Create an account and get 3 free clips per day.
Value Of Embolic Protection Devices During Mesenteric Artery Stenting: How To Do It
Value Of Embolic Protection Devices During Mesenteric Artery Stenting: How To Do It
acuteangiographybrachialcalcificationcatheterchroniccoaxialcombinationcompletiondebrisdistalembolicembolizationfilterfrequentischemialesionsloadedmesentericoccludedocclusionocclusionspatientpatientsprotectionRadiation-induced mesenteric arterial occlusionraterecanalizationreinterventionsselectivelyseverestentstentingStenting using embolic protection deviceStenting with embolic protection devicestentstechniquetherapeuticthrombustreatedVeithwire
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
How To Perform Endograft Repair Of TAAAs Using Branched Endografts Entirely Via Femoral Access: The Secret Is The Use Of Steerable Sheaths
Cook MedicalEndograft Repair using Steerable SheathGore Excluder TAMBE (Gore Medical) / Xtra-Design (Jotec)Irregular Orifice of the Right Renal Arterystent graft systemtherapeuticZenith T-Branch
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
Rifampin Soaked Endografts For Treating Prosthetic Graft Infections: When Can They Work And What Associated Techniques Are Important
2 arch homograftsOpen Ilio-Celiac bypassSacular TAA ; Endograft AbscessTAAA repair with left heart bypassTEVARtherapeutic
New Findings From The PERICLES Registry Shed Light On Ways To Improve Outcomes Of Parallel Grafts To Treat Complex Aneurysms
New Findings From The PERICLES Registry Shed Light On Ways To Improve Outcomes Of Parallel Grafts To Treat Complex Aneurysms
able covered stent / Maquet)Advanta (Ballon expEndurantMedtronicStent grafttherapeutic
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
The Altura Double D Endograft Device For EVAR: Advantages, Limitations And 4-Year Results
Altura stent graft systemEndovascular stent graftLombard medicaltherapeutic
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
Invasive Treatment In Patients With Genetically Triggered Aortopathy (Like Marfan’s): When Is Endovascular Treatment Acceptable And When Not
Invasive Treatment In Patients With Genetically Triggered Aortopathy (Like Marfan’s): When Is Endovascular Treatment Acceptable And When Not
coilsCook Alpha / Palmaz stent / Amplatz vascular plugsDavid V Procedure 2003GORE MedicalMedical Treatment 2003 / In 2017 Hybrid (Bypass - Chimney Graft - TEVAR - Embolization)Root Aneurysm in 2003 / Lumbar disc protrusion in 2017Stent grafttherapeuticviabahn
Femoral Vein Stenting Lessons Learned
Femoral Vein Stenting Lessons Learned
Acute occlusion of stentAngioJet (Boston Scientific) - Peripheral Thrombectomy SystemBoston ScientificEndoprosthesisFemoral Vein StentingLeft Iliofemoral re-interventionMultiple episodes of deep vein thrombosis - recurrent LLE Iliofemoralpopliteal deep vein thrombosisrecanalizationtherapeuticwallstent
Mid- And Long-Term Data From The PERICLES Registry Show Mortality, Branch Patency And Freedom From Endoleak For Ch/EVAR To Be Similar To Those Of F/EVAR
Mid- And Long-Term Data From The PERICLES Registry Show Mortality, Branch Patency And Freedom From Endoleak For Ch/EVAR To Be Similar To Those Of F/EVAR
EndurantMedtronicStent grafttherapeuticZenith / Excluder / Jotec / Talent / Viabahn / iCast / Bare Metal
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic

- [Gustavo] Good morning, I would like to thank Dr. Veith for the kind invitation to participate at this meeting. These are my disclosures. I took an interest on the use of embolic protection when I treated this patient with a long segment occlusion of the SMA by recanalization and found interoperatively the complication

of really significant distal embolization which, fortunately, was resolved by the use of a catheter aspiration. We then subsequently look at the instance of embolization with unprotected SMA stent. In our series of 85 patients, we found 8%.

And this actually accounted for two of the deaths among these patients who had embolization, for a rate of 29%. We also found that embolization was more frequent with recanalization of occlusions with lesions longer than 3 centimeters

and with patients who had severe calcification. So this has become our criteria for selectively using filter devices. Bernardo Mendes, one of our fellows, presented on this year's VAM our experience with use of embolic protection.

This is an example of how this is done. This is a patient with radiation-induced mesenteric arterial occlusion. This was treated with a coaxial system. It's important on these difficult cases, I think, to come from the brachial approach.

We combine a sheath, a guide catheter, and a catheter. We tend to use a two-wire technique for the embolic protection. One is with a SpideRX .14 wire and then a .18 wire to increase support. And then often couple this with the use of a .035 stent

which is loaded via both wires for improved support. Here is an example of the completion angiography and some debris in the basket. On this study, there were 65 patients with embolic protection. Vast majority were female, 17 had acute ischemia,

48 chronic ischemia. According to our criteria, 86% had the severe calcification or thrombus or long-segment occlusion. We have moved to use a covered stents in the most recent experience, 18 out of the 22 patients after 2014.

You can see here, there were 21 patients with major debris which were documented by photography. Here is some of the examples of the major debris which were quite significant. These were more frequent in patients with occlusion, with acute ischemia, and patients who had combination

of severe calcium occlusion and thrombus. Here is another example of the technique used for recanalization of a difficult lesion. Note that we have the embolic filter wire and a combination of a .18 wire and the stent is loaded via both wires.

And on this example, very significant amount of debris within the filter basket. However, there were a few patients who had embolization despite the use of filters, 6%. Most of these were minor. This occurred in two patients with acute ischemia

for a rate of 12%, and in two patients with chronic ischemia for a rate of 4%. This was also of the catheter aspiration. Here is an example of a patient with acuta ischemia treated with embolic protection

that on completion angiography, we noted embolization to the main trunk. This was felt to be due to a wide thrombus, given that that was the debris that was noted on the aspiration catheter. On this series, there were two mortalities

among patients with acute ischemia and no mortality in the chronic ischemia patients. There was a rate of c however, these were not felt to be related to the filter itself.

And the rate of reinterventions was 3%. In conclusion, mesenteric stenting with embolic protection is safe, using the two-wire technique, with no filter-related complications. Large debris is noted in over half of the patients when this is applied selectively

in patients with acute ischemia or lesions that are occluded or severely calcified. Despite the use of filter, there was distal embolization in 6%. However, this was minor and not associated with clinical sequela.

Thank you very much. (audience member claps)

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- Thank you Dr. Melissano for the kind interaction. TEVAR is the first option, or first line therapy for many pathologies of the thoracic aorta. But, it is not free from complications and two possible complications of the arch are the droop effect and the bird-beak. I was very interested as Gore came up with the new

Active Control System of the graft. The main features of this graft, of this deployment system are that the deployment is staged and controlled in putting in the graft at the intermediate diameter and then to the full diameter. The second important feature is that we can

optionally modify the angulation of the graft once the graft is in place. Was very, very interesting. This short video shows how it works. You see the graft at the intermediate diameter, we can modify the angulation also during this stage

but it's not really used, and then the expansion of the graft at the full diameter and the modification of the angulation, if we wished. This was one of the first cases done at our institution. A patient with an aneurysm after Type B dissection. You see the graft in place and you see the graft after

partial deployment and full deployment. Perhaps you can appreciate, also, a gap between the graft and the lesser curvature of the arch, which could be corrected with the angulation. As you can see here, at the completion angiography we have an ideal positioning of the graft inside the arch.

Our experience consisted only on 43 cases done during the last months. Mostly thoracic aneurysm, torn abdominal aneurysm, and patients with Type B aortic dissection. The results were impressive. No mortality, technical success, 100%,

but we had four cases with problems at the access probably due to the large bore delivery system as you can see here. No conversion, so far and no neurological injury in this patient group. We have some patients who came up for the six months follow-up and you see here we detected one Type 1b endoleak,

corrected immediately with a new graft. Type II endoleak which should be observed. This was our experience, but Gore has organized all the registry, the Surpass Registry, which is a prospective, single-arm, post market registry including 125 patients and all these patients

have been already included in these 20 centers in seven different countries in Europe. This was the pathology included, very thorough and generous, and also the landing zone was very different, including zone two down to zone five. The mean device used per patient were 1.3.

In conclusion, ladies and gentlemen, the Active Control System of the well known CTAG is a really unique system to achieve an ideal positioning of the graft. We don't need to reduce the blood pressure aggressively during the deployment because of the intermediate diameter

reached and the graft angulation can be adjusted in the arch. But, it's not reversible. Thank you very much for your attention.

- And I'll think I'll take just the next presentation or few minutes to describe the military's experience with and some of the rational and processes by which the military has developed this concept of resuscitative endovascular balloon occlusion of the aorta.

And maybe give some examples of how this is now being implemented into the military's more forward practice of causality care down range. So I have no relative disclosures to make as it pertains to this topic.

But I would say for context and I think we often overlook this, is this is really the first war, prolonged period of war, combat operation which was been concurrent with an endovascular revolution. We really describe this, the beginning of implementation of endovascular techniques

downrange in Iraq in the early 2000s. In this manuscript in the Journal of Trauma. And if you think about it as well, this is the first prolonged period of combat in which we have had endovascular trained surgeons So, many of the technologies and then the skill set

just didn't exist in previous long periods of conflict. During the Vietnam war or prior to that. So this is a major impetuous behind this. Both for research and innovation and application of skills that you've heard today. Whether it's stent grafts, coil embolization plugs

or other endovascular approaches. So this war experience coupled with the explosion of endo technologies in the civilian settings for age related disease has really lead the DoD now from our perspective to explore these new approaches and technologies including REBOA.

So it was an initiative path for us to look for control of noncompressible torso hemorrhage. We appraised and redefined balloon occlusion of the aorta as Tao and others have said, this isn't necessarily a new concept, but we did frame it in the concept of hemorrhagic shock and from trauma and injury

from the military standpoint in this 2011 Journal of Trauma procedures and techniques paper we really defined it as a strategy the military wanted to explore for torso hemorrhage and in this paper defined these zones of occlusion in a setting of trauma and hemorrhagenic shock.

We needed of course new and emergency amenable technology a lot of the existing endovascular technology is designed to be used in endovascular suites by highly skilled endovascular specialist and that's great when available, but certainly from our standpoint, we wanted

technology change to make this more amenable for forward situations. We described this in this Journal of Trauma manuscript and sort of show and depict the new technologies, trying initially to downside the catheter, make the balloon

inclusion catheter smaller, perhaps make them not dependent upon fluoroscopy and make them put the nitinol wire inside the catheter so that it does not need an accompany over the wire long over the wire for insertion. So this is a design in this case

for a one pass quick insertion of a ER-REBOA catheter shown or depicted here. We also had markers on the catheter which is fairly simple, but really remarkably was not present on any of our catheters to tell the depth of insertion

because they were all dependent up on fluoroscopies so these are some examples of new technologies that the military has pushed in this area of endovascular balloon inclusion. This has resulted in a commercialized device. The ER-REBOA catheter as one example by PryTime Medical.

