Create an account and get 3 free clips per day.
Chapters
Stroke expansion|Angiogram|58|Male
Stroke expansion|Angiogram|58|Male
2016arterybasilardrapefemoralheadhyperdenseinfarctmeaningfulmicronursepatientpatientsPenumbrapunctureradialrecoveryrepeatscalesheathSIRstroketortuosityvertebral
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
The Ways to Recanalize the Below the Knee Vessels | AVIR CLI Panel
ablationanalogantibioticarteriesarthritisassessaveragebasicallychapterclinicaldissolveemboembolizationembolusinfarctinjectinvestigationalkneelateralmedialmrispainpalpatepatientpatientsprocedurepublishedradiofrequencyrefractoryresorbablescalestudy
What's Next | AVIR CLI Panel
What's Next | AVIR CLI Panel
analogangiogramchapterclinicaldecreasesdistensioneffusionembolizationembolizedembolizingenrollingimagekneemedialmicronMRIpatientpatientsrandomizationrespondrespondersstudysynovialupsize
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Case Example | Management of Patients with Acute & Chronic PE
Case Example | Management of Patients with Acute & Chronic PE
acuityafibangiogramanticoagulationarterycatheterchapterclotCTEPHdistallyDVTimagesincisionleftlobelowerNoneoperationpatientspressurespulmonarypulmonary arterysegmentalstenosisthrombusuppervessels
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
Q&A Uterine Fibroid Embolization | Uterine Artery Embolization The Good, The Bad, The Ugly
adjunctiveanesthesiaarteryblockscatheterchapterconceivecontrolembolizationfertilityfibroidfibroidshormoneshydrophilichypogastricimaginginabilitylidocainemultiplenauseanerveNonepainpatchpatientpatientspostpregnantproceduralquestionradialrelaxantsheathshrinksuperior
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
UFE and Adenomyosis | Uterine Artery Embolization The Good, The Bad, The Ugly
UFE and Adenomyosis | Uterine Artery Embolization The Good, The Bad, The Ugly
accessadenomyosisarteryaxisbifurcationcardiaccathetercatheterschaptercharacteristiccomplicationsdiameterdimeembolizationfemoralfibroidfibroidshematomahydrophiliclabsNonepatientspracticeradialsheathulnaruterine
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Registry and Data | Management of Patients with Acute & Chronic PE
Registry and Data | Management of Patients with Acute & Chronic PE
arterycathetercatheter directedchaptercomplicationsdirectedechoheparinimprovementintermediateinterventionalmassiveNonepatientpatientsperfectpressurepulmonarypulmonary arteryratioreductionregistryriskseattlestrainstudiesstudysystolicthrombolysistpaunfractionated
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
Benefits of UFE | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycenterschapterembolizationfibroidgooglegynecologistgynecologistsgynecologyhysterectomieshysterectomyinterventionalMRINonepainfulpatientsprocedureproceduresseansmartersurgeryuterine
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
angioAngiodynamicsAngiovac CannulaAspirex CathetercatheterschapterclotdevicedevicesfrenchIndigo ThrombectomyNonepatientPenumbraPenumbra Inc.sheathStraub Medicalthrombectomythrombustpa
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
Prospective CDT Trials | Pulmonary Emoblism Interactive Lecture
arterybleedingcatheterchapterclinicalclotdatadevicedevicesdiameterdysfunctionheparinintracranialmajormassivemechanicalpatientsPenumbrapulmonaryrandomizedrateratiorecurrentreducesstudysurrogatethrombolysisthrombosistrialtrialsultimateventricle
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Q&A- Respiratory Compromise | Respiratory Compromise: Use of Capnography During Procedural Sedation
Q&A- Respiratory Compromise | Respiratory Compromise: Use of Capnography During Procedural Sedation
adverseanesthesiaanesthesiologistcathchapterguidelinesinstitutionintubatedlistsNonenursenursespatientpatientsprocedurequestionsafetysedationultrasoundversuswaveform
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Q&A PET/MRI  | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
Q&A PET/MRI | PET/MRI: A New Technique to Obtain High Quality Diagnostic Images for Oncology Patients
apronsbodychaptercontrastDialysisdischargeinjectinstitutioninstructionslinedminutesMRINonepatientpatientspediatricpediatricsportionprotocolsradiationradiologistrequirescanstechnologist
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
Outcome data | Uterine Artery Embolization The Good, The Bad, The Ugly
arterybleedcentimeterchapterdatadysfunctionalembolizationfertilityfibroidfibroidsMRImyomectomyNonepatientsretainsurgeryuterineuterus
Ideal Uterine Fibroid Embolization Candidates | Uterine Artery Embolization The Good, The Bad, The Ugly
Ideal Uterine Fibroid Embolization Candidates | Uterine Artery Embolization The Good, The Bad, The Ugly
arterycandidateschapterembolizationfibroidfibroidshysterectomyidealimagingNonepatientpatientsproceduresparingsurgerysymptomsymptomaticsymptomstreateduterineuterus
Diagnostic Criteria for CTEPH | Management of Patients with Acute & Chronic PE
Diagnostic Criteria for CTEPH | Management of Patients with Acute & Chronic PE
angiogramangiographyarterialarteriesarterycapillarycatheterchapterclassificationcurativediseasedistalflushlobesmanagementmedicationNonepatientpatientspressureproximalpulmonarysegmentalsheathstenosissurgeonsurgicalthrombustreatedtypevesselswebswedge
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Distal Protection | Carotid Interventions: CAE, CAS, & TCAR
arteriesarteryaspirateballoonbasketbloodbraincapturecarotidcarotid arterycerebralchapterclinicaldebrisdevicedistaldistallyembolicfilterfiltersflowincompleteinternalinternal carotidlesionlesionsoversizeparticlespatientperfectphenomenonplaqueprotectedprotectionproximalsheathstenosisstentstentingstrokestrokesthrombustinyultimatelyvesselwire
The Dashboard Implementation | Innovation and Application of Real Time Nursing Dashboards
The Dashboard Implementation | Innovation and Application of Real Time Nursing Dashboards
applyappointmentassessingbufferchaptercheckedinterpretlatemetricsminuteminutesmodelNonenursenursesnursingpatientpatientspendingproceduralradiologyscheduledtimetotalutilizationworkup
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Device Worksheets  | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
Device Worksheets | Demystifying (Cardiac) Device Monitoring for MRI Studies: The Expanded Role of Radiology Nursing
aheadchaptercontinuouscuffdeemeddeterminedeviceemergencyheartleadsmockmonitormonitoredmonitoringMRInotenursepatientproberate
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
20 Fr Dryseal7 Fr Aptus TourGuide sheath8 Fr IVUSaccessangioplastyaortaarrowarteryballoonbasicallybrachialceliacchapterdeploydissectionfenestratedflapgraftgroinimagelaserleftlooplumenoriginpatientreentrysagittalsheathSignificant Growth of Descending Thoracic AortasnarestentsubclaviantearTEVARwire
Airway Assessment | Procedural Sedation: An Education Review
Airway Assessment | Procedural Sedation: An Education Review
airwayanesthesiologistangiogramapneachaptercongestivecopddifficultyeffectivehabituslungsmaskmusculatureNonepatientpatientspharmacologyproceduralproviderssealsedatedsedationstiffventilationwaveform
Transcript

58 year old man presenting to outside hospital previous evening with leg weakness, slurred speech, difficulty walking. His initial head CT was described as negative.

One thing that's been really helpful for us, we have like a hub and spoke model. We have two primary hospitals and seven hospitals that refer to us. It's taken about five years, but we've now been able to get access to all of their paxes.

This was before that. Now, if somebody calls me about a case, we can just tell them to push that patient's images to our pax. If you can get that kind of arrangement, it's been very, very helpful for these kind of cases. The family declined

IV TPA. I'm always very suspicious when I see stuff like this, because this is half of it. It's the consenting process that the neurologists frequently dissuade people to get IV TPA but this really annoys me to no end. Next morning 08:10 hrs, patient found unresponsive by the nurse. Repeat head CT/CTA was performed at outside hospital.

So this was the initial head CT which was negative, and the patient has a hyperdense basilar artery. This is the repeat head CT the next morning, that hyperdense basilar is still there, and now there is a anterior [INAUDIBLE] and lateral pontine infarct

and a left cerebellar infarct as well. CTA was performed at an outside hospital, and again we were able to review these films, and there's a top of the basilar occlusion. At this point we get called. [COUGH] I'm just showing this.

The other thing we have is an EMR at our hospital. I used to find that pretty painful, but it's actually nice because actually you can read what people are writing now. And one thing that's built into the EMR is an NIH Stroke Scale. Every nurse in the ED, resident and attending in the ED, all

of the nurses on our stroke units like the neural ICU, and our stroke treatment and recovery unit, is trained to do NIH stroke scales. And so there's no longer as much guess work. There could be errors with this, but they do full NIH stroke scale and it's documented. It's documented when it was performed, when it was entered,

by whom and NIH stroke skills. This NIH stroke scale and admission from the ED was 31. We always repeat head CTs when we get transferred patients just to make sure that they haven't had significant progression of their infarct. CT showed no significant change in my opinion, anterolateral pons and cerebellum.

Now the patient is intubated, so we have no exams by the time they got there, and by the time downstairs. Maybe my approach is too simplistic, I don't see a huge utility for MRI in these situations. If you have basilar occlusion your chance of survival is about 20%. You're gonna die from this thing.

You could die, and the only time I get concerned if you're less than eight hours, or are we gonna leave people locked in. I have two patients I have left locked in. Once you're beyond a certain time I think the MRI is useful, but waiting to get an MRI at our institution at least, is like a two

hour delay to be honest. So I just proceed from here. I don't have the CTA imaging but the patient but had very, very severe tortuosity of the innominate artery and the right sublavian with a hypoplastic left vertebral artery. There's no access from

the left vertebral, I'm gonna go in the right vertebral and I have tons of tortuosities. I'm a big fan or radial access, so I just do primarily radial access for these kinda cases. I'm just showing my basic setup here, this wasn't this patient. The patient was African-American

but this was just another patient. I usually use ultrasound guided single wall micro puncture technique, put a micro puncture, you can see how clean and neat this is. I don't do anything different, this is a femoral drape,

I just move the femoral drape over the wrist, and the other side of the femoral drape is over their groin, but I don't even prep the groins anymore. Here's the micro puncture, here's the 6 French sheath, I don't hub the sheath. You don't need all of the sheath

in the patient, the sheath gets bigger as you get further so I basically just tape it down, put two or three centimeters in. First thing I generally do will do an angiogram, renal artery angiogram, make sure there's no tortuosity and loops. And if it's pretty straight

forward I'll just go up with a glide. If there is tortuosity and loops then I'll go try axial with a microcatheter, and it usually straightens up pretty quickly. In this case we just had this sheath and then we went up with a penumbra 4 max catheter. I usually will use a fathom wire which is basically a syncro wire

and an .O16" platform. Here's the initial, right vertibral artery injection. You can see a mid to distal basilar complete occlusion. Here's the pike on the lateral, and there's no real reflux of contrast into the left verterbral artery. I did three passes with the penumbra 4 max,

TICI 3 revascularization. Radial puncture to penumbra deployment was six minutes. From first micropuncture stick to deploying, 6 minutes, and then three passes, took a total of 22 minutes. And everybody else showed some amazing cases and I feel embarrassed to say, most of the patients I see for basilar occlusions,

by the time they get to me they're intubated or comatose, they do extremely poorly. The my consent for these patients and families is, your loved one, I'm sorry to say,

the natural history of this diseases to die. They're very unlikely to make a meaningful recovery, I would say like 30% chance of a recovery at all. So I think setting these expectations is extremely important.

