Create an account and get 3 free clips per day.
Chapters
Septic Arthritis (Knee) Investigation|Knee Aspiration (Longitudinal, Transverse Approach)|83|Male
Septic Arthritis (Knee) Investigation|Knee Aspiration (Longitudinal, Transverse Approach)|83|Male
2016anatomyanestheticapproachaspirateaspirationcapsulecellcontrasteffusionfemurfluidinjectioninterferejointkneelaterallongitudinalpatientspriorsampleSIRsuperiorultrasound
Case 2 PAE | Nursing Management in Prostate Artery Embolization
Case 2 PAE | Nursing Management in Prostate Artery Embolization
allergicbladderchapterciprocliniccontrastfoleyFoley catheterholderibuprofenimportantlyinducinginjectionipssmedicationsNonePAEpatientpatientsprostateSent home with a Foley catheter due to prostate volumesymptomstecniquetypicallyunknownurologist
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
acuteangiogramassistedcatheterchapterchroniccontrastdiagnosticechocardiogramembolismisisNonepressurepulmonarythrombolysistreatmentultrasound
CT Angiography | Determining the Endpoints of CLI Interventions
CT Angiography | Determining the Endpoints of CLI Interventions
aneurysmsangiogramangiographycalcificationcalcifiedcenterschaptercontrastemoryequivalentinterventionkneemraoccludedpatientvessels
The Last 5 Years in PE | Pulmonary Emoblism Interactive Lecture
The Last 5 Years in PE | Pulmonary Emoblism Interactive Lecture
aspiratecathetercatheterizedchapterdatadeviceembolismenrollmentinflectionmassiveoptimizedpatientspulmonaryrandomizedsystemicthrombolysisthrombolyticsthrombustrialtrials
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Clinical Workflow for PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
arrivesbloodchapterchartcheckcontrastdoseflowgadoliniumglucoseimaginginjectinjectedinjectinginjectionmonitorMRINonenursepatientpatientspneumaticpresencepriorradiologistrobescanscannerscanningscreeningworkflow
What's on the Horizon | Determining the Endpoints of CLI Interventions
What's on the Horizon | Determining the Endpoints of CLI Interventions
angiographyarterybasicallyblushchaptercontrastdetectflowframesgraphimagesinjectioninterventionlevelmappingoxygenoxygenationpatientpatientsperfusionproceduresensorstissuetransmissionundergoingunderwentvessel
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
Duplex Ultrasound | Determining the Endpoints of CLI Interventions
angioplastychaptercolordopplerduplexflowhelpfulimageimagesimagingoccludedpatientssensitivespectraltriphasicultrasoundvelocitywaveform
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Q&A- PAE | Nursing Management in Prostate Artery Embolization
Q&A- PAE | Nursing Management in Prostate Artery Embolization
acidosisbladderchaptercontrastdysfunctionfoleyibuprofeninterventionalmetforminnephropathyNonenursespatientpatientssymptomssyndromeureterurineurologist
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Endovascular AVF creation | Twitter Case Files SIR 2019
Endovascular AVF creation | Twitter Case Files SIR 2019
6fr venous WavelinQ magnetic catheteradvanceadvancesalignarterialbrachialcatheterscenterschaptercreateselectrodeembolizeendovascularengageFistulainsertmaturationpatientpatientsstepultrasoundveinvenavendors
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Massive PE Case | Massive Pulmonary Emoblism
Massive PE Case | Massive Pulmonary Emoblism
anticoagulatedbloodbuttoncannulacavachaptercontrastfibrillationhearthypercoagulablehypotensivehypoxicinjectionliterspressorspressurepulmonarysaturationsignsystemicTheraputically anticoagulatedtherapythrombectomytpavena
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
Protein Losing Enteropathy | Lymphatic Imaging & Interventions
angiographybluecancerscenterschapterdiseasesdisordersembolizeflowfluidhepaticimagingInterventionsintestineleakingliverlymphlymphaticlymphaticsoncologyPathophysiologypatientsproteinthoraxtreatable
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
MRI Safety & Screening | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
aneurysmassesscardchaptercontraindicateddefibrillatorsimplantimplantsinjectedinjectionmraMRINonepacemakerspatientpatientsradioactiveremovescanscreenedshieldingzone
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Theories on Accident Causation | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
anatomychapterdefensesfailuresinterventionalmistakesNoneoccurringpatientvisible
Introduction to Establishing Periprocedural Screening Guidelines to reduce bleeding risk associated with Image-Guided Theraputic and Diagnostic Procedures | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
Introduction to Establishing Periprocedural Screening Guidelines to reduce bleeding risk associated with Image-Guided Theraputic and Diagnostic Procedures | Risk Mitigation: Periprocedural Screening and Anticoagulation Guidelines to Reduce Interventional Radiology Bleeding Risks
anticoagulantscampuschapterclinicclinicalcoagulationgraduatedguidedguidelineshospitalinpatientinpatientsinterventionallabsmayomedicationsneuroNonenonvascularnursenursingpatientspracticeproceduresradiologistsradiologyrochesterspecialistultrasoundvascular
Chylothorax | Lymphatic Imaging & Interventions
Chylothorax | Lymphatic Imaging & Interventions
brighamcaudalcenterschaptercoilingcolorcongenitalducteffusionembolizationidiopathicleaklymphaticmajormalformationsmichiganoctreotidepatientspediatricpedspittsburghpleuralstudiessuccesssurgerythoracentesisthoracicthoraxtraumatictreatmenttriglyceridesvulnerable
Muscoskeletal Ablation | Interventional Oncology
Muscoskeletal Ablation | Interventional Oncology
ablateablatingbonescannulatedcementchaptercryoiliacmalignancymusculoskeletalorthopedicpercutaneoustumor
Renal Ablation | Interventional Oncology
Renal Ablation | Interventional Oncology
ablationcardiomyopathycentimeterchaptereffusionembolizedfamiliallesionmetastaticparenchymalpatientpleuralrenalspleensurgerytolerated
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
TIPS: Techniques- CO2 Venography | TIPS & DIPS: State of the Art
balloonboluscapsulecatheterchaptercirculationconnectioncontrastcorrelationdiedifferencedistalfattyhepatichepatic veinimageimaginginjectleaklearningocclusionportalrefluxsegmentsteptrappingveinveinsvenogramvisualizewedgewedged
Lymphatic Imaging Challenges | Lymphatic Imaging & Interventions
Lymphatic Imaging Challenges | Lymphatic Imaging & Interventions
angiogramappearancebreastchaptercontralateraldependentductextremityfluidfluoroscopicfunctionalimageimagesinjectionlymphlymphaticlymphaticsmelanomanodenodespatientpatientsscintigraphyswollentherapythoracictumorvalvesvessels
Examples of Highly Viewed Tweets | Twitter Case Files
Examples of Highly Viewed Tweets | Twitter Case Files
anatomycancercarcinomachapterconsistencyexcitingfindingguptaimagingkidneypatientpatientssanjay
Transcript

Moving along we've got an 83 year old male, he's got a infected right hip and he has new painful right knee joint and there is concern for an additional site of infections so we're asked to aspirate this right knee.

So again initial ultrasound scan. I should mention that all the photographs are photographs of fellows, residents or myself, not of the patients so we can get him in here. So often times that image might not correspond with what we're seeing with the ultrasound or the x-ray images so these are all volunteers in the photographs, but position like this and you

wanna identify the patella as well as the femur, and we'll look at the relative anatomy here. So overlying you should see the Quadriceps tendon longitudinally, and then superficial layer of course we'll have fat and skin. Due to that you have the patella and the femur and really what you

wanna look for is that Quadriceps fat pad which is highlighted there as well as the Prefemoral fat pad. And between that space is where fluid would be, sometimes it's salivary physiological fluid and sometimes it's our big joint of fusion. You can really accentuate that by increasing flexion a little bit

or putting a little just manual pressure around the knee, kinda milking fluid up in there whether it's inferiorly, medially or laterally. That can

really accentuate that. There's where you're gonna be looking, so this is just an initial scan to kinda give a lay of the land to figure out is there a lot of fluid, is there not much fluid? Then I'd like to try and transverse and look at that superior lateral

recess. It's important to use light transducer pressure here cause you can really pretty easily obliterate that if you're pushing too hard, and this is a real nice approach for accessing the knee joint when there's fluid present because really you go through skin,

subcutaneous fat and maybe a little bit of the vastus lateralis. But it's really very well tolerated for an approach. Another, and there's like this, looking at our anatomy there. If we move inferiorly,

same basic position but just a little more inferiorly where we're bring the patella into view there. You can see the patella medially, the femur as well as that little lateral recess to the joint. And this is an approach that we'll employ when there's not enough

fluid distending that superior lateral recess. This is another great way to get into the joint. However, you will go through a little more of the joint capsule here so this is a little more painful. If

you're gonna be doing an aspiration. [BLANK_AUDIO] So one of the considerations for aspiration we'll give local anesthetic to the skin and a little bit deeper. But we really avoid putting much local anesthetic right at the joint capsule.