This catheter is now been approved in a dozen or more countries world wide. And it has now more than 5,000 patient uses. For Hemorrhagic shock and in the emergency setting. It's now being used by US and other militaries in austere or forward settings

under protocol and under clinical practice guidelines that I'll mention in the next slide. So this technology and making balloon occlusion more amenable for the emergency use setting for hemorrhagic shock has evolved to this point. This is an example of what we would refer

to as rapid-cycle research development translation within a five or six year period, we now have this new device into our clinical practice guideline, this is public domain you can Google JTS CPGs for REBOA and you'll see here

this is actually the second clinical practice guideline the military has done rapid cycle evolution of its CPGs for REBOA and this is as described in the CPG as a resuscitative adjunct to blood resuscitation and other maneuvers, that Tao nicely described. We do have this deployed and it is

under CPG sort of guidance This is an example of a publication from just this last summer on the use of REBOA as a resuscitative adjunct by our special operations surgical teams or SOST teams, you see a typical operating room

or maybe it's at least one example of a far forward operating room. In which the special operation surgical teams are using not only low titer, type O whole blood transfusion as part of damage control resuscitation and damage control surgery, DCS and DCR.

But also REBOA, they've implemented now the use of these balloon catheters as an adjunct in more than 20 cases down range. We have now clinical registry data coming back from the use of this device. As a resuscitative adjunct, mostly as a perioperative

to enter hemoperitoneum in a patient that's shocked when you're in an austere setting without a lot of blood or surgical assistance. So it is being used now down range and that use is described in this reference. It's been described, REBOA's been

described by the Royal Navy. Actually in this Royal Army Medical Core journal paper from 2018. Where they talk about the use of this adjunct Afloat in a type of Role 2 type of setting. So not just by the US military,

but by many international militaries as well. And then finally we are extending this REBOA training paradigm, this is a Journal of Special Operations Medicine, a JSOM paper where many of our young surgeons are describing bringing REBOA closer to the point of injury and training

highly capable special forces medics and arterial access and this procedure. So in summary, you know we've written in this War on the Rocks commentary I refer you to for more descriptions of these topics. You know, we learn from but we don't plan for the past wars

in order to keep our national strategic edge of a sub-10% case fatality rate. We've got to try these new approaches, these new technologies. REBOA is one example of those. And now we have the need to gather clinical data

from this and other technologies to determine their optimal use. And requirements for future technologies. Thank you very much.

- Thank you very much Germano. Thanks to Dr. Veith for inviting us and allowing us to present this here. This is work that we've done in a group in Hamburg together with Nikolaos Tsilimparis. And these are my disclosures. It's been now, more than 15 years ago

that branched endografting has been introduced as a technique for thoracoabdominal aneurysms. And for about five years we have access to the T-Branch device as we've learned from the presentations before. And as we heard from Mark Farber

there's more companies going into that space. In Europe it's also the JOTEC company, which is CryoLife now, and we will, I believe, see more companies going into this space. So, about access, we've been discussing in the past

very much about whether right or left side is the better, or safer, access for branched TEVAR, and at that moment in this publication from our center, we phrased this, the unavoidable use of an upper extremity access. We show you that we've been believing that it's unavoidable.

But is it really unavoidable? In some cases I believe it should be avoided, because we have aortic branch vessels that are occluded, thrombotic, we have AV-fistulas and LIMA Bypasses that we may risk. And we may have antegrade branches

from previous artery repair which we would judge as almost a no antegrade access option here. So what can we do in those cases? And furthermore, upper extremity access has complications and it comes at a cost.

Not only hematoma and nerve damage, plexus damage at the access site, but also stroke is reported being a complication of arm access. We've looked into our experience from two years and found that about 5% of patients needed

some sort of re-operations from complications of upper extremity access, and this is just one of the more severe complications we had with a brachial on the stick due to too small access vessels. Another point is radiation.

Because radiation also as we've shown here, this is unpublished data, is significantly higher if a operator stands at the arm compared to standing at the groin. Is it really unavoidable? If we think about this as our traditional access,

but how about this? I know this has been used a lot in fenestrated endografting. But we started applying this technology also for branched endografting to avoid upper extremity access. First case that we did was a patient

that had an irregular orifice of the right renal artery and it was only one branch that we didn't want to go through all the hassle with upper extremity access. You see here, steerable sheath. You can very well attach that artery without upper extremity access.

Next case, for fenestrated and branched, then have one branch difficult celiac artery, very small stenotic orifice from a large aneurism, but it was attachable from the groin, a good result. Next case, two branches, two fenestrations. As you can imagine,

it also went well for the SMA and for the celiac with a good result without the need of touching arm, without the need going through the arch. This is a more severe one. This is a redo after EVAR patient with an occluded one-sided iliac lack

and a crossover bypass. This is the SMA. This is the right renal artery. You see that we were able to complete this repair from one access side alone, doing a full four-branch thoracoabdominal repair using steerable sheaths.

This series has been recently published as a case series, but we have extended on that experience. I can tell you in all patients that we tried to do it, it was possible to avoid the upper extremity access. Concluding: Endovascular repair has matured over years

and can, in my view, be considered gold-standard for thoracoabdominal repair. Upper extremity access is avoidable if possible. Success rate of femoral access with steerable sheath is safe. And I thank you very much for your attention.

- Rifampin-soaked endografts for treating prosthetic graf y work? I have no conflicts of interest. Open surgery for mycotic aneurysms is not perfect. We know it's logical, but it has a morbidity mortality of at least 40% in the abdomen and higher in the chest.

Sick, old, infected patients do poorly with major open operations so endografts sound logical. However, the theoretical reasons not to use them is putting a prosthetic endograft in an infected aorta immediately gets infected. Not removing infected tissue creates

an abcess in the aorta outside the endgraft and of course you have to replace the aorta in aorto-enteric fistulas. So, case in point, saccular aneurysm treated with a TEVAR and two weeks later as fever and abdominal pain.

You start out like this, you put an EVAR inside you get an abcess. Ended up with an open ilio-celiac open thoraco with left heart bypass. Had to sew two arches together. But what about cases where you can't

or you shouldn't do open? For example, 44 year old IV drug user, recurrent staph aureus endocarditis, bacteremia, had a previous aorto-bifem which was occluded, iliac stents, many many laparotomies ending in short bowel syndrome and an ileostomy.

CT scan and a positive tag white cell scan shows this. It's two centimeters, it's okay, treat it with antibiotics. Unfortunately, 10 days later it looks like this, so open repair. So, we tried for hours to get into the abdomen. The abdomen was frozen and, ultimately,

we ended up going to endografts so I added rifampin to it, did an aorta union and a fem fem and it looked like this and I said well, we'll see what happens. She's going to die. Amazingly, at a year the sac had totally shrunk. I remind you she was on continuous treatment.

She had her heart replaced again for the second time and notice the difference between the stent at one year to the sac size. So adding rifampin to prosthetic Dacron was first described in the late 1980's and inhibits growth in vivo and in vitro.

So I used the same concentration of 60 milligrams per milliliter. That's three amps of 600, 30 CC's water injected into the sheath. We published this awhile back. You can go straight into the sheath in a Cook.

Looks like this, or you can pre deploy a bit of little Medtronic and sort of trickle it in with an angiocatheter. So the idea that endografts in infected aortas immediately become infected, make it worse. I don't think it's true.

It may be false. What about aorto-enteric fistulas? This person showed up 63 year old hemorrhagic shock, previous Dacron patch, angioplasty to the aorta a few years ago, aorto-duodenal fistula not subtle. Nice little Hiroshima sign

and occluded bilateral external iliac arteries. Her abdomen looked like this. Multiple abdominal hernias, bowel resections, and had a skin graft on the bowel. Clearly this was the option. I'm not going to tell you how I magically got in there

but let's just leave it at that I got an endograft in there, rifampin soaked, sealed the hole and then I put her on TPN. So the idea that you have to resect and bypass, I'll get back to her soon, I think it's false. You don't necessarily have to do it every time. What about aorto-esophageal hemorrhagic shock, hematemesis?

Notice the laryng and esophageus of the contrast, real deal fistula. Put some TEVARs in there, and the idea was to temporize and to do a definitive repair knowing that we wouldn't get away with it. On post update nine, we did a cervical esophagostomy

and diverted the esophagus with the idea that maybe he could heal for a little while. He went home, we were going to repair him later, but of course he came back with fever, malaise, and of course gas around the aneurysm and we ended up having to fix him open.

So the problem with aorto-enteric fistulas is when you put an endograft in them it's sort of like a little boomerang. You get to throw them out and it's nice and it sails around but in the end you have to catch it. So, in the long term the lady I showed you before,

a year and a half later she came back with a retroperitoneal abscess. However, she was in much better shape. She wasn't bleeding to death, she'd lost weight, she'd quit smoking. She got an ax-bi-fem, open resection,

gastrojejunostomy and she's at home. So, I think the idea's, I think it's false but maybe realistically what it is, is that eventually if you do aorto-enteric fistulas you're going to have to do something and maybe if you don't remove the infection

it may make it worse. So in conclusion, endografts for mycotic aneurysms, they do save lives. I think you should use them liberally for bad cases. It could be a bad patient, a bad aorta, or bad presentation. Treat it with antibiotics as long as possible

before you put the endograft in and here's the voodoo, 60 milligrams per mil of rifampin. Don't just put in there, put it in with some semblance of science behind it, put it on Dacron, it may even lead to complete resolution. And I've also added trans-lumbar thoracic pigtail drains

in patients that I literally cannot ever want to go back in. Put 'em in for ten days wash it out. TPN on aorto-enterics for a month, voodoo, I agree, and I use antibiotics for life. Have a good plan B because it may come back in two weeks or two years, deploy them low

or cut out the super renal fixations so you can take them out a little easier. Thank you.

- Thank you, honored to present this work on behalf of our group at the VA, the Michael E. DeBakey VA in Houston, led by Dr. Kougias. Disclosures are here, Dr. Kougias does consultation for Cook Medical. So compared to EVAR, FEVAR has greater lower extremity ischemic times due to larger sheaths,

visceral cannulation, complexity of procedures. And lower extremity complications have been reported as high as 15%, but there's not been a careful analysis of this. So we decided to look at the incidence of lower extremity sensory or motor deficit

after FEVAR, and to look specifically at lower extremity ischemic time, iliac artery occlusive disease, and lower extremity neurologic impairment after FEVAR. So this is a retrospective study over a four-year period. Early experience with our FEVAR cases was included,

and we generally used bilateral femoral access. Iliac stenotic lesions were dilated when required to allow an 18 or 20 French sheath to be placed. Graft alignment was achieved by centering the graft over at least two sheaths in the visceral arteries

before releasing the diameter-reducing wire. Visceral stents were used for all fenestrations and selectively for some scallops. We used perfusion adjunct techniques selectively, such as antegrade 7 French sheath placement into the FSA or sometimes a Dacron conduit into the common

femoral artery, which allows you to retract the sheath. A primary outcome was neurologic impairment. Secondary outcomes were major amputations and ability to ambulate at 30 days after surgery. We measured continuous lower extremity ischemic time from the time of the large sheath insertion into

the femoral artery until it was removed. If we used perfusion adjuncts, we measured the time from the sheath insertion to the perfusion initiation via the adjunctive modality, and the longest ischemic time for each extremity was recorded. We measured common iliac artery lumen diameters.

It was the distance of inner wall to inner wall, the narrowest segment of each common iliac artery. And we entered this as a binary variable based on eight millimeters. Statistics, we did both uni- and multivariate analysis, and I'll just run through that here quickly.

And we did an interaction model looking at the association between lower extremity ischemic time, size of the residual patent common iliac artery lumen versus neurologic impairment in the lower extremities. So there was 101 FEVAR patients with 202 limbs.

Percutaneously done in 16% of cases, we used perfusion adjuncts based on understanding of the case and how long it was going to take. Conduit in eight cases, and antegrade SFA sheath placement in three cases. The configurations are shown here.

