the first machine was installed at Toronto general, at the Peter Munk Cardiac Center, and they've done their first case, and so now we are launching and clinical trials in 2018, and hopefully,

I'll have something which is more vascular relevant, at the next time, Veith 2019, thank you very much.

- You already heard about different devices which can finish the treatment of acute DVT in the lab and I would like to add one of the devices which is quite widespread in Europe. And share the first study on this device. This is called the Aspirex device. So what is the objective?

Post traumatic syndrome after proximal DVT, I think that's clear. 25% of the patient are at risk for developing post traumatic syndrome. I think that is clear and some of these patient even expect severe post traumatic syndrome.

We already saw this ATTRACT trial outcome and we learned that especially patient with Iliofemoral DVT might benefit from treatment, invasive treatment of Iliofemoral DVT but of course, we need to know that is catheter-directed thrombolysis causes issues

and therefore our way should be to go away from thrombolytic therapy to a pure mechanical thrombectomy approach. This is a typical case example of a patient, 20 year old female patient who came to the emergency room with that leg on the left side in the morning,

back pain in the evening and this is clear that it is a descending Iliofemoral DVT in that patient caused by May-Thurner syndrome. So, with modern devices like this Aspirex, mechanical thrombectomy device, the 10 French device is able to aspirate up to 130 millimeter,

ml per minute of clots. You see that this can be effectively treated and then stinted within the May-Thurner syndrome within one session approach. So, but, what is clear of course that we need to get data

for these modern Mechanical Thrombectomy devices and therefore, we conducted clinical follow-up study to evaluate safety and efficiency of that Aspirex Mechanical Thrombectomy device. This device is based on the Archimedic principle which you can see here it comes with six up

to 10 French systems and with that you are able, as I already showed to sac 130ml of thrombus per minute. So these are the study details I want to show you. We treated 50 psychs, 56 patients with acute, subacute and acute on chronic which means up to 3 months of symptoms patients with Iliofermal DVT.

We performed IVIS on all these patients. We found May-Thurner syndrome in at least half of these patients as a reason for the Iliofermal DVT. You see the patient demographics. Some of the patients had even malignancy condition. A lot of patients were on oral contraceptives.

Here are the clinical symptoms within our cohort. Most of the patients came with swelling and rest pain. The rVCSS at the beginning was 4.5 within this cohort. Most of the traumatic lesions were on the left side involving even the profunda and the common femoral vein in this cohort.

You see here the excess which we used for treating these Iliofermal DVT, we used in the main part of the cohort, the left popliteal vein access or left femoral vein access. 84% were treated with 10 French system, the Aspirex device. As I mentioned we used IVIS

to analyze underlying pathologies. We found in most of the patients underlying pathologies and this explains why we implanted stents in 100% of the patients. You see the treatment duration which was in mean 94 minutes within this treatment cohort.

These are the patency analysis within one year. You see patency at 12 months, 87% percent in these patients, which we could follow up after 12 months. Here you see the Post-thrombotic syndrome analysis after 12 months so only low PTS

and some kind of moderate PTS were seen in these patients. There were no severe Post-thrombotic syndrome. Most of the patients just had a little bit of swelling after that procedure. Of course, it's important to mention safety and those end points.

There were just some small punctures associated, site being complicationS. Of course re-hospitalization is a severe adverse event which you can see here. But there were of course no bleeding events in this cohort. And to follow up

on this much more multicentric perspective trial, we just started a multicenter trial on this and we'll follow up patients up to five years within this just initiated multicenter registry. And I think we can show some preliminary data next year. Thank you very much.

- Thank you very much for the kind introduction, and I'd like to thank the organizers, especially Frank Veith for getting back to this outstanding and very important conference. My duty is now to talk about the acute status of carotid artery stenting is acute occlusion an issue? Here are my disclosures.

Probably you might be aware, for sure you're aware about pore size and probably smaller pore size, the small material load might be a predisposing factor for enhanced thrombogenicity in these dual layer stents, as you're probably quite familiar with the CGUARD, Roadsaver and GORE, I will focus my talk a little bit

on the Roadsaver stent, since I have the most experience with the Roadsaver stent from the early beginning when this device was on the market in Europe. If you go back a little bit and look at the early publications of CGUARD, Roadsaver and GORE stent, then acute occlusion the early reports show that

very clearly safety, especially at 30 days in terms of major cardiac and cerebrovascular events. They are very, very safe, 0% in all these early publications deal with these stents. But you're probably aware of this publication, released end of last year, where a German group in Hamburg

deals with carotid artery stenosis during acute stroke treatment. They used the dual layer stent, the Roadsaver stent or the Casper stent in 20 cases, in the same time period from 2011 to 2016, they used also the Wallstent and the VIVEXX stent,

in 27 cases in total and there was a major difference, in terms of acute stent occlusion, and for the Roadsaver or Casper stent, it was 45%, they also had an explanation for that, potential explanations probably due to the increase of thrombogenic material due to the dual layer

insufficient preparation with antiplatelet medication, higher patient counts in the patients who occluded, smaller stent diameters, and the patients were not administered PTA, meaning Bridging during acute stroke patient treatment, but it was highlighted that all patients received ASA of 500mg intravenously

during the procedure. But there are some questions coming up. What is a small stent diameter? Post-dilatation at what diameter, once the stent was implanted? What about wall apposition of the stent?

Correct stent deployment with the Vicis maneuver performed or not and was the ACT adjusted during the procedure, meaning did they perform an adequate heparinization? These are open questions and I would like to share our experience from Flensburg,

so we have treated nearly 200 patients with the Roadsaver stent from 2015 until now. In 42 patients, we used this stent exclusively for acute stroke treatment and never, ever observed in both groups, in the symptomatic and asymptomatic group and in the group of acute stroke treatment,

we never observed an acute occlusion. How can we explain this kind of difference that neither acute occlusion occurred in our patient group? Probably there are some options how we can avoid stent thrombosis, how we can minimize this. For emergency treatment, probably this might be related

to bridging therapies, though in Germany a lot of patients who received acute stroke treatment are on bridging therapy since the way to the hospital is sometimes rather long, there probably might be a predisposing factor to re-avoid stent thrombosis and so-called tandem lesions if the stent placement is needed.

But we also take care of antiplatelet medication peri-procedurally, and we do this with ASA, as the Hamburg group did and at one day, we always start, in all emergency patients with clopidogrel loading dose after positive CT where we could exclude any bleeding and post-procedurally we go

for dual anti-platelet therapy for at least six months, meaning clopidogrel and ASA, and this is something probably of utmost importance. It's quite the same for elective patients, I think you're quite familiar with this, and I want to highlight the post-procedural clopidogrel

might be the key of success for six months combined with ASA life-long. Stent preparation is also an issue, at least 7 or 8 diameters we have to choose for the correct lengths we have to perform adequate stent deployment and adequate post-dilatation

for at least 5mm. In a lot of trials the Roadsaver concept has been proven, and this is due to the adequate preparation of the stent and ongoing platelet preparation, and this was also highlight in the meta-analysis with the death and stroke rate of .02% in all cases.

Roadsaver study is performed now planned, I am a member of the steering committee. In 2000 patients, so far 132 patients have been included and I want to rise up once again the question, is acute occlusion and issue? No, I don't think so, since you keep antiplatelet medication

in mind and be aware of adequate stent sizing. I highly appreciated your attention, thank you very much.

- Thank you Professor Veith. Thank you for giving me the opportunity to present on behalf of my chief the results of the IRONGUARD 2 study. A study on the use of the C-Guard mesh covered stent in carotid artery stenting. The IRONGUARD 1 study performed in Italy,

enrolled 200 patients to the technical success of 100%. No major cardiovascular event. Those good results were maintained at one year followup, because we had no major neurologic adverse event, no stent thrombosis, and no external carotid occlusion. This is why we decided to continue to collect data

on this experience on the use of C-Guard stent in a new registry called the IRONGUARD 2. And up to August 2018, we recruited 342 patients in 15 Italian centers. Demographic of patients were a common demographic of at-risk carotid patients.

And 50 out of 342 patients were symptomatic, with 36 carotid with TIA and 14 with minor stroke. Stenosis percentage mean was 84%, and the high-risk carotid plaque composition was observed in 28% of patients, and respectively, the majority of patients presented

this homogenous composition. All aortic arch morphologies were enrolled into the study, as you can see here. And one third of enrolled patients presented significant supra-aortic vessel tortuosity. So this was no commerce registry.

Almost in all cases a transfemoral approach was chosen, while also brachial and transcervical approach were reported. And the Embolic Protection Device was used in 99.7% of patients, with a proximal occlusion device in 50 patients.

Pre-dilatation was used in 89 patients, and looking at results at 24 hours we reported five TIAs and one minor stroke, with a combined incidence rate of 1.75%. We had no myocardial infection, and no death. But we had two external carotid occlusion.

At one month, we had data available on 255 patients, with two additional neurological events, one more TIA and one more minor stroke, but we had no stent thrombosis. At one month, the cumulative results rate were a minor stroke rate of 0.58%,

and the TIA rate of 1.72%, with a cumulative neurological event rate of 2.33%. At one year, results were available on 57 patients, with one new major event, it was a myocardial infarction. And unfortunately, we had two deaths, one from suicide. To conclude, this is an ongoing trial with ongoing analysis,

and so we are still recruiting patients. I want to thank on behalf of my chief all the collaborators of this registry. I want to invite you to join us next May in Rome, thank you.

- Thank you Mr. Chairman, good morning ladies and gentlemen. So that was a great setting of the stage for understanding that we need to prevent reinterventions of course. So we looked at the data from the DREAM trial. We're all aware that we can try

to predict secondary interventions using preoperative CT parameters of EVAR patients. This is from the EVAR one trial, from Thomas Wyss. We can look at the aortic neck, greater angulation and more calcification.