All of the data that we've presented over today and the last couple of days is based on ICA-MCA. Post your circulation. So these are good discussions to to have with families, to really under promise and over deliver.

And the other thing I do discuss here is are end of life issues, that if this patient doesn't make a meaningful recovery in two or three days, it would be reasonable to consider supportive care. Because your loved one could potentially be locked in, and we briefly discuss that.

I think it's a disservice to just open up basal arteries without having that discussion ahead of time. Anyways, it's a little bit of aside. [COUGH] Immediately after procedure, next day here's the NIH stroke scale that the nurse put in. NIH stroke scale was 18. We have two

nurse practitioners that are just on our service and they enter these for us as well. So unfortunately for us, this patient NIH stroke scale, despite revascularization went from 31 to 21. She was 17, two weeks post-procedure, discharged at SNF. Unfortunately his modified rankin at four and a half months

is still a four. Unfortunately most of the patients I see for for basilar occlusions by the time we revasculadrize them they tend to not do well. Any questions on that case?

they travel together so that's what leads to the increased pain and sensitivity so in the knee there have been studies like 2015 we published that study on 13 patients with 24 month follow-up for knee embolization for

bleeding which you may have seen very commonly in your institution but dr. Okun Oh in 2015 published that article on the bottom left 14 patients where he did embolization in the knee for people with arthritis he actually used an

antibiotic not imposing EMBO sphere and any other particle he did use embolus for in a couple patients sorry EMBO zine in a couple of patients but mainly used in antibiotic so many of you know if antibiotics are like crystalline

substances they're like salt so you can't inject them in arteries that's why I have to go into IVs so they use this in Japan to inject and then dissolve so they go into the artery they dissolve and they're resorbable so they cause a

like a light and Baalak effect and then they go away he found that these patients had a decrease in pain after doing knee embolization subsequently he published a paper on 72 patients 95 needs in which he had an

excellent clinical success clinical success was defined as a greater than 50% reduction in knee pain so they had more than 50% reduction in knee pain in 86 percent of the patients at two years 79 percent of these patients still had

knee pain relief that's very impressive results for a procedure which basically takes in about 45 minutes to an hour so we designed a u.s. clinical study we got an investigational device exemption actually Julie's our clinical research

coordinator for this study and these are the inclusion exclusion criteria we basically excluded patients who have rheumatoid arthritis previous surgery and you had to have moderate or severe pain so greater than 50 means basically

greater than five out of ten on a pain scale we use a pain scale of 0 to 100 because it allows you to delineate pain a little bit better and you had to be refractory to something so you had to fail medications injections

radiofrequency ablation you had to fail some other treatment we followed these patients for six months and we got x-rays and MRIs before and then we got MRIs at one month to assess for if there was any non-target embolization likes a

bone infarct after this procedure these are the clinical scales we use to assess they're not really so important as much as it is we're trying to track pain and we're trying to check disability so one is the VA s or visual analog score and

on right is the Womack scale so patients fill this out and you can assess how disabled they are from their knee pain it assesses their function their stiffness and their pain it's a little

bit limiting because of course most patients have bilateral knee pain so we try and assess someone's function and you've improved one knee sometimes them walking up a flight of stairs may not improve significantly but their pain may

improve significantly in that knee when we did our patients these were the baseline demographics and our patients the average age was 65 and you see here the average BMI in our patients is 35 so this is on board or class 1 class 2

obesity if you look at the Japanese study the BMI in that patient that doctor okano had published the average BMI and their patient population was 25 so it gives you a big difference in the patient population we're treating and

that may impact their results how do we actually do the procedure so we palpate the knee and we feel for where the pain is so that's why we have these blue circles on there so we basically palpate the knee and figure

out is the pain medial lateral superior inferior and then we target those two Nicollet arteries and as depicted on this image there are basically 6 to Nicollet arteries that we look for 3 on the medial side 3 on the lateral side

once we know where they have pain we only go there so we're not going to treat the whole knee so people come in and say my whole knee hurts they're not really going to be a good candidate for this procedure you want focal synovitis

or inflammation which is what we're looking for and most people have medial and Lee pain but there are a small subset of patients of lateral pain so this is an example patient from our study says patient had an MRI beforehand

after having these two cases one in our institution and one at University of North Carolina Chapel Hill that we would then basically upsize our particles to

100 micron and we have not seen that and we're doing a second clinical study and I'm not seeing that as either we had about a 70% reduction in pain so if you look at our visual analog score out to six months and if you look at our

disability it actually paralleled this exactly which is pretty impressive considering mostly patients had bilateral knee pain so out to six months very good results 90% of patients were responders so two

out of our twenty patients did not really respond one patient didn't respond at his one-month follow-up but did respond at his three and six so I still consider him a clinical failure because we expect

these patients to respond by one month here's just an example of a baseline MRI before and after and you can see all that joint effusion there the white that decreases just even after a month how much it decreases and we looked at this

in terms of synovial thickness and distension and even on MRI you can object objectively count calculate synovitis scores and we calculated that they actually statistically decreased this is another patient on the left the

image shows diffuse white enhancement if you will of the synovium of the lining on the right it shows the fluid this is an image just of embolization and I show this image because it's really shocking and this is actually one of our nurses

who's enrolled in a clinical study is this is before this is all we did we embolized the medial aspect of the knee this is one month later 30 days in fact somebody just asked me this when I was in the booth over at the meeting across

the street and basically I said listen I don't know why this happened so quickly I have no idea we didn't tap renu-it into anything else if you look at this premium post it's pretty dramatic so clearly there's an inflammatory process

that we are arresting or stopping in such a short period of time so is there a future for this I don't know it may just we may just fall down and find out that there really is in a great future but so far we know it's at least

technically successful it's the results are positive in the short term long term we're not so sure yet we do need to better understand these risks and I think in my opinion in the long term it'll probably be really really good for

this 40 to 65 year old patient population who's not yet ready for knee replacement surgery this is the algorithm for our clinical study which were almost done enrolling right now it's a randomized control study against

placebo so it's two to one randomization which means one third of the patients actually get a sham procedure so we do an angiogram on their leg they're asleep they have no idea for embolizing they're genetical it arteries or not we wake

them up I think about the table and we follow them up if they're no better they're allowed to cross over and get the treatment the other 2/3 of the

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

so I'm gonna show an example this is a 57 year old male who presented with a dis neo

he had World Health Organization functional class 3 meaning it's significantly affected his life he can't walk up the flight of stairs really tired walking from the parking lot of his favorite restaurant back to this car

can't really walk around the grocery store he had a history of DVT and PE also had afib he actually went to the ER and was diagnosed with upper respiratory tract infection which many of these patients are they've put him on

antibiotics then for pneumonia he had a VQ after one of his doctors just felt like he just wasn't getting better and it found multiple mismatch defect I'm sorry I don't have those pictures he was actually started on home oxygen after

all of that work up it was found that he had CTF and this required I think three different hospital visits and every time got kicked up to sort of a higher acuity place and then he ended up at our place so these are his pulmonary angiogram

images here I don't know if I can play these but the still images kind of show you that the images on the right show that there's basically no vessels going out distally so I mentioned pruning of vessels there's no branches in the right

upper lobe if you look at the right lower lobe at the tip of the catheter there's areas of stenosis right where the segmental arteries start and on the left you can see that the left pulmonary artery is denuded essentially the entire

left upper low branch is excluded by a rim of thrombus and in the left lower lobe the image on the bottom my bottom right there's actually no branches going to the left lower lobe into the lingula so this is a patient that has had very

bad CTF their main the pulmonary artery pressures are listed there of 77 where the normal high is 25 so three times the normal pulmonary artery pressure so this patient went on to an operation so the image on the right the photograph is

actually the clot that they removed from the operation and that patients pressures improved from 77 to 22 immediately after the operation so they go to the ICU they have a swan-ganz catheter left in place and you can

measure their pressure right afterwards and you can see that that clot they grabbed it it looks like a bunch of fingers well what they do is they crack the chest open like with a mini sternotomy they make an incision in the

pulmonary artery after they put them on bypass and then they basically grab they use they're a little deBakey's the DeBakey forceps and they grab this little elevator and they just start scooping

out the clot and they try to grab it as one big piece take it out and then you get that nice photograph on the side if they break off pieces it's actually worse because that's an area that a pulmonary artery dissection can occur so

it's a very complex operation but you get very nice results and afterwards these patients are sent home usually on lifelong anticoagulation thereafter so

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

questions comments and accusations please hello this topic is very personal to me I've had it actually had a UFE so this is like one of my big things I work in the outpatient center as well as a

hospital where we perform you Effy's and frequently the radiologist will have me go in and talk to the patient it's from a personal perspective one of the issues which it may just have been from my situation was pain control post UFE

whether you normally tell your patients about pain control after the UFE someone say we are all struggling with this yeah oh it's not what's your question is going to be okay good I'm gonna get doctor Dora to answer Shawn the question

is what do you what do we do with this pain issue you know what are you doing for the home there at Emory there you know and a lot of practices we we don't rely on one magic bullet for pain control recently we've been doing

alternate procedures for two adjunctive procedures to help with pain control for example there are nerve blocks that you can do like a superior hypogastric nerve block there's there's Tylenol that can be given intravenously which is seems to

be a little more effective than by mouth there's there's a you know it and a lot of times it's it's a delicate balance right between pain post procedural pain because you can often get the pain well controlled with with narcotics opioid

with a pain pump but the problem is 12 hours later the patients is extremely nauseous and that's what keeps her in the hospital so it's a it's a balance between pain control and nausea you can you can hit the nausea

beforehand using a pain and scopolamine patch that that'll get built up in the system during the procedure and that kind of obviates the nausea issues like I said that the the nerve blocks the the tile and also there are some other

medicines that can can be used adjunctive leaf or for pain control in addition to to the to the opioids so the answer the question is there are multiple there multiple answers to the question there's not one magic bullet so

that helped it did one of the things that I tell the patients is that you know everyone is different and yet some people I've seen patients come out and they have no pain they're like perfect and then some come out and they are

writhing in the bed and they're hurting and they're rolling all around what and I always ask the acid docs are you telling them they could possibly have you know pain after the procedure because some have the expectation that