Because of the potential to interfere with the sample we're retrieving. The local anesthetic is often bacteria static and that can interfere with cultures. And also if you get just increase fluid and then that can dilute the sample for a cell count, so two of the most important reasons we'd be aspirating this joint can be confounded.

So we just kinda coach patients you might feel a brief pinch as we enter the joint and then you should do very well with that. We do this in-plane lateral to medial. The same approach can be used for knee injections. If there is a jointed fusion. Often there is a joint effusion in patient's knees we're being asked

to inject. So that the superior lateral recess. If there's not an effusion again you just move inferiorly where you can see the patella like that. Now the advantage to an injection is we don't have a sample we are worried about interfering with so

you can be a lot more liberal with local anesthetic at the capsule there and those patients do very well with this approach. So here is an example of an injection gone without approach. Even if there is no fluid which really I rarely encounter but if you have this view and there is really no fluid you can still put the needle behind the patella and once you've crossed through there

then you know you are on the knee joint, and then again you should have nice free flow of fluid. Also prior to knee injections I'll always look for and effusion in a longitudinal view and then following any knee injection, I'll get that longitudinal view again and I like to see that has been distended there just proving that even if I use this approach, that

I have shown that the fluid has gone where I planned it to. So accessing the knee, under fluoroscopy we can go medial or lateral. The patient is gonna be supine, the leg is gonna be extended and important that quadriceps is relaxed and you wanna just jiggle

the patella around a little bit, make sure it's nice and mobile and often times you have to kind of remind the patient throughout just relax that leg. This will contact cartilage, either patella or femoral cartilage because it's hard to make sure you are perfectly in line when you are advancing and again contrast should not be administered prior

to aspiration to exclude infection for those reasons we already discussed. So here we've got an image, pick that superior third at the patella, either approach is fine. This image on the right kinda reminds us that if we're gonna come laterally, you're basically horizontal,

and if you're gonna come medially, you're about 30, 45 degrees, so quite different approach than for shoulders and hips where you're essentially vertical. And however you approach it then you should see a nice free flow of contrast through there.

So here we have a nice confirmation that we're in that knee joint. So diagnostic aspirations, typically we'll use a 20 gauge or larger needle. This is case dependent, if we're using ultrasound and we see it's

a real complex collection we'll sometimes even put in a 5 French UA catheter. It's a great way to get really thick pus out or if it's a hematoma, can aspirate those nicely. As mentioned we wanna avoid injection of local anesthetic or iodinated contrast prior to obtaining fluid.

Commonly ordered tests. Don't forget cell count, cell count, cell count. Often times cultures gets ordered but they forget the cell count. Cell count really is how we make the diagnosis of these and so it should almost always be included.

Of course crystals are important and then Grams stain has variable positivity rates with these. With our lab set up we need about 1 to 2 mls to perform all those. It does vary based on labs so kinda knowing your pathology lab and knowing what they need can be very helpful. Cause often times you're getting very little fluid out of some of

these joints. Here's just a reference side looking at what the cell count tells us. Normal, non inflammatory, inflammatory, septic and hemorrhagic, and then partnering that with cultures.

want to go over is we're gonna kind of fast forward but this is kind of like our record holder in terms of prostate

volume so this guy's six seven year old history of BPH for a long time obstruction he's been fully dependent for several months and so we can't he can't even fill up that IPS or Christa doesn't pertain to him is she's fully

dependent but his call it life is obviously very bad it's at six he has a lot of core abilities like diabetes hypertension he is on chronic pain medications due to some sciatica and he also has some unknown contrast allergic

reactions that we don't even know about and he's allergic to bactrim and his MRI showed at 306 grand process so this is so far he's our holder so this is just the idea of how biggest prostatitis

again tear white is to the frontal view of the process it looks like is basically compressing most of his bladder right there so who knows how much bladder or how much urine he's able to retain in that bladder and to that to

your left is the shuttle of you and you could see that fully basic line there and the base of his bladder so with this guy since he has some unknown conscious allergy he had had undergone eye referral to our allergist team it was

confirmed that he wasn't learning to contrast after also the several weeks for us to get that confirm the first time he went to our clinic he actually had getting he had the episode of UTI so when our nurses checked him he was I

believe he was taken some subtract zone injection because he couldn't get sipper because it was allergic to it so he's getting home health subtracts from an injection and so since he showed up to our pre-op with a current or of he's

getting treated for Kearny ty we had to postpone and rescheduled him so this guy was obviously because of his prostate volume was a grade 150 we had to be the stretch with a Foley we had to make sure that this patient gets followed up with

our urologist and because his allergic to cipro which is the medication said we would typically give a patient and we have to set up home health to make sure that he gets his four seven injections at least one week post procedure and all

the patients that are sent home with a Foley since they tend to have more symptoms of bladder spasms we would get on some oxybutynin so he's gone oxybutynin and some narco ibuprofen and the pp is and some colace as all the

other set orders prescriptions that we would typically prescribed for patients so with this guy upon a follow up when I call them a day or two later his main complaint was bladder spasm and again this is related to probably from the

from the inducing press inflammation or prostate are probably having the the catheter in place but so at once I call him when I have to reassure him that make sure he takes the oxybutynin to see if that'll help him

which he did and he was basically taking ibuprofen every eight hours for the first two days which helped most of his symptoms so a lot of its patience you just have to really reassure them and make sure they're compliant with the

medications and if they are having symptoms of post elbow station syndrome then he had to reassure them that those things should get better so when we see this guy on page so this patient we saw him in clinic he was seen by the

urologist two weeks after and he was able to have his Foley remove so he was totally happy he was actually able to fill up that IPSS car which is 15 however more importantly his koala life went from 6 to now - so just to kind of

wrap things up in conclusion you know PAE is safe and efficacious excuse me and effective I did at least based on short term follow-up it does how yield a high patient satisfaction I would say like more 80% or so patients are fairly

satisfied when we see my month or two later it is tecnique technically challenging is not performing a lot of IRS are programs and I think more importantly for our nurses is vital for us to be

knowledge of this procedure that way we can educate our patient better and also minimize any arrests and complications that are associated with with this PAE so just the close things up this is probably my favorite nursery code this

by mother Teresa it is not how much you do but how much love you put in the doing thank you

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

happy to take any questions or in

ultrasound we don't usually use contrast but one of the procedures were doing for the treatment management of a pulmonary embolism is the ultrasound assisted Rumble Isis do we need contrast so for the thrombolysis is the catheter itself

so you still need to give contrast two to do the procedure but while the catheter is running you don't need to give any contrast four for that is that what you're we don't usually use contrast for ultrasound but

all right when you're treating how will you know that it sliced the clot is less what you frequently do is check the pressures so that catheter allows you to check the pressure and so once you start a patient so you do a pulmonary

angiogram which requires contrast and you put the ultrasound assisted thrombolysis catheter in the eCos catheter then after 24 hours or 12 hours you can measure a pressure directly through that catheter and if the

patient's pressure is reduced you don't have to give them anymore injections yeah and if we are using ultrasound for treatment is it possible to do it for diagnostic purposes No so not for non the prominent artists for

diagnostic imaging unless you're doing an echocardiogram which is technically ultrasound in the heart but for treatment otherwise you need you will need to inject some dye oh thank you

hi I'm Katrina I'm NGH I have one more question okay for your patients with chronic PE do most of them begin with acute PE or if they very separate sort of presentations that's that's a great question so all of them

had acute PE because you can't have chronic without acute but a lot of them are not ever caught so you'll have these patients who had PE that was silent that maybe one day they woke up and had a little bit of chest pain and then it

went away couple days later they thought they had a bronchitis or a cold and then you find out five years later that they had a huge PE that didn't affect them so badly and then they have these chronic findings they usually show up to their

family practice doctor again with hey I just can't walk as far as I can I have a little heaviness they rule them out from a heart attack but it turns out that they have CTF so you you all of them had a Q PE but it takes a lot of time and

effort to find out whether they truly have chronic PE so it's usually in a delayed fashion thank you all right well thank you guys again appreciate it [Applause]

for it's very it at centers where CTA protocols are very good it's basically equivalent to a angiography has been shown in multiple papers to be so newer studies show that