And the common iliac artery, thrombus or tortuosity, are all features that are associated with the likelihood of reinterventions. We also know that we can use postoperative CT scans to predict reinterventions. But, as a matter of fact, of course,

secondary sac growth is a reason for reintervention, so that is really too late to predict it. There are a lot of reinterventions. This is from our long term analysis from DREAM, and as you can see the freedom, survival freedom of reinterventions in the endovascular repair group

is around 62% at 12 years. So one in three patients do get confronted with some sort of reintervention. Now what can be predicted? We thought that the proximal neck reinterventions would possibly be predicted

by type 1a Endoleaks and migration and iliac thrombosis by configurational changes, stenosis and kinks. So the hypothesis was: The increase of the neck diameter predicts proximal type 1 Endoleak and migration, not farfetched.

And aneurysm shrinkage maybe predicts iliac limb occlusion. Now in the DREAM trial, we had a pretty solid follow-up and all patients had CT scans for the first 24 months, so the idea was really to use

those case record forms to try to predict the longer term reinterventions after four, five, six years. These are all the measurements that we had. For this little study, and it is preliminary analysis now,

but I will be presenting the maximal neck diameter at the proximal anastomosis. The aneurysm diameter, the sac diameter, and the length of the remaining sac after EVAR. Baseline characteristics. And these are the re-interventions.

For any indications, we had 143 secondary interventions. 99 of those were following EVAR in 54 patients. By further breaking it down, we found 18 reinterventions for proximal neck complications, and 19 reinterventions

for thrombo-occlusive limb complications. So those are the complications we are trying to predict. So when you put everything in a graph, like the graphs from the EVAR 1 trial, you get these curves,

and this is the neck diameter in patients without neck reintervention, zero, one month, six months, 12, 18, and 24 months. There's a general increase of the diameter that we know.

But notice it, there are a lot of patients that have an increase here, and never had any reintervention. We had a couple of reinterventions in the long run, and all of these spaces seem to be staying relatively stable,

so that's not helping much. This is the same information for the aortic length reinterventions. So statistical analysis of these amounts of data and longitudinal measures is not that easy. So here we are looking at

the neck diameters compared for all patients with 12 month full follow-up, 18 and 24. You see there's really nothing happening. The only thing is that we found the sac diameter after EVAR seems to be decreasing more for patients who have had reinterventions

at their iliac limbs for thrombo-occlusive disease. That is something we recognize from the literature, and especially from these stent grafts in the early 2000s. So conclusion, Mr. Chairman, ladies and gentlemen, CT changes in the first two months after EVAR

predict not a lot. Neck diameter was not predictive for neck-reinterventions. Sac diameter seems to be associated with iliac limb reinterventions, and aneurysm length was not predictive

of iliac limb reinterventions. Thank you very much.

- Great, thank-you very much, a pleasure to be here. My disclosures. So, we've talked a little bit about obviously percutaneous and thrombectomy techniques. Obviously we have catheter-directed thrombolysis with TPA, but what happens when we can't use TPA

mechanical techniques? We've discussed several of them already in this session, I'm going to try to kind of bring them together and note the differences and how they evolved. And really look at fragmentation, rheolytic therapy, vacuum assisted devices, and vacuum and suction devices.

So when do we need these? Patients that can't tolerate thrombolysis, can't get TPA, that have a high risk of TPA, or maybe there is a situation we need a rapid response. We're trying to create flow and establish flow as much as possible and a lot of times we use this

in combination therapy if we've already hurt. What's the ideal device? I think there are multiple different characteristic's that could define the ideal device. Obviously we want it simple to use, We want it to be reproducible,

we want it to remove a lot of thrombus, but minimize blood loss and trauma to the vessels and to the blood cell. These are just some of them. There's a lot of mechanical thrombectomy devices right now on the market continuing to grow,

both in the arterial and venous system so I think this is going to be an evolution. We started really using mechanical fragmentation with a pig tail and spinning a pig tail. We used that. A lot of times the patient with severe massive pulmonary embolism.

These we're really small antidotes, small case reports. Will Kuo, looked at these in the 2009 and basically saw over all clinical success, about 86% using these mechanical devices. Then we had some that were even more automated.

All these did was break up the clot. So you have the Trerotola Device , Cleaner Device, really almost in the dialysis space. Rheolytic Throbectomy, we've already heard about. Some of how it works and the advantages. Really I think this is the first time we've saw

a system which would try to aspirate and remove some of that thrombus as it got broken up. The PEARL registry really showed for the first time, maybe we can get this done within 24 hours, can we get this done in one session? Unfortunately in this registry only about three or

four percent of patients actually had just rheolytic therapy alone without any TPA. We've discussed a little bit about the use of Ango and this type of device in terms of bradyarrhythmia's and that may be a limitation. But I think we can still use it particularly

outside of the chest. So What about suction devices? You can have a catheter, I think a catheter suction device is very limited. We use that in the arterial tree when there is a small thrombus, a small embolus, I think

we're very limited, not only in the amount of thrombus we can remove but the amount of suction we can apply. Other types like almost mechanical, very simple to use systems is the aspire device. Well you can basically create and suction a

limited area and then help you aspirate the thrombus. And then to the other extreme. We're going to hear my next speaker talk about Angiovac, again a different system, a different system requires a patient on bypass large 26 french devices.

Where we can actually go in and deal with a large amount of thrombus, like this patient had a thrombus cave on both iliac veins. And to be able to basically come with this vacuum aspiration system over wires and kind of pulling them out and you get these little canisters,

seeing what you've actually removed. Very gratifying. But takes a lot of work to get it going. We've heard a little bit about vacuum assisted with the Indigo system. With a system of creating a constant continuous vacuum.

We now have eight french catheters with incredible aspiration volume, almost 20cc's, I'm sorry you can get up to 140cc's of thrombus in a minute can be aspirated quickly. Here is a patient, 80 years old, colorectal CA. You can see the thrombus in the right leg.

There was actually a mass invading this vein. That is where we wanted to use thrombolysis, really went a head and you can see the amount of thrombus. Cleared this out with some passage. You can see this here, the separator. You started seeing thrombus especially when

its acute it kind of looks like this. It's kind of gelatinous, things that we've already seen, and then went ahead and placed a stent, dilated that stent. Had to clean up some more with the device

on top of the stent, but with a good result without needing any TPA. Other types of extraction devices we've seen the Inari device, again this is like a stent Triever device, a nitinol ring we can use this in the pulmonary arteries.

And we've already seen previous and talked about the ClotTriever device Again remove that thrombus, put it into a bag and remove it. So again, capture and removal of thrombus. And this is a solution without the need of TPA. New kid in the block the JETi device

Again very similar to aspiration Indego device, but at the same time it has a jet to macerate the clot and kind of break up the clot a little to smaller areas so we can able to thromb and take more out. I think really here what I've seen and Dr. Razavi

showed me this case. Being able to treat a patient quickly, treat that patient very quickly you can see the amount of thrombus being able to, within about an hour and 15 minutes, get all that thrombus, then create patency in that vein and he showed

some early initial good data. Over the last year we did have a paper that was presented here and published this year in the Journal of Vascular Surgery, venous and lymphatic disorders and again pulled multiple patient's, again showing that

it affective and safe. We still need better data. We need to figure out which patients are best treated with which devices and which again will be affective. Thank-you very much.

- Thank you, ladies and gentlemen. And our faculty here. Thank you so much for having me, and I'm thrilled to be here as I think some of the few interventionalists who are here. So, the idea was, what is the, is the stance

being overused after the Orbita Trial? And I bring it up because what is the Orbita Trial? This was a trial that really got a lot of, a lot of attention and I think it's important for you to kind of think about it.

It was actually the very first sham-controlled study of 230 patients who were enrolled, 200 who were randomized. Comparing actually PCI to placebo in patients with severe single vessel disease who were medically optimized but were stable.

Very, very interesting. They followed up these patients and the, based, looked at the change in exercise time in these patients and found absolutely no benefit for PCI in changing the exercise time.

So they said, in medically, in patients with medically-treated angina and severe coronary artery stenosis, PCI did not increase exercise time by by, in any difference from placebos. So, this really, really brought up so much attention

and that we were really, really doing unnecessary procedures and the last thing we heard is the last nail in the coffin of PCI. And so, I think it's important to think about what were the issues with that important disease and where we are with the scope of coronary disease.

Which is not insignificant. At the moment, with 326 million patients in the United States, and prevalence of CAD at 16.5, PCI is being performed in 667,000 patients per year. And I think it is important to note

that for the most part, about 50% of this is for acute coronary syndromes, which is not all the Orbita Trial. It's supportive evidence for routine revascularization with guideline-based therapy, directive therapy.

Very, very important that observational data does show a very important relationship between ischemia and death and MI. Revascularization relieves ischemia and that is what it's supposed to do. Large scale studies have shown

a reduction in spontaneous MI, following revascularization versus guideline-directed therapy. And importantly, continued improvement in both PCI and CABG techniques have really shown excellent relief of symptoms

and that we are not here to really, really think about death and MI in the big, big picture. But more immediate reductions as preferred by patients and importantly, we have to note that ischemia directed therapy with revascularization can have important issues.

Regarding whether or not there is an overuse of PCI's, let me just take a, show you the map of the United States. The heat map. The hotter, the more PCI's. And you can see, it really is very much variable and that there is important appropriate use criteria

for coronary revascularization that continues to be updated on a very, very important issue. And there's no question that the media loves the hysteria about overuse of PCI. But I wanted to put that into the context

of what we were doing. In PCI, we are using FFR guidance and physiology guided PCI to show an enhanced outcome. And more and more, we're incorporating that into the armamentarium of both AUC, Appropriate-Use Criteria, as well as evaluating

the valuable patients. And it is important for you to take a look at what have we shown. So far, based on revascularization versus optimal medical therapy in relieving angina and has been a very, very important

improvement in exercise capacity. Albeit, that the one and only trial of the sham procedure didn't show a change in exercise, but there are a lot of issues in this underpowered study that shouldn't really, really turn you away.