I'm going to be pain-free and that's not always the case so they have an unrealistic expectation that I'm gonna have the UFE but not have pain what I also tell them is that the pain it's kind of like an investment right and

this is easy for a guy to say that right but but it's it's an investment the worst part the worst pain you should be feeling is the first 12 12 hours or so every day I tell my patient you're gonna be getting better and better and better

with far as the pain as long as you is you follow our little cookbook of medicines that we give you on the way home and I want you to make sure that you fill these prescriptions on the way home or you have someone fill those

prescriptions for you before he or she picked you up in the hospital and lately we have been and I see that you're there as well lots of other little tricks that are out there right and again there are all

little tricks so ensure arterial lidocaine doctor there is near alluded to and if you're on si R Connect you may it may spill over on some of your chat rooms here people have been using like muscle relaxant like flexural or

robertson with some success but just know that we don't have any studies that tell us how that's supposed to do so when i have someone that is like writhing in pain i just use everything so i do it superior hypogastric nerve

vlog and i actually will do some intra-arterial lidocaine although not so much lately i have been using the muscle relaxant but i will warn you that i've had two patients with extreme anticholinergic effects where they are

now not able to pee from that so you know where we're doing that balance act I see that you're there can I take that question here first just so we're we're doing the same thing we're using the multimodal just throwing all these

things at people and we're trying the superior hypogastric blocks but we're collaborating with anesthesia to do that right now do you all do your own blocks or do you collaborate with anesthesia we do our own blocks okay it isn't it is

not that difficult I would tell you that but again it's kind of like you know you got to do if you start feeling better and then you're like we don't really need them we'll just do it on our own okay thank you again yes what's the

acceptable interval between UFE and for IBF oh that's a your question what is the interval between UFE and IVF so if you wanted to get pregnant yeah and can you have a you Fe and then have an IVF like how long would you have to wait

wait and tell you before you can have that the IBF it I guess it really depends on the age of the patient because we know that that the threshold for which patient tend to have that inability to conceive

is around 45 years old so you know it did below the you know below the age of 45 the risk of causing ovarian failure or or the inability to conceive is significantly less it's zero zero to three percent so I would say that you

know you probably want the effects of the fibroid embolization to two to take effect it takes around 12 months for these fibroids to shrink down to their most weight that they're gonna they're going to shrink down the most I wouldn't

say you need to wait 12 months to put our nine vitro fertilization there's no good there's no good literature out there I don't believe that's your next and so I would say just remember that if you came to my practice and you said you

wanted to get pregnant I will be sending you to talk to fertility specialists beforehand we do not perform embolization procedures as a way to become pregnant there's no data to support that but if you saw your

gynecologist and they said let's do this then I'm sure they'll be doing lots of adjunct things to figure out what would be an ideal time then to for you to have IVF and if I dove not having any data to inform me I would ask you to wait a year

and what will be the effect of those hormones that they gave you if for example a patient has existing fibroids what would be the effect of those hormones that IVF doctors prescribed their patients yeah so fibroids actually

can grow during pregnancy so I would say that most of those hormones are pro fertility hormones so I would expect that maybe you can see some of that effect as well yeah alright if you have any other questions you can grab me oh

you're I'm sorry go with it okay yes we we have time I don't want to keep anybody here for that so I have a two-fold question the first one is post-procedure can you use a diclofenac patch or a 12-hour pain

patch that is a an NSAID have you have any experience with that and your next question my second part of the question is there a patient profile or a psychological profile that tips you that the patient is not going to be able to

candidate because of their issues around pain so they're two separate but we have in success sending people home that first day so I'm looking to just make it better I haven't had experience with the Clos

phonetic patch it's in theory it seems ok you know these are all the these are they're all these are non-steroidal anti-inflammatory drugs so there are different potency levels for all of them they you know they range from very low

with with naproxen to to a little bit higher with toradol like that clover neck I think is somewhere in between so we found that at least I found that that q6 our our tour at all it tends to help a lot so with that said I I don't have

much experience with it with the patch in answer to your second question the only thing I can say is there there is a strong correlation between size of fibroids and the the amount of a post procedural pain and post embolization

syndrome so there really you know we often say we don't really care too much about the number of fibroids but the size of the fibroid is is is should be you know you should you should look at that on pre procedural imaging because

if it gets too big it may not be worth it for the patient because they may be in severe pain the more embolic you put into the blood supply's applying the the fibroid the the greater the pain post procedural pain

are there multiple other factors that would contribute to pain but that's that's one aspect you can you can look at post procedurally on imaging okay thank you very much yes ma'am hi what what kind of catheter do you use

to catheterize the fibroid artery when you pass by radio access yeah so over the last three years the companies have been really very good about that so there are a few things that I without endorsing one company or the other that

you need to make sure that the sheath that you're using is one of those radial sheets a company that makes a radio sheath you should not use a femoral sheath for radial access so no cheating where that's concern you may get away

with it once or twice but it will catch up to you and you need a catheter that is long enough to go from the radio to the to the groin so I'm looking for like a 120 or 125 centimeter kind of angled catheter whether it's hydrophilic the

whole way or just a hydrophilic tip or not at all you can you can choose which one in our practice most of us still tend to use a micro catheter through that catheter although if I'm using a for French and good glide calf and it

just flips into like a nice big juicy uterine artery then I may just go ahead and take that and do the embolization if the fellow is not scrubbed in as well so thanks a lot but they make they make many different kinds like that and more

of those are to come all right I'm you can please please please send us any other questions that you have thanks for your time and attention and enjoy the rest of the living

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

patients may be asking you is like what about adenomyosis and I've been hearing something about that which is not exactly fibroids right it's a different entity though the symptoms could be kind of the same and for the years and years

and years we wouldn't have any options for patients who had adenomyosis in fact the only option for patients with adenomyosis is surgery but adenomyosis can coexist with fibroids and sometimes patient presents with adenomyosis alone

so we've had some studies now that have looked at that and although the data is not as robust and not as awesome as for patients with fibroids we do provide a performing bolas Asian for those patients with particles that are little

smaller than what we would use for fibroids with results as you're seen there before now the only other new thing that's on the market and it's not so new to you guys that are probably doing radial in femorals anyway working

in cardiac labs and IR labs it's actually what we call the trophy if you go back one slide for me mr. a the person and press play then we will be able to see that radial access I do not work for Merritt they don't give me a

dime I just thought that this was a good video is there volume on that at all if not I can just talk about it and really what it says is that if you need to a radial UFE or have radial axis for a uterine embolization patients just love

it more they and especially like patients that are already just intimidated they don't want you going near their groins at all they actually could just lay on the table we don't have to put up we don't put a Foley in

they just get a radial access the same way that you would just be starting in a line except we have special types of radial catheters and and sheaves to do that and I don't offer a radial access to

patients who are too tall for our catheters or if they've had multiple prior radial access and don't have an intact ulnar artery to complete their hand but it's much like any of that femoral access that you would normally

see they make special hydrophilic sheaths now they're called from this particular company slender technology where the inner diameter of the sheath essentially the sheath is the same like five French on the outside but they have

cored out the inside so it's a bigger diameter so it's a five six so on the outside it's a five but it will take a six French in the inner inner lumen and you know my practice we do more than 80% of all our arterial punctures with a

radial access and everybody here comes dr. Sean Deroche Nia who is the leading author of that paper for SI R and one of my esteemed partners so most patients are able to get up and walk out if you are go from a radial access the access

is actually closed with just a radial band and the complications of having a hematoma or having the patient's bleed out those just all go away but radial axis have their own complications so I'm not here to say that it is not that but

in our practice we found it to be safe and effective our patients want it and it's become like a practice differentiator so if you're working in a practice that don't do radial you EFI's right now you should mention it because

if you're in a population where the other providers are only doing femoral then you will automatically get the patients that only want that so here's a patient that had a radial access you can see a catheter that is coming from the

aorta while you can't see that it's not up and over the bifurcation but maybe you do can see that and there's a catheter in the uterine artery with the characteristic

shape of the uterine artery and the characteristic curlicue vessels of of the fibroid and on the left you can see the Imogen for beforehand and the Imogen on the right of post embolization where there is stagnant flow in the main

uterine not main uterine artery in the horizontal portion of the uterine artery for greater than five cardiac beads and again there's there's no reason that you have to know that level of detail except that you're scrubbing in but if you're

in the audience you're looking at this you're like dr. Newsome I see an air bubble there as well then I'd say good because because I do see it too so you can see the preimage and you can see the post image for pre and post embolization

these these procedures can be quick these procedures are very very rewarding and and I love to do it

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

study that was done was the perfect registry so all these studies have some name perfect the PE stands for pulmonary

embolism I don't know what the rest means but it's a registry of a hundred and one consecutive patients so these are patients that had what they termed at that time massive PE as well as sub massive PE it was seven sites and they

took all their data over three years so basically they said if you treated a patient with PE let us know send us all their info we're gonna put it in this one paper the therapy was all over the place for so patients with sub massive

or intermediate high risk PE they got catheter directed thrombolysis usually over 12 to 24 hours but again it was not specific it was whatever they did we want to know about it put it in one and sort of reported patients with

massive PE which are very different from those patients with intermediate high risk PE got mechanical fragmentation with some low-dose TPA and this was left open to whatever you were doing at your institution and then they looked at how

patients did overall and they looked at only survival to hospital discharge so they just want to know if patients like made it through that hospitalization overall they found that most patients were treated successfully so they didn't

die on the on the table and that they were able to get through there were six deaths for four mostly from the massive PE group and two from the sub massive and eighty nine point one percent had reduction in RV strain so that's one of

the risk factors or that's one of the goals endpoints that we look in in every study is RV strain did we improve their RV strain pre and post intervention and that can be measured either under an echo or on a CT scan one thing that we

don't know is by reducing that RV strain did we actually improve their life their quality of life or their overall survival and that's one some of the other studies mentioned 84% of these patients are almost 85 had a reduction

in their pulmonary artery pressure so as interventional radiologists and I believe interventional cardiologists also when we start our case we measure the pulmonary artery pressure we're really measuring the strain on the heart

as a result of the high pulmonary artery pressure so at the end of the case we want to know if we didn't even better and I always talk with our trainees and our team about the fact that once you do one of these cases you're really only

looking at the pressure you're not necessarily looking at what the picture looks like because sometimes the picture doesn't look very very good at the end of a PE lysis but the patients are doing much better one thing that's important

to notice is that there was a thirteen point one percent who had complications had complications that's a large number of patients so when you give patients thrombolysis they can have complications and many of them require blood

transfusions or have large hematomas or pseudo aneurysms and things that require further intervention the ultima study is another study this is a study looking at patients receiving unfractionated heparin so patients got just heparin and

other patients got Kathryn directive thrombolysis so this is the standard of care which is heparin versus TP a from a catheter this was a small group of patients only 59 patients and they were all patients who had acute PE with

