Create an account and get 3 free clips per day.
Chapters
Thrombus, Filter Removal|Removal from Large Sheath|62|Male
Thrombus, Filter Removal|Removal from Large Sheath|62|Male
2016anticoagulateclotfilterretrieveSIRthrombose
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
The Procedure - Creating a Deep Fistula | Pecutaneous Creation of Hemodialysis Fistulas
anastomosisarteryAvenu MedicalballoonbrachialcephalicchaptercreationdeviceEllipsysFistulaflowflowinglinesneedleperforatingperforatorpiccproximalpuncturepuncturedradialsurgicalultrasoundvein
Why is Staging Important | Interventional Oncology
Why is Staging Important | Interventional Oncology
ablateablationangiogramchapterhepatocellularhyperintensityMRIshapedtumor
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
acuteangiogramassistedcatheterchapterchroniccontrastdiagnosticechocardiogramembolismisisNonepressurepulmonarythrombolysistreatmentultrasound
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
Therapies for Acute PE | Management of Patients with Acute & Chronic PE
anticoagulantanticoagulationcatheterchapterclotcoumadindefensesdirectedheparininpatientintermediatelovenoxNonepatientpatientsplasminogenprocessriskrotationalstreptokinasesystemicsystemicallythrombectomythrombolysisthrombustpa
Rheolytic Thrombectomy | Management of Patients with Acute & Chronic PE
Rheolytic Thrombectomy | Management of Patients with Acute & Chronic PE
angioangiojetarrhythmiaaspiratebradycardiachapterclotdevicehemodynamicheparinizedlysisNonepatientsuctionthrombectomytpawebsite
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
The Case that Launched the Cornell PERT (PE Response Team) | Pulmonary Emoblism Interactive Lecture
adventitiaangiogramaortaarteryaspiratedbloodcatheterschapterclotdysfunctionFistulafrontalhemorrhagehypotensionhypoxiaintracraniallobelungPE in right main Pulmonary Arteryperfusionpertpigtailpressorspulmonarypulmonary arteryresectionselectivesheathspinsystolictachycardicthrombustpatranscranialtumorventricle
Case Example | Management of Patients with Acute & Chronic PE
Case Example | Management of Patients with Acute & Chronic PE
acuityafibangiogramanticoagulationarterycatheterchapterclotCTEPHdistallyDVTimagesincisionleftlobelowerNoneoperationpatientspressurespulmonarypulmonary arterysegmentalstenosisthrombusuppervessels
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
Percutaneous Mechanical Intervention | Management of Patients with Acute & Chronic PE
catheterchapterclotmassivemechanicalNonepatientpatientsPig Tail Catheterpigtailpulmonarysurgerythrombolytictpa
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
Overview of Biliary Disease at John's Hopkins | Biliary Intervention
accessangiogrambiliarychaptercolonoscopyendoscopicercphopkinsinterventionlandscapeliverpercutaneouspracticequestionspecialtiesspecialty
CME
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
TIPS Case | Extreme IR
TIPS Case | Extreme IR
antibioticsascitesbacteriabilebiliarycatheterchapterclotcolleaguescommunicationcovereddemonstrateddrainageductduodenal stent placementfull videoportalrefractoryshuntsystemthrombolysistipstunnelultrasoundunderwentvein
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Techniques for Treating Stroke | Neuro-Interventions
Techniques for Treating Stroke | Neuro-Interventions
Ace 68anatomyAXS Catalyst 6balloonballoon guide catheterbraincarotidcathetercatheterschapterclockclotclotscoaxialdistalDistal access cathetersguideguide catheterguidecathshardneckneuroNeuron MaxpressureretrievesheathsSolitair Revascularization Devicestentstent retrieval devicestroketechniquetechniquesthrombectomyTrevo XP Pro Retrievervessels
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
Aspiration Thrombectomy | Management of Patients with Acute & Chronic PE
angioAngiodynamicsAngiovac CannulaAspirex CathetercatheterschapterclotdevicedevicesfrenchIndigo ThrombectomyNonepatientPenumbraPenumbra Inc.sheathStraub Medicalthrombectomythrombustpa
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Case- Stroke - 64 year old male | Neuro-Interventions
Case- Stroke - 64 year old male | Neuro-Interventions
angiogramarteryaspirateballoon catheterbasalbraincathetercerebralchapterclotcollateralscontrolsdeployinggangliaimageinfarctedlabeledpatientperfusionpullretrieverstentstent retrieverstroketechniquevessel
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
Intra Procedure | Transforming from Clinical IR to Clinical Trials with Tirapazamine (TPZ)
anesthesiaangiographyartifactassistedbeamchaptercombconedrawsekgelisaembolizationequipmenthcchepatocellularimaginginjectioninterventionalintraoperativemedicalNonenurseoximetrypatientphotopositioningprotectedradiologysedationspecialtiesspecialtystopcocksyringetechnologisttomographytumor
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
Most common IR procedures and disease in China | Across the Pond: The state of Interventional Radiology in China
ablationbiliarybiliary cancercancerchapterchinacirrhosisfactorsgeneticguyshcchepatitisinterventioninterventionalistsInterventionslargestlifestylelunglung cancerneuropiccprevalentproceduresmokingsocietaltrained
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Massive PE | Pulmonary Emoblism Interactive Lecture
Massive PE | Pulmonary Emoblism Interactive Lecture
adenosineangiobloodbradycardiacatheterchaptercontraindicateddevicedirectedhypotensioninpatientinterventionalistsmassivematsumotopatientsPenumbrasurgicalsystemictherapythrombolysisthrombolyticthrombolyticsventricle
Submassive PE | Pulmonary Emoblism Interactive Lecture
Submassive PE | Pulmonary Emoblism Interactive Lecture
anticoagulationbleedingcategorycathetercatheterschapterclotdecompensatedhemodynamichemorrhagehypoxicinterpretintracraniallobemassivemilligrammortalitypatientsplacebopressorsradiopaqueratesystemicsystolictenecteplasethrombolysistpatrial
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Transcript

What about thrombose at a time of filter retrieval. So this is a 62 year old man with filter placement. Documented DVT, PVE. And patient's back about three weeks after. And patient had a filling defect right within the filter. So what to do at this point. So we can actually attempt to retrieve at this point, or because

it's small, or you may anticoagulate and retrieve it later, or just leave the filter as a permanent. So we decide to wait two more weeks to retrieve the filter, an the clot actually got a little bigger. But overall clot was not too big to retrieve so I use the larger sheath, retreat, and that was an organized thrombose. Some of the

thrombose within the filter may not really go away depending on the nature of the thrombose obviously. So you have to make a decision, if it's big which is the next case