CTA and Emory are equivalent so I don't know it depends on your institution there are a lot of places that still practice with the MRA is kind of the gold standard but CTA is just so much more available that CTA is becoming kind

of the new gold standard for for quick vascular assessment often like to use it to help us plan our intervention so if we don't know what's going on above the level of the groin CTA could be helpful to see whether or

not we could even go from right to left how calcified the vessels are or whether or not there's concomitant aneurysms things that we don't like to discover at the time of the procedure because we might not have the equipment we need to

treat it one of the strengths is that it's quick and that it's cheap but of course it uses contrast and just like you know we like to minimize the amount of contrast that we're using at knee and rogram this can use anywhere from 75 to

150 cc's of contrast or not a small amount and if you're gonna do an intervention the same or the next day that's a lot of dough that's a lot iodine in a couple days these are examples of what we can see at the time

of the procedure there's a 3d reconstruction and a BU these are kerf planer reformatted images what basically they draw a line down the image and you can lay the entire vessel out even if it's very squiggly and then this isn't

this an angiogram and that same patient you can see that they correlate exactly another example a patient with aortic calcification you can see that it can be potentially challenging this patient with diabetes to determine whether or

not these vessels in below the level of the knee are paetynn or not because I can tell you that the one that's closest to the small bone there is actually occluded it's just all calcified you can't really tell what's going on and

the one that's behind that is actually Payton so it could be difficult to tell whether it's calcium or contrast that you're seeing this is where MRA can be

individually into each one of these trials but I want to just point out to you how busy the last 5 years have been because it has really caused a

resurgence in our interest in both treating PE better and what the gaps are in our knowledge so I will point out in 2014 this was an inflection point for 10 years we didn't have a major trial actually more like 12 or 15 years we

hadn't had a major trial in in PE and pytho was a 1000 patient study that informed us about how systemic thrombolytics interact with sub massive P and I'll go through the data that same year

catheterized thrombolysis is everybody familiar with catheter at the thrombolysis for submasters before Pease that's totally off the grid okay good well this was the first time we had a randomized trial for catheter directly

thrombolysis with some with some massive PE only problem was it was 59 patients in Europe so and that's all we have as far as randomized trials for CDT this is my soapbox issue I'm sorry if you've heard me say this but that's that's my

big goal is to try to change that 2015 had some follow-on CDT trials 2017 this is when we started thinking about the long term effects of PE on patients both of these studies started to examine the issue where a year after the PE patients

are not normal if you did a for example this elope long term study almost 50% of patients had an abnormal cardio pulmonary function test one year later 2018 we started to experiment with the dosage that we're

administering during CDT that's the optimized trial and we saw the first trial completed for a mechanical device called the NRA flow trailer which I'll show you later in the talk as well so that was an exciting inflection point as

well the extract PE trial which uses the indigo cat 8 device to aspirate thrombus in pulmonary embolism we just completed enrollment this year the future is hopefully bright for generating more data the PERT consortium registry is up

and running and is hopefully going to help us aggregate data and make better decisions and then you have a couple more devices coming in and I'll tell you our efforts to try to really improve the knowledge base on what CDT for sub

massive P that's the P track trial that's the last bullet point there okay

workflow for pet MRI upon arrival the patient have to fill out questionnaires the MRI screening for contrast and allergy assessment pet screening form

the RT will review MRI screening for after he checked that the patients at MRI safe and no presence of a Mia Ferris fragments or anything he would give the paper to the RN the patient then will be escorted through the change room and

asked to put on robe and non slip shots this is these are the responsibilities of the nurse in our clinical workflow for pet MRI RN to review pet screening form and contrast questionnaire if patient have to receive gadolinium check

kidney function EGFR below 15 you notify the radiologist except for a of s below 30 you notify the radiologist check for allergies if allergic make sure patients is properly pre-medicated

check for Medicaid presence of medication patches and implanted infusion pumps now also you have to check for patient's blood glucose monitoring I have one but I would but I don't go inside the scanner so I'm safe

check for pregnancy status with pediatric patients we have a special process to follow the iron then obtains blood glucose and record if blood glucose is 70 to 199 we proceed with the scan anything above 200 we follow the

glycemic management with PET imaging flow chart and here's how our PET imaging flow chart looks like it looks complicated by its color coded it's three pages but I would like to show you some key points like the administration

of insulin is also based on the level of BMI you see on the arrow says BMI below 25 and there's another flow chart is if it's above 25 after that the patient will be brought back to the pet designated injection room

remember our pet MRI is located in zone three of the MRI area so prior to that the RT would the screen the patient again the patient would pass through the wall-mounted metal detector and nobody could go into song free without escorted

by the IRT or a nurse you have to swipe your ID to open the door mission when the patients in the hot room are in would obtain the height in centimeters and weight in kilos after that the RN now could do IV access once

secured you call the range of pharmacists that you're ready to inject so we wait until and the FDG dose would come up through the pneumatic children this is how our hot lab looks like the pneumatic tube to your left above is the

shower and we have the hoop to prepare for the dose or check for the dose and the wash station and once the those arrives the nurse injecting and the RT is scanning or the RT assisting just always two artists in one machine in our

MRI Department we have four magnets and only one is for MRI PET MRI it's always two artists in each machine so one RT is assisting you and with the patient so once the FDG arrives we do a patient identification using two patient

identifiers we check the label and the dose if it's correct the FDG then will be injected to the patient once injected we tell the patient they have to wait for 40 minutes during this time we instruct them to stay still not stay

still but limit movement and stimulation and inform them that we have a camera inside that room and the nurses in a and the nurses could monitor them in the nurse's station one RT will set up the scanner and computer

and patient will be screen and wondered prior to so on for so you get wandered twice check for ferrous presence patient then will be positioned on the scanner table by the pet mr technologies it takes 15

to 20 minutes for setup you have seen how the patient is position the whole body is covered by the coils and head is covered by another coil as anybody among he works in the institution who requires time out prior to injection raise your

hand please at ms KCC we do this is done by the injecting nurse and the RT is scanning the RT is reading information directly from the monitor not anywhere in the monitor while the nurse is comparing and listening into the using

the documents on hand this is done to ensure the five rights the right patient the right scan the right area your scanning the right contrast those and rate and method of administration as you all know is either given IV push or by

the dynamic or the injector timeout will be done if patient will be receiving gadolinium once the scan is finished IV access will be removed our artists are trying to remove and inject also so they are capable of removing the IV the

radiation card will be handed to the patient and paste after that patient would be assisted to the change room and discharge there is good thing when you change the patient into the robe and the non-skid

sucks because just in case there's a spill you're not sending that patient into the paper outfit they're not gonna be happy at all now I'm gonna bring you

none of the all of these are great tests for determining how to plan a procedure or if you did a good job but really what we need is something like analogous to a wound blush which is at the time of the procedure can we quit or do we have to

go after another vessel so one of these is 2d perfusion angiography so this is an advanced DSA technique it requires you to have a specific software package in your lab you have to use a standard contrast bolus and rate to deliver it

with a power injector you have to use the same frames per second every time it's 3 frames per second a 30 second lateral projection acquisition at least it was on the Philips system that I learned it on post processing software