For the fact that PCI does relive symptoms. Because there's a tremendous amount of evidence in, in view of reducing angina with a really, really good p value of 12 randomized clinical trials in this area. It is also important that the freedom of angina is shown.

Not just within the Orbita Trial that actually did show a reduction in angina, but very similar to previous studies. And the guidelines are telling us a very, very important Class 1A indication for patients with CID for both

prognosis and treatment. There is an upcoming ischemia trial in ischemic heart disease that will show in 8,000 patients on their NHLBI, with evidence of ischemia hopefully that we could show

that there is benefits. So to conclude, the current guidelines recommend use of revascularization for relief of symptoms with patients with ischemic, a stable ischemic disease. And while placebo remains an important aspect of this medical management up front,

and making sure that there is an important management, we should really, really understand that there's no question that optimal medical therapy has to stay in the background. And the use of PCI is, continues to be of important value.

Thank you for your attention.

- So Beyond Vascular procedures, I guess we've conquered all the vascular procedures, now we're going to conquer the world, so let me take a little bit of time to say that these are my conflicts, while doing that, I think it's important that we encourage people to access the hybrid rooms,

It's much more important that the tar-verse done in the Hybrid Room, rather than moving on to the CAT labs, so we have some idea basically of what's going on. That certainly compresses the Hybrid Room availability, but you can't argue for more resources

if the Hybrid Room is running half-empty for example, the only way you get it is by opening this up and so things like laser lead extractions or tar-verse are predominantly still done basically in our hybrid rooms, and we try to make access for them. I don't need to go through this,

you've now think that Doctor Shirttail made a convincing argument for 3D imaging and 3D acquisition. I think the fundamental next revolution in surgery, Every subspecialty is the availability of 3D imaging in the operating room.

We have lead the way in that in vascular surgery, but you think how this could revolutionize urology, general surgery, neurosurgery, and so I think it's very important that we battle for imaging control. Don't give your administration the idea that

you're going to settle for a C-arm, that's the beginning of the end if you do that, this okay to augment use C-arms to augment your practice, but if you're a finishing fellow, you make sure you go to a place that's going to give you access to full hybrid room,

otherwise, you are the subservient imagers compared to radiologists and cardiologists. We need that access to this high quality room. And the new buzzword you're going to hear about is Multi Modality Imaging Suites, this combination of imaging suites that are

being put together, top left deserves with MR, we think MR is the cardiovascular imaging modality of the future, there's a whole group at NIH working at MR Guided Interventions which we're interested in, and the bottom right is the CT-scan in a hybrid op

in a hybrid room, this is actually from MD Anderson. And I think this is actually the Trauma Room of the future, makes no sense to me to take a patient from an emergency room to a CT scanner to an and-jure suite to an operator it's the most dangerous thing we do

with a trauma patient and I think this is actually a position statement from the Trauma Society we're involved in, talk about how important it is to co-localize this imaging, and I think the trauma room of the future is going to be an and-jure suite

down with a CT scanner built into it, and you need to be flexible. Now, the Empire Strikes Back in terms of cloud-based fusion in that Siemans actually just released a portable C-arm that does cone-beam CT. C-arm's basically a rapidly improving,

and I think a lot of these things are going to be available to you at reduced cost. So let me move on and basically just show a couple of examples. What you learn are techniques, then what you do is look for applications to apply this, and so we've been doing

translumbar embolization using fusion and imaging guidance, and this is a case of one of my partners, he'd done an ascending repair, and the patient came back three weeks later and said he had sudden-onset chest pain and the CT-scan showed that there was a

sutured line dehiscence which is a little alarming. I tried to embolize that endovascular, could not get to that tiny little orifice, and so we decided to watch it, it got worse, and bigger, over the course of a week, so clearly we had to go ahead and basically and fix this,

and we opted to use this, using a new guidance system and going directly parasternal. You can do fusion of blood vessels or bones, you can do it off anything you can see on flu-roid, here we actually fused off the sternal wires and this allows you to see if there's

respiratory motion, you can measure in the workstation the depth really to the target was almost four and a half centimeters straight back from the second sternal wire and that allowed us really using this image guidance system when you set up what's called the bullseye view,

you look straight down the barrel of a needle, and then the laser turns on and the undersurface of the hybrid room shows you where to stick the needle. This is something that we'd refined from doing localization of lung nodules

and I'll show you that next. And so this is the system using the C-star, we use the breast, and the localization needle, and we can actually basically advance that straight into that cavity, and you can see once you get in it,

we confirmed it by injecting into it, you can see the pseudo-aneurism, you can see the immediate stain of hematoma and then we simply embolize that directly. This is probably safer than going endovascular because that little neck protects about

the embolization from actually taking place, and you can see what the complete snan-ja-gram actually looked like, we had a pig tail in the aura so we could co-linearly check what was going on and we used docto-gramming make sure we don't have embolization.

This patient now basically about three months follow-up and this is a nice way to completely dissolve by avoiding really doing this. Let me give you another example, this actually one came from our transplant surgeon he wanted to put in a vas,

he said this patient is really sick, so well, by definition they're usually pretty sick, they say we need to make a small incision and target this and so what we did was we scanned the vas, that's the hardware device you're looking at here. These have to be

oriented with the inlet nozzle looking directly into the orifice of the mitro wall, and so we scanned the heart with, what you see is what you get with these devices, they're not deformed, we take a cell phone and implant it in your chest,

still going to look like a cell phone. And so what we did, image fusion was then used with two completely different data sets, it mimicking the procedure, and we lined this up basically with a mitro valve, we then used that same imaging guidance system

I was showing you, made a little incision really doing onto the apex of the heart, and to the eur-aph for the return cannula, and this is basically what it looked like, and you can actually check the efficacy of this by scanning the patient post operatively

and see whether or not you executed on this basically the same way, and so this was all basically developed basing off Lung Nodule Localization Techniques with that we've kind of fairly extensively published, use with men can base one of our thoracic surgeons

so I'd encourage you to look at other opportunities by which you can help other specialties, 'cause I think this 3D imaging is going to transform what our capabilities actually are. Thank you very much indeed for your attention.

- Thank you. Historically, common femoral endarterectomy is a safe procedure. In this quick publication that we did several years ago, showed a 1.5% 30 day mortality rate. Morbidity included 6.3% superficial surgical site infection.

Other major morbidity was pretty low. High-risk patients we identified as those that were functionally dependent, dyspnea, obesity, steroid use, and diabetes. A study from Massachusetts General Hospital their experience showed 100% technical success.

Length of stay was three days. Primary patency of five years at 91% and assisted primary patency at five years 100%. Very little perioperative morbidity and mortality. As you know, open treatment has been the standard of care

over time the goal standard for a common femoral disease, traditionally it's been thought of as a no stent zone. However, there are increased interventions of the common femoral and deep femoral arteries. This is a picture that shows inflection point there.

Why people are concerned about placing stents there. Here's a picture of atherectomy. Irritational atherectomy, the common femoral artery. Here's another image example of a rotational atherectomy, of the common femoral artery.

And here's an image of a stent there, going across the stent there. This is a case I had of potential option for stenting the common femoral artery large (mumbles) of the hematoma from the cardiologist. It was easily fixed

with a 2.5 length BioBond. Which I thought would have very little deformability. (mumbles) was so short in the area there. This is another example of a complete blow out of the common femoral artery. Something that was much better

treated with a stent that I thought over here. What's the data on the stenting of the endovascular of the common femoral arteries interventions? So, there mostly small single centers. What is the retrospective view of 40 cases?

That shows a restenosis rate of 19.5% at 12 months. Revascularization 14.1 % at 12 months. Another one by Dr. Mehta shows restenosis was observed in 20% of the patients and 10% underwent open revision. A case from Dr. Calligaro using cover stents

shows very good primary patency. We sought to use Vascular Quality Initiative to look at endovascular intervention of the common femoral artery. As you can see here, we've identified a thousand patients that have common femoral interventions, with or without,

deep femoral artery interventions. Indications were mostly for claudication. Interventions include three-quarters having angioplasty, 35% having a stent, and 20% almost having atherectomy. Overall technical success was high, a 91%.

Thirty day mortality was exactly the same as in this clip data for open repair 1.6%. Complications were mostly access site hematoma with a low amount distal embolization had previously reported. Single center was up to 4%.

Overall, our freedom for patency or loss or death was 83% at one year. Predicted mostly by tissue loss and case urgency. Re-intervention free survival was 85% at one year, which does notably include stent as independent risk factor for this.

Amputation free survival was 93% at one year, which factors here, but also stent was predictive of amputation. Overall, we concluded that patency is lower than historical common femoral interventions. Mortality was pretty much exactly the same

that has been reported previously. And long term analysis is needed to access durability. There's also a study from France looking at randomizing stenting versus open repair of the common femoral artery. And who needs to get through it quickly?

More or less it showed no difference in outcomes. No different in AVIs. Higher morbidity in the open group most (mumbles) superficial surgical wound infections and (mumbles). The one thing that has hit in the text of the article

a group of mostly (mumbles) was one patient had a major amputation despite having a patent common femoral artery stent. There's no real follow up this, no details of this, I would just caution of both this and VQI paper showing increased risk amputation with stenting.

Thank you.