Majority were one scallop and two fens, and the ischemic times are shown there. Operative time was about three hours was the average, but the standard deviation was 122 minutes. You can see the fluid requirements there. We looked at intra- and postoperative transfusions.

Then we looked at patients with neurologic impairment. So there were 18 patients who had some neurologic impairment postoperatively. 12 of these patients has mild sensory loss, eight has complete sensory loss, and only two had motor dysfunction.

The deficits tended to resolve within four days, almost all within 14 days. But we had four limbs with persistent sensory deficits, and only one with a persistent motor deficit. Two patients could not ambulate normally at 30 days. No patient underwent an amputation.

If you look at the univariate analysis, limb ischemic time, common iliac lumen less than eight millimeters, intraoperative blood loss, change in hemoglobin, and total transfusion all seem to indicate lower extremity motor dysfunction or sensory dysfunction.

But on multivariate analysis, there are only two factors: limb ischemic time and common iliac artery diameter less than eight millimeters. If you looked at the interaction model we prepared, if the common iliac artery diameter was less than eight millimeters after about two and

a half hours of continuous ischemia, the incidence of neurologic impairment went up. This went up more slowly if it was more than three hours if the iliac artery diameter is greater than eight millimeters. So, in conclusion, lower extremity permanent

neurologic impairment is very low after FEVAR, but there is a relatively high instance of reversible neurologic impairment associated with two things: extremity ischemic time and the presence of pre-existing occlusive disease in the common iliac artery.

We acknowledge this was a single center study. We weren't able to look at extent of aortic coverage or associated spinal cord ischemia, but we conclude that when you anticipate long ischemic times based on the iliac artery diameter, you should consider adjunctive perfusion techniques.

Thank you.

- Thank you very much, Professor Torsello, dear Chairmen, ladies and gentlemen. After the publication of the PERICLES Registry, collecting the published world-wide experience from 13 US and European centers, a nonindustry founded project, we focused on several appealing topics,

which have to do with the chimney technique, and I would like to present you a nice overview of these new findings. Here is a flowchart, you see. After the publication of the PERICLES Registry, five new topics and publications,

and let's start and speak about the gutters. So regarding gutters, this is always a nice topic to be discussed after ch-EVAR, also presented as Achilles' heel of the technique, we classified the phenomenon of gutters based on causative mechanisms,

so we found three, as you see here, patterns, which are responsible for the persistence gutters type 1A endoleak, so two of them have to do with the oversizing, so we have seen cases with excessive oversizing of more than 30% of the aortic stent graft,

leads to this enfolding of the device, and this is a reason for our persistent endoleak as we see here. Another crucial causative mechanism is the undersized aortic endograft, which is often to be seen in case of large neck diameters or multiple chimneys,

so you see that in these cases, we have a gap. We don't have enough fabric material to wrap up the chimney grafts, and we have a persistent type 1 endoleak, and third reason for these phenomenon is a very short sealing zone.

The next key point, or the next appealing topic, was the incidence and factors for several vascular events after ch-EVAR. We published that in JVS. We analyzed this phenomenon, and actually we found a really low incidence of clinical relevant

cerebrovascular events of almost 2%. What we have seen in a very nice analysis is that the bilateral axis from the upper extremity seems to have a significant association with cerebrovascular events, and this is how we perform and administer a double chimney, so we avoid the exposure of the right

and the left upper extremity artery. We prefer the exposure of the axillary artery and double puncture, avoiding the bilateral access from above. Another nice topic is the treatment of type 1A endoleaks after EVAR.

The group from Rome published that in JEVT, and here is an example showing the utility of this technique in type 1A endoleaks. We have mainly migration of the device due to undulated necks as we see here, and for these anatomies the chimney technique performs well

because we use flexible tubes. As here you can see the Endurant device with single chimney for the right renal artery, so we create a new sealing zone, and we treat the challenging pathology like that, or here a ruptured triple A due to type 1A endoleak,

which treated also here again with tube and single chimney for the right renal artery, and we see here no evidence of type 1 endoleak in the follow-up. Another important point was the identification of optimal device combination.

The group from Florida published this topic in JVS in 2018, and we identified that the combination of the Endurant and the Advanta, a combination of a nitinol endoskeleton with a stainless steel, balloon-expandable copper stents, have a significant better performance

regarding mortality and patency as we see here in these very nice overview of the Kaplan-Meier curves. Last but not least, the impact of the technique in gender is also important. We know from the published literature from the group from Professor Timaran that female patients have

a greater risk for more renal function deterioration, reintervention, if they be treated by FEVAR. So we sought to analyze these phenomenon or these option with the chimney technique, and here is an overview between male and female patients. You see that the female patients underwent mostly placement

of flexible self-expanding covered stent, probably due to the tortuosity of the renal arteries, and if we see the outcomes, we didn't observe significant differences between female and male patients regarding the 30-day mortality renal failure late type 1A endoleaks, but also regarding

the chimney graft patency and reintervention, and this is probably to be explained due to the fact that we use devices with a low profile, flexible devices which probably fits better in the anatomy of the female patients as we see here. So in summary, we have seen that the use of chimneys

for juxtarenal pathologies has benefits for female patients showing no statistical differences regarding mortality, renal failures, patency and complications rate. So the new findings about ch-EVAR from the PERICLES Registry cohort were based in the classification of gutter-related endoleaks.

We have seen low incidence of clinical-driven cerebrovascular events, and it looks that the bilateral access as in case of multiple chimneys has a high risk of increased MACE rate, and successful use of this approach in excessive type 1A endoleaks and also female patients with triple A with short necks.

Thank you very much for your attention.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Good Morning. Thank you very much Dr. Veith, it is an honor and I'm very happy to share some data for the first time at this most important meeting in vascular medicine. And I do it in - oops, that's the end of my talk, how do I go to the --

- [Technician] Left button, left, left. - Okay. So, what we heard on Tuesday were some opinions, of course opinions are very important in the medical field, we heard some hypothesis.

But what I think is critical for the decision-making physician is always the facts. And I would like to discuss some facts in relation to CGuard and the state of the field of carotid revascularization today. One of the most important facts for me,

is that treating symptomatic patients is nothing to be proud of, this is not a strength, this is the failure of the system. Unfortunately today we do continue to receive patients on optimum medical therapy

in the ongoing studies, including the paradigm study that I will discuss in more detail. So if you want to dismiss large level scale level one evidence, I think what you should be able to provide methodologically is another piece of large level one scale evidence.

The third fact is conventional carotid stents do have a problem, we heard about this from Dr. Amor. This is the problem of carotid excess of minor strokes, say in the CREST study. The fact # 4 is that Endarterectomy excludes the problem of the carotid block from the equation

so carotid stents should also be able to exclude the plaque, and yes there is a way to do it one of the ways to do it is the MicroNet covered embolic prevention stent system. And there is intravascular evidence from imaging we'll hear more about it later

that yes it can do this effectively but, also there is evidence from now more that 3 studies with magnetic resonance imaging that show the the incidence of ipslateral embolization is very low with this system. The quantity of the material is very low

and also the post procedural emoblisuent issue is practically eliminated. And this is some examples of intervascular imaging just note here that one of the differences between different systems is that, MicroNet can adapt to simple prolapse

even if it were to occur, making this plaque prolapse protected. Fact # 6 that I think is also very important is that the CGUARD system allows routine endovascular reconstruction of the carotid bifurcation and here is what I mean

as a routine CEA-like effect of endovascular procedure you can minimize residual stenosis by using larger balloons and larger pressure's than we would've used with conventional carotid stent and of course there is not one patient that this can be systematically achieved with different types of plaques

different types of protection systems and different patient morphologies Fact # 7 is that the level of procedural risk is the critical factor in decision making lets take asymptomatic carotid stenosis How does a thinking physician decide between

pharmacotherapy and intervention versus isolated pharmacotherapy. The critical factor is the risk of procedure. Part of the misunderstandings is the fact that we talk often of different populations This contemporary data the the vascular patients

are different from people that we see in the street Of coarse this is what we would like to have this is what we do not have, but we can apply and have been applying some of the plaque risk criteria Fact # 8 is that with the CGUARD system

you can achieve, systematically complication level of 1%, peri procedurally and in 30 days There is accumulating evidence from more than 10 critical studies. I would like to mention, Paradigm and Paradigm in-stent study because

this what we have been involved in. Our first 100 patient at 0.9% now in nearly 300 patients, the event rate is 1.2% and not only this is peri procedural and that by 30 days this low event rate. But also this is sustained through out

now up to 3 years This is our results at 36 months you can see note here, very normal also in-stent velocities so no signal of in-stent re stenosis, no more healing no more ISR signal. The outcome Difference

between the different stent types it is important to understand this will be driven by including high risk blocks and high risk patients I want to share with you this example you see a thrombus containing

a lesion so this patient is not a patient to be treated with a filter. This is not a patient to be treated with a conventional carotid stent but yes the patient can be treated endovascularly using MicroNet covered embolic prevention stent and this is

the final result. You can see that the thrombus is trapped behind the stent MicroNet and Final Fact there's more than that and this is the data that I am showing you for the first time today, there are unmet needs on other vascular territories

and CGUARD is perfectly fit, to meet some of those need. This is an example of a Thrombus containing a lesion in the iliac. This is the procedural result on your right, six months follow up angiogram. This is a subclavian with a lot of material here

again you can preform full endoovascular reconstruction look at the precession` of the osteo placement This is another iliac artery, you can see again endovascular reconstruction with normal 6 month follow up. This is another nasty iliac, again the result, acute result

and result in six months. This is another type of the problem a young man presented with non st, acute myocardial infarction you can see this VS grapht here has a very large diameter. It's not

fees able to address the native coronary issue here So this patient requires treatment, how to this patient: the reference diameter is 7.5 I treated this patient with overlapping CGUARD's This is the angio at 3 months , and this is the follow up at 6 months again

look at the precision of the osteo placement of the device ,it does behave like a balloon, expandable. Extending that respect, this highly calcific lesion. This is the problem with of new atherosclerosis in-stent re stenosis is wrongly perceived as

the proliferation of atheroscleroses tissue with conventional stents this can be the growth of the atherosclerotic plaque. This is the subclavian, this is an example of the carotid, the precise stent, 10 years down the line, symptomatic lesion here

This is not re stenosis this is in-stent re stenosis treated with CGUARD and I want to show you the final result at 2 years. I want to thank you for your attention. Say that also, there is the issue of aneurism that can be effectively addressed , Thank you

- Thank you, Mr. Chairman. Thank you, Dr. Veith for inviting again to this great meeting. It's my disclosures. Well, as we know and heard this meeting, there are some certain limitations of current EVAR (mumbles) anatomical procedure and economical reasons,

and I would like to present a relatively new device which may address current EVAR limitations with a simple low profile system, and basically, ALTURA consists of two parallel stent graft systems. ZEUS No Gate Cannulation is needed and unique features include D-shaped proximal stents

and suprarenal fixation. Multi-purpose (mumbles) possibilities as well, and the system of utilize 14 French delivery system. And as aortic components can be deployed offset to accommodate the offset renals, and then the limbs are also unique

because they're deployed retrograde from distal proximally, and this allows precise positioning, both proximally and distally. Well, as the ALTURA clinical experience includes the very first human implants as well as more recent case performed

with a fully commercial device, and a total of 90 patients with a AAA were enrolled between 2011 and 2015, and follow-ups are taken at 30 days, six months, and annually to five years, and this presentation gives a current status of follow-up, and our results with a 12-month follow-up were published earlier this year.