calculates how quickly the contrast arrives how long it takes to peak wash in curve with all this stuff is automatically calculated and you can alter the image of the graph similar to how you window and level your your

images when you're filming you can glean all that information out region of interest can be drawn over a specific area like the wound and see just how much improvement in flow you've had so this is an example a is a pre

intervention of B as post intervention basically this is a time this is a time to peak graph so basically you know the greener it is the quicker the quicker that the contrast arrived to the tissues yet another example how you can graph

these out you have an A and B in a patient that the top level was a patient where we did an intervention and there was still and B was post intervention are still significant that there's a drop in the time to arrival of contrast

and then the image below this is another patient where Reid intervened and saw that there was no significant change despite opening up the SFA and popliteal artery and so we had to go on and and treat the anterior

tibial artery too after that and just one more example this is that patient I showed you earlier with the the wind blush you can get a 2d perfusion eye equivalent of that same picture you can draw a region of interest over there

other things that have been used include fluorescence angiography so this is an intravenous injection of a dye called IC g IG C they use it not the optima logic pursuit and procedures still it's about for the last 40 to 50 years

it stays intravascular for a long amount of time and it's excreted through the liver so basically you give it ia or or IV and our purposes we would give it I a because we're already in the artery fixing it and then we darken the room

and we use a detector to determine just how much flow we have so in this patient who underwent an intervention pre intervention there was no flow below the level of the for foot-post intervention there is that vessel you can see that

you see the artery flowing to the toe but there's really not much perfusion below the level of these KS car on the top of the Tobit nail bed and this is another way that those images can be displayed which show you that you know

red is more flow and you know blue is less and so you can see just how much perfusion can be has been achieved this can be done on the table in the room and you can actually get specific photon count levels and this can kind of be

used to give you a bit more objective rather than just a subjective measure of when you can stop other tools include tissue oxygenation saturation mapping so basically you are mapping out the transmission you see a theme here

transmission of light rays in the near-infrared spectrum there absorb differently beaten depending on the weather you have oxygen bond to your hemoglobin or not and so the probes placed on numerous points over the foot

and similar to what you saw with the ice with the dye injection you can actually map this out and this is in a in a paper where they're actually showing that this can actually be used to determine where angio zomes truly are in patients

because I showed you that picture earlier where it was a cut and dry right down the middle of the foot but in patients especially who have long-standing disease those and resumes can be really variable really really

futuristic here is implantable tissue oxygen sensors so these are basically little tiny beats that can detect the amount of oxygen that's in the tissue of real-time these are these are undergoing research in multiple sites and are used

in a few places routinely in Europe so in one recent study ten patients underwent implantation of four sensors one in the treated three in the foot and one in the arm is a control and basically they look at nine out of the

ten of them showed a measurable increase in dynamic oxygen after intervention so this is kind of how it works it's supposed to be sitting in the level of the Kapler that it can detect whether or not you have real-time oxygenation so

here is kind of cool you can watch as you're doing the procedure the the different steps of the procedures the balloon goes up and the number and the oxygenation tension goes down you deflate it goes back up and you repeat

that multiple times when you put in a stent you can see that there's a dramatic rise and the amount of oxygens in the tissue so they show promise but unfortunately all of them are still undergoing studies so nothing has really

hit the primetime yet finally the most

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

helpful and you know many of us use this on the table at the time of the procedure we also look at our own images because it reports are not all that helpful and what you're looking for I don't know duplex ultrasound is what is

the vessel wall look like is it narrowed is it patent are there are there large collateral so you're going to need a lookout for or what's the velocity of flow because as you know as you know you put your

finger over the end of a of a garden hose it's going to increase the velocity of the water that you're shooting at somebody and the flow direction and quality can also be detected so color Doppler imaging often changes from this

kind of smooth the uniform color with laminar flow on the on the right side to one of multi-directional flow with turbulence you'll see colored multiple different colors in the same image spectral Doppler waveforms are also

obtained with with duplex ultrasound so what you're looking for is this is the the picture equivalents of marks noises from earlier which is a triphasic waveform see that the flow goes above the line and then goes back below the

line and then comes you can wholly state that it comes back above the line here that would suggest that it was triphasic or normal and then these often just go above the line and they never go back below the line and these patients if

they're if you're looking at the ultrasound below the level and destruction so we're looking for a return from the image on the right to the image on the left we have specific number criteria that we use as a

determination of whether one we've been successful the numbers are not that important but the ant vanish is a duplex are that it's low-cost and it's highly sensitive but it it's time-consuming and depending on who the operators are that

are actually taking the images and who are the readers are you may or may not find them that helpful and it's less accurate for determining if the vessels completely occluded because they may just not have seen it they may have

missed it so it's operator dependent several papers suggest that we should be this should be our first line imaging study for following up patients after we do an intervention particularly angioplasty alone and if the initial

follow-up is normal we can usually push them out to just clinical follow-up and making sure they have a pulse exam if patients have an abnormal finding then we usually bring them back sooner and get a repeat ultrasound at two to three

months CT a very sensitive and specific

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

[Applause] I'm sorry said again oh so the thing with Mormon anytime you have or do

contrast that if you cause a contrast induced nephropathy or kidney failure and patients is on metformin it can cause some lactic acidosis yeah the risk is very low but but more Batali's high so it barely happens but

when it happens it can be deadly so we would yeah yeah but we normally don't check their credit lapis we just kind of hold have a holder for the first there so yeah I think yeah we should with 80% of the case are still being done a few

more oh so the the radial axis hasn't been a lot more proper so even so with interventional cardiology but at least Center five eight percent are still being done the different wall access no well that's that's a good question so

that's very important we're lucky enough to have a very good ear urologist that believes in this procedure so he anytime a patient hears about some of the surgical procedure and they don't want to do it he would have her first yeah

and some of the patients that come from the outside Madeline would tell us that you know that doesn't work or whatnot so but a lot of urologist world is not fully on board with it yet not not at least not in this case I mean

like when they had any lepers oh no no yeah we have not seen that so if a patient has like that the Europe platter is function usually there would not be a candidate for the PAE because shrinking or open up that ureter would

not benefit them if they have a blood is bladder dysfunction yes yes it depends so usually the nurses will just try the regular Foley but in a patient has a history of difficulty with full insertion they may strike a day if it's

really difficult then we have our urology our residents or team with put it in and that's actually a good question you may be basic to us nurses but a lot of our there so one case where we put in a Foley

the nurses saw a year in return and had thought that during a bladder inflated a balloon but they're in the urethra so so we have to make sure that we're in a bladder every time with enough Foley it sounds basic but it's one of those

fundamental things that we have to really watch for are usually just a normal I guess 60 yeah yes yes yeah it's like a question we that's like that's a very good question we have especially with the ones with severe

bladder spasm however at least in California and Orange County area this time there's not a lot of pharmacists that the carries belladona so as a matter of fact as a patient that we had thought that would benefit from

belladonna I called multiple pharmacies and a lot of unfortunately does not carry them even our own pharmacy so yeah yes yeah so this is one case we had we were yeah so one case we were able to dispense in patient but there's there's

a lot of barriers if you were to describe it as an outpatient there's a lot of authorization and and delivery method involved which takes several days and several days is a lot of time for a patient to was having bladder spasms yes

are usually in clinic usually if they have a negative year within 30 days we're good to go yeah so that's that's the more important thing if there aren't pre-op and a lot of patients have your recurrent UTIs so

they know what their symptoms are so you would want to assess them hey do you think you have a UTI have you had any change or in urine yeah P material or blood or pus in the urine so it's very important that we assess them

preoperatively to make sure that they don't have current UTIs oh yes there there's only one case that we actually give a patient a manual dose pack and it helped but a lot of times at least from my experience the degree of their

posterization is not as bad as for example who someone's getting like a key mobilization or taste or or y9e so it's usually a mild degree of a post amble syndrome but yes yeah and usually for the most cases as far as proposed post

amble syndrome ibuprofen the anti-family would suffice in terms of managing their symptoms all right thank you [Applause]

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

so this is our MGH page we started it about a year ago check it out if you guys like it some pretty good cases we mostly post cases some policy stuff industry and changing things it's not purely cases but certainly take a look if you like it give us a follow so what