- Thank you (mumbles) and thank you Dr. Veith for the kind invitation to participate in this amazing meeting. This is work from Hamburg mainly and we all know that TEVAR is the first endovascular treatment of choice but a third of our patients will fail to remodel and that's due to the consistent and persistent

flow in the false lumen over the re-entrance in the thoracoabdominal aorta. Therefore it makes sense to try to divide the compartments of the aorta and try to occlude flow in the false lumen and this can be tried by several means as coils, plug and glue

but also iliac occluders but they all have the disadvantage that they don't get over 24 mm which is usually not enough to occlude the false lumen. Therefore my colleague, Tilo Kolbel came up with this first idea with using

a pre-bulged stent graft at the midportion which after ballooning disrupts the dissection membrane and opposes the outer wall and therefore occludes backflow into the aneurysm sac in the thoracic segment, but the most convenient

and easy to use tool is the candy-plug which is a double tapered endograft with a midsegment that is 18 mm and once implanted in the false lumen at the level of the supraceliac aorta it occludes the backflow in the false lumen in the thoracic aorta

and we have seen very good remodeling with this approach. You see here a patient who completely regressed over three years and it also answers the question how it behaves with respect to true and false lumen. The true lumen always wins and because once

the false lumen thrombosis and the true lumen also has the arterial pressure it does prevail. These are the results from Hamburg with an experience of 33 patients and also the international experience with the CMD device that has been implanted in more than 20 cases worldwide

and we can see that the interprocedural technical success is extremely high, 100% with no irrelevant complications and also a complete false lumen that is very high, up to 95%. This is the evolvement of the candy-plug

over the years. It started as a surgeon modified graft just making a tie around one of the stents evolving to a CMD and then the last generation candy-plug II that came up 2017 and the difference, or the new aspect

of the candy-plug II is that it has a sleeve inside and therefore you can retrieve the dilator without having to put another central occluder or a plug in the central portion. Therefore when the dilator is outside of the sleeve the backflow occludes the sleeve

and you don't have to do anything else, but you have to be careful not to dislodge the whole stent graft while retrieving the dilator. This is a case of a patient with post (mumbles) dissection.

This is the technique of how we do it, access to the false lumen and deployment of the stent graft in the false lumen next to the true lumen stent graft being conscious of the fact that you don't go below the edge of the true lumen endograft

to avoid (mumbles) and the final angiography showing no backflow in the aneurysm. This is how we measure and it's quite simple. You just need about a centimeter in the supraceliac aorta where it's not massively dilated and then you just do an over-sizing

in the false lumen according to the Croissant technique as Ste-phan He-lo-sa has described by 10 to 30% and what is very important is that in these cases you don't burn any bridges. You can still have a good treatment

of the thoracic component and come back and do the fenestrated branch repair for the thoracoabdominal aorta if you have to. Thank you very much for your attention. (applause)

- Thank you very much. So this is more or less a teaser. The outcome data will not be presented until next month. It's undergoing final analysis. So, the Vici Stent was the stent in the VIRTUS Trial. Self-expanding, Nitinol stent,

12, 14, and 16 in diameter, in three different lengths, and that's what was in the trial. It is a closed-cell stent, despite the fact that it's closed-cell, the flexibility is not as compromised. The deployment can be done from the distal end

or the proximal end for those who have any interest, if you're coming from the jugular or not in the direction of flow, or for whatever reason you want to deploy it from this end versus that end, those are possible in terms of the system. The trial design is not that different than the other three

now the differences, there are minor differences between the four trials that three completed, one soon to be complete, the definitions of the endpoints in terms of patency and major adverse events were very similar. The trial design as we talked about, the only thing

that is different in this study were the imaging requirements. Every patient got a venogram, an IVUS, and duplex at the insertion and it was required at the completion in one year also, the endpoint was venographic, and those who actually did get venograms,

they had the IVUS as well, so this is the only prospective study that will have that correlation of three different imagings before, after, and at follow-up. Classification, everybody's aware, PTS severity, everybody's aware, the endpoints, again as we talked about, are very similar to the others.

The primary patency in 12 months was define this freedom from occlusion by thrombosis or re-intervention. And the safety endpoints, again, very similar to everybody else. The baseline patient characteristics, this is the pivotal, as per design, there were 170 in the pivotal

and 30 in the feasibility study. The final outcome will be all mixed in, obviously. And this is the distribution of the patients. The important thing here is the severity of patients in this study. By design, all acute thrombotic patients, acute DVT patients

were excluded, so anybody who had history of DVT within three months were excluded in this patient. Therefore the patients were all either post-thrombotic, meaning true chronic rather than putting the acute patients in the post-thrombotic segment. And only 25% were Neville's.

That becomes important, so if you look at the four studies instead of an overview of the four, there were differences in those in terms on inclusion/exclusion criteria, although definitions were similar, and the main difference was the inclusion of the chronics, mostly chronics, in the VIRTUS study, the others allowed acute inclusion also.

Now in terms of definition of primary patency and comparison to the historical controls, there were minor differences in these trials in terms of what that historical control meant. However, the differences were only a few percentages. I just want to remind everyone to something we've always known

that the chronic post-thrombotics or chronic occlusions really do the worst, as opposed to Neville's and the acute thrombotics and this study, 25% were here, 75% were down here, these patients were not allowed. So when the results are known, and out, and analyzed it's important not to put them in terms of percentage

for the entire cohort, all trials need to report all of these three categories separately. So in conclusion venous anatomy and disease requires obviously dedicated stent. The VIRTUS feasibility included 30 with 170 patients in the pivotal cohort, the 12 months data will be available

in about a month, thank you.

- These are my disclosures. So central venous access is frequently employed throughout the world for a variety of purposes. These catheters range anywhere between seven and 11 French sheaths. And it's recognized, even in the best case scenario, that there are iatrogenic arterial injuries

that can occur, ranging between three to 5%. And even a smaller proportion of patients will present after complications from access with either a pseudoaneurysm, fistula formation, dissection, or distal embolization. In thinking about these, as you see these as consultations

on your service, our thoughts are to think about it in four primary things. Number one is the anatomic location, and I think imaging is very helpful. This is a vas cath in the carotid artery. The second is th

how long the device has been dwelling in the carotid or the subclavian circulation. Assessment for thrombus around the catheter, and then obviously the size of the hole and the size of the catheter.

Several years ago we undertook a retrospective review and looked at this, and we looked at all carotid, subclavian, and innominate iatrogenic injuries, and we excluded all the injuries that were treated, that were manifest early and treated with just manual compression.

It's a small cohort of patients, we had 12 cases. Eight were treated with a variety of endovascular techniques and four were treated with open surgery. So, to illustrate our approach, I thought what I would do is just show you four cases on how we treated some of these types of problems.

The first one is a 75 year-old gentleman who's three days status post a coronary bypass graft with a LIMA graft to his LAD. He had a cordis catheter in his chest on the left side, which was discovered to be in the left subclavian artery as opposed to the vein.

So this nine French sheath, this is the imaging showing where the entry site is, just underneath the clavicle. You can see the vertebral and the IMA are both patent. And this is an angiogram from a catheter with which was placed in the femoral artery at the time that we were going to take care of this

with a four French catheter. For this case, we had duel access, so we had access from the groin with a sheath and a wire in place in case we needed to treat this from below. Then from above, we rewired the cordis catheter,

placed a suture-mediated closure device, sutured it down, left the wire in place, and shot this angiogram, which you can see very clearly has now taken care of the bleeding site. There's some pinching here after the wire was removed,

this abated without any difficulty. Second case is a 26 year-old woman with a diagnosis of vascular EDS. She presented to the operating room for a small bowel obstruction. Anesthesia has tried to attempt to put a central venous

catheter access in there. There unfortunately was an injury to the right subclavian vein. After she recovered from her operation, on cross sectional imaging you can see that she has this large pseudoaneurysm

coming from the subclavian artery on this axial cut and also on the sagittal view. Because she's a vascular EDS patient, we did this open brachial approach. We placed a stent graft across the area of injury to exclude the aneurism.

And you can see that there's still some filling in this region here. And it appeared to be coming from the internal mammary artery. We gave her a few days, it still was patent. Cross-sectional imaging confirmed this,

and so this was eventually treated with thoracoscopic clipping and resolved flow into the aneurism. The next case is a little bit more complicated. This is an 80 year-old woman with polycythemia vera who had a plasmapheresis catheter,

nine French sheath placed on the left subclavian artery which was diagnosed five days post procedure when she presented with a posterior circulation stroke. As you can see on the imaging, her vertebral's open, her mammary's open, she has this catheter in the significant clot

in this region. To manage this, again, we did duel access. So right femoral approach, left brachial approach. We placed the filter element in the vertebral artery. Balloon occlusion of the subclavian, and then a stent graft coverage of the area

and took the plasmapheresis catheter out and then suction embolectomy. And then the last case is a 47 year-old woman who had an attempted right subclavian vein access and it was known that she had a pulsatile mass in the supraclavicular fossa.

Was noted to have a 3cm subclavian artery pseudoaneurysm. Very broad base, short neck, and we elected to treat this with open surgical technique. So I think as you see these consults, the things to factor in to your management decision are: number one, the location.

Number two, the complication of whether it's thrombus, pseudoaneurysm, or fistula. It's very important to identify whether there is pericatheter thrombus. There's a variety of techniques available for treatment, ranging from manual compression,

endovascular techniques, and open repair. I think the primary point here is the prevention with ultrasound guidance is very important when placing these catheters. Thank you. (clapping)

- [Speaker] Thank you. My disclosures. So upper extremity dvt occurs in 4-10% of all causes of venous thrombosis. And while a minority, dvt in the upper extremity can often be caused by thoracic outlet syndrome, effort thrombosis, occasionally

idiopathic venous thrombosis. The majority is more likely related to central venous catheters, pacemakers, cancer, etc. This is some of the presentation of someone with Paget Schroeder or venous thoracic outlet syndrome, we're all well aware of this.

Some features of this can be sudden onset of pain, discoloration and some of this subcutaneous collateral veins that we note. Initial treatment of this is traditionally with venous thrombolysis. Although the results are good, this thrombolysis can

be associated with bleeding complications, potential for renal insufficiency, prolonged dwell times, and increased cost. I think it's important that this is not just a talk about a technique but a technique in the context of an operation this is soon to come.

Whether you choose to take out the rib at the same setting or you choose to delay the operation by a week or two, by and large the complications associated with that venous thrombolysis are going to come back and haunt you in the next operations. I think that's the context of this talk.