Our clinical data were collected in total of in 11 sites. It includes 90 patients. And you see here, the patient demographics and anatomy do a typical, which are typical for all EVAR patients and the mean follow-up was 2.7 years. And procedure of success was 99%.

Only one patient, one of the first patient was Gen1 was not implanted, and 50% patients were done percutaneously, and majority of them underwent regional or local anesthesia. So when you look into the results, we see that there was only one case of AAA ruptured,

which occurred at three years due to type II endoleak and sac enlargement as the patient, which refused treatment due to type II endoleak. And all other deaths are paired to no original causes, and two patients had device migration at two years. The same patients appear at three-year period,

and basically these were undersized grafts was sort of our learning curve, and there was no any migration later on. Four patients had type I endoleaks visible on CT, and read by independent committee between 30 days and one year.

None have required secondary treatment and have been no aneurysm enlargement observed. And at one year, not surprisingly for this kind of devices, there was 17% type to endoleaks, but only one patient required secondary procedure due significant sac expansion.

Well, wasn't, of course, what we saw, I expected majority of patients has had shrinkage. There was a four-year period. And this is a patient who was recorded with the type IA endoleak at 30 days, caused by the last calcified nodule,

as you he's here probably none of the other device would tolerate that, but the endoleak did not extended into into the sac and had a leak result spontaneously without sac enlargement through a four-year follow-up period, as we're seeing here. Well, here another patient with type IB endoleak,

due to (mumbles) generation was treated with coils and glue an extension with additional stent graft to external iliac artery. What's interesting was the device. Device can tolerate small distal aortas and five patients who were treated

with small distal aortas and the very first patient was not dilated enough and stents were not deployed, simultaneously causing some stenosis which was easily treated with PTA afterwards, so we learned but it's very great, unique feature to treat the small distal aortas for the device.

And of course, sensing what happening with them, septal endoleaks, because everybody being concerned what happening with that, and nevertheless, there were no septal endoleaks observed during the follow-up period. In conclusion, Mr. Chairman, ladies and gentlemen,

I would like to say this Novel Altura endograft concept has potential to play major role in mainstream EVAR cases and potential benefits include predictability, reposition ability to place the device very, very, very precisely, offset renals, to maximize use of the neck, and low profile

overcomes current and anatomic limitations like tortuous iliacs, narrow bifurcation or access vessels and no limbic inhalation is needed, and basically, I truly believe that this offers option for EVAR day surgery and ruptured aneurysms. Of course, first results are very encouraging.

We need more data. Thank you very much.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- Yes, thank you very much. And it's a pleasure to discuss this topic. My disclosure's obvious. And I want, this is the layout and I want to start with some sensible arguments that tell us to chose the best option for our patients and that we have to take extension of disease

into consideration. And for those patients who expect to live longer go for a durable repair. And I want to show you a quick few examples that are important. This is a standard fenestrated graft with a type one

endoleak so an indication mistake that we had to repair with a very complex graft within a branches. And fortunately it went well and now it seals off completely. This is another case and again this standard EVAR. It should probably have never been done.

You can see where the graft lies. And we look at the proximal sealing zone and we like to look at the sagittal images and we want to have a durable repair and here because it's fairly easy we do a full fenestration graft.

This is another case and again I'm appealing at be careful with your indications. You can see the aneurysm and you look at the infrarenal neck while for us this is not a infrarenal neck at all. This is a diseased Aorta. And where in the old days we would probably have done

a standard FEVAR we now aim look at the red line for a longer sealing zone to make sure that it is durable. And this is the CT Scan at five years. You can now probably say that this aneurysm has been cured as this proximal landing zone has been stable for all these years.

And almost the same case with one little difference you can see the infrarenal neck that it none existing. You can see the sagittal view, it seems to tell you yes, a triple FEVAR will work. But we didn't take into account that the descending Thoracic Aorta was dilated.

You can see it here, 36, 37 millimeters. And we planned this triple FEVAR, we were happy with it. But if you follow this patient you will see that if he lives long enough this is not a suitable landing zone. So we should have done a more impressive repair going a little bit higher

because this is a complex case to repair. And we repaired it with another fenestrated graft up to the Thoracic Aorta, as you can see it's not easy. And the end result was fine but this of course is a far more complex and extensive repair. I don't know if I jumped one, yes.

So a little bit of scientific evidence because we moved away from double fenestrated towards triple fenestrated and we asked ourselves is triple and quadruple fenestrated associated with a higher mortality and mobility? And you can see our series here and the updated figures with more than 200 patients in each arm.

But more importantly look at the changes overtime. A standard fenestrated repair in blue has virtually disappeared in our center. And that is because we aim to have a longer sealing zone. You can see the evolution of the sealing zone going from so to speak 25 millimeters to 45 millimeters

to make sure that these patients have a durable repair. If you look at the results while it's fairly simple because there are no statistical significant differences with regard to technical success 30-day mortality was 0.7% in 454 patients so no statistical differences.

You can imagine the target vessel patency are fine. We only have two problems with a SMA, one with each group and all the other SMA's are doing very well. And actually interestingly, no difference in freedom from re-intervention. And if you look at the estimated survival

interestingly at three years the survival was higher in the complex group compared to the standard FEVAR group. But the over statistics don't show any difference of course. So really, my take home message and the lessons we learnt is that standard EVAR not FEVAR, standard EVAR should only be done in good neck anatomy.

For us, triple FEVAR has replaced double FEVAR and if you have problems higher up you better start immediately with quadruple FEVAR to be able to extend later. And the goal of all of that is to achieve more durable results

and an easier repair in case of extension of disease. Thank you very much for your attention.

- Sam, Louis, thank you very much. I also kind of reduced the title to make it fit in a slide. Those are my disclosures. We've switched to using a hybrid room routinely a couple of years ago and what happened then is that we started using 3D imaging

to guide us during the procedure using a fusion overlay. Obviously this was a huge benefit but the biggest benefit was actually 3D imaging at the end of the procedure so rather than doing an AP fluoro run, we would do a 3D acquisition in a cone beam CT

and have those reconstructions available to check technical success and to fix any issues. We've been using this technique to perform translumbar type 2 endoleak treatment and what we do is we do a cone beam CT non contrast and we fuse the pre-op CT on top of this cone beam CT

and it's actually quite easy to do because you can do it with the spine but also obviously with the endograft so it's a registration on the graft on top of the endograft and then the software is really straightforward. You just need to define a target in the middle

of the endoleak. You need to define where you want to puncture the skin and then the system will automatically generate to you a bull-eye view which is a view where you puncture the back of the patient and the progression view you obviously see the needle

go all the way to your target. And what is interesting is that if you reach the target and if you don't have a backflow so you're not in the endoleak, you have this stereo 3D software which is interesting because you do two lateral fluoro runs

and then you check the position of the needle and then it shows you on the pre-op CT where you are. So here in this specific patient, I didn't advance the needle far enough. I was still in the aortic wall,

that's why I didn't get backflow so I just slightly advanced the needle and I got backflow and I could finish the embolization by injecting contrast, close and then ONYX to completely exclude this type 2 endoleak. So now let's go to our focus today is fenestrated endograft.

You see this patient that were treated with a fenestration and branches. You can see that the selective angio in the left renal looks really good but if on the cone beam CT at the end of the procedure we actually had a kink on the left renal stent

so because I had depicted it right away at the end of the procedure I could fix it right away so this is not a secondary procedure. This is done during the index procedure so I'll go directly to what we did is we reinflated a ballon,

we re-fed the balloon and then had a nice result but what happen if you actually fail to catheterize? This was the case in this patient. You see the left renal stent is completely collapsed. I never managed to get a wire from the aortic lumen and back into the renal artery

so we position the patient in the lateral position, did a cone beam CT and used the same software so the target is now the renal artery just distal to this crushed renal stent and we punctured this patient back in the target and so you can see is right here

and you can see that the puncturing the back. We've reached the renal artery, pushed a wire through the stent now in the artery lumen and snared the wire and over this through and through wire coming out from the back we managed

to reopen this kinked left renal stent. You can see here the result from this procedure and this was published a couple of years, two years ago. Now another example, you can see here the workflow. I'm actually advancing the needle in the back

of the patient, looking at the screen and you can see in this patient that had a longer renal stent I actually punctured the renal stent right away because at the end of the procedure I positioned another covered stent inside

to exclude this puncture site and then, oops sorry, and then, can we go to the, yeah great thank you. And then I advance the wire again through this kinked renal stent into the endograft lumen and this is a snare from the groin

and I got the wire out from the groin. So you see the wire is coming from the back of the patient here, white arrow, to the groin, red arrow and this is the same patient another view and over this through and through wire

we manged to re advance and reopen this stent and we actually kinked the stent by getting the system of branched endograft through a previous fenestrated repair and fortunately my fellow told me at the end of the procedure we should check the FEVAR

with a cone beam CT and this is how we depicted this kink. So take home message, it's a very easy, straightforward workflow. It's a dedicated workflow that we use for type 2 endoleak embolization. We have this intermediate assessment with Stereo 3D

that helps us to check where we are so with 3D imaging after the learning curve it's become routine and we have new workflows like this way of salvaging a kinked renal stent. Thank you very much for your attention.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- I have no disclosures. So I'm going to show you some pictures. Which of the following patients has median arcuate ligament syndrome? A, B, C, D, or E? Obviously the answer is none of these people.

They have compression of their celiac axis, none of them had any symptoms. And these are found, incidentally, on a substantial fraction of CT scans. So just for terminology, you could call it celiac compression

if it's an anatomic finding. You really should reserve median arcuate ligament syndrome for patients who have a symptom complex, which ideally would be post-prandial pain with some weight loss. But that's only I think a fraction of these patients.

Because most of them have sort of non-specific symptoms. So I'm going to say five things. One, compression of the celiac artery is irrelevant in most patients. It's been found in up to 1/3 of autopsies, MRIs, diagnostic angiography, CT.

This is probably about par, somewhere in that 5% or 10% of CT scans that are in asymptomatic patients will have some compression of the celiac axis. The symptoms associated with median arcuate ligament syndrome are non-specific,

and are really not going to tell you whether patients have the disease or not. So for instance, if you look here's like 400 CT scans, 19 of these patients had celiac compression. But the symptom complex in patients

who had abdominal pain for other reasons looked exactly the same as it did for people who had celiac compression. So symptoms isn't going to pull this apart. So you wind up with this kind of weird melange of neurogenic, vascular,

and you got to add a little psychogenic component. Because if any of you have taken care of these people, know that there's a supertentorial override that's pretty dramatic, I think, in some fraction of these people. So if you're not dizzy yet, the third thing I would say,

symptom relief is not predicted by the severity of post-operative celiac stenosis. And that's a little distressing for us as vascular surgeons, because we think this must be a vascular disease, it's a stenotic vessel. But it really hasn't turned out that way, I don't think.

There's several papers, Patel has one just in JVS this month. Had about a 66% success rate, and the success did not correlate with post-op celiac stenosis. And here's a bigger one,

again in Annals of Vascular Surgery a couple years ago. And they looked at pre- and post-op inspiratory and expiratory duplex ultrasound. And basically most patients got better, they had an 85% success rate. But they had patients,

six of seven who had persistent stenosis, and five of 39 who didn't have any symptoms despite improved celiac flow. So just look at this picture. So this is a bunch of patients before operation and after operation,

it's their celiac velocity. And you can see on average, their velocity went down after you release the celiac, the median arcuate ligament. But now here's six, seven patients here who really were worse

if you looked at celiac velocity post-op, and yet all these people had clinical improvement. So this is just one of these head scratchers in my mind. And it suggests that this is not fundamentally a vascular problem in most patients. It goes without saying that stents are not effective

in the presence of an intact median arcuate ligament. Balloon expandable stents tend to crush, self-expanding stents are prone to fracture. This was actually published, and I don't know if anybody in the audience will take credit for this.