I have today is I have two cases that I picked and you know for all the thousands of cases that all these huge academic medical centers do I tried to pick a couple that might be a little interesting and that aren't being done

in all the different centers across the institution so I'll start off with the first which is an endovascular AVF creation so what's nice about this is that you know what we see so far from this is that the length of stay impact

has been certainly reduced in certainly the maturation times and the Rhian turn re intervention rates have been reduced so I'll go through this and normally wouldn't go step by step for a few things but I think you know not all

institutions are doing this yet I think that you will I do think this is going to be a shift for a lot of the dialysis patients and everybody who works anion knows what a huge impact it is the ESRD patients is just astronomical the

numbers of them it's just continuing to rise so procedural steps the first step is you're going to access the brachial vein advance the guide Y down to the ulna insert a six French sheath and perform a vena Graham and the rationale

for that of course is to make sure you don't have any issues centrally some centers do that in advance some centers don't I will mention also that the ultrasound mapping is absolutely critical to make sure that

you get the right patient you start off by seeing them in the outpatient clinic and then you're going to go and have them have vascular ultrasound to make sure you have a good candidate so the next is you're gonna access the brachial

artery same thing advance your guide wire down to the ulna from there you're gonna insert the venous side now this is one of two approved vendors that will allow you to do an endovascular creation this was a wave link it's a to stick

system and it requires two catheters which is why you see the next step is pretty much repeated but just flipping it to the arterial side so from there there's a magnetic zone it actually has like a little canoe so it's got a

backing of a ceramic sort of a space there if you can think of sort of the older or atherectomy cut home catheters that had that little carro canoe you would actually take the debris out it's very

look into that and I'll show you that in a couple of images once you align that you're gonna sort of engage the little electrode this is an RF ablation RF created type fistula so it creates a little slit between the Adri and the

vein and what happens is is that you know of course don't forget you have to ground the patient just like any RF once you get the magnets and you get the electrode alignment you're going to engage the device for two seconds and

the fistula is created and then from there a lot of centers are actually going in there embolize in one of the brachial veins and this is basically to sum some of that stuff obviously to the superficial system for draining I have

read that there are a few places that actually go back back in through the newly-created fistula like even at the time of the procedure with the 4 millimeter balloon and just sort of open that up I'm not sure that that's 100%

necessary but I'm sure all these fine people on the panel could help us with that so here you see and I skipped all the entry steps but here you can see the Venus in the arterial catheter you know in position here and there's that little

canoe thing pointed out by the arrow that I had talked about and you use fluoro to sort of align these two things when you first start doing these cases take your time the first one was over an hour and a half for us now obviously

it's about a third at that time this is the little electrode this is when it's advanced and pretty much ready to engage can you play the video for me so this is quick so what happens is you suppress the

device the electrode actually advances and as it advances towards the veena side what happens is is that it actually just creates this fistula through the RF sort of energy from there you're gonna do a post vena graph in here you can see

after we did an initial post intagram there was enough sort of flow between the PIAT brachial so we decided to embolize one and this patient was our first patient and is doing very well so far this is done on I'm gonna say just

because you know to dr. brains point I don't want to get on the hook for certain dates and patient identification but this was done in mid-march so we saw them two weeks out and we're gonna see them again another couple weeks so just

there's a couple of trials that you can read into one is the neat one is the flex trial I think the technical success is really promising at 96% the maturation days you can see there's a massive massive comparison where they

could be ready to be dialyzed in 60 days and this could be a game-changer for many patients the six-month patency rate is what I've seen in most of the reports it's around 98% compared to about 50% with the surgical place and then you can

see that this about 3.5 interactions or re interventions that are required in about 0.5 at a year's time out from this so it's really making a big difference for these patients and I think this is what we do in i/o we continue advanced

things innovate and obviously look to do things in a more timely cost-effective minimally invasive way at the beginning when these new procedures come out the devices themselves might be at a higher price point but we'll see how that goes

moving forward as more and more vendors get into the space so the second case

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

us off so here's the case from 2011 52 year old woman with asymptomatic PE who gets transferred for an outside hospital to the medical intensive care unit on a mid Saturday I'm at the humorous bit the University of Maryland at this point one

of my partners over there where is she right back there over there the two of them are they are hot hot hot stars right there in the back therapeutic Lee anticoagulated consulted the NICU attending calls me directly

the woman is hypoxic her blood pressure is low the something happens in PowerPoint and then we restart again this has taken its own independent control right now that's alright my back all right I get

to press the green button here we go green button has been pressed no action green button again there we go alright so her o2 saturation is low she's hypotensive she gets a lot of fluid her o2 saturation improves and supposedly

she was able to talk comfortably and they watch her so the question was maybe she should get some intravenous TPA that actually is the thing on the bottle versus in an ir calf direct intervention or heparin at 8 so they continue with

mchugh supports not looking bad at 8:30 at night some hours later I get a new call she's hypotensive now newly so despite therapy she's working harder to breathe an echo has been done it took hours to get the result her right side

of her heart is struggling which is the thing that happens with big pease a bad sign we can look at blood levels of troponin x' and things as well and she's now in IR by 8:30 at night so we move quickly at this point in the room she's

breathing comfortably on 3 to 4 liters of nasal cannula and she's able to talk to me and lie flat in the procedure suite this is a vena cava grant so I've cued us to some of the findings which is the flow is up the vena cava and

backwards into the apat of aim it's going up and it's coming back down so you can it you can flood the vena cable with so much contrast that it's going to spill back because you just overfill it but this is not that injection this is

hand injection ok so that means that something's happening downstream and that's the right heart not able to handle the load of contrast not a good sign actually 10 for 20 I made that number up

because I couldn't remember but I can tell you it wasn't over injected so the mean pulmonary pressure is 55 high low normal okay we got a we got a high sign over there from UVA basketball go so so at this point I'm anxious because she's

anxious and visibly so so we start to hustle to get into the pulmonary arteries and she's starting to do less well very quickly this isn't going to be mechanical thrombectomy I give a race 1/2 systemic bolus that's

a that's actually a high dose of TPA immediately because I'm now hoping that systemic therapy is gonna work as she's decompensating we are preparing to do thrombectomy pressors are being started I give more

TPA which is an indication of being worried she's now intubated CPR particular fibrillation she shock we code her for 40 minutes and she dies in ion so we have the pulmonary Catherine and we haven't started the therapy even

so the question of course is what did we miss beforehand and this is before her okay what sign should have happened sooner yes she was hypercoagulable plus I think a very would this have made a difference it's not so clear even

retrospect did we just pour fluids into her which will keep a blood pressure up and moving on that Starling heart curve that says you heart muscle will continue to work and then you fall off that cliff and would it been done differently on a

Saturday all those kinds of you know on

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

interrupting something else getting back

to a paddock with angiography something that we're starting to look at the group at University of Pennsylvania has a publication out on this as well I looked at the liver lymphatics certainly the livers where we produce a

lot of protein it goes through the lymphatics to be returned to the circulation in patients who have heart failure they tend to have increased lymphatic flow in the liver and they think that protein lost in enteropathy

protein losing a property happens when the liver lymphatic leaks into the intestines just some images from their article you see them looking at the hepatic lymphatics there and once they had a needle in the hepatic lymphatics

they actually put her scope in and they injected blue dye and as a proof-of-concept they saw the blue dye leaking into the intestine so now that they see that the blue dye leaking the intestine they say well we can embolize

that they embolize it with some glue and that's what it looked like at the end and then the algorithm levels and all these patients return to near normal so a new a new frontier and lymphatic intervention so just to summarize

lymphatic imaging the current status you know we have very effective non-invasive as well as in vases imaging in the peripheral and central lymphatics we certainly need to this allows for improved diagnosis and once we have

these diagnostic capabilities we were able to come up with these novel treatments for these diseases that were previously untreatable we still don't have good ways to consistently visualize the paddocks invasively and then and

non-invasively it would be great to be able to see that hepatic and intestine lymphatics cuz that's 80% of lymphatic flow so if we can find a way to image these under mr it could be a game-changer for a lot of diseases in

terms of lymphatic interventions Calla thorax interventions greater than 90% effective technical knowledge you know when I was a trainee was really centered to just a few major medical centers now it's defusing out to more places we've

certainly shown as a proof of concept the plastic bronchitis lymphatic flow disorders cattle societies and protein losing enteropathy are all treatable and we're getting emerging experience so don't be surprised if you start to see

more requests for this more patients at your centers these are uncommon disorders that's not to say that you still won't see them every once in a while the role of lymphatics in pathophysiology is still being studied

particularly in terms of heart failure transplant as well as in different cancers in the spread one of the cool stuff that we're looking at right now is actually sampling different lymphatic fluid in different areas of the body

trying to see how the different cancers may spread and/or possibilities in immunology immuno oncology thank you guys and just something I noticed a couple weeks ago in jeopardy clear body lymph continuing white blood cells body

fluid and you guys know what is limp that's your answer so thank you saying thank you to the avir committee and it's been a pleasure [Applause]