an r v lv ratio greater than one so that's sort of night now the new standard the RVL v ratio should be less than one and that's basically just looking on a CT scanner and echo how big the RV is the left ventricle pumps all

the blood to the main to your body so that is much stronger than the than the right and it has a much larger size in on average and this is one of the methods that we use in all studies so what they looked at over time here is

these patients and how there are VL v ratio changed after they either received TPA or whether they got just the standard of care which is heparin and you'll see that there is an improvement in the patients who had a catheter

directed thrombolysis and overall they had better a change in their RV LV ratio so that's sort of the marker that we we have been using but again it still doesn't tell us do these patients live longer do they have better quality life

afterwards this Seattle to study is another study that was performed and this is actually a sort of a changing game-changing study at least for a catheter directed thrombolysis in the beginning this was a

industry-sponsored study it's May it was sponsored by the the makers of eCos catheters but it was what was nice about this study is that it was very well defined everyone had to do the same thing so if you're trying to study if

something works or not it's got to be consistent in this group they had massive patients and sub massive but they all had an RV LV ratio greater than 0.9 on CT every patient got unfractionated heparin or or lovenox low

molecular weight heparin and then they all received 24 milligrams of TPA that's the study everybody got the same thing and what you see here on this on the right is that the patients who had T who had catheter directed thrombolysis all

had a reduction in their RV LV ratio they all had a reduction in their mean systolic mean or systolic pulmonary artery pressure and they all had a reduction improvement in their Mead modified Miller index which is actually

a score of how much clot there is in the pulmonary arteries so that suggests that there's an improvement at least in the short term and these patients had reduced bleeding 13% vs. 10% is reduced it's not still

not great but these patients all got TPA so this is a summary slide from chest to in the chest guidelines in 2015 looking at the three studies I just mentioned to you so perfect Seattle - and Altima and it's basically again

showing you that there has been improvement in patients right ventricular strain as well as the patients mean systolic PA pressures but I will tell you even with this data we still don't know what the right answer

is because we don't know how this affects patients in the long term and how they're gonna do in their overall life so back to our patient to move on

Sean I know you have not seen these slides at all you wanted I John can talk about this with his eyes closed so it's

not like there's anything but this is the data that was published from the Jade publishing jvi are from what Sean has written and it's just the current standards relating to what you should be expecting what we tell our patients that

they should expect for outcomes as it relates to uterine artery embolization again I'm not really here to try to point this I know you can google these you can get the information yourself but just to say that all of our procedures

have risk and we need to be clear with our patients about them now I believe that with all of these risks combined the benefits of doing uterine fibroid embolization for most patients is far greater than the risk and that's why I

really do have my practice so these are the benefits right shorter hospital stay and I would say more cost-effective and that is really debatable because gynecologists have become smarter and smarter now they're doing like same-day

hysterectomies if you have a vaginal hysterectomy then maybe a UFE is not as cost-effective because they don't have to do an MRI beforehand and they don't get an MRI afterwards and do all of that anyway and if you look at the long-term

cost of that then maybe having a hysterectomy in some patients could be that but we know for sure that patients are more satisfied when they get a embolization procedure than in my MEC to me not in the beginning run because the

procedure can be very painful that is not the procedure itself is painful but post embolization syndrome which could last anywhere from five to seven days can can be very painful again this is the comparative data that was published

by dr. Spees who is our gold medal winner this year understand a lot a lot of work in this space has allowed us to have this conversation with our gynecology partners but also with our patients as we talked about like when

can you return to work how long are you going to be all for you know am I going to need extra child care or whatever how long would I be in the hospital this information helps us to inform our patients about that then on average

you'll stay in the hospital around you know a day or so and most uterine artery embolization procedures are same-day procedures and interventional radiologists are doing these in freestanding centers as well as other

providers without any issues so we're almost down to the end we know that fibroid embolization is proven to be an effective and durable a procedure for controlling patient symptoms it's minimally invasive and it's outpatient

most patients can go back to some normal activity in one to two weeks it has a low complication rates and some patients mein neatest to surgery and should have surgery so in our practice we send around 1/3 of our patients or so to

surgery and the reason that that is that high is that patients are allowed to come and see myself or dr. de riz Nia from the street they do not have to be referred from their gynecologist and so they're just coming from the street then

you will be referring them to a gynecologist because of some of the things that may not make them a good candidate for embolization such as this

thrombectomy is another popular way of treating patients there's a lot of different aspiration catheters the SPX catheter is actually not available currently in the US but what it basically is I can have the rectum a

device that spins in such backlot the Indigo thrombectomy system from penumbra is a yet another device that sucks out clot I think many of us have used that it's kind of like a vacuum cleaner but usually more like a dust

hand vac where it's going to suck up thrombus the angio vac is much more like a Hoover where you're going to use and put a patient on veno-venous bypass that requires a 22 French sheath and a 17 French sheath but that will take out

thrombus I personally prefer using NGO vac in the IVC in big large thrombus for that and not in the pulmonary arteries because it's very inflexible but it's very very useful in a few patient populations in

all of these devices there is no TPA that needs to be given you're just sucking out the clot and you're actually removing it from the patient's body rather than dissolving it and sending it downstream the drawbacks on all of these

devices is their larger access points the SP or X is around six French although that's not that much bigger penumbra device is 8 French and the as we mentioned the angio vac is 22 French

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

these are our prospective CDT trials it's a lot to go through them so I'm not going to suffice it to say that the only one of these that is randomized is the

one in the top left the ultimate trial with 59 patients the rest of these are single set are single arm studies the optimized trial was randomized but the key arm it did not have was a control arm so all it did was vary the amount of

drug but there was no control arm to tell us how are people doing if they just get heparin well and I'll show you one result from these trials that is the most important result and that is up from the ultimate trial at 24 hours CDT

catheter to thrombolysis reduces the RV to lv ratio to a greater extent than heparin alone what does that mean so you saw all those pictures with the big dilated right ventricles our surrogate measure for right ventricular

dysfunction is the ratio of the diameter the inner diameter of the right ventricle to the left ventricle what we found in this study was that that ratio got reduced to a greater extent at 24 hours in the CDT arm compared to heparin

alone that means that CDT seems to reduce our V dysfunction faster than heparin now importantly 30 days later the echos looked identical so really it's a question of time which is not surprising what we've noticed in

our practice is that patients feel better faster okay I'm gonna go through the rest of this because I'm out of time but I want to give you a little bit of a sense of where we're going because there's bleeding associated with CDT and

maybe I'll show you this that in the Seattle to trial there was an 11% major bleeding rate now this was a pretty conservative definition but there were some serious bleeds and there were no intracranial

hemorrhages in this study but we have realized that CDT is not risk-free it's not like we've all of a sudden gained all of the advantages of systemic thrombolytics and none of the disadvantages now the rate of

intracranial hemorrhage seems to be about tenfold less but it does happen about 0.2 to 0.4% of the time the rate of major bleeding seems to be about 5% which is about half the rate of major bleeding that we see with system or

thrombosis so bleeding is still there it just doesn't seem to be as frequent so that's where some of these other devices are coming in then our a float Reaver the the the extra penumbra indigo cat 8 device and so the the float Reaver is

has actually gone through the full trial and the results are about to be published what is this thing well it's this pretty big hose which is about 20 French and it goes through the right heart and goes up there and it takes

this clot and literally aspirates it out and these are some of the things that will come out and that's sort of your post picture right there the data showed something similar to what we saw with the catheter directed thrombolysis

trials they had looked at 106 patients are vlv ratio was reduced again there's no comparator arm here so this is just the device on its own with a 3.8 percent adverse event rate and so now we're talking about mechanical devices that

don't use a clot-busting medication therefore you're gonna you can expect less bleeding but you're trading some of that off for a mechanical device that can cause injury to either myocardial structures or to the pulmonary artery so

that's something we have to be highly cognizant of as they're introduced into the market this is the penumbra cat 8 this is from Jim Benenati publication basically showing a couple things that's the separator that is the actual

catheter and that's the sheath back there so you've got poor profusion because of a clot in the inter lobar pulmonary artery and then at the end of it you have better perfusion for lung down there so we actually just completed

enrollment into the extract PE trial 120 sub massive PE patients the same efficacy endpoint you have to remember that has been established by the FDA as a way to get approval this is not the final

study nor should it be the final study when we evaluate these devices so to summarize sub massive PE what does the data not tell us CDT probably reduces the RV to LV ratio at 24 hours that is the main outcome that I want you

guys to remember from the ultimate trial it's associated you didn't see this data so don't worry about that we do see major bleeding and sometimes rarely but sometimes we see intracranial bleeding with CDT as well so what we're missing

from catheter directed thrombosis for sub massive PE is what are the clinical outcomes the RV to LV ratio is a surrogate outcome what about death what about clinical deterioration what about recurrent hospitalization what

about recurrent VTE how are people doing in the long term are they walking as well as they were before we don't know any of this none of the data right so far can tell us any of this information so where do we go from here for sub

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

so I actually work mostly in

interventional radiology in CT and ultrasound which is actually on a different floor that where we have our cath lab and I our stuff upstairs so that I our doctors are each going between two floors and one of my biggest

concerns is when we're doing moderate sedation the nurses are down in CT and ultrasound it doesn't matter how many comorbidities the patients have the aasa' is always three or less because they want to justify doing it downstairs

with just one nurse and the procedure list and I just and then you have somebody who obviously needs to be having anesthesia involved and now the anesthesiologist or the nurse anesthetist they get a circulating nurse

with them and I'm just wondering is there a cut-off that anesthesiologists or nurse and necess use for saying okay the a SA when it's this you have to consult with an anesthesiologist before you proceed with a nurse just giving

sedation that's a great question and that's institution unfortunately that's one of those things that is like institution dependent policy and procedure politics finances you know sometimes you'll see patients who really

are in a sa three four or four and a half that are made to be an a sa to write you know so they could be done during off-hours without anesthesia unfortunately it's a symptom so the organization's ever sit together and say

let's look at this globally for the patient safety and if we're doing sedation in this scenario we should still have somebody there who's trained to do the backup for that person I can't speak to your organization's policies

because I don't know them I know that they recommend catalog' Rafi I do know that the avenues to look at would be the Joint Commission in the anesthesia patient safety foundation you know for guidelines and again guidelines are just

that they're guidelines they're not mandates especially you know when institutions develop policies procedures protocols and such I do know on the third bullet down is we have a whole implementation project that we've rolled

out so one of the questions in addition to technical questions we get is how do I go to my institution and kind of change practice a little bit and usually the question is like implementing capnography but it it's a three-part

series that we did on how to implement change in an organization who are the stakeholders who are the champions who can you really talk to that would create change and whether it's the chief of anesthesiology is the person who's your