This was just published in October in Vascular Disease Management. It was an ISET online magazine. And this was published as a success after a stent was put in. And you can see the crushed stent

because the patient was asymptomatic down the road. I'm not discouraging people from doing this, I'm just saying I think it's probably not a great anatomic solution. The fifth thing I'd say is that comorbid psychiatric diagnoses are relatively common

in patients with suspected median arcuate ligament syndrome. Chris Skelly over in Chicago, they've done an amazing job of doing a very elaborate psych testing on everybody. And I'll just say that a substantial fraction of these patients have some problems.

So how do you select patients? Well if you had a really classic history, and this is what Linda Riley found 30 years ago in San Francisco. If they had classic post-prandial pain with real weight loss and a little bit older patient group,

those people were the easiest and most likely to have a circulatory problem and get better. There are some provocative tests you can do. And we did a test a few years ago where we put a catheter in the SMA and shoot a vasodilator down,

like papaverine and nitroglycerin. And I've had patients who spontaneously just said, "That's the symptoms I've been having." And a light bulb went off in our head and we thought, well maybe this is actually a way you're stealing from the gastroduodenal collaterals.

And this is inducing gastric ischemia. I think it's still not a bad test to use. An alternative is gastric exercise tonometry, which is just incredibly elaborate. You got to sit on a bicycle, put an NG tube down to measure mucosal pH,

get an A-line in your wrist to check systemic pH, and then ride on a bike for 30 minutes. There's not many people that will actually do this. But it does detect mucosal ischemia. So for the group who has true circulatory deficiency, then this is sort of a way to pick those people up.

If you think it's fundamentally neurogenic, a celiac plexus block may be a good option. Try it and see if they react, if maybe it helps. And the other is to consider a neurologic, I mean psychologic testing. There's one of Tony Sadawa's partners

over at the VA in Washington, has put together a predictive model that uses the velocity in the celiac artery and the patient's age as a kind of predictive factor. And I'll let you look it up in JVS. Oddly enough,

it sort of argues again that this is not a circulatory problem, in that the severity of stenosis is sort of inversely correlated with the likelihood of success. So basically what I do is try to take a history,

look at the CTA, do inspiratory and expiratory duplex scans looking for high velocities. Consider angiography with a vasodilator down the SMA. If you're going to do something, refer it to a laparoscopist. And not all laparoscopists are equal.

That is, when you re-op these people after laparoscopic release, you often times find a lot of residual ligament. And then check post-operative duplex scans, and if they still have persistent symptoms and a high-grade stenosis,

then I would do something endovascular. Thank you.

- Good morning everybody. So first of all let me take note of it for the kind invitation to be here, again. These are my disclosures. So Juxtarenal Aneurysm has been described as those aneurysms very close to or even including in the lower margin of renal artery.

And of course the gold standard at that time was aortic supportive clamping and open surgery. Probably open surgery is still the first choice in this very short and complex aortic neck but what do in case of patients unfit for surgery? Or for patients who are asking for

a minor invasive alternative. Of course, Fenestrated EVAR are the solution, the option two, but they require time, are expensive, so what to in case of patients who have no time or cannot wait for this customization process?

Symptomatic patients, patients with huge aneurysm or patients just unfit for fEVAR because of either access or tortuous proximal neck anatomy. So solution is chimney or ovation VENT. What is ovation VENT? It's a kind of open chimney technique,

it's a combination of ovation with renal bare stent. So you know the the new concept of sealing of this stent graft, the circumferential apposition of polymer-filled ring to the aortic wall, typically at 13mm, so to just translate the length of the neck to a specific point

when a couple of millimeter when in that position of course. And you know with the previous, you have just heard the harder device, but with the standard device, the prime and the IX, we have the device positioned

13mm below the lowest renal artery. So, what to do in case of (unclear) when have no apposition of the ring to the aortic wall, we raise the ring, just very close to the renal artery, and then we place some bare metal stent

at the renal BMS. So here you can see our bench test with the fabric of the collars just moved by the bare metal stents. So, VENT is different from chimney, we don't use the covered stents so

it's a lowered provide bracket approach, and more importantly, chimney and endograft are typically competing for the same room so this the reason for gutters, while with VENT we have a stent and endograft, which are not competing for the same room.

The ring is responsible for the sealing and the stent is just responsible for the ventilation of the renal arteries. So this is a typical example, you can see here, a contained rupture aneurysm, in this point, and with a very short neck, so we decide

to land with the first neck and exactly at that level you can see here the steps of the procedure, the contemporary deployment of the renal stent, and the main graft the injection of the polymer, so the first ring is really in contact with the renal stent,

but they're not competing each other and so you can have a nice sealing of the sack. Another case, conical shaped neck, unfit for standard EVAR, unfit for EVAR, because was a huge aneurysm, much more than 8cm, so we decide again to raise the ring,

13mm and fit for standard ovation. And so here you can see the first ring just at this level, the renal stent, responsible for the patency of the renal artery, and you can see here that the first ring is just touching it in one point, the conical neck.

With good sealing. Again, another case with unfit for fEVAR, because of the small access, tortoise access, and so we plant a double VENT, in this case, you can see here again, prucodanus bracket approach, with five french shift,

contemporaneous deployment of stents, and first ring, again nice sealing, and nice follow up with completed sack screen cage, and another one year follow up. So, up to now we have performed 29 cases. We did the first case in June 2015,

technical success was high, 96.6%, we had just one type one endo-leak fixed introaperticaly with the coil embolization. The follow up is, mean follow up is 19 month, and 100% renal artery patency, no further intervention, no sac enlargement,

the majority of arteries, it's shrinkage more than 5mm. So just in conclusion, this option is in, we believe that in selected measures, it's a nice option. It is safe and effective when you can not wait for fenestration graft, like in case of symptomatic

or huge aneurysm, or just patients are unfit for fenestration because of tortuous anatomy or small iliac vessels. Thank you for your attention.

- Thanks, Germano. Thanks, Gustavo. These are my disclosures as it pertains to this talk. I will be talking about the devices not yet FDA approved in the U.S. for use. We know that with endovascular repair, we need to consider all the aspects

and how we can potentially get this therapy into more people's hands. So, the Gore Company really talked to many of the key opinion leaders about the steps in doing these types of cases, how to make them simple,

they talked about anatomic screening and case planning needs to be thoughtful and careful. We emphasized with them the need to have minimized aortic coverage to limit spinal cord ischemic risk and also to talk about real world applicability

and make sure the device can be used in a wide variety of patients and not in a limited subset. If you look at the other device that has extensive use with off-the-shelf thoracoabdominal repairs, it really involves the t-Branch.

In this case, the device generally requires coverage up through 11 centimeters above the celiac artery. Marcella Ferrara has described ways to limit that with modification of the device but this is it in its current stage. With that, W.L. Gore really came up with a device

that shortened that length. It generally requires about six and a half centimeters of coverage above the celiac artery. It has been designed to work with their balloon-expandable VIABAHN device. You see on the right there,

the device has four preloaded hypo-tubes. That allows for passing four wires in to pre-catheterize each of the branches. That wire system is then brought out through a subclavian access, either right or left, through a DrySeal sheath

that then allows the implantation device in the deployment. The sequential deployment is done with the device being partially open. The portals are then catheterized from above, as you see on the far left,

and the wires placed in that. Once those have been successfully done, the branch stints are placed and then eventually the distal device is deployed and then the distal completion with the bifurcated and iliac components as necessary.

Now the technical aspects of this has been presented at this meeting and has recently been submitted and accepted for publication in JVS. Dr. Oderich is the lead author on this and really comprises the initial 13 implants with the 30-day outcomes.

Now those outcomes really focus on two things, you see the mean procedure time can vary quite a bit. That really depends upon some of the aspects about use of different axillary catheters and thoraco sheaths to get it done. But the other main thing was the blood loss

which can exceed, in a few cases, quite a bit. And that, in this trial, was mainly because they used the 12 French Flexible Cook Ansel Sheath and not the DrySeal. Once we moved to the DrySeal sheath, we see that the number of amount of blood loss

through the central port is a lot less and that's going to limit that in the future trial. Now, currently there have been 16 worldwide implants and this comprises the entire cohort that's been done. You see that early on, we only had access to the retrograde and about a third of the patients

had retrograde renal portals but since that time, mid Spring of 2016, we moved to an anterograde version alone. Most cases are type four thoracos that were done in this initial experience. What about the short-term outcomes?

Well the short-term outcomes are about 18 months. Overall survival 92 percent. One patient presented four months with multi-system failure from three vessels being occluded. The right renal had already been occluded at the time of the initial implant.

Serious adverse events. About 46 percent of patients, which is very typical, acute kidney injury and only 23 percent, and no type one or three endoleaks. There have been seven branch vessel occlusions, four in that one patient that presented acutely,

one patient a year and a half with renal artery occlusions from severe dehydration and one unilateral renal artery occulusion at approximately six months. That was managed with lysis and stenting. No difference in occlusion rates

between anterograde and retrograde. So in conclusion, the TAMBE device has completed its feasibility study with similar results for complete endovascular repair of thoracoabdominal aneurisms. Longer follow-up and a Pivotal study are planned

in pursuit of FDA approval. Thank you.

- Thank you, I have no disclosure for this presentation. Aorotopathy is a different beast as oppose to patients with dissections that we normally see in the elderly population, but we have the same options open surgery, endovascular, and hybrid. If they all meet the indications for surgery so why not open surgery?

We know in high volumes centers the periprocedural mortality acceptable in especially high volume centers. The problem is the experience surgeons are getting less and less as we move into more and more prevalence of endovascular. And this is certainly more acceptable in lower or

moderate high risk patients. So why not be tempted by endovascular in these patients? (to stage hand) Is there a pointer up here? So the problem with aorotopathy is the proximal and distal seal zones and we've already heard some talks today about possible retrograde dissection,

we've also heard about nuendo tear distally and aorotopathy is certainly because of the fragile aorta lend itself to these kinds of problems. But it is tempting because these patients often do very well in the very short term. The other problem with aorotopathy is they often have

dissection with have problems for branch unfenestrated technology and then of course if these dissection septum are near the proximal and distal seal zones, you're going to have a lot of difficulty trying to break that septum with a ballon and possibly causing new

entry tears proximally or distally. Doctor Bavaria and his colleagues from Italy were one of the first ones to do a systematic review and these are not a large number of patients but they combined these articles and they have 54 patients. Again, the very acceptable low operative risk, 1.9%.

But they were one of the first ones to conclude and cation that TEVAR in these patients, especially Marfan's patients in this series carries a substantial risk of early and late complications. They actually cautioned the routine use of endovascular stent grafts.