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

here a little bit okay the ellipsis device Avenue medical from California developed by Jeff Howe in Richmond ultrasound imaging only don't need

fluoroscopy everybody in the room like staff they'd off to where lid you advance the needle into the either the very distal cephalic vein or through the actual perforator under ultrasound and once you're there you

follow the tip of the needle keeping it in the center of the lumen of the vein under ultrasound guided down to the point where it's just adjacent to the radial artery and then once you're adjacent to the radial artery this may

take a little bit of torquing of the needle but you know even putting in PICC lines for what 15 years 20 years so it's nothing not more difficult than that which is you know why I tell the fellows do the PICC lines you're not doing the

PICC lines just to do pickle and you're doing them so you can do these kinds of procedures then you puncture the radial artery then you get arterial blood flow you put a wire down and you get a sheath down and you put the device down I'll

show you the device in just a second it's called tissue welding it's an electronic device that creates a anastomosis doesn't really succumb to any problems with vascular wall calcifications usually takes just 30 to

45 minutes I did the last one the other day in 15 minutes and angioplasty the anastomosis immediately following the creation of the fissure with a 5 millimeter 1/8 balloon of your choice here's the device you can see it opens

up there's like a little bit of a window there and so it goes down through the vein it crosses over into the artery you're able to see this under ultrasound you position that window as you see on the right with the artery and wall the

vein artery vein and artery walls between that space and then the debate the device closes down on them then the machine will give you a reading of what the distances you push to the button and you got a fistula and it's very pretty

straightforward then you go ahead and balloon that with a five millimeter balloon to make sure the anastomosis is open and running and that's it then you pull out and you can compress with one finger you know on the vein and here's a

look at the the anatomic and that's office Jilla that it does create you know you don't mobilize there's no surgical trauma patient goes home with a couple of band-aids here's a dissection with ultrasound of the area that you're

working in there on the right you can see the perforator coming down it's sitting over the PRA the right proximal radial artery and that's right where you're going to make your puncture from one vessel into the other and this is

what you're left with on the left of course you see a big surgical scar from a prior creation of probably in the brachiocephalic fistula and on the right you can see the very prominent cephalic vein after fish through the creation

which is getting ready to to be punctured here's the illustration of what you've just done again perforating vein going down towards the radial artery create the fish stool and now you have a brachial artery down radial

artery so you have a radial proximal radial perforating vein fistula I don't know whether it hopefully it goes up the cephalic vein if it goes up the basilic vein you may have to consider doing transpositions or elevation to get that

vein in a position of yeah so that it can't be punctured here's another ultrasound from one of our cases again showing a nice you know red to blue flow of the fistula here's another one you know I have to see these a while you say

wow it's really pretty amazing and what we do is we get velocity measurements at the time of the procedure one week later then at four weeks later and at four weeks if they're not flowing at least 500 to 600 cc's a minute then we'll go

in and do a secondary balloon or something to get things going there's that same patients actually this is our patients arm it's a different patient and you can see the flow map there and when you see that diastolic component

got halfway up the systolic that means you're flowing at about 600 500 to 600 cc's a minute it's a good indication that you've got a you've created a fistula with working potential if you have to re intervene it's a radial

puncture you go right up the the radial artery I'm sure your dad is familiar with doing that for the most part and that goes right across that and ask Tomo system so if you have to dilate the anastomosis to get a larger you're in

good position if you have to go up and redirect flow by embolization of small collaterals nor the brachial veins now you can do that all from the the radius it's nice highway right up into the fistula

and here's the results of the FDA trial

so why staging important well when you go to treat someone if I tell you I have a lollipop shaped tumor and you make a lollipop shape ablation zone over it you have to make sure that it's actually a lollipop shaped to begin with so here's

a patient I was asked to ablate at the bottom corner we had a CT scan that showed pretty nice to confined lesion looked a little regular so we got an MRI the MRI shows that white signal that's around there then hyperintensity that's

abnormal and so when we did an angiogram you can see that this is an infiltrate of hepatocellular carcinoma so had I done an ablation right over that center-of-mass consistent with what we saw on the CT it

wouldn't be an ablation failure the blasian was doing its job we just wouldn't have applied it to where the tumor actually was so let's talk about

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

happy to take any questions or in

ultrasound we don't usually use contrast but one of the procedures were doing for the treatment management of a pulmonary embolism is the ultrasound assisted Rumble Isis do we need contrast so for the thrombolysis is the catheter itself

so you still need to give contrast two to do the procedure but while the catheter is running you don't need to give any contrast four for that is that what you're we don't usually use contrast for ultrasound but

all right when you're treating how will you know that it sliced the clot is less what you frequently do is check the pressures so that catheter allows you to check the pressure and so once you start a patient so you do a pulmonary

angiogram which requires contrast and you put the ultrasound assisted thrombolysis catheter in the eCos catheter then after 24 hours or 12 hours you can measure a pressure directly through that catheter and if the

patient's pressure is reduced you don't have to give them anymore injections yeah and if we are using ultrasound for treatment is it possible to do it for diagnostic purposes No so not for non the prominent artists for

diagnostic imaging unless you're doing an echocardiogram which is technically ultrasound in the heart but for treatment otherwise you need you will need to inject some dye oh thank you

hi I'm Katrina I'm NGH I have one more question okay for your patients with chronic PE do most of them begin with acute PE or if they very separate sort of presentations that's that's a great question so all of them

had acute PE because you can't have chronic without acute but a lot of them are not ever caught so you'll have these patients who had PE that was silent that maybe one day they woke up and had a little bit of chest pain and then it

went away couple days later they thought they had a bronchitis or a cold and then you find out five years later that they had a huge PE that didn't affect them so badly and then they have these chronic findings they usually show up to their

family practice doctor again with hey I just can't walk as far as I can I have a little heaviness they rule them out from a heart attack but it turns out that they have CTF so you you all of them had a Q PE but it takes a lot of time and

effort to find out whether they truly have chronic PE so it's usually in a delayed fashion thank you all right well thank you guys again appreciate it [Applause]

