Create an account and get 3 free clips per day.
Chapters
The Optimal Dataset To Evaluate Venous Treatments (Clinical Scores And QOL) In Collaboration With ICHOM
The Optimal Dataset To Evaluate Venous Treatments (Clinical Scores And QOL) In Collaboration With ICHOM
brachialcareclaudicationclinicalduplexevaluatesinfluencesmeasuremeasurementsoutcomepatientqualityquantifyvenousvillalta
Importance Of Toe Pressure In Predicting Healing Of Toe And Foot Wounds And In Indicating The Need For Revascularization
Importance Of Toe Pressure In Predicting Healing Of Toe And Foot Wounds And In Indicating The Need For Revascularization
amputationbasedbloodbrachialcutaneousdatadeterminedigitaldopplerhealhealedhealingmetaoximetrypatientpatientspredictpredictivepressurepressuresrevascularizationstatisticallytampatherapeutictibiaToe Pressurevascularvasculaturevelocitieswaveformwaveforms
Continued Tobacco Use Is Bad For PAD Patients But Does Not Negatively Affect Outcomes Of Endo Treatments For Intermittent Claudication
Continued Tobacco Use Is Bad For PAD Patients But Does Not Negatively Affect Outcomes Of Endo Treatments For Intermittent Claudication
activeadversebypasscessationclaudicationdemonstratedendovascularextremityfollowupinterventionlifelifestylelimblimitingmarkovmedicalmultidisciplinaryoutcomespatencypatientpatientsqualityrevascularizationsmokerssmokingsurgicaltobaccoversus
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
Extensive Heel Gangrene With Advanced Arterial Disease: How To Achieve Limb Salvage: The Achilles Tendon Is Expendable And Patients Can Walk Well Without It
achillesadjunctiveadjunctsAllograftAllograft Amniotic membraneambulateBi-Layer Wound matrixBi-Layered Living Cell TherapybrachialdorsalendovascularexcisionheelincisionischemicmicrovascularmodalitiesneuropathynoninvasiveocclusiveoptimizedoptimizingOsteomyelitis / Heel Ulceration / Exposed Tendon / Sever PAD / DMpartialPartial or TotalpatientpatientsperforatingperipheralperonealPost Intervention in-direct Revascularizationposteriorposteromedialresectionrevascularizationrevascularizeskinspectrumtendontherapeutictibialtightlyulcerulcerationunderwentvascularwound
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
High And Immeasurable ABIs In CLTI Patients With Infrapopliteal Occlusive Disease Is A Predictor Of Poor Amputation Free Survival: Why Is This So
amputationamputationsarterialatherosclerosisbaselinecalcificationcategoryclinicalcomparedcompensatoryelutingfreeInfrapoplitealintermediatekaplanlowmajormedialmeiermulticenterpatientspredictionrandomizedregressionremodelingriskrutherfordstemstentstrial
Inari CloTriever Device For Acute DVT
Inari CloTriever Device For Acute DVT
anteriorbonecatheterclotCloTriever CatheterCloTriever ProcedureCloTriever SheathcompressibleCorpectomy with interbody Cage / Local Bone Graft with Local Bone PowderduplexenrollextravasationfemoralhardwareiliacinsertedLumbar Interbody fusion Via Anteriro approachlyticmaterialobstructedorthopedicoutcomespatientpatientsphasicpoplitealregistrysegmentsheathspondylolisthesisSpondylolisthesis L5-S1 / Post- Operat Acute extensive Lt Lower Limb DVTstentsubclavianswellingtherapythrombectomythrombosedthrombustibialtpaveinvenous
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
A RCT Comparing Medical Treatment vs. Thrombolysis And First Rib Resection For Venous TOS - Paget Schroetter Syndrome With Subclavian Vein Thrombosis
anticoagulationapproachbaselinecatheterCatheter-directed thrombolysisconservativedecompressiondeependpointextremityfavorFirst Rib Resectioninvasivemulticenterpatientpatientsprimaryrandomizationrandomizedrethrombosissyndrometherapythrombolysisthrombosistreatmenttrialupperveinvenographyvenousvillalta
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
Cloud Based System For Image Fusion Techniques With Mobile C-Arms (The Cydar System): How Does It Work And Advantages For All Vascular Interventions
anatomyaorticaortoiliacAortoiliac occlusive diseasebasedBilateral Kissing StentsbodiesclinicalcontrastCydar EV (Cydar Medical) - Cloud SoftwaredecreasesderivedendovascularevarFEVARfluorofluoroscopyfusionhardwarehybridiliacimageimagesimagingmechanicaloverlaypatientpostureprocedureproximalqualityradiationreductionscanstandardstatisticallytechnologyTEVARTherapeutic / DiagnostictrackingvertebralZiehm ImagingZiehm RFD C-arm
DEBATE: Recent Data Show That Low Molecular Weight Heparins Are Still The Only Way To Go When Cancer Patients Suffer Clots Or VTE
DEBATE: Recent Data Show That Low Molecular Weight Heparins Are Still The Only Way To Go When Cancer Patients Suffer Clots Or VTE
bleedingcancercancersclinicallycomparedgastrointestinalincludedincreasedinteractmajormarkedlymolecularoutcomepatientsplateletreceivedrecurrentrelevantriskRivaroxiban / Edoxaban / Dalteparin / Vinca Alkaloids / Taxenes / Erlotinib / Gelitinib / Sorafenib / Everolimussubsetstherapeuticthrombosisurinaryvenous
Optimal Timing Of CEA Or CAS After A Stroke Or TIA
Optimal Timing Of CEA Or CAS After A Stroke Or TIA
antiplateletcarotidcomplicationdaysendarterectomyhemorrhageinfarctionmechanicalpatientpatientsperformedrandomizedratesrecommendrisksstenosisstentingstrokesurgeryswedishsynchronousthrombectomyundergo
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
Pediatric Brachial Artery Injury From Supracondylar Fractures Of The Humerus: Aggressive Revascularization Is Sometimes Necessary: Indications, Technical Tips And Results
anteriorarterialarterybasilicbrachialcoexistingcollateralscompartmentdelayeddopplerduplexexplorationfracturefracturesfunctionhumerusinjuryinovaischemiaischemicmediannerveneurovascularnormalobservationpalpablepatientperfusedperfusionpositiveproximalpulsepulselessradialrecommendsurgicalsyndromethrombectomyvascularVeith
Episode Based Payment Models For Dialysis Access Creation
Episode Based Payment Models For Dialysis Access Creation
accountabilityadjustedassignedattributedbasedbasicchronicclinicalclinicianscodescostcostsdefinediseaseeligibleepisodeepisodeshemodialysislimbmanagementmeasuremeasuresmedicarepaymentperformanceperipheralphysicianproceduresqualityriskscorevascularVascular access
Limb Salvage And Functional Outcome After Traumatic Acute Limb Ischemia (ALI)
Limb Salvage And Functional Outcome After Traumatic Acute Limb Ischemia (ALI)
acuteamputationbluntclassificationdeficitsencounteredextremitiesextremityfollowfunctionalischemialimblowermajoritymanagedmedianoccurredpatientpatientspenetratingpercentpreoperativeproceduresrutherfordsalvagesurgeonstertiarytraumatraumaticunderwentuppervascularversuswounds
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
A New System For Treating Prosthetic Arterial And Aortic Graft Infections
abdominalanastomosisaneurysmbiofilmcomorbiditydebridementendovascularenterococcusexplantfasterfavorFemoro-femoral PTFE Bypass infectionfoamgraftinfectedinfectioninstillationintracavitarymalemortalitynegativeNPWTobservationalpatientpreservepressureprostheticptferadiologistremovalspecimensurgicaltherapythoracictreatmentvascularwound
Long-Term Results Of AV Fistulas And Grafts
Long-Term Results Of AV Fistulas And Grafts
AF GraftarterAVFDialysisduplexendovascularFistulafistulasfistulogramgraftgraftshemodialysisinfectionmaturationoccludedocclusionpatencypatientspreoperativeprimaryprominentproximalpseudoaneurysmpseudoaneurysmsreinterventionscanningtrendunderwentveinVeithvenousversus
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
New Developments In The Treatment Of Venous Thoracic Outlet Syndromes
angioplastyanterioranticoagulationantiplateletapproacharteryaxillaryBalloon angioplastycameracontraindicateddegreedischargeddrainduplexhematologyhypercoagulabilityincisionintraoperativelaparoscopicOcclusion of left subclavian axillary veinoperativePatentpatientspercutaneousPercutaneous mechanical thrombectomyperformingpleurapneumothoraxposteriorpostoppreoperativepulsatilereconstructionresectionsubclaviansurgicalthoracicthrombectomyTransaxillary First Rib ResectionTransaxillary First Rib Resection (One day later)uclavalsalvaveinvenogramvenographyvenousvisualization
Standardized Aquatic Protocol For Phlebolymphedema Patients
Standardized Aquatic Protocol For Phlebolymphedema Patients
activatingactivationambulationanklecentimeterdataenvironmentinsidelowermusclepatientsphlebologypoolprotocolpublicationspecialistsstandardizedstandingstockingsvascularvenous
Treating Venous Thromboembolism Without Lytic Medications
Treating Venous Thromboembolism Without Lytic Medications
amountaspirateaspirationassistedcatheterclotcreatedevicedevicesfocalfrenchiliacmechanicalpatientpulmonaryrheolyticstentsuctionthrombustypetypesvacuumveinvenous
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
DEBATE: Not So: Why Open Bypass First Is Best In Some CLTI Patients: Which Ones: What Percent Of CLTI Patients Will Require An Open Procedure At Some Point In Their Course
advancedamputationbypasscentercontemporarydataendoendovascularevarextremityfailedlimblimbsocclusionsOpen Bypassoutcomespatencypatientpatientspercentrevascularizationrisksecondarystagesurgerytolerate
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
Is Upper Limb Thrombolysis Justified After The ATTRACT Trial?
answeranticoagulationattractendpointevidenceexcisionhemostasislimbocclusionpatientsthoracicthrombolysistpaulceruppervcssvenousvillalta
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
Developing Efficient And Effective Regulatory Pathways For Patient Centered Device Innovation
centeredclinicaldeviceDialysisdiseasefuturehemodialysisinnovationkidneynephrologistoutcomespatientpatientsregulatorytherapiestreatmentsvascularVascular access
What Clinical And Procedural Variables Increase The Risk Of Peri-Operative Stroke With CEA In Symptomatic Patients
What Clinical And Procedural Variables Increase The Risk Of Peri-Operative Stroke With CEA In Symptomatic Patients
anesthesiacarotidCEAclinicalcontralateraldatadeathdisablingECSTlowermodifiednascetpatientsperioperativerandomizedrankinreductionriskstatisticallystenosisstrokesurgicaltendency
Challenges And Solutions In Complex Dialysis Access Cases
Challenges And Solutions In Complex Dialysis Access Cases
accessangiogramarteryaxillarybrachialcannulationcathetercentralchallengeschallengingconnecteddissectedextremityFistulaflowfunctioninggoregrafthybridischemiaMorbid Obese/Sub-optimal anatomy / need immediate accessoutflowpatientRt Upper Arm loop AVGsegmentstealStent graftsuboptimaltransplanttunneleduppervascularveinvenous
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
Below-The-Elbow Angioplasty For CLTI Of The Hand: Indications, Techniques Results
accessangiogramangioplastyantegradearteryballoonbrachialchronicclinicaldigitdistalendovascularextremityfavorablyfingerflowhandhealinghemodialysisintractableischemiamalformationmraoccludedpalmarpatencypatientpatientsproximalradialratesreentryrefractoryretrogradesegmenttherapytreattypicallyulcerulcerationulnarvenous
Subgroup Analyses Of The ATTRACT Trial
Subgroup Analyses Of The ATTRACT Trial
anticoagulationclinicalcompareddeepdifferenceDVTedemaendpointfavoredfavoringiliofemoralincreasedintracranialmeaningfulmoderateoutcomepatientspcdtpercutaneousprimarypublishedqualityrandomizationreductionriskscoresevereseveritystratifiedsyndromethrombolysisvenousversusvillalta
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
Minimally Invasive CEA Through An Incision < 3 cm In Length: Technique, Results, Precautions And Contraindications
anterioraortobifemoralarteryatheroscleroticbifurcationcarotidcarotid arteryclassiccommondebrisemphasizeendarterectomyexternalexternal carotidfemoropoplitealhoarsenessincisioninternalinternal carotidloopmaneuvermiceminimaloperationpatientpatientsposteriorproximalpullingremovesafelyshuntsutureVeithvesselvisualizationwound
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
Importance Of Maintaining Or Restoring Deep Femoral Artery Flow In Open And Endo Revascularizations For CLTI
amputationangioplastyarteryballoonclaudicationcombinedconfigurationsdeependovascularextremityfemoralfemoral arterygroinhealhybridiliacinflowinfrainguinalischemicisolatedlimbocclusionOcclusion of DFApainpatencypatientpercutaneousperfusionpoplitealpreventprofundaproximalrestrevascularizesalvageseromastenosisstentingstumpsystemictransluminaltreatableVeithwound
Current Optimal Treatment For Vertebral Artery Disease: Indications And When Is Open Surgery The Best Option
Current Optimal Treatment For Vertebral Artery Disease: Indications And When Is Open Surgery The Best Option
arteryatheroscleroticbasilarclinicaldifficultECVAendovascularextracranialhemisphericincisionoutcomespatencyPathophysiologyrevascularizationtransversetypicallyvascularVeithvertebralvertebral artery
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
How Vascular Surgeons/Specialists Can Help Tobacco Addicted Patients: It Is Not Simple
cessationcounselingevaluatesintermedmedicarepatientpatientspharmacotherapyreducesrestenosissessionssmokingtobaccovascularwebsitewithdrawal
Transcript

- Thank you very much. Let's see, no disclosures related to this issue. I think, we are, now, talking about a lot of physical measurements, and trying to figure out what's best for the patient but, in fact, the evaluation of the quality of care has changed, and we are now more related

to value-based healthcare. And that relates to the fact that you measure the outcome of your treatment, and you divide it by the costs. This is me in the old days that I thought, what's outcome? Well, I have a perfect technical result.

I have no complications and a 99% success rate. Unfortunately, that idea doesn't stand anymore. We have to do other things to prove that we're doing well. We need patient-reported outcomes, we need clinical-reported outcomes.

That value comes to outcome, and that you divide to the cost of the treatment. These are the arrows are the patient-reported outcomes. First, of course, you have the quality of care. That's the patient mentions how he evaluates the quality of the care that he had got.

The other thing is the quality of life. Those are the patient-reported outcomes. On the other side are the clinical-reported outcomes. That's the clinical opinion, which is the VCSS, the CF, and the other classification that we have, are clinical measurements, of course,

which are duplex outcomes, MRVs, CTVs, etc. So, as said Patient Reported Experience Measurements PREMs as called, is something which you collect alongside with the PROMs, Patient Reported Outcome Measures and that tells you something about how the patient evaluates the care that he got.

Then of course, quality of life, there's a huge amount of things out there. We analyzed the overview of the most commonly used. We came in fact to the conclusion that VEINES-QOL/Sym is the only quality of life, disease-specific quality of life score,

which, let's say quantifies the disease from varicose veins up to ulcer disease. All the specific scores and the others which are out there unfortunately only do it, going to quantify the quality of life in a segment of the venous disease, which you can see here.

So we have C(EAP) for clinical, Villalta, VCSS, AVVQ, CIVIQ and VEINES-QOL/Sym. And the VEINES-QOL/Sym is something which is around there in lot of languages and tells you something about the disease of the patient. Of course you need to take generic quality of life,

a lot of people use the SF-36 but unfortunately, that's not the value that you can use to quantify the care you need. The EQ-5D-5L to economically evaluate and calculate for qualities. And that said if we do the VEINES-QOL/Sym.