One of the largest series, again stress, these are not large numbers but one of the largest series was just 16 patients and look at this alarming rate of primary failure. 56% treated successfully, 40% required conversion to open operation and interestingly enough

43% of those patients had mortality. My friend and colleague at the podium, doctor Azizzadeh was given the unbeatable task of arguing for endovascular therapy in Marfan syndrome and the best he can come up with was that midterm follow up demonstrates sizeable numbers of complications but,

he identify area where probably it was acceptable in patients with rupture, reintervention for patch aneurysms and elective interventions in which landing zone was in a synthetic graft. So why not hybrid? Well this seems to be the more acceptable version

of using TEVAR, if you can, in these aorotopathy patients. But this is not a great option because in this particular graft that you see this animation, we're landing in native aortic tissues. So really, what you have to do is you have to combine this and try to figure out a way to create a landing zone,

either proximally or distally and this is a patient and not with Marfan's this time but with Loeys-Dietz, who we had presented recently, previous ascending repair but then presented with horticultural abdominal aneurysm as a result of aneurysm habilitation of a previous dissection and here

you see a large thoracal abdominal aneurysm on the axial and coronal and as many of these patients with aorotopathy express other problems with their multisystem diseases and you can see the patients left lung is definitely not normal there, left lung is replaced with bullae and this is a patient who would not do well

with an open thoracal abdominal repair. So what do you do? You have to create landing zones and in this particular patient, he had a proximal landing zone so we were able to just use a snorkel graft from the mnemonic but distally we had to do biiliac debranching grafts to to all his vistaril arteries

and then land his stent-graft in the created distal zone and as you can see, we had an endoleak approximately and thank goodness that was just from a type II endoleak from the subclavian artery which we were able to take care of with embolization and plugs.

And there is his completion C.T. So not all aorotopathy is the same, this is a patient who presented with a bicuspid aortic valve and a coarctation and I would submit to you, this is not a normal aorta. This is probably a variant of some sort of aorotopathy,

we just don't have a name for it necessarily, and do these patients do well or do worst with endovascular stent-graft, I just don't think we have the data. This particular patient did fine with a thoracic stent-graft but this highlights the importance of following these patients and being honest with the patients family and the

patient that they really do have to concentrate on coming back and having closer follow up in most patients. So in summary, I think endovascular is acceptable in aorotopathy if you're trying to save a life, especially in an acute rupture or in an emergency situation, but I think often we prefer to land these

endovascular stent-graft in synthetic. Thank you very much.

- Thank you very much. Thank you, Frank, for inviting me again. No disclosures. We all know Onyx and the way it comes, in two formulas. We want to talk about presenter results when combining Onyx with chimney grafts. The role of liquid embolization or Onyx is listed here.

It can be used for type I endoleaks, type II endoleaks and more recently for treatment of prophylaxis of gutters. So what are we doing when we do have gutters? Which is not quite unusual. We can perform a watchful waiting policy, pro-active treatment in high flow gutters,

pro-active treatment low flow gutters, or we can try to have a maximum overlap, for instance with ViaBahn grafts 15 centimeters in length or we can use sandwich grafts in order to reduce these gutters in type I endoleaks. Here, a typical example of a type I leak treated with Onyx.

And here we have an example of a ruptured aneurysim treated with a chimney graft. And here is what everybody means when they're talking about gutters. Typical examples, this is what you get. You can try to coil these

or you can try to use liquid embolization. Here's the end result after putting a lot of coils into these spaces. What are these issues of the chimney-technique type I endoleak? Which are not quite infrequent as you see here.

Most of these resolve, but not all of them. So can we risk to wait until they resolve? And my bias opinion is probably not. Here, the incidents of these type endoleaks is still pretty high. And when you go up to the Arch

the results can even be different. And in our own series published here, type I endoleak at the Arch were as high as 28%. A lot of these don't resolve over time simply because it's a very high flow environment. Using a sandwich technique is one solution

which helps in a lot of cases but not all of these simply because you have a longer outlet compared to a straightforward chimney graft. You can't rely on it. So watchful waiting? There are some advocates who

prefer watchful waiting but in high flow gutters this is certainly not indicated. And the more chimneys you have, like in a thoracoabdominal aneurysm with four chimneys, the less you can wait. You have to treat these very actively,

like you see here, in these high flow areas. Here a typical example, again symptomatic aneurysm with sealing. Here Onyx was used but without any success. So what we did is we had to add another chimney and plus polymer sealing and then we had a good result.

Here some results, only small serious primary gutter sealing using Onyx with good results in a type I leak. But again, this is only a small series of patients. Sandwich technique already mentioned. When you use, like we did here for chimney grafts in the arteries, you do need Onyx otherwise you

always get problems with these gutters and they do not seal over time. Another example where liquid polymer was used. And here again, you see the polymer. The catheter in order to inject the polymer is very difficult to see but with a little bit of experience

you know where you are. And again, here it is, the Onyx, a typical example. Here another example of the Arch, bird beacon effect, extension, chimney graft. Again the aneurysm gets bigger. And so a combination of using proximal extensions

plus chimneys plus liquid embolization solves this problem after quite a long period of time. And here typically is what you see when you inject the Onyx. This does not work in all cases. Here we used Onyx in order to seal up the origin of the end tunnel.

This works very nicely but there is so ample space for improvement and in some cases it's probably better to use a fenestrated branch graft or even the opt two stabler instead of using liquid embolization. Thank you very much.

- Thank you Louie, that title was a little too long for me, so I just shortened it. I have nothing to disclose. So Takayasu's arteritis is an inflammatory large vessel vasculitis of unknown origin. Originally described by Dr. Takayasu in young Japanese females.

The in-di-gence in North America is fairly rare. And its inflammation of the vessel wall that leads to stenosis, occlusion or aneurysmal formation. Just to review, the Mayo Clinic Bypass Series for Takayasu's, which was presented last year, basically it's 51 patients, and you can see

the mean age was 38. And you can see the breakdown based on race. If you look at the early complication rate and we look at specific graft complications, you had two patients who passed away, you had two occlusions, one stenosis, one graft infection.

And one patient ruptured from an aneurysm at a distant site than where the bypass was performed. If you look at the late complications, specifically graft complications, it's approximately 40%. Now this is a long mean follow up: this is 74 months, a little over six years.

But again, these patients recur and their symptoms can occur and the grafts are not perfect. No matter what we do we do not get superb results. So, look at the graft outcomes by disease activity. We had 50 grafts we followed long-term. And if you look at the patency, primary patency

right here of active disease versus non-ac it's significantly different. If you look at the number of re-interventions it's also significantly different. So basically, active disease does a lot worse

than non-active disease. And by the way, one of our findings was that ESR is not a great indicator of active disease. So we're really at a loss as to what to follow for active or non-active disease. And that's a whole 'nother talk maybe for another year.

So should endovascular therapy be used for Takayasu's? I'd say yes. But where and when? And let's look at the data. And I have to say, this is almost blasphemy for me

to say this, but yes it should be used. So let's look at some of the larger series in literature and just share them. 48 patients with aortic stenosis fro all were treated with PTA stenting.

All were pre-dilated in a graded fashion. So they started with smaller balloons and worked up to larger balloons and they used self expanding stents in all of them. The results show one dissection, which was treated by multiple stents and the patient went home.

And one retro-paret-tin bleed, which was self limiting, requiring transfusion. Look at the mean stenosis with 81% before the intervention. Following the intervention it was 15%. Systolic gradient: 71 milligrams of mercury versus 14. Kind of very good early results.

Looking at the long term results, ABI pre was .75, increased to .92. Systolic blood pressure dropped significantly. And the number of anti-hypertensive meds went from three to 1.1. Let's look at renal arteries stenosis.

All had a renal artery stenosis greater than 70%. All had uncontrolled hypertension. They were followed with MRI or Doppler follow up of the renal arteries. So, stents were used in 84% of the patients. Restenosis occurred in 50% of them.

They were, all eight were treated again, two more developed restenosis, they ended up losing one renal artery. So at eight years follow up, there's a 94% patency rate. What about supra-aortic lesions? And these are lesions that scare me the most for endovascular interventions.

Carotids, five had PTA, two had PTA plus stent. Subclavian, three PTA, two PTA. One Innominate, one PTA plus stent. One early minor stroke. I always challenge what a minor stroke is? I guess that's one that happens to your ex mother-in-law

rather than your mother, but we'll leave it that way. Long term patency at three years, 86%. Secondary patency at three years, 76%. Fairly good patency. So when Endo for Takayasu's, non-active disease is best. The patient is unfit for open surgery.

I believe short, concentric lesions do better. In active disease, if you have to an urgent or emergent, accept the short term success as a bridge to open repair. If you're going to do endovascular, use graded balloons or PTAs, start small. Supra-aortic location, short inflation times

I think are safer. And these three, for questions for the future. I guess for the VEITHsymposium in three years. Thank you.

- Yeah, thank you Mr. Chairman. These are my disclosures. Well, we know that the Heli-FX EndoAnchor System provide fixation and seal in aortic necks, and it can prevent or resolve migration or endoleaks. It's important to have an even spacing around aortic circumference and

to resolve type 1A endoleaks, you need successful, of course, deployment of EndoAnchors and adequate penetration into the aortic wall. The objectives for this study was to quantify the EndoAnchor penetration into the aortic wall in patients undergoing EVAR

and to assess the predictors of successful penetration and to associate that with postprocedural type 1A endoleaks. We searched in the ANCHOR database, and we included patients that has been treated for a type 1A endoleak, and we had to have a good quality

first postprocedure contrast-enhanced CT scan without any artifacts due to metal or glue, and without implantation of adjuvant aortic extension cuffs or stents. And then we selected two patient cohorts, patients with successful treatment

after the implantation of EndoAnchors for a type 1A endoleak, and patients with a persistent type 1A endoleak after the EndoAnchor implantation. Well, this is to show how we determined the position of the EndoAnchors, this is a good penetrating EndoAnchor

more than two millimeters in the aortic wall. This is borderline, and this means there is still a gap between the endograft and the aortic wall or the EndoAnchor itself is penetrating less than two millimeters. And this of course, a non-penetrating EndoAnchor.

The good ones are green, the borderlines are orange, and the non-penetrating are flagged red. Here are results, the anatomical criteria to predict type 1A endoleaks, as you can see here, at the left, in the type 1A endoleak patients, there is a larger aortic diameter

with a median of 30 millimeters, and neck length is shorter, less than one centimeter, compared to the patients with no endoleak. Then about the EndoAnchor penetration, in the patients with a persistent type 1A endoleak, there are significantly more EndoAnchors

which are borderline or non-penetrating. What are the predictors for a successful EndoAnchor penetration. Well, protective factors, oversizing of the endograft compared to the diameter of the infrarenal aortic neck, and the use of the endurant stents.

Independent risk factors are the aortic diameter at the lowest renal artery, and five and 10 millimeters below more than 30 millimeters, a significantly neck thrombus and calcium around the circumference and also a more than two millimeter thickness.

Predictors for a type 1A endoleak, protective factors is the neck length more than one centimeter, and good penetrating EndoAnchors and risk factors for a type 1A endoleak is, again, the aortic diameter five millimeters

below the lowest renal artery more than 30 millimeters, and also boerderline and non-penetrating EndoAnchors and in this logistic regression model, a non-penetrating EndoAnchor is really predictive for a type 1A endoleak, or a persistent type 1A endoleak. A few cases, this is an excellent job,

there are four EndoAnchors placed, and they all penetrate well, although they are not circumferentially divided around the circumference. The majority of the problems in the patients in the ANCHOR database, if a persistent type 1A endoleak

is mainly due to an incorrect indication, these are EndoAnchors red and orange, non-penetrating and borderline. That is because they are above the fabric, or they are in a no-neck aneurysm, so the indication is not correct.