PE the first one of course is

anticoagulation so heparin and bridging the patient to coumadin or now aid a direct oral anticoagulant is really the mainstay of treatment most patients again 55 percent of patients with PE have low risk PE all of those patients

should be on according to the chest guidelines three months of anticoagulation so they're gonna get heparin as an inpatient if they even need it and they're gonna get sent home on lovenox bridge to coumadin or they're

gonna get the one of the new drugs like Xarelto or Eliquis but here's all the other things that we do so these patients that are in the intermediate high risk so I'm gonna try to keep saying those terms to try to kind of put

that in everyone's brain because I think the massive and sub massive PE is what everyone used to talk about but we want to keep up with our colleagues in cardiology who are using the correct terminology we're gonna say high risk

and an intermediate but in those patients - intermediate high risk or Matt or the high risk PE patients we're gonna be treating them with systemic thrombolysis catheter directed thrombolysis ultrasound assisted

thrombolysis and maybe some real lytic and elected me or thrombectomy there's other techniques that we can use for one-time removal of clot like rotational and electa me suction thrombus fragmentation and then of course

surgical mblaq t'me so when anticoagulation is not enough so I like to show this slide because it shows the difference between anticoagulation and thrombolysis they are very different and sometimes I think everybody in this room

understands the difference but I think our referring providers don't and so when we when we get consulted and we recommend anticoagulation they're like yeah TPA well that's not the right thing so anticoagulation stops the clotting

process so when you start a patient on a heparin drip they should theoretically no longer before new thrombus on that thrombus so when you have thrombus in a vessel you get a cannon you get a snowball effect more

and more thrombus is gonna want to form heparin stops that TPA however for thrombolysis actually reverses the clouding process so that tissue plasminogen activator or streptokinase or uro kindness will actually dissolve

clot so there you're stopping new clot forming versus actually dissolving clot anticoagulation allows for natural thrombolysis so your body has its own TPA and so when you put a patient on heparin you're allowing your natural

body defenses to work you're giving it more time TPA accelerates that process so you give TPA either systemically or through a catheter you're really speeding up that process anticoagulation on its own has a

lower bleeding risk you're putting a patient on heparin or Combe it in it's it is less but it is still real thrombolysis however is a very very high bleeding risk patients when I when I consult a patient for thrombolysis I

tell them that we are about to do give them the absolute strongest blood clot thinning agent or an reversal agent which is the TPA and we're gonna just run it through your veins for hours and hours

um and that sort of gives them an idea of what we're doing anticoagulation in and of itself is really not invasive you just give it through an IV or even a pill thrombolysis however is given definitely through an IV through

systemic means and a large volume there thereafter or catheter directed so again

access reowww lytic thrombectomy or the angio jet device which is the most frequently used device for this what it does is basic disrupts the clot by shooting out TPA

embeds it into the clot and then you suck it up using suction thrombectomy using the venturi effect and you aspirate some of the clot and you can see that here that's a picture from I think the angio jet website the benefit

is that it can be you can use it without TPA and just use the suction thrombectomy mode with heparinized saline and that can be helpful to help break up some clot the drawbacks is that it has a black box warning from the FDA

so we do this every once in a while in the right patient but this is definitely not recommended by the company or anyone for that matter but it does work in some cases and the main reason is that the the vibrations caused by the device can

cause significant bradycardia in addition to the bradycardia that you get from red blood cell really lysis that you get with these devices so you actually couldn't cause arrhythmia on top of bradycardia which sounds like a

bad a bad combination and these patients can get hemodynamic collapse and die right on the table just cuz you turned on the device so that being said we've all I think done it once or twice I've seen I've only done it once and I never

do it again because a patient coded one of my colleagues did it on a patient because the patient was already coding said well what's the harm and that patient survived they did better actually because we were able to break

up the clot so I will say that if you do it and the patient doesn't do well you really don't have a leg to stand on because right on the cover of the packaging it says do not use in the pulmonary arteries aspiration

let me show you a case of massive PE

this launched our pert pert PE response team 30 year-old man transcranial resection of a pituitary tumor post-op seizures intracranial frontal lobe hemorrhage okay so after his brain surgery developed a frontal lobe

hemorrhage and of course few days after that developed hypotension and hypoxia and was found to have a PE and this is what the PE look like so I'll go back to this one that's clot in the IVC right there and

that's clot in the right main pulmonary artery on this side clot in the IVC clot in the right main pulmonary artery systolic blood pressure was around 90 millimeters of mercury for about an hour he was getting more altered tachycardic

he was in the 120s at this point we realized he was not going the right direction for some reason the surgeon didn't want to touch him still to this day not sure why but that was the case he was brought to the ir suite and I had

a great Mickey attending who came with him and decided to start him on pressors and basically treat him like an ICU patient while I was trying to get rid of his thrombus so it came from the neck because I was conscious of this clot in

the IVC and I didn't want to dislodge it as I took my catheters past it and you see the Selective pulmonary and on selective pulmonary angiogram here and there's some profusion to the left lung and basically none to the right lung

take a sheath out to the right side and do an injection that you see all this cast of thrombus you really see no pulmonary perfusion here you can understand why at this point this man is not doing well what I did at this point

was give a little bit of TPA took a pigtail started trying to spin it through aspirated a little bit wasn't getting anywhere he was actually getting worse I was starting to feel very very nervous I had remembered for my AV

fistula work that there was this thing called the cleaner I don't have any stake in the company but I said you know I don't have a lot to lose here and I thought maybe this would be better than me trying to spin a pigtail through

the clock so the important thing about the cleaners it does not go over a wire so you have to take the sheet out then take out the wire then put the cleaner through that sheath and withdraw the sheath

you can't bareback it especially in the pulmonary circulation the case reports are poking through the pulmonary artery and causing massive hemorrhage and the pulmonary artery does not have an adventitia which is the outer layer just

a little bit thinner than your average artery okay so activated it deployed it and you started to get better and this is what it looked like at the end now this bonus question does somebody see anything on this this picture here that

made me very happy on this side this picture here that made me feel like hey we're getting somewhere I'm sorry the aorta the aorta you start to see the aorta exactly and that that was something I was not seen before the

point being that even though this doesn't look that good in terms of your final image the fact that you see filling in the aorta and mine it might have been some of the stuff I had done earlier I can't I can't pinpoint which

of the interventions actually worked but that's what I'm looking for I'm looking for aortic blood flow because now I've got a hole in that in that clot that's getting blood flow to the left ventricle which starts to reverse that RV