Well, clinical outcomes, C(EAP), VCSS, Villalta scale, venous claudication, which are all there, venous claudication is not in the other three. So we need, at least, a quantification of venous claudication in a new one. And we know that aspects of venous claudication,

pain during exercise, pain subsides at rest, leg-elevation decreases the pain, and it correlated with a pain-free walking distance. And as Gerry O'Sullivan just mentioned, that there is no arterial brachial pressure index, or whatever physically to measure this.

Of course we have clinical measurements like the duplex and the MRVs, etc., and so in fact what we are used to and we are aware of is that you have quality of care, quality of life, clinical opinion, and clinical measures. But we need something else.

There is also a case-mix variable, which is not in these systems, and it influences the outcome significantly. If you look at these two patients, which are not shown yet, but they have the same VEINES-QOL/Sym, they have the same CF, they have the same VCSS, and same Villalta,

but unfortunately they can be very, very different. So this relates to the fact that you also have to look at age, gender, and the co-morbidity. And that altogether influences the measures that you need to quantify the outcome of your treatment. So, as said, we have patient-reported experience measures,

you have quality of life, clinical opinion, clinical measures, and the case-mix variables. That should be the venous outcome set. And we are working now closely with ICHOM, which is the International Consortium for Heath Outcomes Measurement

with Michael Porter and try to come up with a data set for all venous disease, which we can use in the future to measure the outcome of the patients that we treat. Thank you very much.

- Have nothing to disclose. This is a question we see everyday, we start off with the toe on the left we hope to end up with this, not this and this. And the question is, can we have some

or do we have something in our toolbox that can tell us this will end up here, not here and not here. So, when you look in the literature and most armor materials of vascular oxygen,

we have physical exam the most basic as the ankle break you index which is historically and currently can be inaccurate based on the calcium changes in the diabetic digital pressures are supposed to be

less affected by the cost of five changes in the diabetic, we also duplex which some people use as well as the velocities or the waveform patterns to help to determine blood flow to the foot contrast based imaging although use essentially on all patients with limb savage

really has not provided accurate measurements of whether or not the patient will heal. Over 20 years ago, there was some data to look at two pressures to determine whether or not you heel the toe or in the foot.

At this point, it was felt to be somewhere in the 50 to 60 millimeters of mercury. You saw patients healed statistically better. However, you still see people heal on this side who are under the 50% 50 millimeters of mercury range.

Perspective data has been seen in the literature. This is a paper that it looked at whether or not monitor healing monitoring amputations would heal the toe pressure, the odds ratio was calculated and as you can see

every millimeter of increase in the toe pressure the risk of monitor for an amputation progressing to hire amputation was decreased, and the toe brachial pressure index was also very important in the term of whether or not the patient would heal. This is a meta analysis of the literature

looking at all the different studies that have been used to determine whether or not two blood pressure and to break your index could show predictive value of healing. Unfortunately,

there are a lot of variations in the way these studies are performed. However, it is felt there are some predictive values. One of the things the reason we looked at our data is some people use Doppler waveform. Some of our colleagues,

instead of looking at the actual pressure reading at the level to toe will look at velocities and waveforms and try to use that as a predictive value. In this particular study,

it has been shown in patients on dialysis, looking at their waveform and without wombs, whether or not they'll go on eventually have a major amputation. And in this setting, it may have some impact

but these are patients with wounds but these are patients that you are following who are on dialysis, and waveforms can predict future amputation. Trans cutaneous oximetry and some institutions are readily available.

however, sorry, however, most institutions that I've worked at it's only available in wound healing center and is not readily available in the vascular lab

although this is based on oxygen tension, the numbers are pretty similar to what we expect to find with healing potential with a digital blood pressures. Our experience we looked at this several years ago we presented a vest and also is published in the annuals of vasculature surgery,

we tried to look at whether or not the velocities within the tibia Walgreens the waveforms within the the tibia Walgreens, and or was there a number that was the best number to predict whether or not the patient would heal.

Similar to what is taught in most educational institutions, around 50 millimeters of mercury was statistically significant and that over 90 or close to 90% of patients healed at that level of perfusion. Unfortunately, under 47,

you still had 70 some percent of the people healed. We looked at this when I was in Tampa and fellowship, we had over 90% predictive value whether or not you could heal in the foot or mid foot based on toe pressures.

However, it really doesn't help us that much because there's still a significant portion of patients who will heal in the 30 to 50 millimeter range. Overall, what does all this mean? I'm unsure.

One of the most difficult things we see with patients that we're going to plan amputation and we can improve the revascularization strategies is in the patient who have two pressures in the zero to 20

since we do not going to heal and proceed with major amputation versus those who are in the 30 to 50 it's essentially a coin toss whether or not they will heal and then over 50 is still not a for sure thing.

Like to thank the opportunity to share information. Thank you.

- So PAD affects five million adults in the United States today, and we know the US population is aging. And 15 to 20% of folks 70 years and older have claudication, a minority of these progress to CLI, and the impact on lifestyle is often minimized, as demonstrated in decreased quality of life scores

in these patients. Now with active tobacco use, there is acceleration of disease towards claudication, and there are higher rates of amputation, MI, and death. But prior to open or endo intervention, the SVS Guidelines recommend supervised exercise,

medical therapy with statins, beta blockers, antiantiplatelets, and Cilostazol, and an aggressive multidisciplinary approach to smoking cessation, which should last no less than six months. But what if a patient can't stop smoking?

We've all had these patients. Should patients with lifestyle limiting claudication be denied open surgical or endo-revascularization? So let's look at the open literature. A meta-analysis performed in 2005 of 29 eligible studies. The results were that bypass graft failure

was three times that in smokers versus nonsmokers. There was a dose response relationship in smoking cessation prior to or after bypass, equalized patencies. A more recent study, published in JVS in September, queried the VSGNE, 1789 lower extremity bypasses, 971 were nonsmokers, 818 were smokers,

and what they found was that primary patency at two years was 48% in smokers, versus 61% in nonsmokers, and when they propensity matched these patients, there was even a greater difference. 10 year survival was also decreased. And in another article,

published in August of this year in JVS, again a VSGNE study, over 2,000 patients, almost 3,000 patients with lower extremity bypass for claudication. The results looked at MALE, amputation-free survival, limb loss, death, major limb events or death,

and they found that current smoking was a significant predictor of major adverse limb events, and major adverse limb events or death. But do active smokers have worse outcomes after endovascular interventions? So, let's look at the literature again.

And there is none. The only paper I could find was a Markov decision analysis, in which compared revascularization in active smokers to medical management, this was a retrospective study, and their results demonstrated better quality of life in smokers after revascularization versus medical therapy.

The quality of life was similar, after revascularization in nonsmokers and smokers, and there was no increase in amputation rates up to 36 months. Also, 26% of the folks that were revascularized, quit tobacco use after their quality of life was improved.

So we decided to do a small study at my hospital. The outcome of endovascular interventions in active smokers with lifestyle limiting claudication versus nonsmokers. This was retrospective. 138 total patients with endovascular intervention for claudication, 47 were current tobacco users,

91 were never or former smokers. The primary endpoints were reintervention, secondary endpoints, surgical bypass, limb loss, MI, stroke and death. And here you can see, as in most studies, the smokers were a younger population,

and anticoagulation, in our patient population, was more common. As far as comorbidities, they were more common, as in most studies, in the nonsmoking group. And in a mean followup of 3.6 years for both groups, there was no statistically significant difference

between the two groups for any of the outcome measures. So in conclusion, active smokers with lifestyle limiting claudication, we would advocate, of course, smoking cessation. Outcomes with respect to reintervention, surgical bypass and limb loss appear to be equivalent in these two groups.

We feel that these patients should not be denied endovascular intervention, and improved quality of life after intervention may result in an increase in smoking cessation in this patient population. Limitations are obvious, this was a very small study,

and retrospective, and we are actually extending this study to look at several hundred additional patients. So I thank you for your attention.

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- Good morning. It's a pleasure to be here today. I'd really like to thank Dr. Veith, once again, for this opportunity. It's always an honor to be here. I have no disclosures. Heel ulceration is certainly challenging,

particularly when the patients have peripheral vascular disease. These patients suffer from significant morbidity and mortality and its real economic burden to society. The peripheral vascular disease patients

have fivefold and increased risk of ulceration, and diabetics in particular have neuropathy and microvascular disease, which sets them up as well for failure. There are many difficulties, particularly poor patient compliance

with offloading, malnutrition, and limitations of the bony coverage of that location. Here you can see the heel anatomy. The heel, in and of itself, while standing or with ambulation,

has tightly packed adipose compartments that provide shock absorption during gait initiation. There is some limitation to the blood supply since the lateral aspect of the heel is supplied by the perforating branches

of the peroneal artery, and the heel pad is supplied by the posterior tibial artery branches. The heel is intolerant of ischemia, particularly posteriorly. They lack subcutaneous tissue.

It's an end-arterial plexus, and they succumb to pressure, friction, and shear forces. Dorsal aspect of the posterior heel, you can see here, lacks abundant fat compartments. It's poorly vascularized,

and the skin is tightly bound to underlying deep fascia. When we see these patients, we need to asses whether or not the depth extends to bone. Doing the probe to bone test

using X-ray, CT, or MRI can be very helpful. If we see an abcess, it needs to be drained. Debride necrotic tissue. Use of broad spectrum antibiotics until you have an appropriate culture

and can narrow the spectrum is the way to go. Assess the degree of vascular disease with noninvasive testing, and once you know that you need to intervene, you can move forward with angiography. Revascularization is really operator dependent.

You can choose an endovascular or open route. The bottom line is the goal is inline flow to the foot. We prefer direct revascularization to the respective angiosome if possible, rather than indirect. Calcanectomy can be utilized,

and you can actually go by angiosome boundaries to determine your incisions. The surgical incision can include excision of the ulcer, a posterior or posteromedial approach, a hockey stick, or even a plantar based incision. This is an example of a posterior heel ulcer

that I recently managed with ulcer excision, flap development, partial calcanectomy, and use of bi-layered wound matrix, as well as wound VAC. After three weeks, then this patient underwent skin grafting,

and is in the route to heal. The challenge also is offloading these patients, whether you use a total contact cast or a knee roller or some other modality, even a wheelchair. A lot of times it's hard to get them to be compliant.

Optimizing nutrition is also critical, and use of adjunctive hyperbaric oxygen therapy has been shown to be effective in some cases. Bone and tendon coverage can be performed with bi-layered wound matrix. Use of other skin grafting,

bi-layered living cell therapy, or other adjuncts such as allograft amniotic membrane have been utilized and are very effective. There's some other modalities listed here that I won't go into. This is a case of an 81 year old

with osteomyelitis, peripheral vascular disease, and diabetes mellitus. You can see that the patient has multi-level occlusive disease, and the patient's toe brachial index is less than .1. Fortunately, I was able to revascularize this patient,

although an indirect revascularization route. His TBI improved to .61. He underwent a partial calcanectomy, application of a wound VAC. We applied bi-layer wound matrix, and then he had a skin graft,

and even when part of the skin graft sloughed, he underwent bi-layer living cell therapy, which helped heal this wound. He did very well. This is a 69 year old with renal failure, high risk patient, diabetes, neuropathy,

peripheral vascular disease. He was optimized medically, yet still failed to heal. He then underwent revascularization. It got infected. He required operative treatment,

partial calcanectomy, and partial closure. Over a number of months, he did finally heal. Resection of the Achilles tendon had also been required. Here you can see he's healed finally. Overall, function and mobility can be maintained,

and these patients can ambulate without much difficulty. In conclusion, managing this, ischemic ulcers are challenging. I've mentioned that there's marginal blood supply, difficulties with offloading, malnutrition, neuropathy, and arterial insufficiency.

I would advocate that partial or total calcanectomy is an option, with or without Achilles tendon resection, in the presence of osteomyelitis, and one needs to consider revascularization early on and consider a distal target, preferentially in the angiosome distribution

of the posterior tibial or peroneal vessels. Healing and walking can be maintained with resection of the Achilles tendon and partial resection of the os calcis. Thank you so much. (audience applauding)

- Thank you chairman, ladies, and gentlemen. These are my disclosures. The objective was to asses the prognostic value of a high or immeasurable Ankle-Brachial Index at baseline for major amputation and Amputation Free Survival in patients with CLTI. And, we did this within two randomized control trials,

the PADI trial and the JUVENTAS trial, which I will spend a bit on later. We did a regression analysis of both trials, and had data pooled at a patient level, looking at risk factors such as Diabetes, Cardiovascular Comorbidities,

and Ankle-Brachial-Index. Patients were divided in either low, intermediate, or a high, or immeasurable, ABI. So, in short, the PADI trial was a Multicenter 2-arm randomized clinical trial with controls looking at Rutherford Category over three on

Infrapopliteal Lesions comparing Drug Eluting Stents verses PTA and without bail out stenting, endpoints, patency, major amputation, and mortality. This study was published in 2017. The JUVENTAS Trial, was a stem cells trial with double-blinded placebo controlled giving a

infusion of bone marrow stem cells versus placebo. And again, the endpoints were major amputation and mortality, published in 2015. Overall from these two trials, we were able to collect 260 patients, and this is the baseline table.

You can see that the majority of patients fitted in the Low ABI group, 146 patients. And, 33 patients fitted in the High ABI group. Overall, the prevalence of Diabetes, History of Stroke Coronary Disease, and Impaired Renal Function, was significantly higher in the High ABI group.

Follow-up of these patients with median of 229 weeks, and in this period we observed 59 amputations, and 103 deaths. The majority of this major amputations was performed, actually, in the first year after inclusion within these trials,

which you can see here in this Kaplan Meier Curve, showing that the amputation rate was about double in the High ABI group, as compared to the Low or Intermediate group. Looking at ABI for its Amputation Free Survival, again showed significantly higher rate of amputations

in the High ABI group, as compared to Low or Intermediate. And, at five years, you can see that almost all patients in the High ABI group either had amputation or had died. This was about 50% in the Low or Intermediate group. Looking at the Multivariate Regression Analysis, we observe the Rutherford Category and ABI

in the High or Immeasurable group, related to major amputation, and is same for amputation or death, now adding also age. So, the interrelation between ABI and major events, is J shaped, and actually, there's a higher risk for patients with a high or immeasurable ABI for major events,

as compared to patients with a low ABI. So why is this so? Well, it's not fully elucidated, but it's believed to be related to Medial Arterial Calcifications, being an independent age associated pathway different from Atherosclerosis.

And, the stiffness due to this calcification, may prevent compensatory positive remodeling related to Atherosclerosis when both diseases coincide. And, actually it's coexistence of Medial Calcification Atherosclerosis is not that uncommon, even up to 80%. So, what is the clinical relevance of all this?

Well, we did look at the PREVENT-III prediction model for Amputation Free Survival. You can see on the slide, the included factors in the original PREVENT-III model. We added the I, or Immeasurable ABI to this model, and has lead to an increase in C-statistics from 46% to 72%

Net Reclassification Improvement of 0.38. So, ladies and gentlemen, in conclusion, a high or immeasurable ABI in patients with CLTI and Infrapopliteal Arterial Obstructive Disease is an independent risk factor of major amputation and of poor Amputation Free Survival.

Incorporating this factor in a PREVENT-III prediction model improves its performance. Thank you very much, also to the research groups.