roadblock or your best friend is it the VP in nursing is it the safety committee you know cuz it takes one adverse event one Sentinel event unfortunately sometimes to change culture it takes more than that I know I know we're

trying a little at a time though but think it was a great comment in question was just made in our institution anesthesia kind of hit at this because the nurses were concerned about what she was just saying and so they worked with

the directors of like IR cath lab the medical directors to you say let's come together and figure out you know if it's a four it doesn't mean that every four needs to be you know it can be given sedation can be given by nurses but at

least get an assessment or things like that and in our institution nurses are able to if they feel like they needed anesthesia consult they can do the anesthesia console it doesn't mean they're gonna have anesthesia but

anestis you can tell you what to give and what not to give mm-hmm but that's that's what they're trying to do they have done for cath they're doing it for IR too and that is I forget them term for it but that's a team collaboration

and so and I must said where we work we actually screen the charts ahead of time because we have some really remote places and some not as remote and it's like the litmus test you know somebody with a BMI 55 is not going to be done

down the street they're gonna be done where emergent resuscitation is right upstairs if needed and same thing holds true like in our institution like anybody can call a patient safety stop meaning like I don't

feel comfortable with this let's not go forward and and again the procedure lists are another list of those champions because procedure lists they care about their pain you know they don't want to see adverse outcomes and

they're so focused sometimes on what they're doing that they kind of black you blank out on some of the peripheral factors and no one wants to see something bad happen on their watch so the procedure lists can be

instrumental in getting better monitoring or advocating for advanced levels of care or at least support for the nurses to have there's another question in your experience are the waveforms the same as far as a

ventilated patient versus a non ventilated patients have you seen any discrepancy in the actual performance that waveform itself yes and no okay so so I'm ventilated patients somebody who's really hyper dynamic I mean I've

seen like you could see sometimes their heart beating you know like just some of the little fluctuations or oscillations for the most part no difference if the non-invasive ventilation patient is getting monitored really right where the

gas is being exhaled like right here you may see some other you know and somebody is intubated so if there's secretions you might see like a little you know blip and such but when things are perfectly working the way they should be

working in both the intubated patient or the patient with an artificial airway versus not the waveform should be spot-on but if you're not seeing that is it a COPD or is it somebody who's got you know bronchitis in there yeah if

you're not seeing that full square waveform the question should be why not is my equipment not working good question great questions did the sign-in sheet make its way I know the spiral bound notebook is over

here but please do make sure that you put your name your email address and you'll be emailed because so you could fill out an evaluation and make sure that you get c e for attending this opportunity today I hope you guys

enjoyed it I hope you took something out of it I hope this just wasn't the basics for you today I hope that there was some value added in to coming today please do hang around we'll be here we'll be in the exhibit hall I know that there's

going to be many more events that are have this afternoon but the rest of the team will be here and we really do look yeah I love working with nurses that are providing sedation's I feel like you're the you're my people you know but you're

the people that are doing this day in and day out and you really are that that patient safety advocate and I feel like when I speak to a roomful of people that you guys go out and teach your precept ease and create change that's going to

impact patient safety so thank you for your attention today and thank you for attending [Applause]

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

I'm the FDG is have a radio pharmacy located on the second floor no New York State does allow nuclear medicine

technologist and nurses to inject the con the FDG isotope I know in other states one in particular is is New Jersey the the nurses are not allowed to inject isotope and the technologist has to do it also in addition certain

isotopes and certain scans the ducts have to inject the contrast like the the cervical Lin scintigraphy and some so my question has to do with discharge instructions so just like you give them that little card that they keep with

them so they trigger some radiation alarm and a bridge or on a highway do you give them discharge instructions about if there's small children at home that they're not sitting in their lap for extended period what kind of

instructions do you give on discharge after these patients so we when they come in coupled with the screening forms that they fill out we have some instructions attached to it and does that does have

the discharge instructions but we reiterate to them you know if they have small children or babies and pregnant women and just try to keep their distance for the next 12 to 24 hours just to until the really activity has

wear off so the FDG is like two hours almost for the half life FDA FDA has 60 minutes 116 minutes half life and usually by 12 hour by the 12 hour period they're mostly background radiation okay thank you

we had they have a written instruction like it's like a packet that we give into the market that we do to the patient and the patient have accessed to the web portal that they have and they can be the instructions from there

this is correct so betta bar is still investigational for the most part the only way you can build for it is two different scans you build for a pet and you build for our mr so you've got to get approval for both what you are not

going to get reimbursed for is the registration and that's where it gets a little bit challenging because then you need a radiologist who is both certified uncredentialed to read a pet and an mr so right now most institution bill it as

two different procedures so that's why you that's how we get the approvals just a little information on the side I went back to this case study because I forgot to tell you that in order for the PET CT to have as clear image as the pet MRI

the pet portion I mean the city portion and the pet city would have to be done diagnostically and that this would expose the patient to radiation three times that's why they prefer the pet MRI because yeah the reason why we do it if

we do it mostly for for for pediatrics and it's it and it's because of radiation because you know like our my team is saying you you are going to have this patient have constant follow-up so if you can reduce the amount of

radiation they have from a younger age as we all know it work in radiology DNA injuries occur when you're younger then more is more severe than than later our MRI the pet MRI injection they're all lined with lead and our MRI the pet

MRI room is actually lined with lead so we don't really have Needham let aprons we don't know we don't have wear aprons they are allowed to go to other appointments after they are pet MRI usually with the FDG most of the

radiation after the Tessa's finish is gone they're not more than what not more than radioactive than background radiation so they are are safe to be around people yes that's more for precautionary

measures yes no they go straight to the PACU so we our MRI table is detachable we have an area for where we keep our inpatient bay area we have a structured ready for them to go into right after the test and the

anesthesiologist and if they are Pediatrics the pediatric nurse is with them and they go straight to pack you do like probably like probably less than ten a week right now some weeks we are busy we do for how we do that much some

it varies like we'll do three or four but we are trying because the reimbursement that's one of the big issue our institution is actually eaten eating the cost for some of these to provide a patient with less radiation

especially or pediatric population we have one pet MRI machine for the whole institution three at the main campus we have two we have multiple and other regional sites so the yes

no less than 15 GFR except for the EU vist less than 30 then we notified the radiologists eeeh this is harder to so you this is the it's a linear contrast as opposed to the Catalan bettervest which is

macrocyclic so it's easier for the body to get rid of well there yes well they're only they're already getting dialysis so it's really not much of a harm yes we do patients on dialysis but we make sure the dialysis is done within

24 hours after receiving the contrast yes um sometimes you know you just have it to have it we don't require it for all the tests if you have it we have it we check if it's already in the chart we

acknowledge it you know we don't require for outpatient we don't require but in patients we do all right anything okay so Bernie pet/ct the scanning time for pet/ct is about 30 minutes to 45 minutes Patsy pet/ct is about 30 to 45 minutes

with the pet MRI sometimes they they order dedicated pet MRIs so that is a little longer you have to take note that we do a whole body scan whole body scans for even just for a regular MRI is at least an hour so we try to eliminate

just you know having them have to have to or point to different appointments and just one waiting room one waiting time so that cuts down the response for the patient themselves yes we do for adults it's 12 for the

whole body and then for the pet brain it's about 10 if I'm not mistaken and then plus or minus 10% and then the pediatric doses are cultured calculated base of their height and their weight and there are all protocol by a

radiologist because we have a lot of whole-body protocols we have the bone survey actually that's about 30 or 40 minutes and yes that's an hour and then we have longer whole body protocols diseases

specific and sometimes they try to depends on what the patient's diagnosis is we have whole body scans where they have to check the bone marrow and that needs to be from tips of the toes and tips of the fingers and that can be a

challenge especially if the patient is tall because that has to be in sequest sequestered and sequential patient and positioning is also a challenge alright thank you so much thank you thank you so much

[Applause]

new data of the Emmy trial that came out last year our ten-year results saying

that after ten years after ten years women who wanted to retain their uterus they looked at them in ten years three-quarters of those women were still very very satisfied and also were still able to retain their uterus so ten-year

data came out randomizing people for uterine artery embolization versus hysterectomy of the women who chose you to an artery embolization ten years later they were still very happy so I tell my patients that this is what you

should expect that you will have symptomatic improvement in 12 months around 85 to 95 percent of the patients are pretty happy there is a entry intervention rate it is not zero and it can be higher than ten

depending on what kind of Imogen is seen ahead of time and that we know that dysfunctional uterine bleed tend to do a little bit better than bulk type symptoms and that's partly because of subjective nature of that so this is one

of the patients that I treated when I was in in Virginia and Riverside and she's a former miss Brazil and she came to see us with what she also called reversed cycles like she would bleed more than she would not and she was

wearing depends and it took everything to just coach her out of the car to come inside to do a consultation because she was so afraid that if she got out she would be sitting in a pool of blood and she had an MRI showing what looked like

a eleven point seven centimeter fibroid she had embolization and that was her six month follow-up MRI to the right which looks like a very impressive result they don't all look this way which is why I save this image something

that looks like a normal uterus now I for the persons that I told to hold your high horse here is the time okay so what happens if I want to have a baby because these are the things you remember we're being ambassadors for this procedure we

need to be having the answers for the things that are our friends and family members are going to be asking us so if you want to have a baby I would say that the data that informs us as to what to do with you is still very weak but the

only randomized prospective trial that we have out there says that you should actually have myomectomy and a Cochrane review was also done and it still says that there's very low level evidence suggesting that myomectomy may be

associated with better fertility outcomes as opposed to UAE but more research is needed and we still require more research so at the very least what I have to do and now you feel compelled to do is to send my patients to see

someone who is a fertility specialist in consultation so we can make this decision together so if your poor surgical candidate if you have the gazillion fibroids and if you've had surgery before a hostile

abdomen and the patient says you know what dr. Newsome there's nothing that you can tell me ever to say that I'm going to have surgery then we're going to be doing something else that is not surgery okay the other thing that your

so who are the most ideal candidates for fibroid embolization obviously I would say the most ideal candidates are patients that are symptomatic and I've told you already that 80% of black women

have fibroids but guess what only half of those will be so symptomatic that they would need to be even treated so just because fibroids exist don't mean that they need to actually be treated already so you

to actually have symptoms most patients that are symptomatic will again wait to getting treatment for like three and a half to five years but when they come we want to make sure that they're symptomatic and that they're not trying

to become pregnant and I know somebody in the audience has a question around that already so let's hold your high horses I'm coming to that how about patients that don't want to have surgery or just don't have time to

have surgery they don't have time for long recovery if you don't care if you have your uterus or not then I'm not so sure that you need to be pursuing a uterine sparing procedure okay and I'm gonna pause here to address one other

thing that it's a myth it is a myth that if you do not need to have children then you do not need your uterus I beg to differ and when we talk to women they are quite upset about this preposition that the uterus is only there for

baby-making purposes in fact there have been several studies now that have come out to say that women that have had early hysterectomy even with their ovaries in place are predisposed to coronary artery disease or