dysfunction that we were concerned about make sure I'm okay with time so we'll

so I'm gonna show an example this is a 57 year old male who presented with a dis neo

he had World Health Organization functional class 3 meaning it's significantly affected his life he can't walk up the flight of stairs really tired walking from the parking lot of his favorite restaurant back to this car

can't really walk around the grocery store he had a history of DVT and PE also had afib he actually went to the ER and was diagnosed with upper respiratory tract infection which many of these patients are they've put him on

antibiotics then for pneumonia he had a VQ after one of his doctors just felt like he just wasn't getting better and it found multiple mismatch defect I'm sorry I don't have those pictures he was actually started on home oxygen after

all of that work up it was found that he had CTF and this required I think three different hospital visits and every time got kicked up to sort of a higher acuity place and then he ended up at our place so these are his pulmonary angiogram

images here I don't know if I can play these but the still images kind of show you that the images on the right show that there's basically no vessels going out distally so I mentioned pruning of vessels there's no branches in the right

upper lobe if you look at the right lower lobe at the tip of the catheter there's areas of stenosis right where the segmental arteries start and on the left you can see that the left pulmonary artery is denuded essentially the entire

left upper low branch is excluded by a rim of thrombus and in the left lower lobe the image on the bottom my bottom right there's actually no branches going to the left lower lobe into the lingula so this is a patient that has had very

bad CTF their main the pulmonary artery pressures are listed there of 77 where the normal high is 25 so three times the normal pulmonary artery pressure so this patient went on to an operation so the image on the right the photograph is

actually the clot that they removed from the operation and that patients pressures improved from 77 to 22 immediately after the operation so they go to the ICU they have a swan-ganz catheter left in place and you can

measure their pressure right afterwards and you can see that that clot they grabbed it it looks like a bunch of fingers well what they do is they crack the chest open like with a mini sternotomy they make an incision in the

pulmonary artery after they put them on bypass and then they basically grab they use they're a little deBakey's the DeBakey forceps and they grab this little elevator and they just start scooping

out the clot and they try to grab it as one big piece take it out and then you get that nice photograph on the side if they break off pieces it's actually worse because that's an area that a pulmonary artery dissection can occur so

it's a very complex operation but you get very nice results and afterwards these patients are sent home usually on lifelong anticoagulation thereafter so

catheter some other things that we can do is mechanical intervention so if you have a patient usually with massive PE

or the inner or the high-risk B you got to do something to help them out so what we do is put a pigtail catheter and inject a little bit of TPA on the table and then twirl the pigtail or put a wire through the side part of the pigtail and

make it sort of a mechanical fragment fragmentation the problem with that is that fragmented clot goes downstream so when it's in a main pulmonary artery it actually has less surface area than it is when it is in a distal pulmonary

capillary so when you break that clot up you have to be careful because it can actually make the patient worse the benefit there there's no thrombolytic so if we're doing this we we generally are doing it in patients who can't either

receive TPA at all frequently we get patients with who have have had recent spine surgery who get a massive PE had brain surgery get a massive PE and you have to try to treat them without any TPA or even heparin the drawbacks are

that again it increases pulmonary vascular resistance by sending all those little pieces of clot into the small pulmonary arteries and capillaries and it makes it actually much worse in some patients again there's no control trials

and sometimes you need to have a bigger

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

good afternoon thank you so much for invitation to speak to you I have a privilege of working at Johns Hopkins and we have a fairly large practice we at the main hospital itself we have 11 rooms and during a day about two of them are have a biliary case actually going

on at the same time so it's actually a fairly large volume of our practice and so the gamut of bluie intervention goes from really simple stuff to really complex and it is something that our trainees specifically will come to

Hopkins for and many of times they will end up being the blurry and experts as soon as they arrive at a new practice so certainly it's something that we deal with every day I just wanted to give you a landscape overview and share some good

cases that we've done and hopefully you may something have some comments or learn something about the way we do it but I'm pretty sure throughout the country a lot of great Billu work has been done currently there's no question

though the Blooey access and access to the Blooey system has really been played out in most hospitals perth by GI and ir and obviously surgery but almost a lesser so today and the rat in at least four IR is the PTC PPD or transparent

Col angiogram but it's actually a recurring role and I actually speak and have a sort of special interest in transit paddock colonoscopy as well so we play scopes through the skin through the liver and do a lot of balloon

intervention I'll show you a few cases like that but in true these access points are germane to what specialty you come from and obviously endoscopic beeper oral and if you eye are usually usually through the skin and there's no

question GI now in some hospitals I'm sure you have advanced endoscopy that will go through the stomach straight into the leftover liver so there's no question of a blurry landscape is changing quickly but no question that

this is quite common but yet most patients and internal medicine specialties will be looking at blurry disease by access point through scopes through ercp so going back from the Duden up or directly through in there's

advantages disadvantages something it's fairly obvious to everybody that you know no question is selling it to a patient if it had both choices that ERCP through the mouth and nothing invasive nothing sticking out their body

is attractive yet the outcomes are very similar but nonetheless there's pros and cons and through the trance of had a crap or two percutaneous route you do definitely have tubes at least sticking out

initially and this is often solved by GI as the main differentiator at least a discomfort but yet we are able to address almost every problem at times and often where'd they pay a lot there's

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

thank you so much for inviting me and to speak at this session so I'm gonna share with you a save a disaster and a save hopefully my disclosures which aren't related so this is a 59 year old female she's lovely with a history of locally advanced pancreatic cancer back in 2016

and and she presented with biliary and gastric outlet obstructions so she underwent scenting so there was a free communication of the biliary system with the GI system she underwent chemo and radiation and actually did really well

and she presents to her local doctor in 2018 with ascites they tap the ascites that's benign and they'll do a workup and she just also happens to have n stage liver disease and cirrhosis due to alcohol abuse in her life so just very

unlucky very unfortunate and the request comes and it's for a paracentesis which you know pretty you know standard she has refractory ascites and because she has refractory ascites tips and this is a problem because the pointer doesn't

work because a her biliary system is in communication with the GI system right so there's lots of bugs sitting in the bile ducts because of all these stents that have opened up the bile duct to list to the duodenum and so you know

like any good individual I usually ask my colleagues you know there's way more smart people in the world than me and and and so I say well what should I do and and you know there was a very loud voice that said do not do a tips you