- Thank you very much, so my disclosures, I'm one of the co-PIs for national registry for ANARI. And clearly venous clot is different, requires different solutions for the arterial system. So this is a device that was built ground up to work in the venous system. And here's a case presentation of a 53 year old male,

with a history of spondylolisthesis had a lumbar inner body fusion, he had an anterior approach and corpectomy with application of an inner body cage. And you can see these devices here. And notably he had application of local bone graft and bone powder

and this is part of what happened to this patient. About seven days later he came in with significant left leg swelling and venous duplex showed clot right here, and this extended all the way down to the tibial vessels. And if you look at the CT

you can see extravasation of that bone powder and material obstructing the left iliac vein. And had severe leg swelling so the orthopedic people didn't want us to use TPA in this patient so we considered a mechanical solution. And so at this day and age I think goals of intervention

should be to maximize clot removal of course and minimize bleeding risk and reduce the treatment or infusion time and go to single session therapy whenever possible. Our ICUs are full all the time and so putting a lytic patient in there

reduces our ability to get other patients in. (mouse clicks So this is the ClotTriever thrombectomy device. It has a sheath that is a 13 French sheath and they're developing a 16 French, that opens up with a funnel

after it's inserted into the poplitiel. So the funnel is in the lower femoral vein and this helps funnel clot in when it's pulled down. The catheter has this coring element that abuts the vein wall and carves the thrombus off in a collecting bag

that extends up above to allow the thrombus to go into the bag as you pull it down. So you access the popliteal vein, cross the thrombosed segments with standard techniques and you need to then put an exchange length wire up into the SVC

or even out into the subclavian vein for stability. And then the catheter's inserted above the clot and is gradually pulled down, sort of milking that stuff off of the wall and into the bag that is then taken down to the funnel and out of the leg.

So this is the patient we had, we had thrombus in the femoral and up into the IVC. Extensive, you can see the hardware here. And it was very obstructed right at that segment where it was, had the bone material pushing on the vein it was quite difficult to get through there

but finally we did and we ballooned that to open a channel up large enough to accommodate ClotTriever catheter. We then did multiple passes and we extracted a large amount of thrombus. Some looking like typically acute stuff

and then some more dense material that may have been a few days worth of build up on the wall there. We then stinted with an 18 by 90 across the obstructed segment and this was our completion run.

It's not perfect but it looks like a pretty good channel going through. This is the hardware not obstruction at that level. Hospital course, the patient had significant improvement in their swelling by post-op day one. Was discharged on compression and anti-coagulation.

He returned about two months ago for his three month follow-up and really had very minimal symptoms in the left leg. Venous duplex showed that the left common femoral was partially compressible but did have phasic flow and the stent appeared to be open through it's course.

So of course this is an anecdote, this is early in the experience with this catheter. There have been numerous improvements made to ease the use of it and do it in fewer steps. And so we're starting a ClotTriever outcomes registry

to enroll up to 500 patients to begin to define outcomes with this device. It does offer the promise of single session therapy without lytic administration and we'll see how it performs and which patients it works best in through the registry.

Thank you very much.

- Thank you chairman, ladies and gentlemen. I have no conflict of interest for this talk. So, basically for vTOS we have the well known treatment options. Either the conservative approach with DOAC or anticoagulation for three months or longer supported by elastic stockings.

And alternatively there's the invasive approach with catheter thrombolysis and decompression surgery and as we've just heard in the talk but Ben Jackson, also in surgeons preference, additional PTA and continuation or not of anticoagulation.

And basically the chosen therapy is very much based on the specific specialist where the patient is referred to. Both treatment approaches have their specific complications. Rethrombosis pulmonary embolism,

but especially the post-thrombotic syndrome which is reported in conservative treatment in 26 up to 66%, but also in the invasive treatment approach up to 25%. And of course there are already well known complications related to surgery.

The problem is, with the current evidence, that it's only small retrospective studies. There is no comparative studies and especially no randomized trials. So basically there's a lack of high quality evidence leading to varying guideline recommendations.

And I'm not going through them in detail 'cause it's a rather busy slide. But if you take a quick look then you can see some disparencies between the different guidelines and at some aspects there is no recommendation at all,

or the guidelines refer to selected patients, but they define how they should be selected. So again, the current evidence is insufficient to determine the most clinically and cost effective treatment approach, and we believe that a randomized trial is warranted.

And this is the UTOPIA trial. And I'm going to take you a bit through the design. So the research question underline this trial is, does surgical treatment, consisting of catheter directed thrombolysis and first rib section, significantly reduce post-thrombotic syndrome

occurrence, as compared to conservative therapy with DOAC anticoagulation, in adults with primary upper extremity deep vein thrombosis? The design is multicenter randomized and the population is all adults with first case of primary Upper Extremity

Deep Venous Thrombosis. And our primary outcome is occurrence of post-thrombotic syndrome, and this the find according the modified Villalta score. And there are several secondary outcomes, which of course we will take into account,

such as procedural complications, but also quality of life. This is the trial design. Inclusion informed consent and randomization are performed at first presentation either with the emergency department or outpatient clinic.

When we look at patients 18 years or older and the symptoms should be there for less than 14 days. Exclusion criteria are relevant when there's a secondary upper extremity deep vein thrombosis or any contra-indication for DOACs or catheter directed thrombolysis.

We do perform imaging at baseline with a CT venography. We require this to compare baseline characteristics of both groups to mainly determine what the underlying cause of the thrombosis being either vTOS or idiopathic.

And then a patient follows the course of the trial either the invasive treatment with decompression surgery and thrombolysis and whether or not PTA is required or not, or conservative treatment and we have to prefer DOAC Rivaroxaban or apixaban to be used.

Further down the patient is checked for one month and the Villalta score is adapted for use in the upper extremity and we also apply quality of life scores and scores for cost effectiveness analysis. And this is the complete flowchart of the whole trial.

Again, very busy slide, but just to show you that the patient is followed up at several time points, one, three, six, and 12 months and the 12 months control is actually the endpoint of the trial

And then again, a control CT venography is performed. Sample size and power calculation. We believe that there's an effect size of 20% reduction in post-thrombotic syndrome in favor of the invasive treatment and there's a two-side p-value of 0.05

and at 80% power, we consider that there will be some loss to follow up, and therefore we need just over 150 patients to perform this trial. So, in short, this slide more or less summarize it. It shows the several treatment options

that are available for these patients with Upper Extremity Venous Thrombosis. And in the trial we want to see, make this comparison to see if anticoagulation alone is as best as invasive therapy. I thank for your attention.

- Thank you. I have two talks because Dr. Gaverde, I understand, is not well, so we- - [Man] Thank you very much. - We just merged the two talks. All right, it's a little joke. For today's talk we used fusion technology

to merge two talks on fusion technology. Hopefully the rest of the talk will be a little better than that. (laughs) I think we all know from doing endovascular aortic interventions

that you can be fooled by the 2D image and here's a real life view of how that can be an issue. I don't think I need to convince anyone in this room that 3D fusion imaging is essential for complex aortic work. Studies have clearly shown it decreases radiation,

it decreases fluoro time, and decreases contrast use, and I'll just point out that these data are derived from the standard mechanical based systems. And I'll be talking about a cloud-based system that's an alternative that has some advantages. So these traditional mechanical based 3D fusion images,

as I mentioned, do have some limitations. First of all, most of them require manual registration which can be cumbersome and time consuming. Think one big issue is the hardware based tracking system that they use. So they track the table rather than the patient

and certainly, as the table moves, and you move against the table, the patient is going to move relative to the table, and those images become unreliable. And then finally, the holy grail of all 3D fusion imaging is the distortion of pre-operative anatomy

by the wires and hardware that are introduced during the course of your procedure. And one thing I'd like to discuss is the possibility that deep machine learning might lead to a solution to these issues. How does 3D fusion, image-based 3D fusion work?

Well, you start, of course with your pre-operative CT dataset and then you create digitally reconstructed radiographs, which are derived from the pre-op CTA and these are images that resemble the fluoro image. And then tracking is done based on the identification

of two or more vertebral bodies and an automated algorithm matches the most appropriate DRR to the live fluoro image. Sounds like a lot of gobbledygook but let me explain how that works. So here is the AI machine learning,

matching what it recognizes as the vertebral bodies from the pre-operative CT scan to the fluoro image. And again, you get the CT plus the fluoro and then you can see the overlay with the green. And here's another version of that or view of that.

You can see the AI machine learning, identifying the vertebral bodies and then on your right you can see the fusion image. So just, once again, the AI recognizes the bony anatomy and it's going to register the CT with the fluoro image. It tracks the patient, not the table.

And the other thing that's really important is that it recognizes the postural change that the patient undergoes between the posture during the CT scan, versus the posture on the OR table usually, or often, under general anesthesia. And here is an image of the final overlay.

And you can see the visceral and renal arteries with orange circles to identify them. You can remove those, you can remove any of those if you like. This is the workflow. First thing you do is to upload the CT scan to the cloud.

Then, when you're ready to perform the procedure, that is downloaded onto the medical grade PC that's in your OR next to your fluoro screen, and as soon as you just step on the fluoro pedal, the CYDAR overlay appears next to your, or on top of your fluoro image,

next to your regular live fluoro image. And every time you move the table, the computer learning recognizes that the images change, and in a couple of seconds, it replaces with a new overlay based on the obliquity or table position that you have. There are some additional advantages

to cloud-based technology over mechanical technology. First of all, of course, or hardware type technology. Excuse me. You can upgrade it in real time as opposed to needing intermittent hardware upgrades. Works with any fluoro equipment, including a C-arm,

so you don't have to match your 3D imaging to the brand of your fluoro imaging. And there's enhanced accuracy compared to mechanical registration systems as imaging. So what are the clinical applications that this can be utilized for?

Fluoroscopy guided endovascular procedures in the lower thorax, abdomen, and pelvis, so that includes EVAR and FEVAR, mid distal TEVAR. At present, we do need two vertebral bodies and that does limit the use in TEVAR. And then angioplasty stenting and embolization

of common iliac, proximal external and proximal internal iliac artery. Anything where you can acquire a vertebral body image. So here, just a couple of examples of some additional non EVAR/FEVAR/TEVAR applications. This is, these are some cases

of internal iliac embolization, aortoiliac occlusion crossing, standard EVAR, complex EVAR. And I think then, that the final thing that I'd like to talk about is the use with C-arm, which is think is really, extremely important.

Has the potential to make a very big difference. All of us in our larger OR suites, know that we are short on hybrid availability, and yet it's difficult to get our institutions to build us another hybrid room. But if you could use a high quality 3D fusion imaging

with a high quality C-arm, you really expand your endovascular capability within the operating room in a much less expensive way. And then if you look at another set of circumstances where people don't have a hybrid room at all, but do want to be able to offer standard EVAR

to their patients, and perhaps maybe even basic FEVAR, if there is such a thing, and we could use good quality imaging to do that in the absence of an actual hybrid room. That would be extremely valuable to be able to extend good quality care

to patients in under-served areas. So I just was mentioning that we can use this and Tara Mastracci was talking yesterday about how happy she is with her new room where she has the use of CYDAR and an excellent C-arm and she feels that she is able to essentially run two rooms,

two hybrid rooms at once, using the full hybrid room and the C-arm hybrid room. Here's just one case of Dr. Goverde's. A vascular case that he did on a mobile C-arm with aortoiliac occlusive disease and he places kissing stents

using a CYDAR EV and a C-arm. And he used five mils of iodinated contrast. So let's talk about a little bit of data. This is out of Blain Demorell and Tara Mastrachi's group. And this is use of fusion technology in EVAR. And what they found was that the use of fusion imaging

reduced air kerma and DSA runs in standard EVAR. We also looked at our experience recently in EVAR and FEVAR and we compared our results. Pre-availability of image based fusion CT and post image based fusion CT. And just to clarify,

we did have the mechanical product that Phillip's offers, but we abandoned it after using it a half dozen times. So it's really no image fusion versus image fusion to be completely fair. We excluded patients that were urgent/emergent, parallel endographs, and IBEs.

And we looked at radiation exposure, contrast use, fluoro time, and procedure time. The demographics in the two groups were identical. We saw a statistically significant decrease in radiation dose using image based fusion CT. Statistically a significant reduction in fluoro time.

A reduction in contrast volume that looks significant, but was not. I'm guessing because of numbers. And a significantly different reduction in procedure time. So, in conclusion, image based 3D fusion CT decreases radiation exposure, fluoro time,

and procedure time. It does enable 3D overlays in all X-Ray sets, including mobile C-arm, expanding our capabilities for endovascular work. And image based 3D fusion CT has the potential to reduce costs

and improve clinical outcomes. Thank you.

- Thank you very much. I'd like to thank the organizers for inviting me. When I started working on this talk, I felt like I was coming to defend that climate change isn't occurring, despite increasing data that suggests it's occurring. - [Woman] (laughing)

- I wasn't quite sure where to take it and I actually wanted to just change the title a little bit, and say DOAC's, I feel, are not indicated for all cancer patients with VTE. I'm going to argue that Low Molecular Weight Heparins are still indicated for substantial

subset of patients with cancer and VTE. These are my disclosures, none of which are relevant to this session. Let's talk about these studies, because these studies give us some insights as we look at them.

This was the Hokusai VTE cancer trial, and showed that Dalteparin and Dioxeapan were the same essentially. But this was a combined outcome of thromboembolism and major bleeding. As Dr. Murley showed you, the patients did better

with the Edoxaban arm as far as preventing recurrent VTE, but there was an increase risk of bleeding in patients who received Edoxaban compared to Dalteparin. The important question then becomes are there subsets of patients that we can identify who we may not want to give Edoxaban to.

They had to go to the supplemental material in the paper to figure this out, and the group subsequently published it... Oops, sorry. Group has subsequently published this, which shows you that if those patients

who had Gastrointestinal cancers had a markedly increased risk of a major bleed, compared to those who received Dalteparin. In contrast, non-gastrointestinal cancers really had no difference. Suggesting that those patients with gastrointestinal cancers

should be looked at as people who probably would benefit more from being on a Low Molecular Weight Heparin. Now, is this specific to Edoxoban? No, the SELECT-D trial also was run. Rivaroxoban for Cancer-Associated VTE,

and as you have already seen, the primary outcome for recurrent VTE was better for Rivaroxoban compared to Dalteparin. However, again, we see this safety signal of increased bleeding in the group that received the Rivaroxoban compared to Dalteparin.

Now if you look as this group as far as which patients had cancers or where did they bleed, the sites of major bleeding, Gastrointestinal was twofold higher in the Riveroxaban arm compared to Dalteparin. Again, a GI cancer related issue.

If you look at clinically relevant non-major bleeding, you also see a threefold increase risk of bleeding in the Riveroxaban arm with GI type bleeding, genital urinary you don't see, genital urinary also had a markedly increased risk of bleeding with Riveroxaban.

However, genital urinary cancers as a whole, were not necessarily associated with the increased risk of bleeding. In contrast, esophagogastric cancers were associated with an increased risk of bleeding. There's also a lot of subsets of patients

with cancer and VTE who are treated. This was an interesting study that just came out looking at Rivaroxoban for central venous catheter associated venous thromboembolism. The enrolled patients greater than 18 years of age, active malignancy and symptomatic proximal,

upper extremity DVT, treated them with Rivaroxoban, this was a prospect of single arm trial, 15mg twice a day for three weeks, and 20mg daily for nine weeks. Primary outcome was achieved,

all of these folks had line preservation at 12 weeks. Interestingly, there was one recurrent event, it was a fatal PE at six weeks, but again the bleeding signal is what stood out. This is the risk of bleeding, you can see by 40 days, slightly more than one month.

About 13% of people had sustained a major bleed or clinically relevant non-major bleed. Again this bleeding issue pops up. Importantly, it wasn't bleeding around the catheter, it was bleeding from GI, GU, and GY insights. Okay?

Again, the bleeding issue becomes important. Gastrointestinal tumors become important. Now if bleeding is an issue, what about Thrombocytopenia? Should we be using this in patients who have Thrombocytopenia,

which is a common problem in the cancer patient population. Now patients with platelet counts less than 50 times 10 to the 9th per liter were excluded from participation in Hokusai VTE Cancer, and SELECT-D required adequate hematologic function.