One of the risks I just mentioned about some of these techniques is, that's sort of curious to me, is the acute kidney injury after AngioJet venous thrombolysis. You see here, this paper, of a hundred patients, 50 AngioJet, 50 catheter directed thrombolysis, shows a statistical significantly

increased risk of acute kidney failure in the AngioJet group. Eight fold odds ratio. The Indigo system enables operators to remove the thrombus in a single setting, while potentially reducing or eliminating the need for thrombolysis.

This has already been discussed by some of the prior speakers, you see the different iterations first introduced in 2014. The CAT8 is the largest device and you can see some of the features of this proprietary technology with the separator and the directional sheaths that

allow us to aspirate nicely. This continuous suction you see here, can be very nicely controlled with an on-off switch that minimizes blood loss. It's single operator design, very easy to set up, hands free aspiration, a very simple set up.

You also heard just recently about the volume that can be aspirated in 20 seconds you see, especially with the larger profile devices, quite impressive amount of thrombus can be removed. Again, with the careful control for blood loss. The directionality of the sheath is also important,

and you can see some of the different directionality sheaths. Here's a couple case examples of a Paget-Schroder patient comes in with an acute sudden onset of arm pain and swelling discoloration, and you can see the penumbra device being used to clean out that vein.

This is another example, a 25-year old male with acute right arm swelling, sort of a body lifter type, and you can see here, this is the separator that's being moved forward and backwards, in and out to help break out the thrombus. This is the CAT8 device.

The pre-intervention picture seen here, we're crossing the lesion with a wire and and you can see the post-intervention on the right. You, of course, have the venous compression from the first rib, thoracic outlet, but the vein is widely open and now we can go ahead and see

the specimen that's retrieved as you've seen other videos in the prior presentations. This, of course, is what we're left with at the time of surgery. I only bring this up to remind us that there is a second stage to this treatment,

which is the rib resection. A combined experience that I just want to put together, very small numbers of course but, 16 patients with thoracic outlet who presented and were treated with the Penumbra system. You can see here, some of the demographic data.

I'll just point out the symptoms, of course, pain, swelling in these patients, imaging mostly venous duplex, occasionally CT or MR venogram. They all of course get venography at the time of procedure. The extent of the thrombus in all of them was complete occlusion and you can see some

of the extent in the subclavian axillary veins. Site of access can be the brachial or the basilic vein. The operative details as well, shown here, and I'll just point out the estimated blood loss, it can be very reasonable, especially with some experience you can sort of control that

on-off valve and minimize blood loss with this technique. Adjunctive therapies are shown here and of course, maybe because we're a little bit stuck on our ways, we did have a fair number of adjunctive lytic therapy. There were only three patients who had overnight lysis. A lot of venoplasty done at the time of the procedure.

All veins remained patent until the day of the rib resection but I will point out that one of these patients did develop a significant complication with hemothorax. This is one of those patients who had overnight lysis. And I point that out to stress that perhaps

this is what we're trying to move away from. So, in conclusion, mechanicothrombectomy using Indigo device shows promising initial results. Minimal blood loss, one complication of the hemothroax with the overnight lytics. No renal insufficiency or distal embolization.

The practice pattern, I think, need to adjust away from routing lytics to additionally minimize complications prior to surgery. Thank you.

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

- Thanks Frank, for inviting me again. We know very well that CAS and CEA are, and will remain, emboli-generating. This is an algorithm in which we can see the microembolic profile during unprotected carotid stenting. But I am a vascular surgeon, oriented to an endovascular approach, and I believe strongly

in carotid artery stenting renaissance, when we use tips, tricks and new devices. So the real difference between the two procedures are between 0 and 30 days, and this is demonstrated by the result of 10 year by CREST and by ACT 1. So, but the procedure must be protected.

Because as the Kastrup metanalisys said, the unprotected procedure are three, four-fold increase for cerebral protection embolic. And these are the recommendations from European Society of Cardiology and American Heart Association, regarding

the use of embolic protection devices. But what kind of embolic protection device? We know very well that the cerebral distal protection have some strengths and some weaknesses. And the same is for the cerebral proximal protection with the strengths and weaknesses.

So, but this is rarely used, both in the rest of Europe and in Italy. But what about dissent? We are four studies with only prospective, including a population cohort larger than 100 patients. From Italy, from Germany, from Piotr Michalik,

from Poland, again from Italy. As these are the results that are near with the rod centered stent, with very satisfactory results. With very low rate of... This is the CLEAR-ROAD study, with very low rate of complication.

This is a total of 556 patients who underwent stenting with the new generation of stent. This is the incidence of adverse events at 30 days. So, how we can apply the benefit to our procedures with OCT? And OCT demonstrated the safety of new stent design. And why I use OCT in carotids?

With two main issues. A high definition of carotid plaque, and the correct interaction between plaque and stent. With the high definition of carotid dark in order to identify the plaque type. The degree and area of stenosis,

the presence of ulceration, and the thrombus. I study the interaction between plaque and stent. In order to study the stent apposition, the stent malapposition, the fibrous cap rupture, and the plaque micro-prolaps. So this data I published last year on

EuroIntervention, with the conclusion that in relation to the slice-based analysis, we have the correct comparison with conventional stents, and the incidence of plaque prolapse was absolutely lower. So in conclusion, why I strongly believe in a reinvigoration of carotid stenting?

For the use of better embolic protection device. For the use of newer mesh covered stents, and definitively, OCT proves it as shown. Thank you for your attention.

- So I'd like to thank Dr. Ascher, Dr. Sidawy, Dr. Veith, and the organizers for allowing us to present some data. We have no disclosures. The cephalic arch is defined as two centimeters from the confluence of the cephalic vein to either the auxiliary/subclavian vein. Stenosis in this area occurs about 39%

in brachiocephalic fistulas and about 2% in radiocephalic fistulas. Several pre-existing diseases can lead to the stenosis. High flows have been documented to lead to the stenosis. Acute angles. And also there is a valve within the area.

They're generally short, focal in nature, and they're associated with a high rate of thrombosis after intervention. They have been associated with turbulent flow. Associated with pre-existing thickening.

If you do anatomic analysis, about 20% of all the cephalic veins will have that. This tight anatomical angle linked to the muscle that surrounds it associated with this one particular peculiar valve, about three millimeters from the confluence.

And it's interesting, it's common in non-diabetics. Predictors if you are looking for it, other than ultrasound which may not find it, is calcium-phosphate product, platelet count that's high, and access flow.

If one looks at interventions that have commonly been reported, one will find that both angioplasty and stenting of this area has a relatively low primary patency with no really discrimination between using just the balloon or stent.

The cumulative patency is higher, but really again, deployment of an angioplasty balloon or deployment of a stent makes really no significant difference. This has been associated with residual stenosis

greater than 30% as one reason it fails, and also the presence of diabetes. And so there is this sort of conundrum where it's present in more non-diabetics, but yet diabetics have more of a problem. This has led to people looking to other alternatives,

including stent grafts. And in this particular paper, they did not look at primary stent grafting for a cephalic arch stenosis, but mainly treating the recurrent stenosis. And you can see clearly that the top line in the graph,

the stent graft has a superior outcome. And this is from their paper, showing as all good paper figures should show, a perfect outcome for the intervention. Another paper looked at a randomized trial in this area and also found that stent grafts,

at least in the short period of time, just given the numbers at risk in this study, which was out after months, also had a significant change in the patency. And in their own words, they changed their practice and now stent graft

rather than use either angioplasty or bare-metal stents. I will tell you that cutting balloons have been used. And I will tell you that drug-eluting balloons have been used. The data is too small and inconclusive to make a difference. We chose a different view.

We asked a simple question. Whether or not these stenoses could be best treated with angioplasty, bare-metal stenting, or two other adjuncts that are certainly related, which is either a transposition or a bypass.

And what we found is that the surgical results definitely give greater long-term patency and greater functional results. And you can see that whether you choose either a transposition or a bypass, you will get superior primary results.

And you will also get superior secondary results. And this is gladly also associated with less recurrent interventions in the ongoing period. So in conclusion, cephalic arch remains a significant cause of brachiocephalic AV malfunction.

Angioplasty, across the literature, has poor outcomes. Stent grafting offers the best outcomes rather than bare-metal stenting. We have insufficient data with other modalities, drug-eluting stents, drug-eluting balloons,

cutting balloons. In the correct patient, surgical options will offer superior long-term results and functional results. And thus, in the good, well-selected patient, surgical interventions should be considered

earlier in this treatment rather than moving ahead with angioplasty stent and then stent graft. Thank you so much.

- Thank you, chairman. Good afternoon, ladies and gentlemen. I've not this conflict of interest on this topic. So, discussion about double-layer stent has been mainly focused about the incidence of new lesions, chemical lesions after the stenting, and because there are still some issue

about the plaque prolapse, this has still has been reduced in a comparison to conventional stent that's still present. We started our study two years ago to evaluate on two different set of population of a patient who underwent stent, stenting,

to see if there is any different between the result of two stents, Cguard from Inspire, and Roadsaver from Terumo in term of ischemic lesion and if there is a relationship between the activity of the plaque evaluated with the MRI

and new ischemic lesion after the procedure. So, the population was aware of similar what we found, and that there's no difference between the two stent we have had, and new ischemic lesions is, there's a 38%, for a total amount of 34 lesions,

and ipsilateral in 82% of cases. The most part of the lesion appeared at the 24 hours, for the 88.2% of cases, while only the 12% of cases, we have a control at our lesion. According to the DWI, we have seen that

the DWI of the plaque is positive, or there is an activity of the plaque. There's a higher risk of embolization with a high likelihood or a risk of 6.25%. But, in the end, what we learned in the beginning, what there have known,

there's no difference in the treatment of the carotid stenosis with this device, and the plaque activity, when positive at the DWI MR, is a predictive for a higher risk of new ischemic lesions at 24 hours. But, what we are still missing in terms of information,

where something about the patency of the stents at mid-term follow-up, and the destiny of external carotid artery at mid-term follow-up. Alright, we have to say we have an occlusion transitory, occlusion of the semi-carotid artery

immediately after the deployment of the Terumo stent. The ECA recovery completely. But in, what we want to check, what could happen, following the patient in the next year. So, we perform a duplicate ultrasound, at six, at 12, and 24 months after the procedure,

in order to re-evaluate the in-stent restenosis and then, if there was a new external carotid artery stenosis or occlusion. We have made this evaluation according to the criteria of grading of carotid in-stent restenosis proposed on Stroke by professors attache group.

