Create an account and get 3 free clips per day.
Chapters
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
Value Of Intraprocedural Completion Cone Beam CT After Standard EVARs And Complex EVARs (F/B/EVARs): What To Do If One Does Not Have The Technology
4-Vessel FEVARangiographyaortoiliacarchaxialbeamBEVARbifurcatedcalcificationcatheterizecatheterizedcompletionconecone beamcoronaldetectablediagnosticdilatordissectionDissection FlapendoleakevaluatesevarfemorofenestratedFEVARfindingsfusionGE HealthcareinterventionmesentericocclusionoperativelypositiveproceduresprospectiveproximalradiationRadiocontrast agentrotationalstentstudytechnicalthoracoabdominaltriggeredunnecessaryVisipaque
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
Carotid Artery Stenting- Case | Carotid Interventions: CAE, CAS, & TCAR
angioplastyarteryballoonballoonsbut want left carotid artery lesion stented firstcarotidcarotid arterychaptercommonCoronary bypass graftdistalECA balloonendarterectomyexternalexternal carotidimageinflatelesionosisproximalproximallystentstentingsurgicallyultimately
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 1 - Non-healing heel wound, Rutherford Cat. 5, previous stroke | Recanalization, Atherectomy | Complex Above Knee Cases with Re-entry Devices and Techniques
abnormalangioangioplastyarteryAsahiaspectBARDBoston Scientificcatheterchaptercommoncommon femoralcontralateralcritical limb ischemiacrossCROSSER CTO recanalization catheterCSICTO wiresdevicediseasedoppleressentiallyfemoralflowglidewiregramhawk oneHawkoneheeliliacimagingkneelateralleftluminalMedtronicmicromonophasicmultimultiphasicocclusionocclusionsoriginpatientsplaqueposteriorproximalpulserecanalizationrestoredtandemtibialtypicallyViance crossing catheterVictory™ Guidewirewaveformswirewireswoundwounds
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Endarterectomy (CEA) | Carotid Interventions: CAE, CAS, & TCAR
anesthesiaanestheticarterycarotidcarotid arterychapterclotcomparingdistallyexternalexternal carotidflowincisioninternalinternal carotidissuelongitudinalloopsmedicalpatientpatientsplaqueproximalstenosisstenoticstentstentingstrokesurgerytherapyultimatelyvascularvesselwound
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
CT Imaging- Acute PE | Management of Patients with Acute & Chronic PE
acuteangiogramappearancearrowarteriescenteredchapterclassiccontrastcoronalimaginginfarctluminalNonepatientperfusionpulmonarysagittalscansegmentalsurroundingtechnologistthrombolysisthrombusvesselview
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
Balloon Pulmonary Angioplasty | Management of Patients with Acute & Chronic PE
angiogramangioplastyarteryballoonballooningbandschaptercomplicationscontrastflowHorizonimageimagesluminalNoneocclusionocclusionspatientsproximallypulmonaryradiationrecanstenosisthrombustreatedultrasoundwebs
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- TransCarotid Artery Revascularization- TCAR | Carotid Interventions: CAE, CAS, & TCAR
angiographyangioplastyarterybleedbloodcalcifiedcarotidchapterclaviclecommondebrisdevicedistalembolicembolizationexposurefemoralflowimageincisioninstitutionlabeledpatientprocedureprofileproximalreversalreversesheathstenosisstentstentingstepwisesurgicalsuturedsystemultimatelyveinvenousvessel
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
Case- Brain Infarction | Brain Infarct After Gastroesophageal Variceal Embolization
anastomosisangiographyaphasiaapproacharrowarteryartifactbrainbronchialcalcificationcatheterschannelschapterchronicChronic portal vein thrombosuscollateralcyanoacrylatedrainembolismembolizationendoscopicendoscopistendoscopygastricGastroesophageal varixglueheadachehematemesisinjectionmicromicrocathetermulti focal brain infarctionmultipleoccludedPatentpatientpercutaneousPercutaneous variceal embolizationperformedPortopulmonary venous anastomosisprocedureproximalsplenicsplenomegalysplenorenalsubtractionsystemicthrombosistipstransformationtransitultrasonographyvaricesveinvenous
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
Case- Severe Acute Abdominal Pain | Portal Vein Thrombosis: Endovascular Management
abdominalanticoagulantsanticoagulationaspirationCAT8 PenumbracatheterchapterclotdecideflowhematomaintrahepaticlactatelysisneedlepainportalPortal vein occlusion-scanstenosisstentthrombolysisthrombosedthrombustipstransitvein
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
Case 11: Bleeding Tracheostomy Site | Emoblization: Bleeding and Trauma
aneurysmsangiogramarterybleedingBleeding from the tracheostomy siteblowoutcancercarotidcarotid arterychaptercontrastCoverage StentembolizationimageNonepatientposteriorpseudoaneurysmsagittalscreenstent
Pedal Lymphangiography | Lymphatic Imaging & Interventions
Pedal Lymphangiography | Lymphatic Imaging & Interventions