Both of these trials did have protocols in place for what to do if the platelet count dropped. Never the less, what's come out from the SSC group from the International Society on Thrombosis and Hemostasis is that the data on the use of the DOAC's in cancer associated thrombosis patients with severe thrombocytopenia

that less than 50,000 is lacking. The DOAC's may therefore may not be appropriate for most patients with cancer associated thrombosis and platelet counts less than 50,000. Now the last group, and the last thing that you need to think about

which was also just briefly mentioned in one of Dr. Murley's slides was this drug-drug interaction with the DOAC's. This is important because certain drugs do interact with the DOAC's and these are some of the chemotherapy agents.

In fact, certain classes of chemotherapeutic agents interact with CYP3A4, P-glycoprotein, or both. Drugs that interact with these mechanisms can interfere with the effect of the direct oral anticoagulants and potentially cause it to be cleared faster or accumulate.

These included the antimitotic microtubule inhibitors. The taxanes, it included the TKI's which are used in CML and it included a series of immune-modulating agents, including steroids. So in conclusion, who to favor for a Low Molecular Weight Heparin, gastrointestinal malignancy,

severe thrombocytopenia, selected chemotherapies, and then some considerations for following scenarios. Thank you very much.

- Thank you very much indeed and thank you again, Frank. The European Society guidelines, just to get things put surely, if you've had a major stroke and a large infarction with altered consciousness and drowsiness we recommend that surgery should be deferred and should not be urgently entered.

Similarly patients who present with stroke and evolution or crescendo TIAs are a very special subgroup, relatively small, and these should be treated with carotid surgery within 24 hours. So that gets rid of the two questions that somebody's going to ask afterwards.

What we're dealing with is how should you treat the non-disabling stroke or TIA. Now this is the natural history of early recurrent stroke after a TIA in patients with 50 to 99% stenoses and you can see that the early risks are really very high indeed, way higher than was reported

in the randomized trials. And that was because these patients never were included in the randomized trials. They'd suffered their stroke long before they had a chance to be treated. And we know from a meta-analysis of the pooled ECST,

NASCET, and VA data that the quicker you offer surgery the more strokes that you prevent in the long term, particularly in patients with severe stenoses. And so for that reason the ESVS recommended that wherever possible patients who have presented with a TIA or a non-disabling stroke,

they should undergo a carotid intervention within 14 days of onset, preferably as soon as possible. Now there's a lot of debate about the impact of if you operate early does that increase the procedural risk? Well there have been three big registries,

the Swedish with two and a half thousand patients, the UK with 23,000, and the German with 56,000. The study that captures eternal attention is the Swedish study with the 11% death and stroke rate within 48 hours. But while there was a small but modest increase

in the 48 hours complication rates with the UK and German databases, there were nowhere near as gross as the Swedish ones. The reality is it's quite difficult to get somebody with a non-disabling stroke into the operating theater within 48 hours.

The problem is in terms of whether you should do stenting or surgery is that the overviews of the randomized trials have shown that stenting is still associated with a threefold excess risk if you perform surgery within either seven days or eight to 14 days.

So the European Society recommended that if you are undergoing revascularization within the first 14 days it's preferable to offer carotid endarterectomy rather than carotid stenting, but as I will mention later, that might change

the next time the guidelines are published. And we also concluded that if you have, you do have comorbidities in recently symptomatic patients who make them high risk for surgery, and these are going to be careful about the definition of that. We recommend that an MDT needs to review that decision,

but if that is the case then stenting should be considered as an alternative. Now, I thought it useful also to point out that we recommend that early endarterectomy within 14 days should be considered after intravenous thrombolysis.

If the patient makes a rapid recovery the area of infarction is less than one-third of the MCA territory, a previously occluded middle cerebral mainstem is recanalized, and there is a significant stenosis and no evidence of any parenchymal hemorrhage

or significant brain edema. Now there is a careful caveat to this, and that is that you should withhold IV heparin and antiplatelet therapy for 24 hours after lysis completion, but then before you take the patient to theater

the patient should be restarted on antiplatelet therapy. So that will introduce a small delay, but if you don't the risks of hemorrhage are much higher. There are unanswered questions of course that the guidelines that Jean Baptiste and I chaired cannot answer.

First of all, do newer CAS technologies mean that it can be performed as safely as endarterectomy in the first seven to 14 days. And I'm notably referring to TCAR. Now I know there's a very large registry being published on the results of TCAR,

and I've reviewed it for the Journal of Vascular Surgery. And I heard Glenn Darling present it to the European meeting. But they cannot tell you what the death and stroke rates were when operations were performed within seven or 14 days of surgery,

and this is crucial. There's no point in saying that TCAR's fantastically good in asymptomatic patients or patients whose symptoms were three months ago. What we need to know is whether this offers a benefit in patients within the first seven to 14 days.

And the other big issue is whether following mechanical thrombectomy should a tandem internal carotid artery stenosis be treated by synchronous stenting or by deferred stenting to surgery. Now I was reviewing a lot of the literature

for a separate presentation yesterday, and the jury is out on that because there is not much published. But there do seem to be increased hemorrhagic complication rates where you have patients who undergo a synchronous mechanical thrombectomy

and synchronous carotid stenting. Thank you very much.

- Thank you Dr. Veith for this opportunity again, and, like to show you that I have no disclosures relevant to this talk. The objective is to report the management and outcome of five cases of brachial artery injury in children with supracondylar humerus fractures at our institution over the last few years,

and then emphasize the importance of close observation and low threshold for surgical exploration in these cases. The classification of supracondylar fractures is on the Gartland system, and typically the vascular injuries are associated with Type 3, although there are some reported cases with Type 2.

Supracondylar humerus fractures make up about 70% of elbow fractures in children. Displacement and deformity can injure the median nerve, as well as the brachial artery. And up to 20% of children will present with an abnormal vascular exam, on initial evaluation.

There is no doubt what you do for the ischemic hand, is the exploration of the brachial artery. However, for the perfused, pulseless hand, there is considerable controversy as to what one should do. If this is not recognized, and not appropriately treated, there can be significant complications,

which can affect the child for the rest of his life. Physical examination, including neurovascular examination is crucial. These are high-litigation cases, and just writing on your record that neurovascular status is intact, is totally inadequate.

With reference to this particular fracture, evaluation for median nerve intactness, and function of the anterior interosseous nerve in particular, is very important, as I'll show you in just a slide, where they can be associated with arterial injuries. Ladies and gentlemen, this is why

you have the pink pulseless hand, despite obstruction or interruption of the brachial artery, going to these rich collaterals around the elbow. The hand can still be pink, and pulseless. This is a demonstration of the coexisting injury when you have median nerve and brachial artery

damaged by the anteromedial location. This location of the proximal fracture fragment. And many have suggested routine vascular exploration for this sort of injury. The most common finding that we find when we explore the brachial artery

with supracondylar fractures of the humerus, is the artery is tethered between the fracture fragments. This is yet another example, this is the brachialis sign, where the proximal fragment can buttonhole through the brachialis muscle. Most open fractures will need brachial artery exploration

at the time of reduction of the fracture. So, now I would like to share with you these five cases that I mentioned, at Inova Fairfax Hospital. The average age was 5.4 years, and four of them were male, one was a female, and I described to you my personal experience

in taking care of these patients at the hospital, and then following them closely afterwards. Case one was a perfused hand, a pink perfused hand, without a pulse. And this gentleman, this patient presented the next day with compartment syndrome.

On exploration we found a tethered artery, we released it, patient has normal function at two years. Case two, had a positive pulse, positive Doppler signal, nothing was done, other than reducing the fracture, patient sent home, he represented with severe pain, and was found to have compartment syndrome on day three.

On exploration, the artery was tethered. It was released, no thrombectomy was necessary. Patient has been left with slight deficit in two fingers. Third case, perfused pulse, with no pulse was observed, and the last pulse the next day duplex showed that the brachial artery was obstructed.

It was transected, had a vein interposition, I used the basilic vein, and did thrombectomy, and normal function at four months. Fourth case, there was no pulse, no Doppler signal, immediate exploration, tethered artery, no thrombectomy, normal function restored.

Case five had a normal exam, but lost signal the next day, was found to have a massive hematoma. We evacuated the hematoma, normal function. Based on this, the treatment algorithm is when the patient has a positive pulse, has a palpable pulse,

we obviously would do nothing. When it's pulseless and ischemic, immediate surgical exploration. When it's perfused and there's no radial signal, diminished flow, on duplex ultrasound, we explore surgically,

and when there's a positive radial pulse, we observe for 24 to 48 hours before discharge. I have found pulse oximetry, in addition with duplex ultrasound, to be very helpful in this regard. And ladies and gentlemen, in conclusion,

immediate surgical exploration is mandated for the ischemic hand. We recommend close observation after reduction, despite return of palpable pulse or Doppler signal, due to risk of delayed ischemia or compartment syndrome, especially in young children.

Based on our experience, perfused pulseless hand is a consequence of arterial injury or spasm. And, if you use duplex ultrasound, as if we had done, we may have been able to avoid delayed care in three out of the five cases. We recommend immediate exploration, obviously for,

for absent pulse and ischemic hand. And we do recommend that early recognition of ischemia and compartment syndrome is paramount, and patient should be closely observed, even if they have a normal perfusion on reduction of the fracture site. Thank you so much.

- [Evan] So today I'm going to talk about Episode Based C because a hemodialysis access measure is currently under development as we speak. This is not technically a disclosure but I do represent the SVS and serve as a co-chair for the Peripheral Vascular Disease Management Clinical subcommittee for Acumen, who's

consultants to CMS, and that will become clear in a minute. In the past, all of us had our cost accountability through the Value-based Modifiers in the old system, but going forward with MACRA, physicians have to choose to participate in an Alternative Payment Model or in a Merit-based Incentive Payment System.

Now in Alternative Payment Models, this is where, as a physician or a group, you share the risk for the possibility of higher gains, and this is exemplified by such things as Accountable Care Organizations, it requires a rather hefty investment of resources, time in order to do this, so most of us will wind up in the MIPS, the Merit-based Incentive

Payment System, and if you do wind up there, your cost accountability is going to be a composite score in these four areas: Quality, Resource Use, which is cost and that's what we're talkin actice Improvement, and Advancing Care.

So by way of background, CMS contracted with Acumen to develop episode-based cost measures. They established Clinical Disease Management Subcommittees, who received input from a Technical Expert Panel, Person-Family committee, which is patients and their families, as well as public commentary with

the goal of selecting one to two episode groups. The measures were developed in waves, which correspond to a given year, and these measures should be high impact. In other words, they should encompass a large number of Medicare beneficiaries, a large number of providers, and have a significant cost impact.

Measures are then eligible for the MIPS cost performance category in the Quality Payment Program, and the Peripheral Vascular Disease group was tasked with choosing between Limb ischemia, Aneurysms, Carotids, Filters, and Hemodialysis Access. In the first wave, which occurred in 2017, you can see there

were seven Disease Management Subcommittees. The Vascular subcommittee chose to focus on Critical Limb Ischemia, the committee had 22 members representing 19 specialty areas, and for this year, the second wave in 2018, Hemodialysis Access Creation was chosen as the measure. So what's an episode group? An episode group is

defined by an acute inpatient condition, like an MI, a chronic condition like COPD, or a procedure, Hemodialysis Access Creation. Cost Measures are Medicare payments during this entire episode and informs clinicians of the cost they're responsible for and allows for

comparison between physicians. It's calculated using Medicare claims data only, so there's no additional reporting burden. These are the basic steps in Cost Measure Development. There are some others, but we'll go through them one by one. The first is to define the episode group,

and for surgical procedures it's more or less straightforward, because you wind up with the CPT codes for the procedures that are encompassed, and you can see these are the CPT codes here that were chosen for this measure. Next, because episodes include more than just the day of

surgery, you have to establish pre- and post-trigger episode windows. These are look back and look forward periods for which related services are included. The Hemodialysis Measure actually has some variability here in that the pre-trigger window can extend as far back as

three days for things like basic labs, all the way back to 60 days for things like a cardiac echo, and the post-trigger window can go forward one day for something like anemia, but up to 180 days for a re-do procedure. Then, because these groups or the procedures tend to be somewhat heterogeneous, you have to define subgroups.

In other words, make the groups more homogeneous while maintaining enough episodes to make the measures meaningful, and in this case we have two basic subgroups: fistulas and grafts. Then you go ahead and define exclusions. So HeRO grafts really can't be compared to either these two

basic groups, so they're excluded, although any excluded procedure is eligible for use in future waves. The next steps include attributing episodes to given clinicians, so the responsibilities assigned based on either Tax Identification Number of groups or ind

e episode are assigned, these are the costs included within the episode and these are based on the role of the attributed clinician, and then risk adjusted for factors that are outside the clinician's control, such as the patient's medical status. This is kind of a schematic of the Hemodialysis episode.

Here in the big, blue triangle this is the trigger service, so is either the creation of a graft or a fistula (HeROs are lated to this can then either be assigned to the episode or not assigned to the episode, and all services that are assigned can either

be attributed to the clinician performing the procedure, or to other clinicians. For example, a balloon maturation or a de-clot done by another physician is attributed as part of the cost to the service, but not the attributed clinician. Services that are not assigned to an episode are generally

only attributable to other clinicians and providers, and the pre-trigger window as we mentioned three to 60 days, post-trigger one to 180 days. Then a score is reported, and in general before the measures go live, there's a field testing period, and this is a sample field test, it's actually

for Hip Arthroplasty, and what you see here is a couple of things: first of all, this particular group has 161 episodes, usually the minimum is somewhere between ten and 30 episodes that are required. The Risk Adjusted Expected National costs here are estimated, about $19,000, and then the actual costs for this

group were estimated here, and you see this group had a cost of $21,000, so their relative performance is 12% more expensive than the national average. There are other details in these reports that get dri n see they

break out your costs by different aspects of care. Then the next thing is what's the timeline of all of this? Here in the orange brackets you see this is the MIPS, these are the four elements for which your composite score is based, and again we're talking about cost here. So in 2019, for providers participating in the MIPS,

you are eligible either for a four percent bonus, or a four percent penalty based on this performance score. And as you march this out to 2022, that increases to plus or minus nine percent. And the APMs you see here are in a separate category. In summary, these measures are part of the MIPS cost

performance category, they are based only on claims data, the Peripheral Vascular Disease Management subcommittee was charged with measure development, the Wave One measure for chronic Critical Limb Ischemia has been proposed for use in the Quality Payment Program in 2019. Ultimately, all these measures are to align

with quality measures, but of course this depends upon either the presence or development of quality measures that are meaningful and can correlate with some of these specific episodes. I can tell you the measure development is tedious, it's complex, you go very deep in the weeds,

and a big point for CMS and for those developing has been to avoid creating unwanted incentives which result in unintended consequences, and if you'd like more information, these articles in the JVS "Under the Macroscope" can give you more detail into this and other programs. Thank you.

- Thank you very much. I appreciate the opportunity to present and I'd like to thank the program committee and Doctor Veith. I have no disclosures. So Traumatic Limb Ischemia is uncommon. Demtriades looked at this with the national trauma database and found that it only occurred in about one point six

percent of patients. And the majority, or 51 percent, are penetrating injuries. These are often managed by the trauma surgeons at tertiary centers. But with the change in training paradigms, with general surgeons not doing as much vascular procedures

and open vascular surgery not being done as much by many of the trauma surgeons. Vascular surgeons are being called upon to do this, more and more often. The objective of our study is to describe a contemporary series of patients with acute limb ischemia

secondary to trauma that were managed by the vascular surgeon. In identified factors that were accossiated with limb salvage and functional outcomes. We did a retrospective review of our institution over a three year period and looked at several factors,

including the preoperative imaging the level of aclusion, limb salvage, and functional limb outcomes. We identified 68 patients in our study and the majority of these patients had moderate ISS scores and Rutherford Class two ischemia. 53 percent were from an outside hospital

and 62 percent had blunt injury, while 38 percent suffered penetrating injury. If you look at the mechanism again, the majority were motor vehicle accidents for the blunt and gunshot wounds and stab wounds for the penetrating injuries.