And what we found that we are an incidence of in-stent restenosis of 10%, of five on 50 patient, one at six month and four at one year. And we are 4% of external carotid artery new stenosis. All in two patient, only in the Roadsaver group.

We are three in-stent restenosis for Roadsaver, two in-stent restenosis for Cguard, and external new stenosis only in the Roadsaver group. And this is a case of Roadsaver stent in-stent restenosis of 60% at one year. Two year follow-up,

so we compare what's happening for Cguard and Roadsaver. We see that no relation have been found with the plaque activity or the device. If we check our result, even if this is a small series, we both reported in the literature for the conventional stent,

we've seen that in our personal series, with the 10% of in-stent restenosis, that it's consistent with what's reported for conventional CAS. And the same we found when we compared our result with the result reported for CAS with conventional stent.

So in our personal series, we had not external carotid artery occlusion. We have 4% instance, and for stenosis while with conventional CAS, occlusion of external carotid artery appear in 3.8% of cases.

So, what can we add to our experience now in the incidence, if, I'm sorry, if confirmed by larger count of patient and longer study? We can say that the incidence of in-stent restenosis for this new double-layer stent and the stenosis on the external carotid artery,

if not the different for all, with what reported for conventional stent. Thank you.

- Thanks Bill and I thank Dr. Veith and the organizers of the session for the invitation to speak on histology of in-stent stenosis. These are my disclosures. Question, why bother with biopsy? It's kind of a hassle. What I want to do is present at first

before I show some of our classification of this in data, is start with this case where the biopsy becomes relevant in managing the patient. This is a 41 year old woman who was referred to us after symptom recurrence two months following left iliac vein stenting for post-thrombotic syndrome.

We performed a venogram and you can see this overlapping nitinol stents extending from the..., close to the Iliocaval Confluence down into Common Femoral and perhaps Deep Femoral vein. You can see on the venogram, that it is large displacement of the contrast column

from the edge of the stent on both sides. So we would call this sort of diffuse severe in-stent stenosis. We biopsy this material, you can see it's quite cellular. And in the classification, Doctor Gordon, our pathologist, applies to all these.

Consisted of fresh thrombus, about 15% of the sample, organizing thrombus about zero percent, old thrombus, which is basically a cellular fibrin, zero percent and diffuse intimal thickening - 85%. And you can see there is some evidence of a vascularisation here, as well as some hemosiderin deposit,

which, sort of, implies a red blood cell thrombus, histology or ancestry of this tissue. So, because the biopsy was grossly and histolo..., primarily grossly, we didn't have the histology to time, we judged that thrombolysis had little to offer this patient The stents were angioplastied

and re-lined with Wallstents this time. So, this is the AP view, showing two layers of stents. You can see the original nitinol stent on the outside, and a Wallstent extending from here. Followed venogram, venogram at the end of the procedure, shows that this displacement, and this is the maximal

amount we could inflate the Wallstent, following placement through this in-stent stenosis. And this is, you know, would be nice to have a biological or drug solution for this kind of in-stent stenosis. We brought her back about four months later, usually I bring them back at six months,

but because of the in-stent stenosis and suspecting something going on, we brought her back four months later, and here you can see that the gap between the nitinol stent and the outside the wall stent here. Now, in the contrast column, you can see that again, the contrast column is displaced

from the edge of the Wallstent, so we have recurrent in-stent stenosis here. The gross appearance of this clot was red, red-black, which suggests recent thrombus despite anticoagulation and the platelet. And, sure enough, the biopsy of fresh thrombus was 20%,

organizing thrombus-75%. Again, the old thrombus, zero percent, and, this time, diffuse intimal thickening of five percent. This closeup of some of that showing the cells, sort of invading this thrombus and starting organization. So, medical compliance and outflow in this patient into IVC

seemed acceptable, so we proceeded to doing ascending venogram to see what the outflow is like and to see, if she was an atomic candidate for recanalization. You can see these post-thrombotic changes in the popliteal vein, occlusion of the femoral vein.

You can see great stuffiness approaching these overlapping stents, but then you can see that the superficial system has been sequestered from the deep system, and now the superficial system is draining across midline. So, we planned to bring her back for recanalization.

So biopsy one with diffuse intimal thickening was used to forego thrombolysis and proceed with PTA and lining. Biopsy two was used to justify the ascending venogram. We find biopsy as a useful tool, making practical decisions. And Doctor Gordon at our place has been classifying these

biopsies in therms of: Fresh Thrombus, Organizing Thrombus, Old Thrombus and Diffuse Intimal thickening. These are panels on the side showing the samples of each of these classifications and timelines. Here is a timeline of ...

Organizing Thrombus here. To see it's pretty uniform series of followup period For Diffuse Intimal thickening, beginning shortly after the procedure, You won't see very much at all, increases with time. So, Fresh Thrombus appears to be

most prevalent in early days. Organizing Thrombus can be seen at early time points sample, as well as throughout the in-stent stenosis. Old Thrombus, which is a sort of a mystery to me why one pathway would be Old Thrombus and the other Diffuse Intimal thickening.

We have to work that out, I hope. Calcification is generally a very late feature in this process. Thank you very much.

- Good morning. Thank you Dr. Veith for this kind invitation to present our data. These are my disclosures. So despite multimodal strategies to improve spinal cord perfusion permanent paraplegia still occurs in up to ten percent of patients undergoing

complex thoracoabdominal procedures. And the rates of transient lower extremity weakness are even higher. Hyperglycemia is associated with worsened clinical outcomes after acute ischemic stroke, severe head injury and subarachnoid hemorrhage.

In experimental date in animal studies suggests that hyperglycemia may be deleterious in the setting of spinal cord ischemic injury, but human studies are lacking. We have previously shown that elevated blood and CSF glucose levels were significantly associated

with postoperative lower extremity weakness in patients undergoing multi-branched endovascular aortic aneurysm repair. And importantly these elevated glucose levels preceded the onset of lower extremity weakness. Based on the findings of this study, we initiated

an insulin infusion protocol to maintain postoperative glucose levels to less than 120 milligrams per deciliter in all patients undergoing MBEVAR. And the purpose of this current study was to determine whether using this insulin infusion protocol to achieve tight postoperative blood glucose control

decrease the rate of lower extremity weakness after MBEVAR. This was a single center prospective clinical trail of asymptomatic patients with thoracoabdominal or pararenal aneurysms who underwent MBEVAR. All patients were admitted one day prior to the procedure and treated with IV fluid hydration and their

antihypertensive medications were held peri-operatively. All of these patients underwent preoperative placement of a lumbar catheter for drainage of CSF. And in October of 2013 we began to collect blood and CSF samples on these patients for further analysis. In July of 2016 we began the insulin infusion protocol.

And in all patients who had a blood glucose level of greater than or equal to 120 milligrams per deciliter, they were started on a regular IV insulin infusion which was further titrated based on subsequent glucose measurements and then continued in the ICU for the first 48 hours postoperatively.

Between October of 2013 and April of 2018, 43 patients without pre-existing paraplegia underwent MBEVAR. The mean age of the cohort was 73 years and the majority were men. 19% of these patients had diabetes mellitus, but none of these patients were on insulin preoperatively.

53% of patients underwent treatment for either a type four or a pararenal aneurysm, but the proximal seal zone was in the superceliac aorta in all of these patients. Before initiation of the insulin infusion protocol 22 patients underwent MBEVAR, and after initiation of the insulin infusion protocol

21 patients underwent MBEVAR. There's no difference in demographic characteristics, comorbidity, or operative parameters between the two groups of patients. Before initiation of the insulin infusion protocol, seven of twenty-two patients developed

lower extremity weakness within the first 48 hours of repair. This was temporary in five patients, leaving two patients with permanent paraplegia. After we instituted the insulin infusion protocol, no patients developed lower extremity weakness

within the first 48 hours of repair. One patient did develop paraplegia on postoperative day four which was two days after the insulin had been stopped. This rate of early lower extremity weakness was significantly lower after initiation of the insulin infusion protocol.

And important to note that all patients in group B did require insulin at some point in the postoperative period. This table just describes the onset, laterality and nature of the deficit in the two groups of patients with lower extremity weakness.

Before initiation of the insulin infusion protocol, the blood and CSF glucose levels were significantly higher in the postoperative period in patients who develop lower extremity weakness compared to those who did not. After initiation of the insulin infusion protocol the glucose levels in the blood and CSF in this group

of patients was similar to those patients in the earlier group who did not have lower extremity weakness. So in conclusion, patients with elevated blood and CSF glucose levels are at higher risk for postoperative lower extremity weakness.

And strict control of their blood glucose levels in the first 48 hours appears to decrease this risk. And maybe that elevated glucose levels are directly toxic to neuronal tissue and what we're seeing are the protective effects of euglycemia. However, insulin receptors are abundant throughout the CNS,

so it's possible that we're also seeing one of the pleiotropic effects of insulin as it's known to have anti-inflammatory and vasodilatory effects throughout the CNS. So we're actually speculating that this postoperative hyperglycemia could be due to a state

of acute insulin resistance. And we're currently studying some changes in neuron-derived blood exosomes before and after MBEVAR to try to understand the processes at play. So stay tuned.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you very much both. It was a great pleasure to see you. I continue to be grateful for the guidance you have given me over the years. Thank you to the organizers for advising me to speak. These are my disclosures. So really there are two questions posed by this topic.