MRA safety is one of our top priorities in our unit we have set up MRI zones zone one being the patient waiting area

zone two is where they change and they get screened zone three is where our control room is and anyone who passes by zone three has to get screened our pet MRI injection room is actually inside zone three and zone four is an MRI

scanner itself we assess risk in our patients for their implants we were iterate to them the importance of bringing their implant card with them just so it's easier for us to assess the compatibility of their their implants

with MRI right now we have the capability of scanning cardiac pacemakers and defibrillators it just needs more coordination with our in-house cardiology service and the implant representative rest assure

expanders and aneurysm clips are so contraindicated inside the skin we tell our patients to remove some items that they are able to remove such as dentures hearing aids piercings and prosthetics if they have it as for radiation safety

we observed the concept of Alera or as low as reasonably achievable you know before we inject the patient with the isotope we keep them comfortable we give them blankets we give them the pillows and we tell them

after they get injected that they are radioactive so we try to limit our exposure to them after they get the injection now we try to keep our distance from them and we have shielding lead shielding within the pet MRI area

now we have lead shield syringes available for the nurses use and we have dedicated a hot hot bath room a hot room and radio pharmacy we Ritter we give these puppies this injection card to the patient after they get the scan and we

were either a to them the importance of this card we have the stories from our patients where after the after they scan gone home and they passed through the tunnels or the bridges that they actually have been pulled over by the

police because the police have very sensitive radioactive detectors there was one patient who may have forgotten his card may have lost his card and he got pulled over and the police had to call our institution to confirm that he

really did have an isotope injected we

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

riesen comes to us and he talks about

some theories on why we make mistakes so and we're gonna cover these and then we're gonna cover the Swiss cheese model which many of you may be aware of so sorry slips tend to hurt current situations that are so routine that

they've become rote so an example of a slip could be selecting the wrong drug from a drop-down alright so again slips and lapses occur when the correct plan is made but executed incorrectly so we have that drop down of drugs but we just

select the wrong one that's a slip a lapse is generally not visible because it's reflective of a memory failure so for instance we may have a patient who forgets to take their medications or we may have a prescriber that forgets to

take a drug off of a med rec so those are examples of slips or lapses mistakes or judgment failures they're more subtle and they're complex than slips and these can go undetected for a period of time and they're often left to

a difference of opinion well I don't do it the same way that Mary does it who doesn't do it the same way that sue does it so those are mistakes and their knowledge base we know the right thing to do but because we have outside things

that are occurring situations that are occurring we may have to do some workarounds and those workarounds aren't always safe or we're gonna get in and this is part of the anatomy we're gonna get into the anatomy a little bit later

and often mistakes are rule-based so we know the rules we know what we're supposed to do but for factors that are out of our control we bypass those and that's when mistakes can happen active failure failures are highly visible

errors and we usually see these because they have immediate consequences and then the latent failures their processes that are under the radar they come from not following policies and there may be a good reason why we're not following

policies but oftentimes we hear that we've always done it that way and that means they're rooted in culture so that's where the justa culture comes into play all right Swiss cheese model so this is this is probably a graphic

that's very familiar to a lot of people but it does really it's it's at the basis of a patient safety air so organizations have defenses those are the slices of cheese now those defenses although we'd like them to be solid

they're oftentimes not they're filled with holes because of human factors the human condition those active and latent failures the slips lapses and mistakes that happen to all of us it's a part of us so often some of those defenses get

penetrated but then there's another defense that stops let's take for example identifying a patient so a patient comes in and maybe they're not english-speaking they may be

spanish-speaking and so we call their name and they answer the answer yes because it's close enough right it's close just close enough and they come up we don't check anything we don't check don't verify their name and their date

of birth we pass them on to our prep recovery room and then we're getting them ready because we have confidence that Jane at our front desk she doesn't make an error she always identifies the right patient so we have a high level of

confidence in Jane it's not a bad thing that's an OK Fay but here again we're not doing what we know is in our policy so it's rule-based and that we know is the right thing to do so it's knowledge base so it becomes a

mistake that we're not checking our patients identity and date of birth and that patient gets back to let's say the interventional room and boom we stop because now we're doing a timeout and we identify that we have the wrong patient

for our procedure and it stops but sometimes these heirs line up the holes line up and it's just one of those days and we end up with a patient safety event at the end so now we come to the

I'm Nikki Jensen Nicole is what my mother calls me but that's alright thank you all for joining us today I am the clinical resource nas I work in a clinical nurse specialist position I graduated in May so I'll finally be called the clinical nurse specialist

after I passed my boards in nonvascular radiology so at Mayo Clinic Rochester we are kind of split up between I are in our IR practice where we have non vascular procedural Center CT MRI ultrasound guided procedures we'll go

over a list of our standard perform procedures as well as our neuro interventional and vascular interventional practice so Kerri and I work in the non vascular so we do not do any neuro interventional or vascular

vascular interventional procedures so these guidelines are going to focus on your LR CT or ultrasound guided procedures how many of you went to the combined session this morning great this is going to be an overview because what

we saw presented there really reiterates what we are have brought into our practice but then we're also going to share how we created nursing guidelines and how we rolled that into our practice this is Carrie Carrie is a staff nurse

in our department I worked as a staff nurse for seven years prior to this position I've been in this position now for four years and really enjoy it I do want to give a little shout-out to Carrie and I presented or sorry we

published an article in the June 28th volume 37 issue - that really coincides with our presentation today so I would encourage you to read that publication and then you'll get additional information on how we did this yes all

right we have nothing to disclose unfortunately or fortunately right so the purpose of this presentation is to help you all understand the importance of creating reviewing the literature

understanding your for one your coagulation casket as well cascade as well as anticoagulants that are out there or new up-and-coming medications and understanding that yes it's very important to establish and create these

guidelines so that within your practice you don't have differing radiologists that have differing opinions if you're working with doctor so-and-so today you need to worry about these labs if you're working with you know dr. Johnson

tomorrow he doesn't care about the labs we did this to help standardize that to help reduce the amount of questions our nurses have how many times we're interrupting our radiologists but then also we need to take into consideration

the importance of the patients and their different disease processes and we'll be going over that too so it's nice to have established guidelines but then also we need to take into consideration why patients are on certain medications this

here is our list of objectives I'm not going to read them for you you can all read them and we've provided you all with handouts too but really we want to just help kind of explain mechanism of actions and different medications and

how we established our guidelines this here is where Kari and I come from full disclosure we do have snow on the ground so these pictures were not taken before we came we are really enjoying this nice warm weather but for those of you who

are not familiar with the history of Mayo Clinic in Rochester who we have a hundred and fifty plus year tradition of implementing evidence-based care to assure the needs of our patient come first we are divided up into one

downtown campus but we have three different main areas so we have our st. Mary's Hospital this is where Kerry is based out of this is this houses most all of our ICUs as well as most all of our inpatients so we do a lot of

inpatients but we also see outpatients in this hospital Rochester Methodist Hospital this is where our he mock patients typically are we do have one ICU within Hospital as well but then right here my

office is right there this is our Mayo downtown campus so this is where most of our patients come for outside procedures or outpatient diagnostic imaging exams this here is the group that I'm part of the clinical nursing specialist group

within our clinical nursing specialist group there are 77 of us there are five like myself clinical resources as we have not graduated as of yet I'm right there in the middle w

that work in over 70 ambulatory areas in 58 inpatient areas we also support some areas in our Arizona and Florida campuses and then we have Mayo Clinic Health System hospitals that are scattered throughout Iowa