Median ages would be expected as fairly young with at 36 and 46 and the majority of these people are males. As is the cases with most trauma series. 58 percent were transferred from an upper, from another hospital in the upper extremity series and 51 percent in the lower extremity series.

With a median time of transfer about three hours. The median time to the operating room was about four and a half hours in this patient population. And most of these patients did receive some kind of preoperative imaging, either a CAT scan with 55 percent of the upper extremity

and 68 in the lower extremity. And the Rutherford classification of ischemia was, generally, two B and below. We looked at the location and the majority in the lower extremity were the Femoropopliteal region and in the upper extremity where the Axillary

and Brachial artery region. So, looking at the number of operations these patients underwent, and the upper extremity and lower extremity both of them underwent a median number of three operations and 84 percent of the patients upper extremity injuries went an open procedure

and 69 percent in the lower extremity. So, open procedures are the modality of choice for repair of these injuries. 58 percent of the lower extremities went on to have Fasciotomies, as well. In some of the details, the open repair

was a dominant treatment as stated. Shunts were only utilized in two of our patients, with Fasciotomies only occurring in 25 percent 58 percent of the lower extremity injuries. And we think about some of the details, we had eight patients who underwent Fasciotomies

during the first operation with dead muscle encountered in three of those patients. Three patients underwent a delayed Fasciotomy with dead muscle encountered in one of those patients. Limb salvagery overall is 94 percent in the upper extremity and 78 percent in the lower extremity.

And again, with the amputation patients, we had 12 patients that underwent an amputation, one primary amputation. The overall limb salvage was 94 percent for upper extremity and 78 percent for lower extremity. The predictors or amputation of functional limb,

in a functional limb where the number was a Rutherford Classification and the number of procedures these patients undergo. The length of stay was 11 days, 25 percent were discharged to a skilled nursing facility and follow up occurred in 59 percent of the patients, as the case

with many of the trauma type studies. When you think about functional deficits, the patients that had no functional deficits in the upper extremity were about 57 percent and the lower extremity 68 percent. But major deficits occurred in one third of the patients

with an upper extremity injury versus six percent. Whereas amputation occurs much more frequently in the lower extremity versus the upper extremity. So, Traumatic Acute Limb Ischemia is uncommon outside of trauma centers, vascular surgeons are extremely well equipped

to deal with this, majority of extremities can be salvaged, transfer times to a tertiary center may explain some of the correlation with limb salvage, and rehabilitation and follow up can be difficult in this patient population. Again, we only had 59 percent follow up, you know,

in the literature it's around 60 and 66 percent in this patient population. It can be managed with very high rates as limb salvage by vascular surgeons. So I think that we can do this and we do it quite well. Limb salvage doesn't equate to functional outcomes,

particularly in the upper extremity. And in the future, I think that we need to probably get better about the follow up and identify some patient centered functional status and quality of life questionnaries post salvage, to see truly what the outcome is and the functional status

is of these patients. Thank you very much. (applause)

- Dear Chairman, Ladies and Gentlemen, Thank you Doctor Veith. It's a privilege to be here. So, the story is going to be about Negative Pressure Wound Non-Excisional Treatment from Prosthetic Graft Infection, and to show you that the good results are durable. Nothing to disclose.

Case demonstration: sixty-two year old male with fem-fem crossover PTFE bypass graft, Key infection in the right groin. What we did: open the groin to make the debridement and we see the silergy treat, because the graft is infected with the microbiology specimen

and when identified, the Enterococcus faecalis, Staphylococcus epidermidis. We assess the anastomosis in the graft was good so we decided to put foam, black foam for irrigation, for local installation of antiseptics. This our intention-to treat protocol

at the University hospital, Zurich. Multi-staged Negative Pressure for the Wound Therapy, that's meets vascular graft infection, when we open the wound and we assess the graft, and the vessel anastomosis, if they are at risk or not. If they are not at risk, then we preserve the graft.

If they are at risk and the parts there at risk, we remove these parts and make a local reconstruction. And this is known as Szilagyi and Samson classification, are mainly validated from the peripheral surgery. And it is implemented in 2016 guidelines of American Heart Association.

But what about intracavitary abdominal and thoracic infection? Then other case, sixty-one year old male with intracavitary abdominal infection after EVAR, as you can see, the enhancement behind the aortic wall. What we are doing in that situation,

We're going directly to the procedure that's just making some punctures, CT guided. When we get the specimen microbiological, then start with treatment according to the microbiology findings, and then we downgrade the infection.

You can see the more air in the aneurism, but less infection periaortic, then we schedule the procedure, opening the aneurysm sac, making the complete removal of the thrombus, removing of the infected part of the aneurysm, as Doctor Maelyna said, we try to preserve the graft.

That exactly what we are doing with the white foam and then putting the black foam making the Biofilm breakdown with local installation of antiseptics. In some of these cases we hope it is going to work, and, as you see, after one month

we did not have a good response. The tissue was uneager, so we decided to make the removal of the graft, but, of course, after downgrading of this infection. So, we looked at our data, because from 2012 all the patients with

Prostetic Graft infection we include in the prospective observational cohort, known VASGRA, when we are working into disciplinary with infectious disease specialist, microbiologists, radiologist and surgical pathologist. The study included two group of patients,

One, retrospective, 93 patient from 1999 to 2012, when we started the VASGRA study. And 88 patient from April 2012 to Seventeen within this register. Definitions. Baseline, end of the surgical treatment and outcome end,

the end of microbiological therapy. In total, 181 patient extracavitary, 35, most of them in the groin. Intracavitary abdominal, 102. Intracavitary thoracic, 44. If we are looking in these two groups,

straight with Negative Pressure Wound Therapy and, no, without Negative Pressure Wound Therapy, there is no difference between the groups in the male gender, obesity, comorbidity index, use of endovascular graft in the type Samson classification,

according to classification. The only difference was the ratio of hospitalization. And the most important slide, when we show that we have the trend to faster cure with vascular graft infection in patients with Negative Pressure Wound Therapy

If we want to see exactly in the data we make uni variant, multi variant analysis, as in the initial was the intracavitary abdominal. Initial baseline. We compared all these to these data. Intracavitary abdominal with no Pressure Wound Therapy

and total graft excision. And what we found, that Endovascular indexoperation is not in favor for faster time of cure, but extracavitary Negative Pressure Wound Therapy shows excellent results in sense of preserving and not treating the graft infection.

Having these results faster to cure, we looked for the all cause mortality and the vascular graft infection mortality up to two years, and we did not have found any difference. What is the strength of this study, in total we have two years follow of 87 patients.

So, to conclude, dear Chairman, Ladies and Gentlemen, Explant after downgrading giving better results. Instillation for biofilm breakdown, low mortality, good quality of life and, of course, Endovascular vascular graft infection lower time to heal. Thank you very much for your attention.

(applause)

- Ladies and gentlemen, I thank Frank Veith and the organizing committee for the invitation. I have no disclosures for this presentation. Dialysis is the life line of patients with end-stage renal failure. Hemodialysis can be done by constructing an A-V fistula, utilizing a graft or through a central venous catheter.

Controversy as to the location of A-V fistula, size of adequate vein and priority of A-V fistula versus A-V graft exists among different societies. Our aims were to present our single center experience with A-V fistulas and grafts. Compare their patency rates,

compare different surgical sites, and come up with preferences to allow better and longer utilization. We collected all patients who underwent A-V fistula or A-V graft between the years 2008 through 2014. We included all patients who had preoperative

duplex scanning or those deemed to have good vessels on clinical examination. Arteries larger than two point five millimeter and veins larger than three millimeter were considered fit. Dialysis was performed three times per week. Follow up included check for a thrill,

distal pulse in the arter non-increased venous pressure or visible effective dialysis and no prolonged bleeding. Any change of one of the above would led to obtaining

fistulogram resulting in either endovascular or open repair of the fistula. We started with 503 patients, 32 of which were excluded due to primary failure within 24 hours. We considered this, of course, the surgeon's blame. So we left with 471 patients with a mean age of 58 years,

51 were older than 60, there was a male predominance of 63%, and over half were diabetics. The type of fistula was 41% brachio-cephalic fistula, 30% radio-cephalic fistula, 16% A-V Graft, and 13% brachio-basilic fistula.

Overall, we had 84% fistulas and 16% grafts. The time to first dialysis and maturation of fistula was approximately six weeks. First use of grafts was after two weeks. 11 patients with A-V fistula needed early intervention prior to or after the first dialysis session.

In sharp contrast, none of the A-V grafts needed early intervention. 68 patients were operated for their first ever fistula without duplex scanning due to clinically good vessels. Their patency was comparable to those who underwent a preoperative scanning.

Looking at complications, A-V grafts needed more reintervention than fistulas. All of them were late. Infection was more prominent in the graft group and pseudoaneurysms were more prominent in the A-V fistula group, some of them occluded

or invaded the skin and resulted in bleeding. Here's a central vein occlusion and you can see this lady is after a brachio-basilic A-V shunt. You can see the swollen arm, the collaterals. Here are multiple venous aneurysms. Here's an ulcer.

When we looked at primary patency of A-V fistulas versus graft, A-V fistulas fared better than grafts for as long as five years. When you looked at 50% patency in grafts, it was approximately 18 months, in Fistula, 13. Here's an assisted primary patency by endovascular technique

and when we looked at the secondary patency for the first 24, two years, months, there was no difference between A-V fistulas and A-V grafts, but there's a large difference afterwards. Comparing radio-cephalic fistula to brachio-cephalic fistula there was really no big difference in maturation.

The time was approximately six weeks. As for primary patency there is a trend towards better patency with brachio-cephalic fistula after six months, one year, and two years, but it didn't reach statistical significance. For patients with diabetes,

differences were statistically significant. Brachio-cephalic fistula showed a trend toward shorter maturation time, needed less reintervention, and had a longer patency rate. In conclusions then, ladies and gentlemen, A-V fistula require a longer maturation time

and have higher pseudoaneurysm formation rate, but better patency rates compared to A-V grafts. A-V grafts have a faster maturation time, but more late interventions are required and infection is more common. Finally, diabetic patients have a better result

with proximal A-V fistulas. Thank you for the opportunity to present our data.

- So I'm just going to talk a little bit about what's new in our practice with regard to first rib resection. In particular, we've instituted the use of a 30 degree laparoscopic camera at times to better visualize the structures. I will give you a little bit of a update

about our results and then I'll address very briefly some controversies. Dr. Gelbart and Chan from Hong Kong and UCLA have proposed and popularized the use of a 30 degree laparoscopic camera for a better visualization of the structures

and I'll show you some of those pictures. From 2007 on, we've done 125 of these procedures. We always do venography first including intervascular intervention to open up the vein, and then a transaxillary first rib resection, and only do post-operative venography if the vein reclots.

So this is a 19 year old woman who's case I'm going to use to illustrate our approach. She developed acute onset left arm swelling, duplex and venogram demonstrated a collusion of the subclavian axillary veins. Percutaneous mechanical thrombectomy

and then balloon angioplasty were performed with persistent narrowing at the thoracic outlet. So a day later, she was taken to the operating room, a small incision made in the axilla, we air interiorly to avoid injury to the long thoracic nerve.

As soon as you dissect down to the chest wall, you can identify and protect the vein very easily. I start with electrocautery on the peripheral margin of the rib, and use that to start both digital and Matson elevator dissection of the periosteum pleura

off the first rib, and then get around the anterior scalene muscle under direct visualization with a right angle and you can see that the vein and the artery are identified and easily protected. Here's the 30 degree laparoscopic image

of getting around the anterior scalene muscle and performing the electrocautery and you can see the pulsatile vein up here anterior and superficial to the anterior scalene muscle. Here is a right angle around the first rib to make sure there are no structures

including the pleura still attached to it. I always divide, or try to divide, the posterior aspect of the rib first because I feel like then I can manipulate the ribs superiorly and inferiorly, and get the rib shears more anterior for the anterior cut

because that's most important for decompressing the vein. Again, here's the 30 degree laparoscopic view of the rib shears performing first the posterior cut, there and then the anterior cut here. The portion of rib is removed, and you can see both the artery and the vein

are identified and you can confirm that their decompressed. We insufflate with water or saline, and then perform valsalva to make sure that they're hasn't been any pneumothorax, and then after putting a drain in,

I actually also turn the patient supine before extirpating them to make sure that there isn't a pneumothorax on chest x-ray. You can see the Jackson-Pratt drain in the left axilla. One month later, duplex shows a patent vein. So we've had pretty good success with this approach.

23 patients have requires post operative reintervention, but no operative venous reconstruction or bypass has been performed, and 123 out of 125 axillosubclavian veins have been patent by duplex at last follow-up. A brief comment on controversies,

first of all, the surgical approach we continue to believe that a transaxillary approach is cosmetically preferable and just as effective as a paraclavicular or anterior approach, and we have started being more cautious

about postoperative anticoagulation. So we've had three patients in that series that had to go back to the operating room for washout of hematoma, one patient who actually needed a VATS to treat a hemathorax,

and so in recent times we've been more cautious. In fact 39 patients have been discharged only with oral antiplatelet therapy without any plan for definitive therapeutic anticoagulation and those patients have all done very well. Obviously that's contraindicated in some cases

of a preoperative PE, or hematology insistence, or documented hypercoagulability and we've also kind of included that, the incidence of postop thrombosis of the vein requiring reintervention, but a lot of patients we think can be discharged

on just antiplatelets. So again, our approach to this is a transaxillary first rib resection after a venogram and a vascular intervention. We think this cosmetically advantageous. Surgical venous reconstruction has not been required

in any case, and we've incorporated the use of a 30 degree laparoscopic camera for better intraoperative visualization, thanks.

- This one is an easier publication we did, but I do think it's interesting because there are no data for real in the use of the aquatic environment for our lymphedema patients. I have no conflicts of interest to declare, but I declare that I'm really interested in this topic because if you look at the Global Spa & Wellness Summit report,

every single year this is the amount of money that are spent in the business of the aquatic environment and of the spa centers. And we are not behaving so well as vascular specialists because what you're looking at over here is a vision of the literature showing that muscle skeleton system data

are out there in the literature for the benefits of the effects of the aquatic environment, but we as vascular specialists are not producing so much data. Before the publication we put on Phlebology on this topic, just these six papers were dealing with the use

of the aquatic environment for lymphedema patients, and all of them are basically on quality of life measurements, not really on objective data of drainage, so every single day in nice hotels also like this one, you have people going inside the pool

and doing all of these activities, not really knowing what's going on inside their venous system, and something cool could actually happen because if you really think about that every single centimeter of water is performing 0.7 millimeters of mercury in terms of standing load,

so when I have a patient standing up inside the pool at 120 centimeters of depth, his feet is actually over one by 88 millimeters of mercury, so four times the stockings we are usually prescribing. We also know that, of course, activating the muscle pump is fundamental, so what we did was activating

the muscle pump inside the aquatic environment, creating a standardized protocol of exercises that we tested on 32 lower limbs of 16 patients affected by bilateral lymphedema. These patients went inside the pool for doing the standardized protocol:

50 minutes per session, twice per week, for a total of five sessions. The protocol is published on Phlebology, so you can download that for free. Basically it's an activation of all the joints of the lower limb.

What you can have after five sessions of this protocol is a significant reduction of the lower limb volume, that by more than 300 mils. The circumferences of the leg and the subcutaneous thickness measured by ultrasound is significantly decreasing, but the interesting part is this one, I think.