cardiovascular events we would like patients that are poor surgical candidates because if they can have surgery then they may be able to have surgery or patients that do not desire future fertility patients that have

already concerns about hysterectomy because of religious reasons or don't want to have hormonal therapy and I actually like patients that have have a have obesity because if we are able to do this procedure then they're spared

more complications related to surgery so the ideal patient then and this is a very important point said all three criteria would need to be fit that if you're a patient in order to be offered embolization number one

you have to have fibroids believe it or not you have to have symptoms that are related to fibroids and then you have to have some MRI that says that the location of where your fiber it is is causing that symptom and that these

fibroids are vascular let me explain okay and I'm going to skip this so I've been working with people for a long enough time and I've work of Julie for years I've worked with Diane and Anna and some other people for like ten years

and imagine if you're working with me for ten years you know that you're probably going to be able to do this procedure too like you're scrubbing right next to me eventually like you pick these things up what I get paid for

is not to do that and for the experienced nurses and techs that are in the room you know exactly what I'm talking about you're better than the doctors half of the time you really could do this procedure but what I get

paid for is to decide who does not even get to come on the table to get this procedure done so pay attention to this slide and these this criteria is being challenged every day and we're getting more and more data to say that this is

old information that we used to say if the uterus was like more than six months then you probably shouldn't have a uterine sparing procedure but we know that we do in embolization all the time in patients that have large fibroids

anyway but there's no data to actually give us that information most of the trials that we have and we have had a lot of them they have excluded patients where their individual fibroids were greater than 12 centimeters if you have

had an indeterminate and de metrio biopsy or you're having abnormal pap smear doing a uterine sparing procedure makes no sense so we use these imaging to really help us to determine which patients really

deserve to be treated so everybody can see that that image on the Left where it says submucosal refers to and I'm gonna try and come down so I can see these images here and you can see that there is a fibroid that is in

truck hava teri do you see that that round thing that is surrounded by the white fluid that is someone that has what we would call a type zero fibroid completely within the unit of course this is going to cause bleeding but

should this person have a uterine artery embolization or a hysterectomy Gail no this patient should have like hysteroscopic resection like a D&C and they would just scrape that thing out and then their symptoms would go away or

the patient on the right that has a normal appearing uterus and then this pedunculated gigantic thing that has bled into itself that is like a sub serosa fibroid of the extreme just hanging off on the outside now should

this patient have embolization no someone can tie a string right at that little connection and take that thing out so using our imaging to help us to decide which patients should be treated is very important or this patient who

came with Oh dr. Newsome I've been bleeding for 10 weeks in a row I have reversed cycles I have bulk I have bladder symptoms and yet they have that little dot that little black thing there that little dot

at the top that is the only place where there's a fibroid so this patient should not be a candidate for embolization either because yes they have symptoms and they have that little tiny daughter for fibra but that is not what's causing

those symptoms so it is important that we're not doing procedures on patients just because we can but because we're using our imaging and the patient's symptom to decide which patients are the best candidates for these procedures

criteria for CTF means that the patient has a mean pulmonary arterial pressure which we measure intraoperatively exceeding 25 millimeters mercury at rest with the mean pulmonary capillary wedge pressure less than 15 so I'm not a

cardiologist but what that means to me is a mean capillary pulmonary wedge pressure less than 15 means that their left heart is not failing so if you have a capillary wedge pressure higher than 15 that means your left heart is not

working correctly and you can't blame it on the CTF so you can't blame it on the right side if the left side isn't working other things that matter are the abnormal pulmonary vascular resistance and having a systolic pulmonary artery

pressure greater than 40 so what I want to show you and highlight is the law the lost art of pulmonary angiography which i think is now sort of again a lost art some places do a lot of it and some places don't do very much but diagnostic

pulmonary angiography is actually the gold standard in the planning of either surgery or medical management for patients with CTF we do we do these on almost all of our patients with CTF to make that decision with the surgeons and

the cardiologists so the utility is very it's very useful you're able to measure our pressure you're able to decide whether we're the where the thrombus exists in this image here in patients with disease in the

blue and yellow outlined areas those are the patients who can have the operation the operation is curative it's not just medication that you have to take for the rest of your life you can actually remove that chronic clot it's much like

a femoral endarterectomy that are done for patients with peripheral arterial disease although it's a lot more complicated because they have to crack your chest open what's important is getting very very

good high-quality pulmonary angiogram xand so we do we used to do about we do about a hundred of these a year where I trained or actually where I work now and you get very magda up views and you're gonna show all of the vessels and so

these are the views that we use at our institution they happen to be the pipette criteria so it's the same thing you used to do for acute PE you put a flush catheter in the main pulmonary arteries when you're looking at the

upper lobes and when you're looking at the lower lobes you want to push the catheter further into the pulmonary arteries and inject usually what I do is a two to three second injection so that you can stack the images very well and

show all of them in one view this allows your surgeon to make a decision easily as to whether they can operate or they can't operate on this and then I use a higher frame rate usually because these patients are wide awake we when we do

this case we give our patients twenty five mics of fentanyl one time and that's it just to help get the sheath in I usually do this with a seven French sheath and then use a flush cap pulmonary artery catheter many of which

are currently off the market but when we do this we just give them that twenty five Mike's because they have to hold their breath and I usually go up to a high frame rate in the first run and then adjust based off of how well that

patient is holding their breath this really takes a team effort from our nursing technologists and the and the physicians in the room to make sure that this patient does a good job because it's gonna change their management so

there are a lot of different types of angiographic findings on one of these pulmonary angiogram they're really really interesting pulmonary angiogram zin these patients and they're sometimes not at all subtle so you're looking for

a pruning of distal vessels if we start in the top left where you're just not seeing the Brent normal branch pattern you look for stenosis so we're not usually used to looking at stenosis and the pulmonary arteries but this is

actually what you're looking for in CTF you're looking for webs or bands so you'll usually see little areas where you just doesn't look like there's great opacification there's little areas that there's not good at pacification those

are little webs inside the vessel believe it or not looks like a cobweb that grew inside there from that thrombus and then you're looking for areas of complete occlusion that there's just no vessels there those are all

vessels that can be treated in patients with CTF so this is the Jameson classification before we talk about the sort of the interventional management the surgical management is again the curative and dr. Jameson is the head

surgeon at University of California in San Diego which is the largest Palm CTF program in the in the world and he's done I think over 3 500 of these operations I think he's retired at this point but they named the classification

after him and so type 1 is proximal disease so it involves the main pulmonary arteries these are the ideal patients who can get the best benefit from this in their life type 2 is the next best

it's segmental proximal just type 3 is distal segmental and then type 4 is just a mess of sort of all of it but you can't really get a good surgical plane so type 1 and 2 are treated with pulmonary thromboembolism

towards balloon pulmonary angioplasty or BPA and type 4 are generally treated with medication so PT II or pulmonary

kind of the embolic protection because I think with carotid artery stenting the stents there's a lot of different types they're all self expanding for the most

part and there's not a lot to talk about there but there is with regards to embolic protection and there so there's distal and violent protection where you have this where that blue little sheath in the common carotid artery you got a

wire through the ica stenosis and a little basket or filter distally before you put the stent in early on they used to think oh maybe we'll do distal balloon occlusion put a balloon up distally do your intervention aspirate

whatever collects behind the balloon and then take the balloon down not so ideal because you never really asked for it a hundred percent of the debris and then whatever whenever you deflate the balloon it goes back it goes up to the

brain you still have some embolic phenomenon in the cerebral vascular churn and then there's this newer concept of proximal protection where you use either flow reversal reverse the blood flow in the cerebral circulation

or you actually cause a stagnant column of blood in the ica so you can't get you don't get anything that embolize is up distally but you have this stagnant column the debris collects there you aspirate that actively before you take

down the balloons that are in position in the X carotids and common carotid artery and then you take everything out so let's walk through each of these if you really wanted to pick out the perfect embolic

protection device it's got to be relatively easy to use it's got to be stable in position so it's not moving up and down and causing injury to the vessel but even while it's in place cerebral perfusion is maintained so that

balloon the distal balloon not a great idea because you're cutting off all the blood flow to the brain you might stop something from embolizing up distally but in the process of doing that you may patient may not tolerate that you want

complete protection during all aspects of the procedure so when we place a filter as you'll see just crossing the lesion with the initial filter can cause a distal embolus so that's a problem you want to be able to use your guide wire

choice as many of you know when we go through peripheral vasculature there's your go-to wires but it doesn't always work every time with that one go-to wire so you want to be able to pick the wire that you want to use or

change it up if needed for different lesions so if you get to use your wire of choice then then that's gonna be a better system than something that's man deter and then if you have a hard time using that wire to get across the lesion

you have a problem overall and then ultimately where do you land that protection device and a few diagrams here to help illustrate this generally speaking these distal embolic protection these filters that go beyond

the lesion have been used for quite a while and are relatively safe you can see them pretty easily and geographically they have little markers on them that signify if they're open or closed and we look for that overall and

blood flows through them it's just a little sieve a little basket that collects really tiny particles micrometers in size but allows blood flow to pass through it so you're not actually causing any cessation of blood

flow to the brain but you are protecting yourself from that embolic debris and it's generally well tolerated overall we had really good results in fact when not using this device there's a lot of strokes that were occurring in use of

this device dramatic reduction so a significant improvement in this procedural area by utilization of embolic protection however distal embolic protection or filter devices are not a perfect APD as you as you may know

those of you have been involved in carotid stenting there is no cerebral protection when you cross the lesion if you have a curlicue internal carotid artery this filter doesn't sit right and and ultimately may not cause

good protection or actually capture everything that breaks off the plaque and it can be difficult to deliver in those really tortuous internal carotid arteries so ultimately you can cross the lesion but you may not get this filter

up if you don't get the filter up you can't put the stent then ultimately you're out of luck so you gotta have a different option filters may not provide complete cerebral protection if they're not fully opposed and again it does

allow passage of really tiny particles right so your blood cells have to be able to pass but even though it's less than about a hundred microns may be significant enough to cause a significant stroke if it goes to the

right basket of territory so it's not perfect protection and then if you have so much debris you can actually overload the filter fill it up in tile and entirely and then you have a point where when you capture the filter there's some

residual debris that's never fully captured either so these are concerns and then ultimately with that filter in place you can cause a vessel dissection when you try to remove it or if it's bouncing up and down without good

stability you can cause spasm to the vessel as well and so these are the things that we look for frequently because we want to make sure that ultimately if we just sent the lesion but we don't believe the vessel distal

to it intact and we're going to have a problem so here's some kind of illustrated diagrams for this here's a sheath in the common carotid artery you see your plaque lesion in the internal carotid artery and you're trying to

cross this with that filter device that's what's the picture on the right but as you're crossing that lesion you're you're liberating a little plaque or debris which you see here and during that period of time until the filters in