This is again, a patient with an undersized endograft, of course, the EndoAnchors will never penetrate the aortic wall at a post-serial part of the aorta. This is another example of misdeployment, a huge load of calcium and thrombus, and again, to defined a no-neck aneurysm,

and again, well it's obvious that the EndoAnchors will not do their job. These are then the EndoAnchor distribution in successfully treated type 1A endoleaks at the left, 332 EndoAnchors, but if you select only the patients

with an EndoAnchor which are inside recommended use at the right, you can see that more than 90% of those EndoAnchors are good penetrating. Here are the patients at the left with a persistent type 1A endoleak, 248, and you can see the majority is red or orange,

and that means that majority of those patients had an EndoAnchor deployment beyond the recommended use. So to conclude, good EndoAnchor penetration is less likely when there is large aortic diameter, the EndoAnchor is not perpendicular to the stentgraft during deployment,

and it's beyond the recommended use, more than two millimeters of thrombus, not in the infrarenal neck, or a gap more than two millimeters. And in borderline or non-penetrating EndoAnchor, it's predictive for a type 1A endoleak.

Thank you very much.

- So, a little more on this theme that we've been talking about the last couple days, of inflow in the post-thrombotic limb. So, the key to maintaining an iliac-vein stent is good inflow and the key vessel seems to be the profunda, as we've been hearing for the last couple of days. This is the anatomy, the three axial vessels in the thigh,

the saphenous plays a very small role in venous return. We're dependent more on the femoral vein and the profunda. And the femoral vein just seems to be more prone to thrombosis and problems, and the profunda's there to salvage. We like to see good axial transformation of the profunda.

If we see this, you can get an IVUS catheter in these vessels from above usually. You can feel pretty confident the inflow's satisfactory. There's been some enthusiasm now to try and improve inflow, as we've been hearing, by interventions on the femoral vein. And you saw this paper earlier,

where these people had iliac-vein stents, and they we're trying to improve inflow either with femoral-vein stenting or femoral-vein angioplasty alone. And very, very high failure rates. All of them were occluded by a year, in both the angioplasty and stent groups.

My experience, I've probably done a handful of femoral-vein stents. This guy been in the practice for a couple, 15 years, post-thrombotic with iliac vein stents and some reason, his PCP discontinued his Warfarin, and the stent went down. So, this is in the office center,

acutely occluded common iliac, external iliac vein stent, and the confluence. You see thrombus in the confluence and in the profunda, which was obviously, discouraging. I got them open with the AngioJet, including his profunda. So, his symptoms of swollen thigh and calf,

and the thigh markedly improved. And he comes back a couple two year later, he's a UPS worker with complaining that he feels great, but the calf's still a problem, can I do anything else. We had a whole discussion on femoral vein intervention and he wanted to give it a shot.

The femoral vein was occluded beforehand. Here's the profunda open in SFA. So, this is prone on table, we got a good popliteal, we got a good profunda. And, you know, is this going to help him at all? But, he wanted to go for it.

This is with IVUS, the femoral vein's pretty much occluded. The popliteal vein's open. And we put a nitinol stent down, and they key is to try and land above your profunda collateral so you don't jail it. So, this is one if the ones that did well.

I got a couple doing well, and the others, not so well. So, this kid, 31 years old, multiple DVTs at such a young age, in both legs. We want to do something. His common iliac was wide open, this was diseased, so we stented this,

he got a little better, not great, he comes back a year later, can you do anything else. We began the whole discussion of femoral vein intervention doesn't work well. This is on the table prone, and just a harbinger of failure, if I can't get into the popliteal vein,

have to use a gastroc, that's a telling sign. So, I went ahead and stented his femoral vein, tried to preserve the collaterals. You can't see the popliteal that well down here, but it looked decent. He showed up with his INR low and occluded,

the whole thing went down. Here's the tail end of the nitinol stent. You can see the popliteal inflow is horrible. I got him open, but you know, it just doesn't look great. So, he went down and stayed down, reoccurring ulcers, and the poor young guy can't do anything.

In this case, again, the theme is we got iliac stents in place, so we can improve inflow. So, she comes in a couple years later, with new inflow disease on duplex and new symptoms. And you think, well you know, we'll just do a little segment of the femoral vein

where there's a tight lesion, maybe it'll help her inflow. With angioplasty alone, you can see the remain pretty tight, so I went ahead and put a stent there. Looked great afterwards, I was encouraged. But one month later, that segment of femoral vein stent went down.

You've heard of, in the early days, when we were doing thoracic aortic aneurysms iliac artery on a stick, well this is a femoral vein on a stick, so be careful. Conclusion, femoral vein stenting fails often and early. Uncharted waters may be a value in selected cases,

and I also want to see the PTS-XS trial results. Thanks.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- Okay, thank you very much. I appreciate the invitation from Dr Veith to discuss this technique and really, this is a how to do it technique. These are my disclosures. So we know that if you're doing a type B dissections that are chronic and you're going to use a fenestrated

device often times you have vessels that are on the false lumen that are not easily accessible. You can see in this picture up above, here's you're flap, this is the right renal artery across the fenestration and you can't really see the actual original fenestration.

There can also be some misalignment between the natural fenestration and where you want to put your fenestration. So this technique allows us to create a neo-fenestration at your site of choice. So here's our stent graft planning in this particular patient.

Here's the dissection flap, here's our graft in the true lumen with the SMA and celiac and the right renal. We've placed the fenestration for the left renal right opposite the left renal artery. And this is a schematic representation of

our in press article. Basically once you've accessed the bottom of the graft you can use a steerable directional sheath and put it right at the level of your fenestration. Use the power wire from Baylis, and what you do is put it right up against the graft.

It's like a cautery, you step on the pedal, it gives a one second burst and that goes across the flap. You can then widen it and then connect your stent graft. This is an example of one of our early cases. Here you can see injection in the true lumen with the right renal, you can't see the left renal,

that's bowel gas and another one of the true lumen branches. You can see with the fusion imaging we've now been able to put the graft, the right renal and the graft expanded. Here you can see an injection and we've got our catheter right up against the left renal fenestration. And here you can next see, the power wire,

the tip of the power wire is just at the edge of the catheter. And if you step on the pedal you can see that the power wire goes across into the false lumen right near here, you can inject your false lumen, you can see your renal

and after that you can see that we've now accessed the artery. We balloon it and then stent it. So these are the tools that are required. You need the power wire generator, you need the power wire itself,

you need a pad on the patient just like a cautery pad, and an Oskar or other steerable sheath is very effective in helping you. A short pulse in one second is usually enough to cross the lumen. Here's a second example.

A patient again with a false lumen, the right renal artery is the one this particular time. You can see the dissection flap is here. We planned the fenestration right opposite the renal artery.

And you can see here similar technique with the catheter. The power wire is already actually been deployed across the channel and then put in place. So this is a relatively simple technique that you can use to access false lumen branches. It allows planning the fenestration on your pre-op plan

close to the target vessel, and it assists you when the natural fenestration is not visible, or misaligned. And it uses an existing technique that we've used for left subclavian in situ fenestration and for some aortic dissection acute cases where you need to fenestrate the false lumen.

Thank you.

- Doctor Dangas, congrats on really putting this all together and being the champion for this technique. 13 Centers, 517 patients in the original report. We've talked about this, the follow up and some of the limitations at 17 months, primary patency 94%, Gutter Endoleak 2.9%.

What about late outcomes? That's what everybody keeps wanting to know. We've put this series together so that hopefully by next year we'll be in the, some printed literature. Two and half years follow up,

a subset analysis of patients that have had that follow up. 244 patients, 387 snorkel/chimney grafts, nearly four years mean follow up in this cohort. Mean diameter, 64 milimeters. The neck diameter, 26. And the infrarenal neck length of 4.6.

Obviously then after the chimney strategy that increases as most of them generally have gone then above the, both renal arteries. 38% right renal. 46% left renal. A couple of accessory renals. A small number of SMA and Celiac snorkels in this group.

More than half of the Endurant Graft and the rest are of mix of Zenith, Excluder, Jotec, Talent that's no longer being used. And a couple of thoracic proximal pieces. About half Viabahn. 38% iCAST or Advant of E12. And a handful of Bare Metal very early in the series.

Half with one graft, more than a third with two, 10 percent with three and a small number with four. Pre-op Mean Sac Diameter from the entire 244 sub-cohort, 64 millimeters. The latest follow up with now four years Mean follow up 55, Mean Sac Regression per patient

in the 244 eight millimeters. This is an example of one of ours. Loss of Branch Patency. Look at the Kaplan-Meier number at risk even out to four years, 136 of the 368, not the typical Kaplan-Meier where out to four years

there's like five patients left, or five renals left. Out of 48 months, 92.5% patency. Univariate analysis, no predictors including the use of different types of chimney balloon-expandable versus self-expanding, total number of chimney grafts

did not seem to have an affect. Obviously, the problem with this technology or with this strategy has still been persistent or Late Type-1a Endoleaks and Gutter Endoleaks. We found in a couple of different series individual case series many of these do resolve

by the six or 12 month follow up. In this longer term cohort, now up from 3.7 is at 48 months Mean Follow Up time at 5.9% Gutter Endoleak, needing re-interventions in half of them. What are the risk factors for developing a persistent Gutter Endoleak?

A native neck diameter of greater than 30 and the absence of Infrarenal on univariate, and on multi-variate, only the native neck diameter greater than 30. Again, suggesting this theme that I think has been throughout the meeting of larger,

of needing more proximal fixation for things. Obviously, a lot of work going into trying to prevent or find optimal strategies for Gutter Type-1a Endoleaks. Mortality for the entire cohort now with the extended follow up at four years, 71%.

Costache already went over the optimal combinations of devices, which I think this contributed to the approval CE mark, at least of the enduring graft with a balloon-expandable chimney for that. Interestingly and what, you know, I think many of us have been proposing,

one to two is obviously better than three or four, and I don't think that aligning it is necessary. So in summary, compared to meta-analysis of real world data for fenestrated, which I understand in the room there are obviously single center experts

that have better numbers than what's out there listed in the literature in terms of number of grafts, mortality Type-1a Endoleak, branch patency and need for 2nd intervention similar between these strategies. Thanks for your time.

- Thank you very much, Frank, for the opportunity to be part of this fantastic panel. So, I'm no more a part of the debate, and I will not show the differences, but if we look on the arch, on the literature addressing the different types of repair, we can see that the result are in the same range, approximately.

And despite the fact that we didn't spoke about this, probably, there is a bias of selection where else the best patient will be addressed by open surgery, patient that fits for branched and FEVAR will be treated by those technology, and the remaining of the patient

is addressed by parallel grafts. There is a second point I would like to address and this is one part of my talk, is that the results for the endovascular options are not good, are not so long described in the literature. There are some papers with longer follow-up,

but in the mean, the follow-ups are rather short. So, let's go to our expanse that is a little bit longer. In the arch, we treated 94 patients. We had a mortality of 14% stroke, or neurological complication 8%, endoleak, primary, 18%, but we addressed 40% of acute patients,

and 50 patient with redo thoracic surgery. So, an example: 75 years old patient, he had complicated type B dissection with malperfusion, did get the TEVAR with a sandwich for the LSA. In the follow-up, he showed an aortic enlargement with the dissection extending proximal to the LSA,

and he had, again, and antegrade perfusion of the sur-lumen. He refused general anesthesia because he had severe delire when he was treated first. So we address this with periaortic grafts. We put one chimney for the brachiocephalic trunk in the aorta, one chimney for

the left carotid artery in the ascending aorta, then we deployed a TAG in the aorta then, to match the diameter of the BCT we extended the first viable, which is 13 mm, and you can see here, the six month follow-up with a nice result. So, if we want to go to long-term results,

we freezed a cohort of patient we treated 2009 to 2014. These are 41 patients with an Euroscore II of 28%, 68 years the mean age, 30 day mortality was 12%, so half of the predicted. You see here 42 months follow-up of this cohort. There is this typical mortality of 10% a year

following the procedure, due to the comorbidity cardiac pulmonary renal functions, freedom of branch occlusion is nice and the branch behaved stable. There have been reintervention during the follow-up, mainly to treat endoleaks, branch issues,

or other problems on this patient, but you see there is a three and a half year follow-up and the rate of reintervention is the same than for other endovascular options. Looking now at the more complex patients, the free vessel in the arch, you see

that the results here are good too, for the parallel grafts. Here down, we see one patient dying, no stroke, no endoleak. If we go to the visceral patient, here the literature review shows a mortality of 4.7%, with an endoleak type 1A of 7% for the parallel grafts. If we do compare now CHIMPS with FEVAR and open repair,

you can see that maybe the difference is more redo, but it's not really much more than for the FEVAR/BEVAR, and here is particularly due to the gutters. We treated here also for the long-term follow-up, we freezed a cohort of patient, 127 patient, 40% symptomatic, 11% ruptured patient.