You see over there Michael Jackson with the Moonwalk because we were having patients walking backward because you have the biggest activation of the ankle at that point, and it was interesting to notice that the range of motion of the ankle was increase of up to four degrees, and if you put that into statistics,

it's really interesting to notice that the volume reduction was directly related with a 0.4 correlation to the increase in the ankle motion. The evidence of feeling of the leg was decreased from 7.3 to 5.5 out of ten as a score. The functional ambulation classification,

which is a score for debility of walking, was not significantly changed. Again, everything is on Phlebology if you want to download it, and now we are doing other investigations because of course we could bring some about not just the physical property

of the aquatic environment, but also the chemical properties of the kind of water we are using and on the temperature that we want to use over that. So at the current moment I cannot discuss that. We are under a grant of investigation, but for sure I do think this is a way to go

because it's like killing two birds with one stone because indeed you can have patients that are hypomobile or that are, for example, obese that can perform exercises inside the aquatic environment that they could not perform outside the pool, but I have to say that we didn't find anything new because the guy you see

over there is Conrad Jobst. There is a nice quote by van der Stricht. He was saying we should know the history so to avoid wasting our time trying to open doors that were already opened by others, and the door was already opened by Jobst

because as you know he was an engineer. He was affected by an ulcer and in reality he noticed that when he was standing inside his pool, his ulcers was getting better. Being an engineer he understood that it was related to the standing though and so he created the concept

of the graduated pressure that you have inside the water in the stockings we are now prescribing that are then son of the aquatic environment.

- Great, thank-you very much, a pleasure to be here. My disclosures. So, we've talked a little bit about obviously percutaneous and thrombectomy techniques. Obviously we have catheter-directed thrombolysis with TPA, but what happens when we can't use TPA

mechanical techniques? We've discussed several of them already in this session, I'm going to try to kind of bring them together and note the differences and how they evolved. And really look at fragmentation, rheolytic therapy, vacuum assisted devices, and vacuum and suction devices.

So when do we need these? Patients that can't tolerate thrombolysis, can't get TPA, that have a high risk of TPA, or maybe there is a situation we need a rapid response. We're trying to create flow and establish flow as much as possible and a lot of times we use this

in combination therapy if we've already hurt. What's the ideal device? I think there are multiple different characteristic's that could define the ideal device. Obviously we want it simple to use, We want it to be reproducible,

we want it to remove a lot of thrombus, but minimize blood loss and trauma to the vessels and to the blood cell. These are just some of them. There's a lot of mechanical thrombectomy devices right now on the market continuing to grow,

both in the arterial and venous system so I think this is going to be an evolution. We started really using mechanical fragmentation with a pig tail and spinning a pig tail. We used that. A lot of times the patient with severe massive pulmonary embolism.

These we're really small antidotes, small case reports. Will Kuo, looked at these in the 2009 and basically saw over all clinical success, about 86% using these mechanical devices. Then we had some that were even more automated.

All these did was break up the clot. So you have the Trerotola Device , Cleaner Device, really almost in the dialysis space. Rheolytic Throbectomy, we've already heard about. Some of how it works and the advantages. Really I think this is the first time we've saw

a system which would try to aspirate and remove some of that thrombus as it got broken up. The PEARL registry really showed for the first time, maybe we can get this done within 24 hours, can we get this done in one session? Unfortunately in this registry only about three or

four percent of patients actually had just rheolytic therapy alone without any TPA. We've discussed a little bit about the use of Ango and this type of device in terms of bradyarrhythmia's and that may be a limitation. But I think we can still use it particularly

outside of the chest. So What about suction devices? You can have a catheter, I think a catheter suction device is very limited. We use that in the arterial tree when there is a small thrombus, a small embolus, I think

we're very limited, not only in the amount of thrombus we can remove but the amount of suction we can apply. Other types like almost mechanical, very simple to use systems is the aspire device. Well you can basically create and suction a

limited area and then help you aspirate the thrombus. And then to the other extreme. We're going to hear my next speaker talk about Angiovac, again a different system, a different system requires a patient on bypass large 26 french devices.

Where we can actually go in and deal with a large amount of thrombus, like this patient had a thrombus cave on both iliac veins. And to be able to basically come with this vacuum aspiration system over wires and kind of pulling them out and you get these little canisters,

seeing what you've actually removed. Very gratifying. But takes a lot of work to get it going. We've heard a little bit about vacuum assisted with the Indigo system. With a system of creating a constant continuous vacuum.

We now have eight french catheters with incredible aspiration volume, almost 20cc's, I'm sorry you can get up to 140cc's of thrombus in a minute can be aspirated quickly. Here is a patient, 80 years old, colorectal CA. You can see the thrombus in the right leg.

There was actually a mass invading this vein. That is where we wanted to use thrombolysis, really went a head and you can see the amount of thrombus. Cleared this out with some passage. You can see this here, the separator. You started seeing thrombus especially when

its acute it kind of looks like this. It's kind of gelatinous, things that we've already seen, and then went ahead and placed a stent, dilated that stent. Had to clean up some more with the device

on top of the stent, but with a good result without needing any TPA. Other types of extraction devices we've seen the Inari device, again this is like a stent Triever device, a nitinol ring we can use this in the pulmonary arteries.

And we've already seen previous and talked about the ClotTriever device Again remove that thrombus, put it into a bag and remove it. So again, capture and removal of thrombus. And this is a solution without the need of TPA. New kid in the block the JETi device

Again very similar to aspiration Indego device, but at the same time it has a jet to macerate the clot and kind of break up the clot a little to smaller areas so we can able to thromb and take more out. I think really here what I've seen and Dr. Razavi

showed me this case. Being able to treat a patient quickly, treat that patient very quickly you can see the amount of thrombus being able to, within about an hour and 15 minutes, get all that thrombus, then create patency in that vein and he showed

some early initial good data. Over the last year we did have a paper that was presented here and published this year in the Journal of Vascular Surgery, venous and lymphatic disorders and again pulled multiple patient's, again showing that

it affective and safe. We still need better data. We need to figure out which patients are best treated with which devices and which again will be affective. Thank-you very much.

- Thank you and thanks Craig, it's fun to have these debates with good colleagues, thoughtful colleagues. These are my disclosures for the talk. But pry my most important disclosure is I work in academic center with a dedicated Limb Preservation Center, very tertiary practice. And I perform both open and endovascular surgery

and actually my current lower extremity practice is probably about 60 to 65 percent endovascular so, I do both of these procedures. We already saw this slide about how the increase in endovascular intervention has grown. But, I would caution you to look a little more closely

at this outpace of decline in bypass surgery by more than three to one. I don't think this is an epidemic, I think it's a little bit of this, and a little bit of this. Everything looks like a nail when you only have a hammer

or a hammer when you only have a nail. So, what should we really be doing today? We should be trying to select the best thing for the right patient at the right time. And it really comes down to starting not with the lesion, but with the patient.

Start with assessing the patient's risk, what's their perioperative risk, what's their long-term survival, what are their goals for care? And then look at the limb itself, because not all limbs are the same.

There are minor ulcers, there's extensive and severe rest pain and there are large areas of tissue loss. And the WIfI system is good for that. And then let's look at the anatomy last. And when we're looking at it from the standpoint of what all the options are, endovascular we're looking

at what's the likelihood not just of technical success, but of hemodynamic gain and sustained patency for as long as a patient needs it. With bypass, we also have to look at other things. What kind of vein do they have, or what kind of target do they have?

And I think the bottom line here is in today's practice, it's kind of silly to say endo first for all patients, it's certainly not surgery first for all patients because they have complementary roles in contemporary practice. Well what's happening in the world out there,

this is the German CRITISCH registry, I'll just point out 12 hundred patients recently published only a couple of years ago, 24 percent of patients get bypass first. And if you look at who they are, not surprisingly they are the patients

with long occlusions and complex anatomy. They are out there, in fact most of these patients have multi-segment disease, as Craig pointed out. Here's some contemporary data that you haven't seen yet because it's in press, but this is VQI data looking at 2003 to 2017.

I'll point out just in the last 2013 years, still, if you looked at unique patients, not procedures, one-third of the patients are getting a bypass first. And if you define risk groups considering what might be a low risk patient as a three percent mortality and survival greater than 70 percent,

and a high risk patient, you can put these patients into buckets and in fact, of all the patients getting lower extremity revascularization and VQI today, 80 percent of them would be called low risk based on this definition. So, most patients are not high risk patients

who don't have long-term survival. In fact, this is current VQI data. If you're a low risk patient in that cohort, your five year survival actually is over 70 percent. So there's a lot of these patients actually today with better CLO medical therapy that are actually

living longer and are not that high risk. We talked about the BASIL trial already, and he pointed out how the early results were similar, but what we learned also with BASIL, that if you've got a bypass as a secondary procedure, or if you got a bypass with a prosthetic,

you simply did not do as well. That doesn't mean that the initial endovascular revascularization caused the bypass failure, but it means that secondary bypass surgery does not work as well. And when Dr. Bradbury looked at this data

over a longer period of time now going over many more years, there's a consistent inferior outcome to the patients who had their bypass after failed angioplasty in comparison to bypass as the initial strategy. This is not an isolated finding. When we looked in the VSGNE data over a,

more than 3000 patients at the impact of restenosis on subsequent treatment failure, we found that whether patients had a failed previous PVI or bypass, their secondary bypass outcomes were inferior, and the inferiority continued to get worse with time.

These bypasses just don't perform as well. Unfortunately, if we only do bypass after endo has failed, this is what all the results are going to start to look like. So let's be a little bit smarter. Now what about patency?

I think we, even today in the endovascular world, we realize patency is important. After all, that's why we're doing drug elution. Most, but not all patients with advanced limb ischemia will recrudesce their symptoms when their revascularization fails.

I think we all know that. Most CLTI patients have multi-segment disease. I don't want to sit up here and be a high school or elementary school math teacher, but here's the reality. If you look at it above the lesion, you say I'm going to get 70 percent patency there, and you look at

the tibial lesion, you say I'm going to get 50 percent patency there, what do you think your patency is for the whole leg? It's 35 percent folks, it's the product of the two. That is the reality pretty often. Patients with more advanced limb presentations,

such as WIfI stage do not tolerate these failures. They tolerate them poorly. They go on to amputation pretty fast. And patient survival, as I've already shown you has improved. Now, what the all endo-all the time

camp does and doesn't say. He already showed us, many datasets suggest the downstream outcomes are roughly equivalent but, these are not the same patients, we are not operating on the same patients you are doing endo on.

If I told you the results are the same for PCI and CABG without showing you anatomy, you would laugh me off the stage right? So, this is really not an equivalent argument. Endo can be repeated with minimal morbidity, but patients suffer.

Their limb status deteriorates, they come in the hospital often, and they continue to decline in the outcomes of these secondary procedures. CLTI patients are too frail for surgery, I just showed you that's really not true for many patients.

There is really unfortunately, an economic incentive here. Because there is unfortunately, no incentive for durable success. I hate to bring that up, but that's the reality. Now just quickly, some results. This is a large Japanese series

where they were performing endovascular interventions only for advanced limb ischemia. And basically what you can see as you go across the WIfI stages here from stage one to stage four, when you get to these stage four patients, the wound healing rate's only 44 percent,

limb salvage rate drops to 80 percent, repeat EVT rate is encroaching 50 percent. These patients really are not doing well with endovascular intervention. And we found that in our own series too, it's relatively small numbers and not randomized.

But if we look at the stage 4 limbs with bypass versus endo, when these patients failed at revascularization, and they may not have been bypass candidates, but they didn't do well, they went on to amputation very quickly.

So the ESC guidelines that just came out really sort of line up with what I'm telling you. You'll see bypass first. If you have long occlusions in an available vein, is actually currently the favorite approach, with level 1A recommendation.

So in summary, this is how I currently approach it. You look at all these factors, some people should get endo first, but there's still about 20 or 30 percent that I think should get bypass. Some people should go on to amputation earlier, is the bottom line, and I'll go right to the bottom line.

If you don't have access to a skilled open bypass surgeon, you're probably not at a center of excellence, go find one.

- Thank you very much for the very kind invitation, and I promise I'll do my best to stick to time. The answer is probably to this audience I don't really need to say very much about the ATTRACT trial, but I think it is quite important to note that the ATTRACT trials have now been out for some time, and it is constantly being

talked about in its various dimensions. So I'm going to just spend a few seconds really talking about the ATTRACT trial. A large number of patients screened. One in 41 patients were actually recruited into it and it was a trial that ran for a long time.

Wasn't really with respect to the primary endpoint any particularly good evidence, but for those people who had moderate or severe post-thrombotic syndrome, it probably was of benefit. And if you looked at the Villalta score

and the VCSS scores there was some evidence to support it. So overall, probably some positive take-home messages, but not as affirmative as people would have thought. Now the reason that I've dwelled a little bit on that is that actually, what do we mean when we talk about the post-thrombotic syndrome?

Because I would say in the upper limb, because I have never personally seen an ulcer in the upper limb. Has anybody seen an ulcer in the upper limb due to venous disease? No.

So in a way we are talking about a slightly different entity. We are talking about a limb that has undoubtedly much more finer movements. And there was depression by some people with the results of the ATTRACT trial.

But when you look at the five year results from the CaVenT trial, there was some evidence to suggest that actually, as you get further out, there may be some benefit. If you look at this summation analysis, and I completely accept this is related to the leg,

again, there may be some benefit from the CDT. Now, this is a case of mine. Now I wonder if any of you can tell me how many stages may have been involved from going from the right, to having a ballonplasty in the vein. Pick a number, anywhere between five and ten.

The answer is you have numerous checks of the thrombolysis, you may have a venoplasty, you might have a first rib excision. You may then have occlusion and then realize this before you go on and do the first rib. So all I'm suggesting to you that this is not

a cheap treatment to offer patients treatment to the upper limb. Then we looked forward to some help from the guidelines. Well we look at the American guidelines and give or take, I think the answer is we probably shouldn't be doing it and that we should be only offering anticoagulation.

So do the Brits help? Well actually if you look at the Brits, it sort of says well, you can think a bit about doing decompression, but really if I was standing up in a court of law, I really wouldn't want much support from this guideline

that I had done the right thing. And then the International Society of Thrombolysis and Hemostasis really says well, you can do a little bit of this that thoracic outlet syndrome may be a risk factor. But give or take, surgeries still are a little bit dubious.

So, really there's one good review out there, and this is the review of Vasquez that basically looked at 146 articles, and they found some data on just under 1300 patients. And they postulated and chose some evidence to suggest that there was some evidence

that first rib excision and thrombolysis reduce PTS, and that anticoagulation alone was not enough for the majority of the patients. Very difficult to work out how you selected which patients you should or should not intervene on. Now, I'm sure everybody is rather sick and tired

of me talking about money, and I accept it doesn't really apply here. But money is actually quite important. Five interventions to prevent something that may not happen and at worst may be just a few collateral veins across the chest.

So ladies and gentlemen, I would want you to think very hard, is it actually cost-effective to be offering all patients presenting with an early auxiliary vein thrombosis thrombolysis, and then subsequently first rib excision? These are some of the truths, I think the answer is

it does seem to work. You do need to recognize and make the diagnosis. Usually delayed thrombolysis doesn't work, but there are lots of questions that are unanswered. And how would you defend what you have done in a court of law?

Somebody has a stroke, you then do the first rib, they get a large hemothorax, and they then die because there had been too much TPA on board. Yes, give it some thought. So ladies and gentlemen, I'm afraid I haven't actually answered the question,

but I think you need to give it careful consideration, what are the indications and merits? Thank you very much.

- First of all I'd like to thank the organizers for inviting me to give this presentation. These are my disclosures. I'm going to divide this presentation into three main parts. I will initially make the case that at the present time we are providing relatively poor value in ESRD and Vascular Access Care.