know there there's no way you should do a tips in this person maybe just put in a tunnel at drainage catheter and then there was well maybe you should do a tips but if you do a tips don't use a Viator don't use a covered stand use a

wall stunt a non-covered stunt because you could have the bacteria that live in the GI tract get on the the PTFE and and you get tip situs which is a disaster and then there was someone who said well you should do a bowel prep you

like make her life miserable and you know give her lots of antibiotics and then you should do a tips and then it's like well what kind of tips and they're like I don't know maybe you should do a covered said no not a covered tonight

and then they're you know and then there was there was a other voice that said just do a tips you know just do the damn tips and go for it so I did it would you know very nice anatomy tips was placed she did well

the next day she has fevers and and her blood cultures come back positive right and you can see in the circle that there's a little bit of low density around the tips in the liver and so they put her on IV antibiotics and then they

got an ultrasound a week later and the tips that occluded and then they got a CT just to prove that the ultrasound actually worked so this really hurt my gosh to rub it in just to rub it in just just to confirm that your tips occlude

it and so you know I feel not so great about myself and particularly because I work in an institution that defined tip seclusion was one of the first people so gene Laberge is one of my colleagues back in the day demonstrated Y tips

occludes and one of the reasons is because it's in communication with the biliary system so bile is very toxic actually and when it gets into the the lining of the tips it causes a thrombosis and when they would go and

open these up they would see green mile or biome components in the in the thrombus so I felt particularly bad and so and then I went back and I looked and I was like you know what the tips is short but it's not short in the way that

it usually is usually it's short at the top and they people don't extend it to the to the outflow of the hepatic vein here I hadn't extended it fully in and it was probably in communication with a bile duct which was also you know living

with lots of bacteria which is why she got you know bacteremia so just because we want to do more imaging cuz you know god forbid you know you got the ultrasound of her they because she was back to remake and

you know that and potentially subject they got an echo just to make sure that she doesn't have endocarditis and they find out that she has a small p fo so what happens when you have a thrombosed tips you go back in there and you do a

tips or vision you line it with a beautiful new stent that you put in appropriately but would you do that when the patient has a shunt going from one side of the heart to the other so going from the right to the left so sort of

similar to that case right and so what do we do so I you know certainly not the smartest person in the room we've demonstrated that so I go and I asked my colleagues and so the loud voice of saying you know I told you this is why

we don't practice this kind of medicine and then there was someone who said why don't we anticoagulate her and I was like are you kidding me like you know do you think a little lovenox is gonna cure this and then the same person who said

we should do a tunnel dialysis tile the tunnel drainage catheter or like a polar X was like how about a poor X in here like thanks man we're kind of late for that what about thrombolysis and then you

know the most important WWJ be deed you guys are you familiar with that no what would Jim Benenati do that's that's that's the most important thing right so so of course you know I called Miami he's you know in a but in a big case you

know comes and helps me out and and I'm like what do I do and you know he's like just just go for it you know I mean there are thirty percent of the people that we see in the world have a efo it's very small and it probably doesn't do

anything but you know I got to tell you I was really nervous I went and I talked to miner our colleagues I made sure that the best guy who was you know available for stroke would be around in case I were to shower emboli I don't even know

what he would do I mean maybe take her and you know thrombolysis you know her like MCA or something I don't know I just wanted him to be around it just made me feel good and then I talked to another one of my favorite advisors

buland Arslan who who also was at UVA and he said why don't you instead of just going in there and mucking around with this clot especially because you have this shunt why don't you just thrown belay sit and then you

know and then see what happens and so here I brought her down EKOS catheter and I dripped a TPA for 24 hours and you know I made her do this with local I didn't give her any sedation because I wanted and it's not so painful and I

just wanted her to be awake so I could make sure that she isn't you took an intervention location you turned it into internal medicine I I did work you know that's that's you know I care right you know we're clinicians and so she was

fine she was very appreciative I had a penumbra the the the Indigo system around the next day in case I needed to go and do some aspiration thrombectomy and what do you know you know the next day it all opened up and you can still

see that the tips is short the uncovered portion which is which is you know past the ring I'm sorry that which is below the ring into the portal vein is not seated well so that was my error and and there was a little bit of clot there so

what I ended up doing is I ended up balloon dilating it placing another Viator and extending it into the portal vein so it's covered so she did very

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

techniques so you know this is where our whole team is getting involved it's you're scrubbing in I'm scrubbing in and and prepping I'm doing the lines

everyone's just again shaving minutes off at that time and I try to look at the imaging to to guide how I'm gonna go up into the neck yeah that was one thing that was hard for me when I started a few years ago to be to get stable access

in the neck and so I learnt have to learn all these new catheters and techniques and so I learned about arch anatomy so the first thing is is you can have different types of aortic arches and it looks easy that image looks like

oh yeah it's easy for me to get my catheter and one of those vessels but actually it's it's really really hard your catheter just want to push out in order to get something stable it's really hard so that was a whole

technique part of learning that I was I thought was probably the hardest thing is stroke but you can see what my guys kind of taught me is the coaxial technique so there's no wider exchanges there's nothing like that everything and

this saves some time you basically you have an 8 French long sheath and you have a guide catheter and a wire and literally everything just rails up so you can get up and you can see in this video it's a little hard to see but

there's a little there's a catheter going there then I'm pushing that up and then there's another bigger catheter down below that's a balloon guide catheter and so that's gonna go up that there's no there's no exchanging there's

no like working with exchange length wires and things like that you can just get everything up there really quick you can see these angles look kind of tough I mean that's where things get pushed out and everything and but once you kind

of learn the catheters and everything it gets it gets a lot easier now I'm a Ford okay so and then everything we have these stroke packs I mean everything the last thing you want to do is be thinking about what do I

need to open up what do I so we have everything kind of just laid out this is how we're gonna do it now there's different sizes and things like that but really most of the things are all there and here's the coaxial technique I

mentioned you know this is something that in the body sphere we don't really do that much you're using two E's and stuff like that appropriately but in cardiac and in neuro it's very important to have like no bubble-free lines closed

systems and this this having this coaxial technique really speeds things up so that's the catheter 2e and the balloon guide catheter and you know it work this is kind of our lab where we do our neuro cases and it can be it's

pretty stressful during a narrow case because everyone's just kind of on there going as fast as they can but you know this is how our setup usually is we try to have two Doc's in there if we can during the day it kind of helps and then