One is, is the patent popliteal vein necessary? I would assume from this is it necessary for patency and symptom relief to be achieved in treating patients with both acute DVT and potentially chronic. And has the evolution formic mechanical therapy

led to over stenting. Which means we have to ask the question what is an appropriate rate for stenting. I am not sure we know the answer to that. So being able to answer over stenting requires us to know how many patients

actually need the stent in the first place in acute DVT treatments. The problem is essentially this. Is that when we form lithic therapies and this is a classic case of treatment formed with formic and mechanical device

but without a follow up using lithic in the patient for whom lithic was not feasible. You end up opening up a vessel but you can see from the image on the left hand side that there is a degree still of luminol contrast deficit suggesting some cult left behind

in the external iliac vein. Well there is obviously a May-Thurner legion at the top. The question of over stenting is one of do we just stent the May-Thruner and extend it down into the external iliac vein to trap that thrombus

or would a period of time of lithic have resulted in this clot resolving and not needed a stent at the end of it. To get to the question of how many people should be stented. The only way we can really do this

is try and exstipulate from the literature to some extent. This is the short and long term outcome from the Kevin study. Where there is ultrasound follow up of patients underwent standard treatment only.

And a additional group in the patients had catheter-directed thrombolysis. We can see there that the patients did six months in catheter-directed thrombolysis group is around 60%. And the patency seen with the non treated group

is around 40%. If we kind of use these numbers as a guide we probably expect therefore that the stent rate would be somewhere between 40 and 60 percent. To account for treating the outflow structure that presumably patients see at six months.

But this is clearly not a very rebost method of being absolutely clear on who needs stents. Additional method is we don't really have and answer for who should be stented at the end of a procedure. So if you look at the massive variability

in the other studies. We see that attract stent rate is approximately 28% for the study. Which is obviously a operative discretion and has been criticized for that reason. But there is no comment on the Popliteal vein

or Popliteal vein patency. Cavent did an stent rate of 15% again with no real comment on whether the Popliteal vein was open and it wasn't a prerequisite for treatment in the study. This contrast with the Ansberg Aspirex Registry.

Which is a registry of a purely mechanical device to aspirex clot and the stent rate is 100%. Baekgaard Copenhagen used a catered-directed thrombolysis with a mandated open popliteal vein for purpose to be in the study. He has a stent rate of 60%.

My own personal experience of 160 odd patients is that were stenting around 80% of patients with outflow legion at the end of treatment. And were not really bothered by whether the popliteal vein is clear or not. But that doesn't necessarily answer the question

whether it makes a difference in the long run. So its very difficult even looking at the data we have because there is no standard definition of what a outflow stenosis is. There is no objective measure for an outflow stenosis. So stenting becomes and operative discretion decision.

But you would have to say that if your taking purely mechanical devices and the stent rates are going up to 100% that the inclination would be that there is potential for formic mechanical therapy to lead to overstenting and increase use

for stents for sure. In our experience then we had 81 patients who had CDT alone verse 70 patients who had AngioJet Thrombectomy. The basic characteristics of the group are pretty much identical.

With similar ages and no difference between whether the thrombus with left side or right side of body or so on. And these are the patency curves for the different groups with equivalent primary, primary assisted and secondary patency over two yeas.

We had no difference in stent rates with the median stenting of 80% in both groups with two stents used in average for each of those patients. However in our practice AngioJet is rarely used alone. So we had 70 patients for whom AngioJet was used. 24 of those where AngioJet was used up front

as the first line of treatment followed by some CDT. We have tended find that if we wanted full clock clearance. We have always had omit to some extent. And single stage therapy is quite difficult to achieve unless you spent a lot of time in it.

Patency in the popliteal vein is clearly affected by some extent. These are our follow up results if we don't have a patent popliteal vein at the end. It does drop off in stent patency. So the conclusions then I think.

Is that patent popliteal vein is necessary for long term results. But you can still treat patients that have acute popliteal vein for larsons that is not a contraindication. Pure mechanical therapies may well lead to higher stent rate.

But is this a bad thing or a good thing? We don't really know this at this stage as to what the long term outcomes will be. Thank you very much.

- So again, I'd like to thank Dr. Veith for the opportunity to participate in this interesting debate. So, I have been tasked with the position Intra-operative Completion Study is not mandatory, and in fact I will show you why a selective approach will actually provide better results for our patients. These are my disclosures related to ongoing

clinical research and clinical trials. So again, Professor Eckstein and his colleagues should be very significantly commended for getting the entire German vascular surgery community to look at their data in a very rigorous fashion. However, both he and his co-authors will acknowledge

within the manuscript that there are significant problems with this database. A very large number of 142,000 elective carotid endarterectomy procedures with very ballotable stroke and death rates of 1.4 and 2.5%. However, a typical criticism from outside the

vascular surgery community, these are all self-reported. These are not 30 day outcomes, they're actually in-hospital outcomes. And while in Germany that still may be four days, it's not the 30 days that we see. I'll show you a little bit later on within the Crest data.

And interestingly, within their own manuscript only 50% of the patients actually had neurologic assessment both pre- and post-procedural. So, how can we make a relevant decision in terms of thinking about how we're going to treat these patients if we only have neuro data on half of them.

Lets for the moment assume we can call out those patients. How does this relate to clinical practice? Well the authors also admit that this is an observational study, and that even though there is some association, there clearly is no causal relationship

as my previous debater just admitted. And in fact, they argue that this is perhaps the best method to look at generating hypotheses for future randomized trials, much like Dr. Aborama has done with the use of carotid endarterectomy with patching. So, let's look a little bit more about the data

and see how relevant it is to your current practice. So in the Germany registry, a quarter of the patients are treated under local anesthetic. 40% have no type of neurologic monitoring, and over 40% are performed with aversion endarterectomy. Very, very different than the practice that we see

in our institution, and in the New England region. And I would argue that there's a lot of concern in terms of what the indications are for monitoring, what the indications are for shunt use. Again, that's 43%. But there's absolutely no data in this registry about

indications for shunting, when it was used, or when patients were re-explored and what they found at the time. And a little bit concerning is in 17% of the patients, there was no anti-platelet agent used in patients undergoing carotid endarterectomy.

And, I would argue that that number is just a little bit high. How about when we go to the univariate analysis? Once again, we see that there's a benefit of 0.4% decrease in stroke and death for a local anesthetic, although we are well aware that there are numerous other

perspectives that have looked at this and not shown that same relationship. Again, there's a benefit for aversion endarterectomy, but I would argue at least in the New England region and perhaps in the United States except for select centers, aversion endarterectomy is used the minority of the time

and that in fact is an indication in my mind to have a lower threshold for either angiogram or completion duplex. Most concerning, there was 0.3% difference in the stroke and death rate with the lack of an intraoperative completion study, but there was no data about indications, findings,

whether that resulted in an intervention, or what the result of that intervention was. And initially in the univariate analysis, neuro-psyche, physiologic monitoring was protective, but later on in the multivariate, it was not. Here is that same multivariate analysis that shows again

that in fact shunting and neuro-physiologic monitoring are increased risk factors for stroke. Certainly there's going to be some bias. My concern is I'm not convinced the authors are able to call out the co founding variables, even in their multivariate regression analysis.

And in fact, in their concluding paragraphs they state there's no information supplied on whether intraoperative completion studies caused an operative revision or not, and no information about cause of death. In fact, they don't even have information about

intraoperative heparin or protamine application. So I would argue I'd be very skeptical about making my final decisions based on this. Thinking about the technical aspects of angiography, there's no doubt that this is very helpful at times, but think about the details of where do you put the needle.

What type of imaging? Is it a C-arm, is it a flat plate? Who interprets it, and what are your thresholds for intervention? So, it certainly may be harmful, may be unnecessary, and may even give you false positives.

Similarly with Completion Duplex studies, there certainly is a false positive rate and then there's risk for re-clamping. I reached out to my friend and colleague Braglol to see if there was any data from Crest that would help us, and unfortunately other than the fact that stroke happens

up to 30 days after our initial endarterectomy, there was no data supporting that. So, perhaps the best study that we have is our current practice in New England where we had 6,000 patients, a third of whom received completion studies. We broke this down into rare, selective, and routine

duplex or angio studies. And in fact, in the selective group we had a very low rate of re-exploration versus the other group, and a much lower incidence of overall stroke and death. In fact, the only benefit that was statistically significant was a decrease one year rate of re-stenosis.

So in conclusion, I would argue that this is probably unnecessary, and in fact maybe harmful. Meticulous technique, intra-procedural monitoring with selective shunt use, and continuous wave doppler use may, in fact, be the way to go. But this does give us an opportunity for prospective,

randomized trial as part of another study to look for completion study indications. Thank you very much.

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- Thank you very much for the very kind invitation, and I promise I'll do my best to stick to time. The answer is probably to this audience I don't really need to say very much about the ATTRACT trial, but I think it is quite important to note that the ATTRACT trials have now been out for some time, and it is constantly being

talked about in its various dimensions. So I'm going to just spend a few seconds really talking about the ATTRACT trial. A large number of patients screened. One in 41 patients were actually recruited into it and it was a trial that ran for a long time.

Wasn't really with respect to the primary endpoint any particularly good evidence, but for those people who had moderate or severe post-thrombotic syndrome, it probably was of benefit. And if you looked at the Villalta score

and the VCSS scores there was some evidence to support it. So overall, probably some positive take-home messages, but not as affirmative as people would have thought. Now the reason that I've dwelled a little bit on that is that actually, what do we mean when we talk about the post-thrombotic syndrome?

Because I would say in the upper limb, because I have never personally seen an ulcer in the upper limb. Has anybody seen an ulcer in the upper limb due to venous disease? No.

So in a way we are talking about a slightly different entity. We are talking about a limb that has undoubtedly much more finer movements. And there was depression by some people with the results of the ATTRACT trial.