I'll then submit to you that one way to address this issue is through Patient Centered Device Innovation and then I'll tell you a little bit about some regulatory initiatives in this area. If you define value as being outcomes over cost

then I would argue that in vascular access we actually provide very poor value in that we have pretty bad outcomes and in order to achieve these bad outcomes we actually spend a huge amount of money at about 1.5 billion dollars per year and these is no talk at all

in the construct before you about quality of life. How can we break this cycle of a lack of innovation resulting in poor quality and outcomes and a high cost burden? I would submit to you that one way that we may be able to break the cycle

is through patient centered innovations. Patient centered innovation, whether it's discovery or process of care innovation, is basically innovation that targets the issues that are important to patients, not necessarily the issues that are important to physicians,

or payors, or regulators, or to industry. The reason that this is important is that the things that are relevant and critical to patients are often very different from the things that are important to the other stakeholder groups that I mention. If you look at hemodialysis for example

the things that are important to a patient on hemodialysis are ability to travel, and dialysis free time, and not feeling washed out post dialysis. On the other hand, if you're an nephrologist as I am, the things that are important to me are survival, and hospitalization, and being a nephrologist

I completely obsess about blood pressure which is really not something that patients are that worried or bother about. The next question is, of course, how do we develop therapies that address the issues that are important to patients? I got this slide from Frank Hurst at the FDA.

It basically makes the point that we need to have patient input at every point in the product development process, from initial ideation, to clinical trial design, to patient preferences, to patient centered outcomes. The FDA actually has a number of programs

in this area, one example is their Patient Focused Drug Development Initiative which allows the FDA to speak with patients and patient groups in different therapeutic areas. Closer to home, the Medical Device Innovation Consortium is extremely interested in Patient Preferences

and in a Risk-Benefit analysis. Within the kidney health initiative, which is a public-private partnership between the American Society of Nephrology and the FDA, we are also very interested in patient preferences for renal devices, and the background for this is

that an individual patient's tolerance for risk actually varies tremendously. Patients on home hemodialysis, for example, may be happy to sacrifice some degree of safety with regard to, say, vascular access, in order for an improved

or a more independent quality of life. But if you're a regulator there needs to be a way that you can get insight in to how patients perceive the risk/benefit ratio so that it can be incorporated into the regulatory pathway, and at least at the present time

the tools for this do not exist. The Kidney Health Initiative hosted an extremely successful patient preference workshop in the Baltimore area a couple of years ago. We asked three main questions: how can patients assist in the development

of a new medical device? How can they ensure the success of future clinical trials? And how can they help with the decision to make a new device available? The proceedings of this workshop have been published, and I'm really not going to go into details there.

I'm going to share with you a video that was made to try and attract patients to this webinar, and I think it really epitomizes the importance of patient centered innovation. - Hello, I'm CeCe, a fellow kidney disease patient. For 33 years I've done dialysis, both hemo and PD.

I had a transplant for 10 years and as you can imagine too many pills, shots, and accesses to mention. As kidney patients you and I both know that a few things in life are not optional. Strength, courage,

persistence, and determination. No matter what life throws at us, we try to stay balanced, maintain our routine, and remain positive. But let's face it, we are often in a holding pattern. Kidney disease treatments have not

changed much over the years. The options for patients like us have largely remained the same for many years. You want to help change that? We need you. Each day we're asked to share our lives with our treatment. But now, let's share our voice, ideas, opinions.

From patients like us, they matter. Key people are realizing our voices matter too. Here's what I found out. The Food and Drug Administration, often known as the FDA, is looking for patients living with kidney disease like you and me, to provide input

on how potential treatments of the future could look. Picture a big table. Around it are dialysis caregivers, researchers, doctors, nurses, and companies providing new products and treatments. They want us and our families to sit beside them

and have a seat at this table. We'll work together to bring potential new treatment options, safe and effective ones, and ones that patients like you and me want and need. Imagine the future of your treatment. What does it look like?

How does it improve your day-to-day life? This future doesn't have to remain just a dream. Join me and other patients to contribute our thoughts and make our ideas a possible reality. - The driving force and also the voice behind that video was the lady on the right, Celeste Lee.

She was a dialysis patient for over 30 years, she was a member of the KHI board of directors, and Celeste died a year and a half ago, she basically withdrew from dialysis because of bone disease from the 30 years of dialysis. I really think that her death

should be a charge for all of us really to try and develop therapies that target the things that are important to patients. Thank you very much for your attention.

- Thank you, thank you. Dear Colleagues, I have no Financial Disclosures. If we look at the old randomized stroke trials, mainly NASCET and ECST, we had a combined any stroke and death rate within 30 days of 7%, and there were some clinical and morphological arrivals that were associated

with an higher or a lower risk. The Carotid Stenosis Trialists' Collaboration was established to perform pooled individual patient data analysis from the major carotid randomized trials of the last year, ICSS, SPACE, EVA-3S, CREST and now also GALA.

And the aim of this study was to look at the impact of clinical characteristics and perioperative measures on the 30-day risk of stroke and death, and whether the risk of CEA for symptomatic patients has changed since since ECST and NASCET. And I'll jump directly into the results,

the primary outcome, any stroke or death within 30 days occurred in 4.3% of the patients, disabling stroke and death, 2.1, any stroke 4%, all-cause death 0.8%. If we looked at the multi-variable analyses, these are the impact of the clinical characteristics,

no clinical factor was associated with the lower or bigger risk, with the exception of a contralateral stenosis or occlusion. This was statically significant, with an risk increase of almost 60% relative risk increase. We looked at the clinical signs of the patients.

There was a tendency that stroke patients had a bit worse results, but again, statistically not significant, however patients who had an disabling stroke, namely a modified Rankin scale of 3 to 5, had a significantly higher risk of a repetitive stroke or death.

Time interval didn't play a role, at any time interval, nothing there, and also the in-trial center volume. The techniques, a tendency that CR without patch, and interestingly Eversion-CEA had worse results in this big data cohort, but again, statistically not significant.

Shunt use was a bit biased, that was associated with an increased risk, and we looked also at the type of anesthesia, this is I think the most important result of this study, and we were able to show that local anesthesia had better outcomes as compared

to general anesthesia, with a 30% relative risk reduction in these patients. So, summing up and comparing the data with the ECST and NASCET trial, we had a reduction from 7% down to 4.3% and also for the other single end points, disabling stroke, death, any stroke, all-cause death, et cetera.

There was a reduction in the overall complication rate with the exception of, in most cases Passager cranial nerve palsy. So in conclusion, we found a higher surgical risk in patients with a contralateral high grade stenosis or occlusion, we also found a higher risk in patients

with a modified Rankin Scale of 3 to 5 at randomization, so disabling strokes. Lower surgical risk if surgery was done under loco-regional anesthesia, and no significant effects for surgical technique, co-morbidities, gender or age. Thank you very much for your attention.

- I think by definition this whole session today has been about challenging vascular access cases. Here's my disclosures. I went into vascular surgery, I think I made the decision when I was either a fourth year medical student or early on in internship because

what intrigued me the most was that it seemed like vascular surgeons were only limited by their imagination in what we could do to help our patients and I think these access challenges are perfect examples of this. There's going to be a couple talks coming up

about central vein occlusion so I won't be really touching on that. I just have a couple of examples of what I consider challenging cases. So where do the challenges exist? Well, first, in creating an access,

we may have a challenge in trying to figure out what's going to be the best new access for a patient who's not ever had one. Then we are frequently faced with challenges of re-establishing an AV fistula or an AV graft for a patient.

This may be for someone who's had a complication requiring removal of their access, or the patient who was fortunate to get a transplant but then ended up with a transplant rejection and now you need to re-establish access. There's definitely a lot of clinical challenges

maintaining access: Treating anastomotic lesions, cannulation zone lesions, and venous outflow pathology. And we just heard a nice presentation about some of the complications of bleeding, infection, and ischemia. So I'll just start with a case of a patient

who needed to establish access. So this is a 37-year-old African-American female. She's got oxygen-dependent COPD and she's still smoking. Her BMI is 37, she's left handed, she has diabetes, and she has lupus. Her access to date - now she's been on hemodialysis

for six months, all through multiple tunneled catheters that have been repeatedly having to be removed for infection and she was actually transferred from one of our more rural hospitals into town because she had a infected tunneled dialysis catheter in her femoral region.

She had been deemed a very poor candidate for an AV fistula or AV graft because of small veins. So the challenges - she is morbidly obese, she needs immediate access, and she has suboptimal anatomy. So our plan, again, she's left handed. We decided to do a right upper extremity graft

but the plan was to first explore her axillary vein and do a venogram. So in doing that, we explored her axillary vein, did a venogram, and you can see she's got fairly extensive central vein disease already. Now, she had had multiple catheters.

So this is a venogram through a 5-French sheath in the brachial vein in the axilla, showing a diffusely diseased central vein. So at this point, the decision was made to go ahead and angioplasty the vein with a 9-millimeter balloon through a 9-French sheath.

And we got a pretty reasonable result to create venous outflow for our planned graft. You can see in the image there, for my venous outflow I've placed a Gore Hybrid graft and extended that with a Viabahn to help support the central vein disease. And now to try and get rid of her catheters,

we went ahead and did a tapered 4-7 Acuseal graft connected to the brachial artery in the axilla. And we chose the taper mostly because, as you can see, she has a pretty small high brachial artery in her axilla. And then we connected the Acuseal graft to the other end of the Gore Hybrid graft,

so at least in the cannulation zone we have an immediate cannualation graft. And this is the venous limb of the graft connected into the Gore hybrid graft, which then communicates directly into the axillary vein and brachiocephalic vein.

So we were able to establish a graft for this patient that could be used immediately, get rid of her tunneled catheter. Again, the challenges were she's morbidly obese, she needs immediate access, and she has suboptimal anatomy, and the solution was a right upper arm loop AV graft

with an early cannulation segment to immediately get rid of her tunneled catheter. Then we used the Gore Hybrid graft with the 9-millimeter nitinol-reinforced segment to help deal with the preexisting venous outflow disease that she had, and we were able to keep this patient

free of a catheter with a functioning access for about 13 months. So here's another case. This is in a steal patient, so I think it's incredibly important that every patient that presents with access-induced ischemia to have a complete angiogram

of the extremity to make sure they don't have occult inflow disease, which we occasionally see. So this patient had a functioning upper arm graft and developed pretty severe ischemic pain in her hand. So you can see, here's the graft, venous outflow, and she actually has,

for the steal patients we see, she actually had pretty decent flow down her brachial artery and radial and ulnar artery even into the hand, even with the graft patent, which is usually not the case. In fact, we really challenged the diagnosis of ischemia for quite some time, but the pressures that she had,

her digital-brachial index was less than 0.5. So we went ahead and did a drill. We've tried to eliminate the morbidity of the drill bit - so we now do 100% of our drills when we're going to use saphenous vein with endoscopic vein harvest, which it's basically an outpatient procedure now,

and we've had very good success. And here you can see the completion angiogram and just the difference in her hand perfusion. And then the final case, this is a patient that got an AV graft created at the access center by an interventional nephrologist,

and in the ensuing seven months was treated seven different times for problems, showed up at my office with a cold blue hand. When we duplexed her, we couldn't see any flow beyond the AV graft anastomosis. So I chose to do a transfemoral arteriogram

and what you can see here, she's got a completely dissected subclavian axillary artery, and this goes all the way into her arterial anastomosis. So this is all completely dissected from one of her interventions at the access center. And this is the kind of case that reminded me

of one of my mentors, Roger Gregory. He used to say, "I don't wan "I just want out of the trap." So what we ended up doing was, I actually couldn't get into the true lumen from antegrade, so I retrograde accessed

her brachial artery and was able to just re-establish flow all the way down. I ended up intentionally covering the entry into her AV graft to get that out of the circuit and just recover her hand, and she's actually been catheter-dependent ever since

because she really didn't want to take any more chances. Thank you very much.

- Thank you, Dr. Ascher. Great to be part of this session this morning. These are my disclosures. The risk factors for chronic ischemia of the hand are similar to those for chronic ischemia of the lower extremity with the added risk factors of vasculitides, scleroderma,

other connective tissue disorders, Buerger's disease, and prior trauma. Also, hemodialysis access accounts for a exacerbating factor in approximately 80% of patients that we treat in our center with chronic hand ischemia. On the right is a algorithm from a recent meta-analysis

from the plastic surgery literature, and what's interesting to note is that, although sympathectomy, open surgical bypass, and venous arterialization were all recommended for patients who were refractory to best medical therapy, endovascular therapy is conspicuously absent

from this algorithm, so I just want to take you through this morning and submit that endovascular therapy does have a role in these patients with digit loss, intractable pain or delayed healing after digit resection. Physical examination is similar to that of lower extremity, with the added brachial finger pressures,

and then of course MRA and CTA can be particularly helpful. The goal of endovascular therapy is similar with the angiosome concept to establish in-line flow to the superficial and deep palmar arches. You can use an existing hemodialysis access to gain access transvenously to get into the artery for therapy,

or an antegrade brachial, distal brachial puncture, enabling you treat all three vessels. Additionally, you can use a retrograde radial approach, which allows you to treat both the radial artery, which is typically the main player in these patients, or go up the radial and then back over

and down the ulnar artery. These patients have to be very well heparinized. You're also giving antispasmodic agents with calcium channel blockers and nitroglycerin. A four French sheath is preferable. You're using typically 014, occasionally 018 wires

with balloon diameters 2.3 to three millimeters most common and long balloon lengths as these patients harbor long and tandem stenoses. Here's an example of a patient with intractable hand pain. Initial angiogram both radial and ulnar artery occlusions. We've gone down and wired the radial artery,

performed a long segment angioplasty, done the same to the ulnar artery, and then in doing so reestablished in-line flow with relief of this patient's hand pain. Here's a patient with a non-healing index finger ulcer that's already had

the distal phalanx resected and is going to lose the rest of the finger, so we've gone in via a brachial approach here and with long segment angioplasty to the radial ulnar arteries, we've obtained this flow to the hand

and preserved the digit. Another patient, a diabetic, middle finger ulcer. I think you're getting the theme here. Wiring the vessels distally, long segment radial and ulnar artery angioplasty, and reestablishing an in-line flow to the hand.

Just by way of an extreme example, here's a patient with a vascular malformation with a chronically occluded radial artery at its origin, but a distal, just proximal to the palmar arch distal radial artery reconstitution, so that served as a target for us to come in

as we could not engage the proximal radial artery, so in this patient we're able to come in from a retrograde direction and use the dedicated reentry device to gain reentry and reestablish in-line flow to this patient with intractable hand pain and digit ulcer from the loss of in-line flow to the hand.

And this patient now, two years out, remains patent. Our outcomes at the University of Pennsylvania, typically these have been steal symptoms and/or ulceration and high rates of technical success. Clinical success, 70% with long rates of primary patency comparing very favorably

to the relatively sparse literature in this area. In summary, endovascular therapy can achieve high rates of technical, more importantly, clinical success with low rates of major complications, durable primary patency, and wound healing achieved in the majority of these patients.

Thank you.

- Thank you, Dr. Ouriel, Dr. Lurie. Ladies and gentlemen. Brian, that was a very fair overview of the ATTRACT trial as it was published in the New England Journal, so thank you. And these are my disclosures. So Dr. DeRubertis did a very nice review of this paper

that was published in the New England Journal December 7th of last year. He went over very nicely that it was NIH sponsored, phase III, randomized, controlled, multicenter, 692 patients randomized, anticoagulation alone versus anticoagulation plus catheter-based techniques.

Now one thing I want to call your attention to is the fact that patients with deep venous thrombosis, acute deep venous thrombosis, who were eligible for randomization, were stratified before they were randomized into two different groups, iliofemoral DVT or fem-pop DVT.

So in my opinion, these are not subgroups because the randomization of one group had no effect on the randomization of another, so I would argue that these are independent groups. That makes a big difference when you do statistical analyses.