Wisconsin in Minnesota as well I am the only one in radiology across all of our

where the rubber hits the road is how we and what we do with this and the first

entity that we started treating with skyla thorax and what kyla thorax is basically a milky pleural effusion you guys I'm sure I've seen this you're doing a thoracentesis on a the food that comes out actually pretty

thick it's not clear it's almost this milky color the patients are usually fairly ill they've had Safa geo surgery lung cancer surgery heart surgery etc we test the fluids for triglycerides and chylomicrons and if that's positive then

we know it's a kind of thorax historically these patients would be treated by not being fed given TPN and maybe octreotide they'd maybe go to surgery if they received no treatment they had 50% of them died six to 12

weeks later if they went to surgery 12 percent of them died if they went to surgery 40% of them had major complications so you can see if this was a major opportunity for us to step in and really change the outcome for these

patients as I said Constantine Koch did the first procedures on this but I'll show you what it looks like this is doing a central and fangy Graham and we're serial images you see that leak accumulating on the right side the

right pleural space we have our wire and catheter in all ready and all we're gonna do is we're gonna start coiling up at the area across the leak and put more coils and a little bit of glue at the end when we do that we have a very high

success rate you see four major studies that have been published from 2004 to the present you see the first ones doctor copes major study 42 patients from UPenn the second one is also from UPenn 109 patients the next ones from my

Hospital Brigham and Women's where I did my training and then the last ones from Pittsburgh there have been subsequent studies as well but this included over 400 patients between these there was a meta-analysis in jvi our last year

showing that the lymphatic interventions for Kyle thorax pretty successful looking even at old technology that were used for the embolization zhh 400 patients nine studies 80% success rate across all these different centers I

would say in experienced hands a success rate exceeds 95% for traumatic Kyllo thorax at the present so we know that this is a pretty respectable for the treatment of Kyle of thorax a CR has some guidelines out for how the thorax

treatment as well encourage you to take a look at them it can break it down between traumatic and non traumatic caudal thorax and gives you some recommendations of how to approach it

pediatric catholic's is a little bit slower to treat generally everything in peds is a little bit slow to be adopted we obviously want to be very careful with our most vulnerable patients so the types of disorders that pediatric

patients are slightly different because they can have congenital or idiopathic I authorities it can be from lymphatic malformations or from different syndromes it certainly be from congenital heart surgeries and other

issues that they may have going on there have been several reports published at our institution University of Michigan we publish the largest cohort of pediatric patients and it was only eleven but ultimately we showed that

thoracic duct embolization was just as effective just as safe in this population our youngest kid was only two weeks old our smallest kid was two kilograms so a very vulnerable very small structures but you can still do

and still have fantastic outcomes for

ablating things in the bones well musculoskeletal blasian we're fortunate within our practice that we have a doctor councilman Rochester who's

a probably one of the biggest world's experts on this and these are his cases that he shared but you can see when you have small little lesions and bones that are painful you can place probes in them and you freeze them the tumor dies and

musculoskeletal things remain intact what about when you have cases like this where there's a fracture going through the iliac bone on the left with an infiltrate of malignancy well you can cryo blade it and what's cool about is

you can using CT guidance do percutaneous cannulated pins and screws and a cement o plasti ver bladed cavity and when you're done the patient who initially couldn't walk now can and whose pain scale went down to one so I

think that's that's very important to realize the potential of image-guided medicine this is something that previously would have had to been done in the orthopedic lab so you know I think this is extending options where

otherwise it would have been difficult same thing applies to the spine you can ablate and fill them with cement so

different applications renal ablation is very common when do we use it

high surgical risk patients primary metastatic lesions some folks are actually refused surgery nowadays and saying I'll have a one centimeter reno lesion actually want this in lieu of surgery people have

familial syndromes they're prone to getting a renal cancer again so we're trying to preserve renal tissue it is the most renal parenchymal sparing modality and obviously have a single kidney and a lot of these are found

incidentally when they're getting a CT scan for something else here's a very sizable one the patient that has a cardiomyopathy can see how big the heart is so it's you know seven centimeter lesion off of the left to superior pole

against the spleen this patient wouldn't have tolerated bleeding very much so we went ahead and embolized it beforehand using alcohol in the pide all in a coil and this is what it looks like when you have all those individual ice probes all

set up within the lesion and you can see the ice forming around I don't know how well it projects but in real time you can determine if you've developed your margin we do encompass little bit of spleen with that and you can see here

that you have a faint rim surrounding that lesion right next to the spleen and that's the necrotic fat that's how you know that you got it all and just this ablation alone caused a very reactive pleural

effusion that you can see up on the CT over there so imagine how this patient would have tolerated surgery pulmonary

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

technically step by step of how tips are done okay and and the ideal tips with

every step of this procedure I'm gonna show you two ways of doing it okay and the advantages and disadvantages of the two ways in every step okay so first of all the primary thing is to get into the portal vein and how do you visualize the

portal vein okay so one way is to do co2 Vinogradova nog Rafi to hit the portal vein me with experience no I don't need co2 venography to hit the portal vein but I still do it in an in a teaching institution because I have texture that

are learning nurses they're learning and physicians are learning so I actually do the imaging for them so they actually can get the general idea of what we're doing this is our target this is where we're coming off and that's it but in an

experience hands is it necessary absolutely not okay so co2 photography very helpful for in teaching and teaching institutions so everybody and the whole team can actually know exactly what our target is so not essential like

like we discuss and there are two methods of doing this and in a funny way I'm gonna show you that's actually the same method but one is a micro of the other one okay so two ways one way is then wedge a catheter that's the old way

kind of more traditional way than let's not call it always more traditional way of doing a co2 port and the other one is using a balloon of balloon occlusion castra and this is wedging it with a four French five French catheter you

take it all the way to where the catheter is larger than the hepatic vein and now you've wedged it okay and this is kind of a mag up you see that that's a little that's a little wedge okay you wedge you inject contrast the contrast

just sits there it's wedged it's trapped okay and then this is with a balloon to your left is a balloon full of air to the right full of contrast and you basically trapped it again you fill contrast and consciousness it's there

what's the difference between this image and this image no difference the only difference is size that's all it's the same idea you're just trapping a segment of the liver the difference is this is a very

small segment and this is a larger segment okay so essentially it's actually the same technique one is just well technically when it comes to your side all one needs a four or five French calf the other one needs a balloon

occlusion caster okay same image so then you inject co2 the key thing here if you're the type of physician where you put contrasts you have a balloon sitting or a wedge and you have to count contrast there okay

rookie mistake is that they leave the contrast and then they hit the co2 okay what is that you've lost the advantage of the co2 in the beginning of your bolus is actually contrast okay so you need to bleed out the contrast and

replace it completely co2 so your entire bolus okay is co2 and not and not and not the and not the contrast okay that defeats the purpose why is co2 advantageous over contrast contrast is a thick fluid co2 is gas is viscous it's

volatile it actually can squeeze through tight spaces as it's a gas and that's what we want we want to squeeze that co2 which is a contrast through the sinusoids reflux it back into the portal circulation so we're trapping it and

we're trying to push co2 squeezing it through the sinusoids refluxing it back into the portal circulation so you can actually visualize the portal circulation okay and all and the disadvantage of a wedge is what you see

here if you're a wedge and you're immediately sub capsular and you slam you slam that co2 aggressively what you will get is an explosion you get a rip of those of the hepatic capsule scroll the glisten capsule and then you've got

a leak and if the patient is quite low is a quite low path they can actually die from this believe it or not they will die from this and not die from the needle passes okay so that's kind of co2 and that's kind of

a little a little passive air into the perineum nice imaging not a good outcome so one way to avoid this is to still wedge but wedge away from the hepatic capsule so you're out in the periphery in the paddock veins but you're deep