our techs also really enjoy we have fun and stuff like that so that's during one of the neuro cases and ideally we'll have two Doc's and two texts scrubbed in so it's a lot but it does help with workflow so now once you get into the

neck then the other part of the procedure is the brain obviously you want to get the clot out now I knew some Anatomy when I started but it it it's really hard to think about the brain anatomy and because you're using biplane

you're using everything and everything overlaps I found these two pictures which is nice because this shows you you know the difference whenever you inject the carotid artery or you're gonna pacify the ACA and the MCA and those

vessels all overlap in both planes but this shows you a nice clot that's in the ACA so you can see the MCA and then a clot in the MCA so you can see the ACA so you it took me a little bit of time to like look at these pictures and

really you know define what vessel is what but once that one it just took cases to do now this is a balloon guide catheter we don't really use in the peripheral place either accept some people are

using it now in like Bertos and and car tows and things like that but on its a really nice catheter a lot of the data supports using a balloon guide catheter to be your base catheter and what it does is that balloon

inflates right there is the balloon and it stops the blood flow in your neck so you actually want to stop the blood flow when you're pulling the clot because that will be that will give you more chances of recovering the clot and then

also not letting the clock go distal more further into the brain so that's why this works this catheter is a little bit more bulkier I use it most of the time there's another one I use called neuron max and I kind of like the neuron

max more but this this both works pretty well now whenever this this little article here was actually it's a really good representation of why can we retrieve these clots and really all it is it sounds all fancy but you're

dropping the pressure before the clot and when you drop the pressure then they can suck in so all these devices you see that's all they're doing they're trying to increase the pressure gradient and and decrease the pressure behind the

clot so you can suck it in and you have these catheters distal axis catheters they're super expensive but they're really really necessary they let you go up the up the neck and this is what gets right on top of the clot and then you

have these thrombectomy devices now I mentioned this in 2001 UCLA created this kind of corkscrew looking thing you don't see this anymore because even though this video shows that it can retrieve clots it just would unravel so

you would pull it and the whole thing would unravel and you wouldn't really get your clot so it doesn't work like that in the video but it was the first of its kind then they basically changed the whole design to these stent

retrievers and stent retrievers is a stent that's attached to a wire it doesn't it doesn't detach so you literally step stent the clot and then you've pulled it then the clock gets incorporated into the stent and you pull

it and so that's what the technique is now using stent retrievers are just aspirating the clock and so here's how they deploy that's dent in there and after a little the time you can pull the stent again these videos are ideal

and that the whole clot comes down so that's a stroke thrombectomy and there's all these little intermediate catheters or whatnot in between to help you retrieve these clots these are the two ones that are mainly used there's more

on the market coming out but you got solitaire at rivo and again you get into the brain and then you know these neuro surgeons and neuralyzed IRS decided to create all these names for different techniques so you can see there there's

eight different techniques there's probably even more about how you can recover these clots seems kind of crazy but literally a lot of them are just doing the same thing and and I would say most operators now do adapt or do trap

and that's basically trapping or sandwich in the clock or just aspirating it which I'll show you both of those and got to know other things how to do carotid stenting things like that medical management these are things that

I'm still learning about one in my in my field in my experience

thrombectomy is another popular way of treating patients there's a lot of different aspiration catheters the SPX catheter is actually not available currently in the US but what it basically is I can have the rectum a

device that spins in such backlot the Indigo thrombectomy system from penumbra is a yet another device that sucks out clot I think many of us have used that it's kind of like a vacuum cleaner but usually more like a dust

hand vac where it's going to suck up thrombus the angio vac is much more like a Hoover where you're going to use and put a patient on veno-venous bypass that requires a 22 French sheath and a 17 French sheath but that will take out

thrombus I personally prefer using NGO vac in the IVC in big large thrombus for that and not in the pulmonary arteries because it's very inflexible but it's very very useful in a few patient populations in

all of these devices there is no TPA that needs to be given you're just sucking out the clot and you're actually removing it from the patient's body rather than dissolving it and sending it downstream the drawbacks on all of these

devices is their larger access points the SP or X is around six French although that's not that much bigger penumbra device is 8 French and the as we mentioned the angio vac is 22 French

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

well I'll kind of show you a case just to kind of show you what what it looks like and so when are you doing it an angiogram you can see that there's a

clot that that little vessel there's no pointer up here is there okay so the vessel that's going going to the right of the image that's the MCA and so there's a big clot there you should see all these other vessels that you kind of

see start filling in later those are the collaterals so that's what you see on the first image when you see those collaterals you know that okay that brain is probably still alive so let me get this clock so this is what happens

you basically get that little micro catheter up there and this is deploying the stent so in the middle that's deploying the stent and you just is basically pin pulls is pretty amazing a little tiny device so that's the stent

across the clot into the middle cerebral artery and then what you do and I labeled it here so you can see so you have that solitaire stent Retriever and then you have a base catheter intermediate catheter and then you have

that balloon guide so you can see all that work near there and this technique is when you pull the stunt retriever into the catheter so you literally pull it in now more people don't pull the whole thing

in they take it out as a unit called the trap or sandwich but this just shows you something like that and then you you do another image and there you go so that now you have the blood flow into the middle cerebral artery and it's pretty

it's a good feeling when you sit like okay you know obviously you're not how the woods get you're pretty much banking that that patient's brain is gonna be okay but usually it is and so say for this patient this was the perfusion map

so you see everything that's at risk there at the end of the case this was an MRI done the next day the the white area is what infarcted and that's okay that's your basal ganglia the patient will be asymptomatic because you just need one

so the whole other part of the brain which controls speech controls movements everything that is back so you know that's a good feeling this patient you know went home in two days and was fine versus before they were gonna you know

probably not be able to maintain independent lifestyle so here here this video is a little bit long when it shows you the ADAP technique which is just getting that catheter to the clot and we don't have to show it this one's like a

minute long but you just get the catheter to the clot and aspirate people are now trying to look at the data what's better using a stent Retriever or not and surprisingly it shows that the adaptor the aspiration technique is

working as well then you save a lot of money cuz those stent retrievers are really expensive technically it's kind of hard to get that clot the catheter up there at times but we're always mentioning Tiki scores

once we do a clot retrieval and the Tiki score just means perfusion we want three we're happy with A to C which is a new one or a two B anything below to be not that great and we consider it a failure even though all of these start off at