The other important issue that I want to point out is that the outcomes were pre-determined to what we were going to analyze. We had to choose one as a primary endpoint and the others as secondary, but these were pre-determined end points that were up for analysis, not post hoc analyses.

And post-thrombotic syndrome was determined at the time, 12 years ago when we wrote the protocol, to be the primary end point. I would submit that we would not choose that as a primary end point if we wrote the protocol today. Moderate to severe post-thrombotic syndrome

certainly would be more appropriate. Leg pain, swelling, health-related quality of life, certainly important. This is the outcome, and unfortunately, it did not reach significance. There was no difference between the two groups

and there was an increased risk of bleeding, but this is the outcome that drove opinion about ATTRACT, but we don't really do catheter-directed thrombolysis for fem-pop DVT. Therefore, the results of the iliofemoral patients will be the most meaningful and that paper was written

and that paper has been accepted by circulation. It should be out shortly, but there were 391 iliofemoral DVT patients and the primary outcome was no different than the primary outcome in the overall trial. But are they?

If we had chosen the Venous Clinical Severity Score in place of the Villalta score for analysis of that primary end point, it would've been a positive study. So if we chose a different tool to analyze, our primary end point would've been positive for the iliofemoral DVT patients.

If we look at moderate to severe post-thrombotic syndrome, a significant difference. Control patients had a 56% increased risk of moderate to severe PTS versus the control patients. If we look at severe post-thrombotic syndrome, control patients had a 72% increased risk

of severe PTS versus control. If we look at the overall severity of the Villalta score in PTS, we can see that there is a significant difference favoring percutaneous catheter-directed thrombolysis. When we look at pain, the patient's pain was significantly reduced in the PCDT patients compared to control.

We look at edema, significant reduction in edema at day 10 and day 30 in patients who received catheter-directed thrombolysis compared to control. Disease-specific quality of life significantly favored patients who had PCDT compared to control. So we look at moderate to severe, severe, pain,

quality of life. There was a price to pay. Major bleeding was increased, but the P-value was no different. I will not argue that patients are not at increased risk. They are at increased risk for bleeding,

but this is an historically low bleeding rate for catheter-directed thrombolysis and there were no intracranial bleeds. No difference in recurrent deep venous thrombosis. No difference in mortality at 24 months between the two groups.

So in conclusion, the primary end point, reduction of any PTS defined by a Villalta score of 5 or more, no difference, but an item that has not reached the level of discussion that we will need to consider is that 14% of our patients had a normal Villalta score coming into the study.

It's impossible to improve upon that, but there is a significant reduction in any PTS if you use the Venous Clinical Severity Score, reduction of moderate and severe post-thrombotic syndrome, reduction of pain and swelling, and improved disease-specific quality of life compared to controls.

And I think these are the meaningful end points that patients appreciate and these are the points of discussion that will be covered in the article in circulation that will be published very soon. Thank you for your attention.

- Ladies and gentlemen, I would like to thank Professor Veith for his kind invitation. A minimally invasive carotid endarterectomy. I have nothing to disclose. Here you can see the same patient operating with the classic carotid endarterectomy with normal incision and on the other side,

you will see the patient, the same patient after the minimal incision carotid endarterectomy. So ladies and gentlemen, if one can safely perform carotid endarterectomy by minimal incision, let's do it routinely. The technique of minimal incision carotid endarterectomy.

The incision must be done over a carotid bifurcation. In slim patient, it is easy to determine the location just by the palpation. By routinely, I advise to mark bifurcation by using ultrasound. Reaching the artery by tissue separation

along the border of sternocleidomastoid muscle. Once the artery is visualized, apply the vessel loop on the external carotid artery. If it is needed, on the thyroid artery. Pulling the external carotid artery vessel loop up to the opposite side,

and releasing posterior part of bifurcation enables visualization and applying vessel loop on the common carotid artery, about 15 millimeter down the bifurcation. Pulling the external carotid artery vessel loop down into the opposite side reveals anterior and posterior

portion of internal carotid artery. What is the most important? The vessel loop on the internal carotid artery must be located above atherosclerotic plague. Temporary clamping of internal carotid artery for 30 seconds should show if the shunt is needed.

If there is no neurological signs, we continue pulling all vessel loops to elevate the artery to the level of the skin. Typically, longitudinal incision from common carotid artery to internal carotid artery is performed. The main important maneuver

that led to perform this operation correctly and safely, this is eversion-like movement. After arteriotomy, I squeeze the artery, internal carotid artery, usually on the level of the end of the atherosclerotic plague, usually using the forceps.

I make eversion-like movement. This led me easily and safely remove that atherosclerotic plague from the internal carotid artery. Always allow one two second backflow from internal carotid artery

to remove potential debris by the blood flow. The same, unclamping common carotid artery for a short period of time to remove potential debris from the proximal part. Should a shunt be indicated, it is easy and quick to insert.

As a first step, the shunt is inserted into internal carotid artery. It is necessary to slightly loosen internal carotid vessel loop. In the same way, I put the shunt into the common carotid artery if it is needed.

Continued suture usually close the arteriotomy. If the diameter of the internal carotid artery is smaller than two millimeter, artificial patch can be easily used. Redon drainage is always used. I make another small incision for the Redon drain

due to very, very small incision for endarterectomy. And continued suture usually closes the wound for good cosmetical effort. Here, you can see the operation step-by-step. What I will now emphasize this group of patient.

This is symptomatic patient with a very soft atherosclerotic plague. In this series, our experience. This is 165 patients allocated into two groups. 122 patients in the minimal incision carotid endarterectomy group,

and 43 patients in classic endarterectomy group. Patients randomly allocated. Here, you can see the results three months, up to three months results. I will like to emphasize there were no nerve injury. Hoarseness and shunt was used in 12%

in minimal incision carotid endarterectomy group. Here, you can see in the first and second column, the results up to September 2017. Third and fourth column, the results up to September 2018. Here you can see some examples. Here you will see some more examples.

Here you will see the scar that is after the operation. So nearly no limitation in neck movement, quick wound healing, short hospital stay, and perfect cosmetic effect. So to conclude, ladies and gentlemen, this is the low risk operation.

This is the operation of quick recovery. Precautions and contraindication, according to my experience seems to be same as for classic carotid endarterectomy. Of course, further study is required. Minimal incision, I also used during the

aortobifemoral and femoropopliteal operations. I hope to show it next year. Ladies and gentlemen, when I was a young surgeon, it was said that big surgeon, big incision. I'd rather suggest, good surgeon should try to make the smallest incision possible.

Data and presented technique will be published. Thank you very much for your attention.

- Mr. Chairman, ladies and gentlemen, good morning. I'd like to thank Dr. Veith for the opportunity to present at this great meeting. I have nothing to disclose. Since Dr. DeBakey published the first paper 60 years ago, the surgical importance of deep femoral artery has been well investigated and documented.

It can be used as a reliable inflow for low extremity bypass in certain circumstances. To revascularize the disease, the deep femoral artery can improve rest pain, prevent or delay the amputation, and help to heal amputation stump.

So, in this slide, the group patient that they used deep femoral artery as a inflow for infrainguinal bypass. And 10-year limb salvage was achieved in over 90% of patients. So, different techniques and configurations

of deep femoral artery angioplasty have been well described, and we've been using this in a daily basis. So, there's really not much new to discuss about this. Next couple minutes, I'd like to focus on endovascular invention 'cause I lot I think is still unclear.

Dr. Bath did a systemic review, which included 20 articles. Nearly total 900 limbs were treated with balloon angioplasty with or without the stenting. At two years, the primary patency was greater than 70%. And as you can see here, limb salvage at two years, close to, or is over 98% with very low re-intervention rate.

So, those great outcomes was based on combined common femoral and deep femoral intervention. So what about isolated deep femoral artery percutaneous intervention? Does that work or not? So, this study include 15 patient

who were high risk to have open surgery, underwent isolated percutaneous deep femoral artery intervention. As you can see, at three years, limb salvage was greater than 95%. The study also showed isolated percutaneous transluminal

angioplasty of deep femoral artery can convert ischemic rest pain to claudication. It can also help heal the stump wound to prevent hip disarticulation. Here's one of my patient. As you can see, tes-tee-lee-shun with near

or total occlusion of proximal deep femoral artery presented with extreme low-extremity rest pain. We did a balloon angioplasty. And her ABI was increased from 0.8 to 0.53, and rest pain disappeared. Another patient transferred from outside the facility

was not healing stump wound on the left side with significant disease as you can see based on the angiogram. We did a hybrid procedure including stenting of the iliac artery and the open angioplasty of common femoral artery and the profunda femoral artery.

Significantly improved the perfusion to the stump and healed wound. The indications for isolated or combined deep femoral artery revascularization. For those patient presented with disabling claudication or rest pain with a proximal

or treatable deep femoral artery stenosis greater than 50% if their SFA or femoral popliteal artery disease is unsuitable for open or endovascular treatment, they're a high risk for open surgery. And had the previous history of multiple groin exploration, groin wound complications with seroma or a fungal infection

or had a muscle flap coverage, et cetera. And that this patient should go to have intervascular intervention. Or patient had a failed femoral pop or femoral-distal bypass like this patient had, and we should treat this patient.

So in summary, open profundaplasty remains the gold standard treatment. Isolated endovascular deep femoral artery intervention is sufficient for rest pain. May not be good enough for major wound healing, but it will help heal the amputation stump

to prevent hip disarticulation. Thank you for much for your attention.

- Thank you Dr. Asher. What an honor it is to be up here with Dr. Veith and Dr. Asher towards the end. You guys are leading by example being at the end of the meetings. So, thank you for allowing me to be up and talking about something

that not a lot of vascular surgeons have experience with, including me. I have no disclosures. On your left, I have listed some of the types of diseases that we most commonly see in the vertebral artery, and there are quite a lot.

And on the right, the standard types of treatment that we pursue in vascular surgery or as a vascular specialist. And often, in the vertebral artery, if we are going to pursue treatment, it's the endovascular route.

But I'll talk a little bit about open surgery. The clinical presentation is often vague. And the things I wanted to point out here in this long list are things like alternating paresthesias, dysphagia, or perioral numbness may be something in the history to look for

that you may not be thinking about when you're thinking about vertebral basilar disease. The anatomy looks straightforward in this picture, with the four segments, as you can see. It gets a little more complicated with just the arterial system,

but then when you start looking at all these structures, that you have to get out of of the way to get to the vertebral artery, it actually can be a difficult operation, particularly even in the V1 segment. The V1 typically is atherosclerotic disease.

V2 is often compression, via osteophyte or musculo-tendon structures. And V3 and V4, at the top, are typically from a dissection injury from sort of stretch or trauma injury. The pathophysiology isn't that well understood.

You have varying anatomy. It's very difficult to access this artery. Symptoms can be difficult to read, and treatment outcomes are not as reliable. But I'm going to take you through a very quick path through history here in the description

of the V1 segment exposure by Dr. Rentschler from 1958. And I love these pictures. Here is a transverse incision over the sternocleidomastoid, just above the clavicular head on the right side. And once you get the sternoclavicular head divided, you can see the longus colli muscle there.

Anteromedial is the carotid. Of course, you surround that with a Penrose drain. And then once you do that, you can separate your longus colli, and deep to that, the vertebral artery just easily slips right up, so you can do your transposition.

It's not quite that easy. I've done one of these operations, and it was difficult finding t e. And, again, here is on the opposite side, you can see the transposition in this cartoon.

Dr. Berguer is the world's expert, and a lot of this open surgical work comes out of the University of Michigan. Here is a study looking at 369 consecutive extracranial vertebral artery reconstructions. You can see the demographics of clinical presentation.

And note that about 34% of patients are presenting with hemispheric symptoms, with 60% in the vertebral basilar distribution. 300 of these reconstructions were for atherosclerosis. And the outcomes were pretty good. Before 1991, there wasn't really a protocol in place

in assessing and doing these procedures. And you can see the stroke and death rates of 4.1 and 3.2% respectively. And then the outcomes after 1991 are considerably better with a five year patency rate of 80%. So, in summary, vertebral artery disease is,

I think if you review this, is somewhat under diagnosed. Revascularization is a viable option. Most often, it's endovascular. But if you have endo-hostility, then an open, particularly for the V1 segment, may be a better option.

And this requires people with good operative experience. Thank you very much.

- I'll address a recipe for functional and financial success with smoking cessation for our tobacco addicted patients. We're all very acutely aware of the financial, physical and psychological devastation of tobacco. For our vascular patients it's the most important modifiable risk factor.

Most vascular patients have a high level of initial smoking, it's characterized by failed efforts, and there really are very rare evidence-based cessation programs in place. This was confirmed recently by a publication, American Heart or the PORTRAIT Trial.

I said to myself, "well if I wanted to do counseling "I should have been a psychologist "but I want to be a surgeon, I like to operate." And operating vascular surgery we do, at the middle point of my career

it felt like a revolving door. The right carotid, the left carotid, the left fem-pop, the right fem-pop. And a little more senior in my career as I started the restenosis I felt like I was doomed to the myth of Sisyphus where I just

have to keep pushing that rock up to the top of the hill, only to have it roll down again. I submit to you that if all we do is operate for our patients, our field will be disrupted the same way our cardiac surgical colleagues

have been disrupted. A few years ago, Medicare and many private insurances assigned a payment to smoking cessation counseling, that a ICD10 diagnosis needs to be linked to a tobacco disorder, like vascular disease. Their time based codes for intermed and extensive--

the 99406 is 3-10 minutes, the 99407 is greater than 10 minutes. Now, if you link that to Medicare dollars, it's pretty meager, at $38 per RVU, that's $9 and $19 at additional, respectively. Say your hospital employ at $50 an RVU,

that ups a bit to $12 and $25, respectively. And that's how before you read the Medicare guidelines they say that you have to document that a patient is mentally competent, it needs to be done by a physician or Advanced Care Provider.

You get two attempts per year, four sessions per attempt, or eight sessions per year. About this point I felt like I was reading out of this book instead of the Medicare guidelines. But there is a recipe, and I think it's an important recipe. What we do is put take-away literature

printed ahead of time, in all the patients' rooms, including our online resources, we have the prescriptions and pads pre-printed, and then we have the templates of electronic documentation so we're able to claim the payment for the work that we do do.

We point out to our patients the benefit of smoking cessation, we rely heavily on the CDC website for resources, and the pharmacotherapy really boils down to three:

you need to be careful that you don't double up on your patients who are smoking. Zyban is mor it's basically an extended-release antidepressant and it works on the craving related chemicals in the brain.

It reduces withdrawal symptoms and cravings. You need to start it a couple weeks in advance. You have to be careful with drinkers or cirrhotics, people who have seizures or prior head injuries, and anyone with a psychiatric history. Chantix is the most successful,

it interferes with the nicotine receptors, it lessens the pleasure, and reduces withdrawal symptoms. You also need to start this in advance of cessation efforts. It has GI, headache, sleep disorders, seizures, mood changes, and it got a black-box warning for

suicidal ideations and suicide. Now, at the Harvard School of Business, professor Christensen pointed out that if all we do is operate, we'll be at risk to be disrupted, and he's done business analysis, so he's successful and he's got collabs, such as

Borders, Detroit Auto, stock brokers, and travel agents, and I submit vascular surgeries on that list. He points out that high achievers are the most vulnerable that's because all we do is focus on the highest ROI, that would be that all we do is operate. So how can we avoid being devoured by the next disruptor,

whether it's a cardiologist, new technology, or an overbearing hospital administrator? And he describes this as he evaluates healthcare by saying "What we need to do is focus on the job to be done." We need to say "What does a patient need from us?", not frame them with our attributes.

So we should say they hire us to fix their broken blood vessels, and we should do this whether it's a scalpel, prolene, a stent, a statin, or Chantix. I have (mumbles), but I submit that if we answer what the patient needs, and not what we do for them

that will leave us in a position of leadership where we can make important contributions for our patients.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.