But when you look at the five year results from the CaVenT trial, there was some evidence to suggest that actually, as you get further out, there may be some benefit. If you look at this summation analysis, and I completely accept this is related to the leg,

again, there may be some benefit from the CDT. Now, this is a case of mine. Now I wonder if any of you can tell me how many stages may have been involved from going from the right, to having a ballonplasty in the vein. Pick a number, anywhere between five and ten.

The answer is you have numerous checks of the thrombolysis, you may have a venoplasty, you might have a first rib excision. You may then have occlusion and then realize this before you go on and do the first rib. So all I'm suggesting to you that this is not

a cheap treatment to offer patients treatment to the upper limb. Then we looked forward to some help from the guidelines. Well we look at the American guidelines and give or take, I think the answer is we probably shouldn't be doing it and that we should be only offering anticoagulation.

So do the Brits help? Well actually if you look at the Brits, it sort of says well, you can think a bit about doing decompression, but really if I was standing up in a court of law, I really wouldn't want much support from this guideline

that I had done the right thing. And then the International Society of Thrombolysis and Hemostasis really says well, you can do a little bit of this that thoracic outlet syndrome may be a risk factor. But give or take, surgeries still are a little bit dubious.

So, really there's one good review out there, and this is the review of Vasquez that basically looked at 146 articles, and they found some data on just under 1300 patients. And they postulated and chose some evidence to suggest that there was some evidence

that first rib excision and thrombolysis reduce PTS, and that anticoagulation alone was not enough for the majority of the patients. Very difficult to work out how you selected which patients you should or should not intervene on. Now, I'm sure everybody is rather sick and tired

of me talking about money, and I accept it doesn't really apply here. But money is actually quite important. Five interventions to prevent something that may not happen and at worst may be just a few collateral veins across the chest.

So ladies and gentlemen, I would want you to think very hard, is it actually cost-effective to be offering all patients presenting with an early auxiliary vein thrombosis thrombolysis, and then subsequently first rib excision? These are some of the truths, I think the answer is

it does seem to work. You do need to recognize and make the diagnosis. Usually delayed thrombolysis doesn't work, but there are lots of questions that are unanswered. And how would you defend what you have done in a court of law?

Somebody has a stroke, you then do the first rib, they get a large hemothorax, and they then die because there had been too much TPA on board. Yes, give it some thought. So ladies and gentlemen, I'm afraid I haven't actually answered the question,

but I think you need to give it careful consideration, what are the indications and merits? Thank you very much.

- So I have the honor to provide you with the 12-month result of the TOBA II trial. I guess we all confirmed that this action is the primary mechanism of angioplasty. We all know that lesions of dissection have a TLR rate of 3.5 times higher than lesions without dissection.

The current tools for dissection repair, these are stents. They have limitations, really a large metal load left behind causing inflammation. This is leading to in-stent restenosis. So the Tack Endovascular System.

It's a delivery system over six French catheter. This is for above the knee with six implants pre-loaded on a single catheter. The Tack implant itself, it has an adaptive sizing, so it adapts to the diameter of the vessel from 2.6 up to 6.0 for SFA and PPA usage.

It's a nitinol implant with gold radiopaque markers for visibility. Has a unique anchoring system, which prevents migration, and a deck which is deployed in six millimeter in length. So with regard to the TOBA II study design,

this was a prospective multi-center single-arm non-blinded study at 33 sites in US and Europe. We enrolled 213 subjects. These were all subjects with post-PTA dissection. So only with a dissection visible on the angiogram, the patients could be enrolled into this study.

We had the usually primary safety end point, primary efficacy end points, which we are familiar from other trials and other studies so far. With regard to the inclusion criteria, I just want to look at this very briefly.

Mainly we had de novo or non-stented restenotic lesions in the SFA P1. If it was a stenosis, the lesion length could be up to 150 millimeter. If it was a total occlusion, the length was up to 10 centimeters.

They had to be the presence of at least one target run of vessel to the foot. They had to be a post residual, post-PTA residual stenosis of lower than 30%, and the presence of at least one dissection Grade A to F. With regard to the key lesion characteristics,

baseline for the different patients, there was not a big difference to other studies out there. The only difference was maybe we had slightly more patients with diabetes. The lesion, the target lesion length, the mean target lesion length was up to 74 millimeters.

We also had patients with calcification, mainly moderate but also some with severe calcification. There were two met the primary end points. The 30-day freedom from major adverse event, and also the primary efficacy end point at 12 months, which was a freedom from clinical driven TLR,

and freedom from core lab adjudicated duplex ultrasound derived binary restenosis. Now, with regard to patency in a patient cohort, where we really had 100% dissected vessel at 100% dissected vessel population, we had primary patency at 12-month of 79.3%

and a freedom clinical driven TLR of 86.5%. There was with regard to dissection severity, we had 369 total dissections we were treating. The number of dissections per subject was 1.8. The mean dissection length was two centimeters. So around 70% of subjects had a dissection of

Grade C or greater before using the Tack. In 92.1% of all dissections, this could be completely resolved with a Tack. With regard to the Tack stability and durability, in total, 871 Tacks have been deployed. So that was a number of 4.1 Tacks per subject.

The bailout stent rate was very low, just one. The freedom from Tack fracture at 12 months, 100%, and there was one minor Tack migration at 12 months with education by the core lab so the Tack was not seen at the same place as six months or 12 months before.

There was significant clinical improvement with Rutherford category improvement in 63%, which improved of up to two classes. There was also an improvement in ABI, walking impairment questionnaire. So just to conclude, TOBA II is a unique trial.

First to enroll 100% dissected vessels. Successfully met the primary efficacy and safety end points, and demonstrated the Tack is an efficient repair system for dissections after POBA or DCB with minimum metal left behind, low radial force, stable and durable design,

and preservation of future treatment options. There was only a very, very low bailout stent rate. This in combination with high patency rate and high freedom from clinical TLR. Thank you very much.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- I want to thank the organizers for putting together such an excellent symposium. This is quite unique in our field. So the number of dialysis patients in the US is on the order of 700 thousand as of 2015, which is the last USRDS that's available. The reality is that adrenal disease is increasing worldwide

and the need for access is increasing. Of course fistula first is an important portion of what we do for these patients. But the reality is 80 to 90% of these patients end up starting with a tunneled dialysis catheter. While placement of a tunneled dialysis catheter

is considered fairly routine, it's also clearly associated with a small chance of mechanical complications on the order of 1% at least with bleeding or hema pneumothorax. And when we've looked through the literature, we can notice that these issues

that have been looked at have been, the literature is somewhat old. It seemed to be at variance of what our clinical practice was. So we decided, let's go look back at our data. Inpatients who underwent placement

of a tunneled dialysis catheter between 1998 and 2017 reviewed all their catheters. These are all inpatients. We have a 2,220 Tesio catheter places, in 1,400 different patients. 93% of them placed on the right side

and all the catheters were placed with ultrasound guidance for the puncture. Now the puncture in general was performed with an 18 gauge needle. However, if we notice that the vein was somewhat collapsing with respiratory variation,

then we would use a routinely use a micropuncture set. All of the patients after the procedures had chest x-ray performed at the end of the procedure. Just to document that everything was okay. The patients had the classic risk factors that you'd expect. They're old, diabetes, hypertension,

coronary artery disease, et cetera. In this consecutive series, we had no case of post operative hemo or pneumothorax. We had two cut downs, however, for arterial bleeding from branches of the external carotid artery that we couldn't see very well,

and when we took out the dilator, patient started to bleed. We had three patients in the series that had to have a subsequent revision of the catheter due to mal positioning of the catheter. We suggest that using modern day techniques

with ultrasound guidance that you can minimize your incidents of mechanical complications for tunnel dialysis catheter placement. We also suggest that other centers need to confirm this data using ultrasound guidance as a routine portion of the cannulation

of the internal jugular veins. The KDOQI guidelines actually do suggest the routine use of duplex ultrasonography for placement of tunnel dialysis catheters, but this really hasn't been incorporated in much of the literature outside of KDOQI.

We would suggest that it may actually be something that may be worth putting into the surgical critical care literature also. Now having said that, not everything was all roses. We did have some cases where things didn't go

so straight forward. We want to drill down a little bit into this also. We had 35 patients when we put, after we cannulated the vein, we can see that it was patent. If it wasn't we'd go to the other side

or do something else. But in 35%, 35 patients, we can put the needle into the vein and get good flashback but the wire won't go down into the central circulation.

Those patients, we would routinely do a venogram, we would try to cross the lesion if we saw a lesion. If it was a chronically occluded vein, and we weren't able to cross it, we would just go to another site. Those venograms, however, gave us some information.

On occasion, the vein which is torturous for some reason or another, we did a venogram, it was torturous. We rolled across the vein and completed the procedure. In six of the patients, the veins were chronically occluded

and we had to go someplace else. In 20 patients, however, they had prior cannulation in the central vein at some time, remote. There was a severe stenosis of the intrathoracic veins. In 19 of those cases, we were able to cross the lesion in the central veins.

Do a balloon angioplasty with an 8 millimeter balloon and then place the catheter. One additional case, however, do the balloon angioplasty but we were still not able to place the catheter and we had to go to another site.

Seven of these lesions underwent balloon angioplasty of the innominate vein. 11 of them were in the proximal internal jugular vein, and two of them were in the superior vena cava. We had no subsequent severe swelling of the neck, arm, or face,

despite having a stenotic vein that we just put a catheter into, and no subsequent DVT on duplexes that were obtained after these procedures. Based on these data, we suggest that venous balloon angioplasty can be used in these patients

to maintain the site of an access, even with the stenotic vein that if your wire doesn't go down on the first pass, don't abandon the vein, shoot a little dye, see what the problem is,

and you may be able to use that vein still and maintain the other arm for AV access or fistular graft or whatever they need. Based upon these data, we feel that using ultrasound guidance should be a routine portion of these procedures,

and venoplasty should be performed when the wire is not passing for a central vein problem. Thank you.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.