place you're not protected so all that debris is going up to the brain so there's that first part of the procedure where you're not protected that's one of the pitfalls or concerns particularly with very stenotic lesions or friable

lesions like this where you're not protected until that filters in place that first step you never are protected in placement of a filter here's an example where you have a torturous internal carotid artery so you see this

real kink these are kinds of carotid internal carotid arteries that we can see and if you place that filter in that bend that you can see right at the bend there the bottom part the undersurface of the carotid doesn't have good wall

my position of the filter so debris can can slip past the filter on the under under surface of this which is a real phenomenon and you can see that you can say well what if we oversize the filter if you oversize the filter then it then

it just oval eyes Azure or it crimps and in folds on itself so you really have to size this to the specific vessel that you plan to target it in but just the the physics of this it's it's a tube think about a balloon a balloon doesn't

conform to this it tries to straighten everything out this isn't going to straighten the vessel out so it doesn't fully conform on the full end of the filter and you have incomplete a position and therefore

incomplete filtration so this is another failure mode I mentioned before what if it gets overloaded so here's a diagram where you have all this debris coming up it's filling up the really tiny tiny particles go past it because this little

micro sieve allows really small particles to go distal but approximately it's overloaded so now you get all this debris in there you place your stent you take your retrieval filter or catheter to take this filter out and all that

stuff that's sitting between the overloaded filter and your stent then gets liberated and goes up to the brain so you got to worry about that as well I mentioned this scenario that it builds up so much so that you can't get all the

debris out and ultimately you lose some and then when the filter is full and debris particles that are suspended near the stent or if you put that filter too close to the edge of the stent you run into problems where it may catch the

stent overall and you have all of this debris and it looks small and you don't really see it and geographically obviously but ultimately is when you do a stroke assessment and it's not always devastating strokes but mild symptoms

where he had a stroke neurologist and the crest trial or most of the more recent clinical trials we actually evaluate a patient and notice that they had small maybe sub sub clinical or mild strokes that were noted they weren't

perhaps devastating strokes but they had things that caused some degree of disability so not insignificant here's a case example of a carotid stent that was done this is a case out of Arizona proximal carotid

stenosis stent placed but then distal thrombus that developed in this case and had post rhombus removal after the epd was removed so there's thrombus overloaded the the filter you can see the filter at the very top of the center

image you can see the sort of the shadow of the embolic protection device there distally aspirated that took the filter out and then ultimately removed but you can imagine that amount of thrombus up in the brain would have been a

devastating stroke and this is what the filter looks like in real life so this is what the debris may look like so it's not this is not overloaded but that's significant debris and you can see the little film or sieve that's on the

distal part of this basket and that's what captures the debris any of that in the brain is gonna leave this patient with a residual stroke despite a successful stenting procedure so this is what we're trying to avoid so in spite

so are you ready here's the final project product tada that's what our d-h radiology nursing dashboard looks like today so as Tommy mentioned the goal of

our dashboard is to help the frontline objectively understand their performance and be proactive about making decisions to help their run day their day run smoothly all of these metrics on the dashboard work together to achieve those

goals so for example at the top right here the procedural workup pending and calls pending help to see the volume of pending workup and phone calls that need to be completed over the next few days another exam

well here on the bottom left the nursing case volume that's another it helps us to sort of see the different levels of nursing resources needed by hours of the day the dashboard is not just for nurse managers and for supervisors but for the

frontline users as well we had to teach your nurses how to use this information in real time what we have learned that by using actual data to drive decision-making nurses are able to deliver patient care more consistently

and in compliance with standard practice they are also able to manage variation and optimize utilization of resources the dashboard proves to be an easy tool to apply and capture meaningful metrics around the radiology nursing workflow

this is the framework we use to educate the frontline nurses on the real-time application of the dashboards we broke it down into four simple steps look so looking at the data interpret and gain insight 3 apply and maybe take action

and for what are the results and how are we assessing those results the next few slides will look at some specific components of the indicators on the dashboard and demonstrate how we use this model look interpret apply and

assess to increase the utilization of the frontline staff in their everyday work this is one of the dashboard components that you saw on the dashboard called buffer time the buffer time is the amount of time left till the patient

scheduled appointment time so for example the patient's appointment time is at 12:00 you can see the check-in time generally what we have found that it takes about 60 minutes from the time the patient checks in to get them into

the procedural room so based on that we have the appointment time at 12 12 o'clock the patient checked in at 10 11 and we have a buffer time you have 21 more minutes to go until there a scheduled appointment

time so let's use the look interpret apply and assess model to help better understand how this dish board indicator works so look as you can see we have multiple patients that have checked in interpret we have three patients

highlighted in red that indicates their past their appointment time and then we have four patients in green indicating time left till scheduled appointment time so what action can we take on this well first I'd look at the red patients

since they're late and I would determine next steps there's an ir case in room two that's nine minutes late and then we have an MRI our nurse that is also nine minutes late and it looks like we have a CT case that has nineteen minutes late

oftentimes I know this just because it's our area but if I was to look at this in our nurses too we would confirm that the CT three case really needed a nurse and generally we don't do procedures in our CT room three as far as the green

patients are concerned we would look at the we'd look at both these two twenty one minute buffer times and say and confirm that the pre-work is on track that we're ready to go and we're going to be able to get those patients in as

far as these two patients you can see they checked in way early then there's 60-minute time and at this point I wouldn't do anything else for that and then as far as assessing generally that's done sort of like later in the

day to discuss in the huddle future actions that needed to be taken maybe to prevent this okay let's try another component of it of our dashboard this here is our procedural patient workup turnaround time so here the first box is

the time in which it takes the RN to do her workup so that might be checking the patient in verifying labs vital signs placing an IV etc and then this middle box is the total workup time which includes the fizz

since time as well so a si and Malley mallampati assessment consent that kind of thing and then the third box is the total time the patient was in the pre room so let's apply our model again so as we can look the RN pre workup is

taking 22 minutes on average the pre procedural workup time total is taking 39 and the total patient time 65 so what can we gather from that as I mentioned earlier we give about us it's about 50 minutes generally when we've done a lot

of audits but we give a 60 minute window so that's why we asked our patients to come in 60 minutes before their before their actual scheduled appointment time so what can we interpret from this so as I'm looking the RN process time is

within 30 minutes so we're good there the total workup time was is in within the 50 minute expectation and we still have our 10 minute buffer remember however the total time in pre exceeds the 60 minute expectation so what action

might we take as a frontline either charge nurse or the any of the nurses say what should we do next so here what I might do is talk to the charge tech who sort of does all the orchestrating of the rooms and say so what's the

possible bottleneck because we've got our patients ready to go within 39 minutes to gain on time start but however it looks like we're stuck I will tell you that there is some of those variations like we had a stroke come in

or a trauma that actually bumps cases we get that piece but why are the rooms running what can we do can we maybe make a person that was scheduled going to room to go into our overflow room in five if say a power authorities like are

less acuity room so those are type of things that we can talk about in real time to get patients moving and so we don't continue to have late start delay so we'll move on to the next one

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

This is a copy of the device worksheet, and I kind of like you to take a look at it. You're welcome to use this tool as you develop your own adaptation to your hospital protocol if it helps.

It's broken up into eight categories or sections that I actually just numbered so we can discuss them and make for easy reference. Section one is the demographic section, and that's information about the procedure, tracking, it's our look up.

We print a snapshot from Epic, which is our computer-based system and the order for the patient. So we have their background. The device information has all the information that we're able to obtain about the device

and a place to put information that we get from the programmer when we're down in MRI. One of the things that we try to determine ahead of time but can't always is, is the patient device dependent? And that's really a general term for a person with a heart rate less than 40,

or if they're symptomatic or have symptoms of presyncope, lightheadedness or any hemodynamic instability when they're evaluated with their pre MRI interrogation. So if during the MRI they turned on the rate to see if their leads are working well

and the patient's, "Woah, I get dizzy", well then we need to think about this. That patient is deemed at that point device dependent. Do they have a history of complete heart block or have they had an AVJ ablation? And just remember that if the person is nonconditional,

has a nonconditional device and they're pacemakers dependent, they have to be monitored by someone that can immediately reprogram their device. Next section is a reference section, and it has telephone numbers.

It's numbers that we obtained. We get this list to the MR coordinator so that we're prepared. If an emergency happens, they have that list ahead of time. And this is one of the changes that came out during our mock code.

When we did the mock code, one of the device or one of the people from MRI commented that, you know, it sure would be helpful to have that information ahead of time. So now we print or we put on a little Post-it note and give that to their coordinator

so that they could start making phone calls if we have an emergency. The MRI staff does their work up anticipated. They do their screening, get the patient dressed. A change that happened once we started to monitor MRI device patients was that all patients

needed to have an IV access. Prior to then, even... When device nurses were monitoring them, the ones that didn't get sedation weren't necessarily getting an IV. But we determined that we wanted to have,

be able to treat them immediately. So everybody gets IV even if they don't get contrast. They get our monitors ready so that we're all ready to come in and get started. If they haven't, we work with them and get it all done ahead of time.

Our section four is the nursing assessment. Here we get our baseline assessment, their name, all that kind of stuff and we document it. We determine if the special requirements for the nonconditional device are met, and we expect that our physicians are going to call us

when we page them and tell them that we have a nonconditional device patient on the table because that's how we know they got the page and that's what we say, and I put a little note on the device sheet just prompting the nurses so that we all know what to say to the docs.

That was initially something that they all wondered, why do I need to do this? You know, we hear about patients at the beginning of the day, why do I need to do that? And our answer is, because if we have an emergency, we want you to come right away

or note to somebody else that will respond immediately to us. We do safety checks in the MRI. We make sure that our defibrillator is ready, our code cart's ready available, oxygen suction, and we think about our emergency plan.

Setting up the monitor is like major. Our primary objective is to monitor the ECG. However, we realize that that can't always happen so we use the sat probe, and that's what's recommended in this consensus statement of course as well.

Monitoring the heart rate from the sat probe gives us a consistent heart rate. If we were to monitor from the ECG during the MRI sequences, sometimes, as it shows in this picture, that looks like static and we can't really interpret.

However, when you look at the sat probe waveform, you see that your heart rate is good so you're not going to get alarmed. But it is important to correlate as best you can your ECG with your EKG, with your O2 sat waveform. And we've found that by placing the leads

way over on the left lateral chest, you get a better R wave. So you see even sometimes during the wave, during the MR sequences, they don't fade away. So having the leads way over helps. Adjust the lead and the scale for the best positions,

and we monitor two leads. And you cannot discern no matter what, and people, I don't know what rhythm they're in, that's why it's important to get that from a handoff with the device nurse. You can't see your PQRS and T waves

just because of where your leads are positioned. We record the heart rate and the sats every five minutes once we take over from the device nurse, and that's our standard for continuous monitoring. So we just have adapted that into our monitoring for device patients.