zero so we really want a to B or higher and grade three just means you have completely normal perfusion um so you'll see these people kind of all the docs I was like screaming like a tiki to to III that's what that

stuff means and just for a little

finally intraoperative considerations positioning for comb bean tpz photo

sensitivity EKG and lab draws and noting the time of tpz injection so i wanted to say a little bit about comb beam all right who has comb beam at their facility just a few less okay comb beam is medical imaging technique consisting

of x-ray computed tomography where the x-rays are divergent forming a cone the scanning software collects the data and reconstructs it producing what is termed a digital volume composed of three dimensional voxels of anatomical data

that can then be manipulated and visualized with specialized software on the left is a standard floral image and on the right is the comb beam so the red shows the vascular angiography the blue is a tumor and the yellow is a feeding

artery to the term or so dr. Abuja lays a B today is heavily involved with research so the procedure room with Combee was exclusively constructed for her so positioning for comb beam I believe

to be the bigger challenge initially comb being requires the patient to have their arms up high and using comb beam technology increases the procedural time it would be difficult for the patients to maintain that position and keep still

without anesthesia we started clinical trials with nurse assisted moderate sedation and soon learned it was very difficult the majority of our HCC embolization --zz are done with with sedation but we're

now using anesthesia for all of it so the lead in this case was Tom the radiology tech which assisted with the placement of the anesthesia equipment and patient positioning our anesthesia personnel are not only out of their

comfort zone in the I are sweet but unfamiliar with tpz trial and how the comb beam equipment rotates completely around the patient the patient is wearing two sets of leads one for anesthesia and the other for research

the leads are radio translucent to reduce artifact and imaging keeping the lid lid lead in the department took some getting used to one set got thrown away one set was found up in the ICU one set was on the

anesthesia equipment it was hard keeping track of our special equipment there so the pulse oximetry and blood pressure are on the lower extremities for cone beam again to avoid artifact and imaging when we first

started using cone beam the nursing staff administering sedation were disconnecting patients from monitoring so there were short interruptions with viewing vital signs it became risky and time-consuming to do

so during the procedure one set of EKGs triplicates are done just prior to tpz injection so the treat the EKG triplicates are basically they're two minutes apart in sets of three and lastly having to keep the tpz in a brown

bag and protected from light during the transfer nurse to position there's the photo on the left upper corner doctor busy day basically draws a tpz through a three-way stopcock under a sterile towel

while the nurse keeps the syringe in the brown bag poking a hole in the bag just to NIF to just enough to expose the tip of the syringe and attach it to the three-way this way the tpz is protected from light these reminder adjustments

however they were difficult from the standard and it took time for all the nurses and techs to adjust all right so this here is just a group photo Tom I've got Tyler on the right Thanh our technologist and ELISA and myself so I

thought this was a good photo to represent radiology many specialties consult two IR but it just isn't quite known yet by the general population and surprisingly by the medical staff as well there is a quote by dr. Rosa be

published quote the reason the public doesn't quite understand is we deal with so many disease entities and so many body parts it's hard to brand us unquote so I don't know if you guys were aware but interventional radiology is now its

own medical specialty so hepatocellular carcinoma is a primary malignancy of the liver and now the third leading cause of cancer deaths worldwide with over

you know the most common procedures in China this is kind of interesting I was blown away by this when I did the research on this I knew when I would go

into the hospitals and I was all over for I've been to Beijing shanghai nanjing to even the smallest little place is up in northern china and the one thing that blew me away I'm looking at the board and I'm seeing neuro case

after neuro case after neuro case I'm like it got 10 Narrows and and a pic line I'm like it's an interesting interesting Dysport of cases and the reason being is in China they consider diagnostic neuro

so neuro angio to be the primary evaluating factor for any type of neurological issue so you're not getting a CT if you come in with a headache you think you're gonna go get that cat scan now it's generally what not what they do

so you're talking about a case and I'll give you the case matrix of the break-up it's just proportionately high for a neuro very well trained in neuro and most of the guys that are trying to neuro very similar to what dr. well Saad

said a lot of the guys in Africa are trained in France so other neuro interventions have trained in France or lipstick in China and have received European training on that so you know the level of what they're doing some of

the stroke interventions some of the ways they're going after these complex APM's they'll Rob well anything you'll see here in the US so it is quite interesting to see and the second

largest is taste hepatocellular carcinoma is on the rise it's the highest level in the world is found in China and Korea for that matter and there's many reasons why we can go into it some of it is genetic factors and a

lot of societal factors alcohol is a very liberally lie baited in China and there is problems with you know cirrhotic disease and other things that we know could be particular factors for HCC so always found that very

interesting like I said I would go into a hospital and I'll see a PICC line a hemodialysis catheter and then 20 tase's on the board in one day so it is quite interesting how they do it and then biliary intervention stents tips and

then lung ablation you know the highest rates of HCC biliary cancer and lung cancer found in China and once again when we talk about lung cancer what are those contributing factors you're talking about certainly a genetic

component but mostly it's lifestyle factors smoking is prevalent in the US and in you know in Europe and in some areas in Asia we've seen obviously a big reduction in smoking which is fantastic China not so much you don't see that

it's a societal thing for them and unfortunately that has led to the the largest rates of cancer in the world in lung cancer so lung ablation is a big procedure for them over there as well so procedure breakdown this is kind of some

of that breakdown I was telling you about that cerebral procedure is some of the most commonly performed and you're talking about at very large numbers they're doing neuro intervention because they do it for die