inside the liver you're not you're not right underneath the capsule so that's one way of doing it the other another way is to actually use a balloon okay so this is this is just another wedge here okay and you actually use a balloon I'm

just showing you a correlation with a balloon it's a little safer because you're a little distance away from from the hepatic capsule I'm just showing you a more and more image of the same thing co2 with correlation after you access

since it's a beautiful correlation with with the portal vein venogram okay there are problems with wedges and with balloons is that sometimes you get a gas you know a co2 leak you're wedged but there's hepatic veins at vadik vein

connections and all you see is a fatty veins you can't force reflux the co2 into the portal circulation so that's one problem okay so what do you do with that you change the sights just change a different different branch okay try to

avoid that connection between the badeck veins and it back veins go somewhere else where there is no connection where you can actually make a true hip wedge and force that co2 into the portal circulation okay another way this is

just a draw a drawing out whether it alone or a catheter you get that you get the escape from the Patek vein to fatty vein is to go distal go beyond that connection so if you can go distal go distal if you can't go distal then

change your branch try to find a place where there is no hepatic vein tip a degree engine attraction preferably but not necessarily not the same branches connected to because that usually goes both ways but not always sometimes

you're lucky and if that connection is kind of like a one-way valve one way street and it's not a two-way street but that's just sheer luck okay this is an example hepatic vein to about a vein connection and what we did was basically

switch to another place another vein and we actually get the portal venogram here okay next up sting crafts Viator's thank

lymphatics you know I have this nice lymph angiogram image on the right side

of the screen here you see a plethora of lymph nodes you see a lot of fine detail not an easy image necessarily to get historically and that's for a few reasons one lymphatic fluid unlike your blood is clear right we can all look at

somebody's hand and you can look at the veins and you can see the hand an IV can go right in you can't see what the lymphatics aren't and beyond that beyond it just having clear fluid it's also has relative to blood not that many cells

which makes it hard to see and the vessels are pretty small so I've magged up on just one lymph node there and you see that one little lymph node has about 28 faire and efferent vessels going to it

so each the size of each one of those vessels is less than a millimeter in size so you can imagine if they just do a surgical biopsy and excise one of these lymph nodes in one patient they've damaged at least 20 different vessels

and if they take out multiple lymph nodes you can imagine the damage to the circulation to that particular extremity and that's why the patients end up having some of these complications the lymphatics are driven by valves

predominantly you see all these little sac you lations inside and that's where the valves are but we don't really have a good grasp for how many valves is normal with the distribution of valves and patients etc there's no central pump

so unlike the circulatory system which is dependent on the heart the lymphatics are dependent on skeletal and smooth muscle to help move things along the first method to image lymphatics historic who's actually limb for

scintigraphy and the first the first actually marker that was used was a gold base did a scintillation camera and they had some images you know it's not something we do commonly now for the purposes of detection we actually use it

as a functional scan to help guide some degree of therapy the spatial resolution is fairly poor particularly compared to fluoroscopic images but the current uses are still there particularly for sentinel lymph node

mapping breast cancer melanoma patients and/or lymphedema this is an example of a patient who had a melanoma on their back or this could easily just as well be a breast cancer patient you do an injection around the tumor and you see

what lymph node the the tracer drains to so this is a functional imaging test which can be very useful in guiding therapy when you compare that to a peripheral lymphedema you see what it looks like in this case you see one

patient in five and sixty minutes and within 60 minutes the tracer has gone from the feet where you inject all the way up to the neck that's actually a normal lymph flow centigram and that patient you look at their extremities

they're fairly symmetric you look at the second patient and you see that one leg the left leg is asymmetrically swollen compared to the right you see that the injection at five hours on that swollen extremity has not gone up above the knee

and you see it really going to the skin surface so that's a typical appearance for somebody who has lymphedema okay so it exaggerated but a fairly typical appearance you see that once the contralateral extremity is actually

traversed and gone all the way up to the thoracic duct up into the neck so we certainly see the that lymphedema is useful but the detail really isn't there

like the number so now we're kind of moving into you know just some highly rated post so this was like number 5 for whatever year that it was and

and so kind of the anatomy of it I liked a hashtag patient or patients I don't know why it just feels something reasonable to me cancer hashtag cancer is something that I'd like to do because what you have to think is these are

searchable terms so what is a patient or referring doctor whatever gonna go in and look up cancer kidney cancer so I don't like to use things like renal cell carcinoma a paddles so have had a cellular carcinoma I don't really say

any of those things I say liver cancer and so you know I'm tagging the company btg IO you know because they're gonna have you know they used to have more followers than I did and so it's just always to tag people added more

followers than you write because then all of a sudden they like you and then they retweet and then you know that becomes the cycles like hey this is somebody that that we could follow so as we're going through as you're looking to

is you're looking at the images you know you can see kidney cancer circle right so I was doing a research project with one of my urologist a very smart individual and we were looking at images and one of the things he asked me is

like okay well the patients in prone position right he said and that's the cancer and I'm like you have got to be kidding me right like the the level that they understood the imaging was at a level that would to me was very

surprising and which is why I started to think is like I need to start circling things I need to start labeling things I need to start putting arrows on things because even our own UAB medicine count for the longest times like we don't know

what you're doing and so we don't like or retweet any of it because we don't know what is and so we kind of had to work through that together as a group so you know another one so it's funny because this this particular patient was

both number four and I think number two and I don't know what about her makes her so attractive but you know it's the same kind of thing right now again just kidney cancer just kind of posting the same things that I do every

day hashtag kidney hashtag cancer you know without a scalpel and this was when we're back at 140 characters patient irad at UAB IRC every single time I'm trying to do the same thing at UAB I our cancer patient minimally invasive

they're going home the same day we don't have complications your cancer is dead you keep pushing those same messages over and over and over again and that was like 14 000 impressions that is just free advertising so number

three right and so 18 000 impressions this was a y9t mapping that we did and it's just really interesting this is like less than 0.1% of patients and the reason that this kind of took off a little bit

because I tagged radio pedia and radio PD and followers or something like that and so once they liked it and retweeted it you know kind of started to take off a little bit like that so that's just a really good example of pushing something

I thought okay Radio PD is like kind of imaging based and there's kind of incidents and it's a website that people use especially radiology residency medical students used to be able to learn about imaging findings so I

thought that they might be interested in that and not necessarily that they're all about IR but they were about this imaging finding and because they were able to push it out to their followers you know their followers started to

follow me so I had a high impact that way and again so this is the same patient but not all it is is follow-up of that patient right like like what is it about her that she's so exciting right but there she is at 22 000 one

impressions and so I got this idea to start posting follow-up basically without responding to come some negative comments on Twitter I thought that is a valid concern because IR is all about what's new what's exciting here's this

device that I used and I was just in a session about Bill you're an endoscopy and they did a literature review and the most exciting thing that they had on a literature review is a case series of 53 patients that's not evidence to other

specialties right and so when we post those things and people say well what's the follow-up on that I thought that was a valid criticism now I would never say that to them right like I don't want to give them any validation but I started

to think I'm gonna start following up on some of these patients when I see them in clinic and put out what the follow-up is right so that they can see that we actually are having good outcomes but you can see a consistency here right

I read cancer patient surgery at UAB I are it's the same anatomy of a tweet every single time it's boring but it's effective and then as Kunwar mentioned this is kind of like the coup de Gras from last year right so like this is

because Sanjay Gupta you know retweeted or whatever but and so it was the whole thing and I think that that's a great example of changing the conversation because I gave news interviews at my at our local stations and I thought that

that was was funny is that it up to this one I said even my local news station got this right right they knew the right people to go to and so you don't have the highest amount impressions but that's basically because Sanjay Gupta

you ended up retweeting it right and so you pick up followers that way so you know those are some of this being consistent about what you're doing finding what your followers like doing more of those things and the more likes

and retweets you see about it continue to do more of those things I think some sort of consistency both by posting like every day every other day finding some sort of schedule and then the same anadi made that tweet like you know you're

gonna look at my account like Kumar doesn't even look at it anymore because he knows what are you gonna see every day I think at this point right so it's like the same thing every day so I appreciate you guys for listening and

hope you hope it was informative so [Applause]

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.