Now section five is the device, the handoff that we receive from the device nurse. And prior to making any changes in their programming, we expect that we'll be prepared with our IV in place and our continuous monitoring is already active. They will interrogate the device and the leads

pre and post scan as I said. If the patient has had a recent shock or override tachy therapies, we don't want to have an unstable patient in the MRI scanner. And they're not a candidate for that MRI at this time. A conversation will need to be held with the physician,

and no changes should happen to the device at that stage if you determine they've had an issue. Now if during interrogation, as I mentioned, it's deemed that the patient is dependent and they have a nonconditional device, they're not a candidate for radiology nurse to monitor.

Nonconditional pacemaker dependent needs a device nurse or physician or whoever does your monitoring. We had a patient just not too long ago that did have, it was listed as an MR conditional device. However, in interrogation, they determined that the patient had a nonconditional lead.

So that changed the status of that system to be a nonconditional system. And when that patient was interrogated, they turned on the rate, she got really dizzy, turned up the rate and kept her paced throughout the study. Our nurse continue to monitor that patient.

But as we've been talking about things, it was like, should I have done that? No, that should've turned over to the device nurse, and the device nurse didn't even know that. So they're learning things too as we're adapting these work up into our protocol.

But that patient should have been monitored by someone that could immediately reset that device. We would get report of their underlying rhythm, how have they programmed or set that patient for the MRI, and what's the anticipated rhythm? Like I said, do they expect them to pace

like at a rate asynchronous at a rate of 80, or are they going to be on their own and we would expect to see whatever the patient's underlying or native heart rate is? We confirm with them that the shocking and tachy therapies are turned off.

During the MRI when the patient goes to the table, you want to make sure that they have their inner calm, available and ready. Retest it, make sure that they can talk to you over the intercom and that their ball is working. You want to be able to see them to some extent,

and you want to make sure that you've told them, if you have any issues, let me know. Any warmth or anything like that or pain or anything you feel that's weird just so that you know they're on the alert to let you know if they're not feeling good.

We do a full set of vital signs when they get on the table, and that's just so that we have their base line there. But we'd leave the cuff on. Usually we put it on their, well, depends on what part of the body we're scanning

but we would leave that cuff in place so anytime we had questions or needed to assess them, we could do that. We contact the device nurse during the study if we have any concerns, and we page them near the end so they can timely reset it.

We're thinking about the emergency in our head. Following the MRI, we do continuous monitoring until they've been declared stable. And that's when we would take off their ECG and sat probe. We confirm that the therapy is turned back on. We write a little note and we coordinate discharge

with the MRI staff. You're the monitor, and you're the defibrillator. You want to rehearse your plan and just kind of think what are my potential issues? Is patient's heart rate going fast as you're thinking about (mumbles)

are you having an emergency? Is it too fast, is it too slow? And how are they doing? That's like the main thing. Just how are you doing? Get the emergency care handled outside of Zone IV.

so my Xtreme ir case is a TVR with on a patient with a type you tie section and then we use laser to find a straight the dissection flap and I just want to before I start I just want to give a big shout-out to my attending dr. Kasia and Rudy pump Adi on our IR resident Rudy

put these really cool illustrations together as you will see on these upcoming slides and dr. Kaja he did this case and basically it helps me with everything so since your old male patient presenting with history of

chronic type UTI section um he was medically managed with and I'll G Saxena antihypertensives and then he came into the ER a couple months later and it was complaining of severe back and chest pain so a CTA was

performed and and they found that there was a significant growth in the descending thoracic aorta and so we have a couple images here we have a 3d reconstruction of the aorta as well as the sagittal image of that CTA and does

anyone notice anything about this 3d on aorta no so this patient has a variant he has a bull vine arch actually so the left common carotid is coming off the right you nominate um but vessel the arteries so it's nice for us when we're

placing that and negraph we have more more of a landing zone so we're not covering any of important structures other than the less left subclavian artery and so we're the two arrow heads are on the sagittal image you will see

that there's reentry tears so if you look at the 3d image so the dissection is that line right in the middle and so it's starting at the origin of near the LSA and ending at the level of the celiac artery okay so we obtained right

and left common femoral access and you obtain left brachial access as well and the reason for left particular access is once we get our enter graph gen we're going to go ahead and I'm pass the wire through and a laser through and find us

to find a straight through that under graft so you can have flow but I will talk about that later so we put a twenty French dry seal sheath and the right groin and in the left groin we had a 8 by 45

she's and that was basically to accommodate IVA so they can kind of get a feel for what we're doing it just like another resource we have so we have two IVs images here the one on the left with the yellow arrow basically is just

showing us that thickened dissection flap and the Ibis on the right is the love of the celiac artery so the celiac artery is where that green arrow is pointing to and the white arrow head is basically just showing us that reentry

tear at that level and so through the right through the right the sheet on the right hand side the 20 French try seal sheets we placed the 7 by a 55 Aptus on steerable tour tour guide sheath so that basically can angle up to 180 degrees so

we place that up to sheath in the true lumen of the aorta and pointing towards the false lumen and then I just put some pictures up of what a dissection looks like I don't know if a lot of people a lot of you guys on do dissection their

frustrations I mean your practice but I just thought it would be nice to show and so once we have the Aptus sheep up in the true lumen and have it pointed towards on the false women we confirmed with the eye this just to make sure

we're on the right spot and we're not we're not going to harm any other structures when we laser so once we have that up we use laser to kind of poke a hole and fenestrated create that's here and once we did that we dragged while

the laser was on we dragged the baptists sheath down 4 centimeters and created a large terror so the whole goal is to open up that dissection so we could eventually place that under graph so once and that there's a florist got the

image of ibis and apt the Aptus sheath and all that and so we created a large tiara and then what we did was we passed the 18 wire into the false live and we angioplasty with the 14 by 4 centimeter balloon and as you can see that there is

some waste on that balloon and then eventually it dilated up to you know now I'm gonna burst rate which was 18 and so that Ibis is basically showing us that's here that we just made in our dissection flap

okay am I not there we go okay so once we angioplasty be repeated the same thing so we put the laser back up get a small tear right underneath large penetrations here that we just said and then we angioplasty it so once we

angioplasty we connected that top tier and bottom tear together we opened it all up and we angioplasty it again after that so once that I mean go back so once the angioplasty so right underneath that big tear that we just made so between

the tear that we just made and the re-entry is here at the level of a celiac you still have that little piece of a dissection flap that we still need to open to place our under graft so once we did that once we angioplasty through

the right groin we passed up a glide catheter and the true lumen and pointed it towards the false women and through on the tear that we just made we passed the v18 wire and through the left groin we went up with a 20 millimeter loop

snare and so we grabbed the the 18 wire and so that loop snare went and that reentry tear and like into the false lumen so our whole point is to get through and through access with that wire so we can use as a wire cutter to

cut the remaining flaps so that's what we did so we we grabbed that snare we grab that v18 with the snare we pulled it out of the left groin and we obtained through and through access okay so you're just ripping it down yeah

basically it's like it she goes somewhere yeah yeah you got it yeah that's exact don't ask a question to what you don't want the answer so basically that's what we did so once we got through into access we advanced both

sheets and we kind of like pull down to to cut the remaining flap so once we did that we basically had everything open so we were ready to place our under graft so we did angiography and then we ended up

deploying the descent and then so once we would deploy the stent we basically covered that LSA the left subclavian artery so that's exactly why we got brachial access so we pass the wire through and got to the origin of the LSA

and then we ended up putting the laser down and then we turn the laser on poked a hole and so now we have this hole and this endograft so once we did that we angioplasty it and then we deploy the stents okay and so now we have a diagram

of the pates and LSA following stenting so we sent in the aorta and where the dissection was and then resented the LSA so we have nice nice flow the REC lab donal angiogram basically is just demonstrating feeling of the celiac in

superior mesenteric artery as you can see in that middle image distally so one of our missions that Rudy made which is pretty awesome so illustration of fenestrated t-bar with LSA sensing and adequate just so Co following the

dissection flap that we usually there's open so BAM there you go so that's Rudy and I in the middle my one of my co-workers Kevin and when my mentor is dr. Kaja dr. Marley and myself so thank you hi dr. Kasia thanks for joining

all about effective bag-valve-mask it's the mainstay of airway management and procedural sedation but also in the o.r so you're gonna see if you're ever working with an anesthesiologist that

the first thing they want to see is how easily they can ventilate the patient with a mask and if they have trouble they know that's potentially going to be a patient that may give them difficulty later on when they're attempting to

intubate because when they go to intubate the patient if they're not successful they immediately stop and go back to bagging the patient they want to know that that's gonna be there their failsafe and that they have an

effective way of delivering breaths the difficult airway is going to be defined in terms of whether effective gas exchange can take place with an Ambu bag so at NYU we use the sorry we use the Mallampati so this classification system

attempts to grade the degree of airway difficulty the foundation of the assessment is that the tongue is the largest anatomical structure that can inhibit mask ventilation now again if you look at the research surrounding

this Mallampati used in isolation it's not useful you really want to look at all of the other airway assessment criteria that I just previously discussed because it's on our required documentation you know it can be

something that maybe providers get focused on just open your mouth cool and move on but it really is important to look at all the other components not to call out my attending sitting over there so this is a great mnemonic that I like

moans it's just a quick easy way to identify a patient that may give you a little bit of trouble when it comes to manual ventilation so M is for mask o for OB 3a for age and for no teeth and s for stiff lungs so you can see with this

patient here with the beard he has a lot of facial hair so that's a patient that you're gonna have a difficulty getting a good seal with and if you can see they actually covered his beard with Tegaderm in order to get an effective seal right

painful later but great for his airway um last thing yes at this point oh great this points you guys can still hear me okay so for this patient for for obese patients in general my biggest pain point I guess you could say is when I

see patients inappropriately position during procedural sedation and a nurse will call and say the patient's not really well sedated but his his capnography waveform looks all off he's occasionally having periods of apnea can

you come and help and the patient looks like this so a patient who's sedated is not going to be able to comfortably spontaneously mentally win their position like that you can see his airway is a little bit compressed here

he has to overcome extra body habitus in order to effectively take a breath so what you want to do is just ramp your patient and this is obviously extreme like if you're doing an angiogram you're not the providers gonna say what on

earth are you doing but what you can do is take that pillow out and put a little roll underneath the shoulders and you're gonna see the airway open up and if I get patients who come in and they can't be flat maybe they have congestive heart

failure so they have that pillow orthopnea you can position them like this give them the sedation and then take everything out that's what I always do you you want to make sure that you have

good positioning and that's going to set you up for success patients who are elderly or have no teeth are going to be what we call a dentist and they essentially just have loss of musculature in the face which is going

to correlate with surface area which means you're not gonna be able to get a good seal so what they did in this particular patient is they actually put gauze in to just increase that surface area and then patients with stiff lungs

are going to be patients who have a history of COPD or any other restrictive lung disease and they just may be difficult to ventilate Pharmacology and

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.