Gnostic purposes and I would that kind of blew me away when I found out they do have cast scanners and certainly for trauma and things like that they'll do it but the majority of the stuff if you come in you have headaches you might end

up in the neuro suite so it's quite interesting how they can do that tumor intervention very high like I said you have the highest rates of HCC in the world you're getting cases they do have y9t available and in fact China just

made their largest acquisition ever with the by what you guys know a company they bought surtex there's a Chinese company now it got bought by China now the interesting is they don't currently have a whole lot of

y9t over there but they just opened up some of their own generators so they can actually start producing the white room 90 and I think you'll see probably a increase in those numbers of y9t cases but to date the number one procedure for

them is taste and they do a lot of them you know like I said on average a community hospital setting you might find 15 or 20 cases a day with three interventionalists so compared to what you guys do there's probably not many

people here unless you're working at a major institution that there's nothing but cancer doing 20 cases a day and I promise you're probably not doing it with only two interventionalists so it's amazing how fast and effective they've

gotten at and below therapy and unfortunately it is necessary because of those elevated HCC levels and like I said when we look at some of these things it's I go over there and I'm looking at the board there are very few

cases for you know PICC lines very few the frosted grams very new bread-and-butter abscess training procedures like we do here in the US they are very it's the prevalence is very simple it's neuro it stays and it's

biopsy and those are some kind of the big three for intervention in China and there it's such a large volume you get to learn a lot when you're over there and CLI PA D even though it's more prevalent in China than it is here

because smoking lifestyle factors certainly westernization of the diet in China which occurred since the 1950s and 60s has led to a lot of McDonald's and and fast food and things that weren't currently available prior to 1950s you

see a lot of PA d but it is very undertreated and certainly talking to some of my colleagues like whom are oh you'll get to see a little bit later on with CLI fighters one of the things that's kind of frustrating for them is

that it is so undertreated it's very common to see amputations in China instead of actually doing pipe in percutaneous intervention they normally like to go too far and you see a lot of amputation certainly above

normal so that's something I think as an interventional initiative when we look at these things coming from a Western perspective it's definitely something we need to pursue a little more aggressively but there it's very little

oh well you're talking about two you know two to three percent you know maybe up to six percent or PID cases very very low levels so equipment in equipment in

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

about massive PE so let's remember this slide 25 to 65 percent mortality what do we do with this what's our goal what's

our role as interventionalists here well we need to rescue these patients from death you know this it's a coin flip that they're going to die we need to really that there's only one job we have is to save this person's life get them

out of that vicious cycle get more blood into the left ventricle and get their systemic blood pressure up what are our tools systemic thrombolysis at the top catherine directed therapy at the right and surgical level that what

unblocked me at the left as I said before the easiest thing to do is put an IV in and give systemic thrombolysis but what's interesting is it's very much underused so this is a study from Paul Stein he looked at the National

inpatient sample database and he found that patients that got thrombolytic therapy with hypotension and this is all based on icd-10 coding actually had a better outcome than those who didn't we have several other studies that support

this but you look at this and it seems like our use of thrombolytics and massive PE is going down and I think into the for whatever reason that that the specter of bleeding is really on people's minds and and for and we're not

using systemic thrombolysis as often as we should that being said there are cases in which thrombolytics are contraindicated or in which they fail and that opens the door for these other therapies surgical unblocked demand

catheter active therapy surgical unblocked mean really does have a role here I'm not going to speak about it because I'm an interventionist but we can't forget that so catheter directed therapy all sorts

of potential options you got the angio vac device over here you've got the penumbra cat 8 device here you've got an infusion catheter both here and here you've got the cleaner device I haven't pictured the inari float

Reaver which is a great new device that's entered the market as well my message to you is that you can throw the kitchen sink at these patients whatever it takes to open up a channel and get blood to the left ventricle you can do

now that being said there is the angio jet which has a blackbox warning in the pulmonary artery I will never use it because I'm not used to using it but you talk to Alan Matsumoto Zieve Haskell these guys have a lot of experience with

the androgen and PE they know how to use it but I would say though they're the only two people that I know that should use that device because it is associated with increased death within the setting of PE we don't really know you know with

great precision why that happens but theoretically what that causes is a release of adenosine can cause bradycardia bradycardia and massive p/e they just don't mix well so

much more controversial so you it was pretty clear that we have to rescue

massive PD patients from death but with these statistics what are we supposed to do with sub massive PE well are we supposed to prevent mortality it's gonna be hard to do if the mortality is only 2 to 3% because you're trying to really

improvements of a very low statistic are you trying to reduce the rate of hemodynamic deterioration that's a possibility what about long-term disability if you remove clot upfront

will these patients do better six months one year or two years down the road frankly we don't know the answer to any of this and the reason is that the pytho trial made things quite difficult for us to interpret the pytho trial was the

trial that was going to answer all uncertainty this was a trial where it took some massive PD patients in that high-risk intermediate category and randomized them to receive a bolus of tenecteplase which is similar to TPA but

is not the same versus anticoagulation alone what did it show well it showed there was no difference in death between tenecteplase and placebo so they actually gave a placebo drug so that no it was a double blinded

study now if you look at the next line though a lot more patients decompensated if they receive the placebo than that's not to place this is not a bad thing you know it's not it's not great when you have to intubate somebody or initiate

pressors so if you can avoid that outcome that's it that's a pretty good thing so maybe it is the right thing to give systemic thrombolysis in the setting of sub massive PE problem was this the bleeding you look down here

there was an eleven percent rate of major bleeding in the tenecteplase arm there was a two percent rate of intracranial hemorrhage so now we've got this therapeutic window that's hard to interpret so we seem to be improving

outcomes from an efficacy standpoint but then we're also increasing the rate of bleeding so basically what we've sort of coalesced around is that systemic thrombolysis has a questionable risk benefit profile because the rate of

bleeding and the rate of really serious bleeding is makes us nervous so is that an opportunity for catheter director thrombolysis and I'll call this the poster child for Catherine throwing license if this is how it worked every

time we might have a homerun so this is gentleman looked terrible well still in the sub massive category but breathing at 35 times a minute hypoxic had his main PA systolic pressure of 60

millimeters of mercury you look over here and there's this large clot in the right upper lobe go to the left side and then there's all this clot in the left lower lobe as well so what do we do we put in bilateral infusion catheters this

can be an E Coast catheter it can be a standard catheter these areyou nafeez catheters have side holes starting from here and ending it's hard to see but there's another radiopaque marker somewhere down there on this side there

and somewhere over there and between those markers you have multiple side holes and those are put up inside the clot so you're dripping TPA at a rate of about 0.5 to 1 milligram per hour and you're getting it directly into the

clock that's the theory and so after 20 to 24 hours of that you know you're given 20 to 24 milligram of TPA that's compared to 50 or a hundred that you get was sitting with systemic thrombolysis you get something

that looks like this where the pulmonary arteries look pristine the PA still the systolic pressures come down the patient feels great now the skeptic would look at this and say well if you just tried some heparin and you just infuse saline

would you have the same result and frankly if you were to conduct the experiment you might find something interesting or not interesting but we never have conducted that experiment but you know I'll tell you a little bit

about the ultimate trial if I have time I don't want to go to overtime though

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.