Hostile chest, 37%, hostile abdomen, 26%. Most of the proximal landing was above the renal artery, mostly chimneys, but also reversed grafts and sandwich. Here a case, patient that was rejected after rupture from two centers to one because he was unfit for surgery, the other because he qualified not for FEVAR/BEVAR.

He had a challenging anatomy with an occluded left renal artery and celiac trunk, a shaggy arch and LSA, so we treated him transfemorally with two parallel grafts and you see the outcome of this patient. So, there are reinterventions. The mortality in this cohort is 2.4%, endoleak is 7%.

Reintervention, chimney-related, mainly gutter endoleaks. These are the curves in the follow-up, and you see that the results are similar than the patient in the arch with a need for reintervention, but that's the same for any kind of endovascular procedure in the arch.

18% at three years of reintervention. This has been for branch thrombosis or endoleak cages. So, in conclusion, the results are good for parallel grafts in the arch and in the visceral types, and selected patient, they need an appropriate anatomy, a life expectancy of two years.

They behave durable up to more than three years mean follow-up, taking into account the number of reintervention. The unsolved issue with the parallel graft is the gutter, so this technique can improve, and you can see here that they may be solution for the future.

This is an anti-gutter design from Endospan that really eliminates any kind of gutter endoleak and wandering, and this will be the patient cohort that we will compare with other repair technique in the future. Thank you very much for your attention.

- Thank you friends who have invited me again. I have nothing to disclose. And we already have published that as far as the MFM could be assumed safe and effective for thoracoabdominal aneurysm when used according to the instruction for use at one, three, and four years. Now, the question I'm going to treat now,

is there a place for the MFM? Since 2008, there were more than 110 paper published and more than 3500 patient treated. 9 percent of which amongst the total of published papers relating the use of the MFM for aortic dissections. So, we went back to our first patients.

It was a 40 year old male Jehovah Witness that I operated in 2003 of Type A dissection and repair with the MFM in 2010 because he had 11 centimeter false aneurysm. Due to his dissection, this patient was last to follow up because he was taking care full time off of

his severe debilitated son. When we checked him, the aneurysm seven years later shrunk from 11 to 4 centimeters wide. And he's doing perfectly well. Then the first patient we treated seven years ago, same patient with Professor Chocron

Type A dissection dissection repair in 2006. Type B treated with MFM in 2010. We already published that at one year that the patient was doing fine. But now, at three and seven years, the patient was totally cured.

The left renal artery was perfused retrogradely by aspiration. That's a principle that has been described through the left iliac artery. So what's next? Next there was this registry

that has been published and out of 38 patients 12 months follow up, there were no paraplegia, no stroke, no renal impairment, and no visceral insult. And at 12 month the results looked superior

to INSTEAD, IRAD and ABSORB studies. This is the most important slide to us because when you look at the results of this registry, we had 2.6 percent mortality at 30 days versus 11 30 and 30.7 no paraplegia, no renal failure, and no stroke vessel

13 to 12.5. 33 and 34 and 13 and 11.8 percent. With a positive aortic remodeling occurring over time with diminishing the true lumen increasing the true lumen and increasing the false lumen.

And so the next time, the next step, was to design an international, multicenter, prospective, non-randomized study. To treat, to use the MFM, to treat the chronic type B aortic dissection. So out of 22 patients to date,

we had mainly type B and one type A with no dissection, no paraplegia, no stroke, no renal impairment, no loss of branch patency, no rupture, no device failure, with an increase in true lumen and decrease in false lumen that was true at discharge.

That was true at one, three, and six and 12 month. And in regards with the branch occluded from the parts or the branches were maintained patent at 12 and all along those studies. So, of course these results need to be confirmed in a larger series and at longer follow up,

yet the MFM seems to induce positive aortic remodeling, is able to keep all branches patent during follow-up, has been used safely in chronic, acute, and subacute type B and one type A dissection as well. When we think about type B dissection, it is not a benign disease.

It carries at 20 percent when it's complicated mortality by day 2 and 25 percent by day 30. 30 percent of aortic dissection are complicated, with only 50 percent survival in hospital. So, TEVAR induces positive aortic remodeling, but still causes a significant 30 day mortality,

paraplegia event, and renal failure and stroke. And the MFM has stabilized decreased the false lumen and increase the true lumen. Keeps all the branch patent, favorize positive aortic remodeling. So based on these data, ladies and gentleman,

we suggest that the MFM repair should be considered for patients with aortic dissection. Thank you very much.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- Thank you, and thanks to Dr. Veith for the opportunity to share some of our data. These are my disclosures, some devices presented here are investigational and I want to acknowledge my friend Gustavo, who actually shared some of the slides that we'll show. And I want to reference some of his papers. So a spinal cord ischemia has been presented here

as a devastating complication, after both open and endovascular repair of thoracoabdominal aortic aneurysms. The spinal drains are routinely used to ameliorate the frequency and also the severity of spinal cord ischemia, the problem with this trains is that they may result inherent morbidity and mortality.

Now, intraoperative neuromonitoring has been used to not only monitor, but also to manage potential cases of spinal cord ischemia, this is a study by the group at the Mayo Clinic, led by Gustavo. 49 patients, of which 90% had thoracoabdominal aortic aneurysms, all these patients have spinal drain splice,

spinal cord ischemia was seen in six patients. But interestingly, 63% of the patients had significant decrease in the amplitude of both motor and somatosensory evoked potentials. And interestingly all of these changes came back to baseline except in one patient once

their lower legs were reperfused. However, and despite all of these papers that have, you know, talk about the use of spinal drains for endovascular reparative thoracoabdominal aortic aneurysms against the effectiveness of the spinal drains has not been shown.

And the aim of our study was to assess the outcomes of spinal cord protection without the routine use of spinal drains. We actually has some complications in this report, we decided that we were going to use only selectively in our series, the device is used for this in patients

were all part of a physician-sponsored investigational device exemption, demonstrating branch devices were used including the drainage device. We use a similar protocol as the one described by the Mayo Clinic group, which rely on permissive hypertension maintaining the maps above 90 or 100,

and the systolic pressures above 140. However, as mentioned, we did not place spinal drains routinely, the spinal drains were only considered in those patients that had persistent motor evoked potential deficits, at the end of the procedure. Once the legs have been reperfused, we did not use

conduits, we did percutaneous access in all patients. But of note, we did use endo conduits in all patients that have significant iliocclusive disease, not only to be able to deliver the device, but also to maintain flow to the lower extremities, to avoid distal ischemia. So 34 patients were enrolled in this study,

all patients had intraoperative neuromonitoring, and select spinal drains were placed. 10 patients, 29%, were extent 4 thoracoabdominal repairs, and 24 were extent type one to three. Important all patients with type one and three thoracoabdominal aneurysms underwent a staged repair.

We use in 20% of the cases off-the-shelf device is specifically the debranch, and 80% underwent custom made devices, all these devices were pre-loaded with wires. So, of these patients, 73 were male, 9% Type I, 38% Type II, 24% were Type III,

and 29% were Type IV. We saw significant changes in the evoked potentials in 80% of the patients. In all of them those changes came back to baseline except in one patient, who actually had a spinal drain at the end of the procedure.

30-day mortality in two patients, spinal drain was required eventually in only four patients, that's 12%. One because of sustained changes in the motor evoked potentials, spinal cord ischemia occurred in four patients, in all cases secondary to hypertension. After a procedure, in these cases two were permanent,

the cases had spinal drain splice, however, the deficit persisted, two had transient paraplegia, one resolved with permissive hypertension, and one resolved with a spinal drainage, I mean, the spinal drain was only effective in half of those patients. We did have two cases of intracranial bleeding,

associated with hypertension. So in conclusions, we don't believe that the spinal drains are necessary in all patients. A standard protocol that relies on perioperative maintenance of adequate blood pressure in intraoperative neuralmonitoring is however required.

And we believe that tight blood pressure control is mandatory to avoid possible complications related to uncontrolled hypertension, thank you.

- Dear chairman, dear colleagues and friends, it's my pleasure to be again with you. Nothing to declare. In our experience of CCSVI and angioplasty we have more than 1,300 patients with different neurological disorders. Not only MS, but also migraine,

lateral amyotrophic sclerosis, Parkinson's disease, left sided amaurosis. We published our data with an emphasis on the safety of the procedure. We had virtually zero percent of serious complication. What about the clinical improvement?

In fact, we noticed function improvement in more than 62.5% of these patients. And in fact, the group of Pierfrancesco Veroux showed similar between 50 and 60% of the patients restoring the normal blood venous flow. In fact, in their work was shown that the type

of anatomic disturbance, anatomic feature is very important predictor if the flow will be restored by the simple PTA. And the most important into the brave dream trial was also that, in fact, the restoration of the flow was achieved in around 70% of the patients.

And exactly in these 70% of the patients with restored flow like Paulo emphasized already, there were lesion, 91% of them were lesion-free on the MRI, and 77% of them were lesion-free on the six-month. We performed a substudy regarding the hypercapnia

and hypoxaemia of the jugular veins in the CCSVI-positive patients. And what we have described in this 178 patients with CCSVI and 50 healthy control group. In fact, we established that the patients CCSVI-positive the venous sample by the jugular veins was typical

with hypercapnia and hypoxaemia in desaturation, huge desaturation with improvement after the balloon angioplasty in all three parameters. What was the reason for that? In fact, in nine patients of our group we examined, the perfusion, the nuclear perfusion of the brain

before and after the treatment. I'm here presenting non-positive for MS young patient without MRI demyelization. And but on the brain perfusion he had deep hyperperfusion on the left side, and the patient was complaining with deep fatigue.

And we saw practically full occlusion of the enominate vein. And after the recanalization using first coronary and after it peripheral balloons, and in this particular case we had to stent finally. And you see still persistence of a huge crossover collateral even after ballooning.

But after stenting we saw practically full restoration of the flow. You see in less than three to four seconds it was very interesting to see on the perfusion imaging, nuclear perfusion, full restoration of the flow of this gentleman.

So this is very important to emphasize that there is direct relationship between the blood gas disturbances on the brain level, and demyelinization process. What about the PTA? It's probably not the optimal treatment.

We have to establish reliable clinical and anatomical predictors for vascular and clinical success in order to answer the important questions: who will be vascular responders, or MRI responders, and finally the clinical responders in this group of patients?

And concluding, ladies and gentlemen, the CCSVI is a real vascular pathologic entity and is probably a trigger for more than one neurologic degenerative disorder. Endovascular treatment, balloon, PTA, and stenting of CCSVI is feasible and safe.

Methods and strategies improving the early and late patency rate have to be elaborated because the good clinical result is strongly dependent on the vascular patency and flow restoration. And thank you very much for your attention.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.