abnormalangiographyappearancebrighamcatheterizechaptercouplefoothemostathoursimagesincisioninjectinglymphlymphaticlymphaticsneedlepediatricpediatricsretroperitoneumsuturesveinvesselvessels
CT Angiography | Determining the Endpoints of CLI Interventions
CT Angiography | Determining the Endpoints of CLI Interventions
aneurysmsangiogramangiographycalcificationcalcifiedcenterschaptercontrastemoryequivalentinterventionkneemraoccludedpatientvessels
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
IR in Egypt and Ethiopia | AVIR International-IR Sessions at SIR2019 MiddleEast & Africa Focus
ablationsaccessafricaangiographybillarybulkcardiothoracicchaptercheaperconduitscountriescryocryoablationDialysiseconomyegyptelectroporationembolizationendovascularfibroidfibroidsFistulainterventioninterventionalnanonephrologyneurononvascularoncologyportalpracticeradiologyspecialtysurgeonssurgerysurgicallythrombectomytpavascularvisceralworldwide
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
Education Strategies to Reduce Human Errors | Looking for risk in all the Right Places: The Anatomy of Errors in Healthcare
activeaneurysmangiographybostcerebralchapterchecklistclotconcurrentcontraindicationcontraindicationsdistallyembolizedguidelinehemorrhageheparinisismilligramNonepatientphysiciansstandardstentstentingstentsstrategiestemplatetherapeuticthrombolysistpa
Cone Beam CT | Interventional Oncology
Cone Beam CT | Interventional Oncology
ablationanatomicangioarteriesarteryartifactbeamchaptercombconecontrastdoseembolicenhancementenhancesesophagealesophagusgastricgastric arteryglucagonhcchepatectomyinfusinglesionliverlysisoncologypatientsegmentstomach
Ideal Stent Placement | TIPS & DIPS: State of the Art
Ideal Stent Placement | TIPS & DIPS: State of the Art
anastomosiscentimeterchaptercoveredcurveDialysisflowgraftgraftshemodynamichepatichepatic veinhyperplasiaintimalnarrowingniceoccludesocclusionportalshuntshuntssmoothstentstentsstraighttipsveinveinsvenousvibe
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
TEVAR Case | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
20 Fr Dryseal7 Fr Aptus TourGuide sheath8 Fr IVUSaccessangioplastyaortaarrowarteryballoonbasicallybrachialceliacchapterdeploydissectionfenestratedflapgraftgroinimagelaserleftlooplumenoriginpatientreentrysagittalsheathSignificant Growth of Descending Thoracic AortasnarestentsubclaviantearTEVARwire
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
Case 11b: Embolizing a Pseudoaneurysm of the Brachiocephalic Artery | Emoblization: Bleeding and Trauma
angiogramarterybrachiocephaliccatheterchapterclickcoilcoilsembolizationmicromicrocatheterNonepseudoaneurysmPseudoaneurysm brachiocephalic arterystenttrachea
MR Angiography | Determining the Endpoints of CLI Interventions
MR Angiography | Determining the Endpoints of CLI Interventions
angiogramanteriorartifactcalcifiedchapterclaudicationdeterminehemoglobiniliacimageinterventionmraMRIocclusionpatientsrecanalizationreperfusiontibialtissuevessels
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
Case 8: Retroperitoneal Hematoma- Cover Stent | Emoblization: Bleeding and Trauma
angiogramarteryaxialbleedcatheterizationchaptercontrastcoronalCoverage StentembolizationembolizehematomailiaciliacsimageinjuryNoneoptionpatientpseudoaneurysmRetroperitoneal hematomastentstents
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
Case 10: Peritoneal Hematoma | Emoblization: Bleeding and Trauma
activeaneurysmangiogramanteriorarterycatheterchaptercoilcontrastcoronalctasembolizationembolizeembolizedflowgastroduodenalhematomaimageimagingmesentericmicrocatheterNonepathologypatientperitonealPeritoneal hematomapseudoaneurysmvesselvesselsvisceral
Case 2 - 4-month delayed heal wound, Rutherford Cat. 4 | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 2 - 4-month delayed heal wound, Rutherford Cat. 4 | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
anteriorballooncatheterchapterCordiscritical limb ischemiadeterminedeviceEnteer Re-Entry DevicehealediliacintimalischemialumenMedtronicmonophasicocclusionOUTBACK® ELITE Re-Entry Catheterpainportsre-entry devicerecanalizationstentingwaveformswirewound
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- Carotid Artery Stenting (CAS) | Carotid Interventions: CAE, CAS, & TCAR
antiplateletarterybraincarotidchapterdualembolicmedicareplavixprocedureprotectionproximalstenosisstentstentingtherapy
Indirect Angiography | Interventional Oncology
Indirect Angiography | Interventional Oncology
ablateablationablativeaneurysmangioangiographybeamBrachytherapycandidateschapterdefinitivelyembolizationentirehccindirectintentinterdisciplinaryischemiclesionographypatientportalresectionsbrtsurgicaltherapyvein
Q&A- TEVAR w/ Laser Fenestration  | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
Q&A- TEVAR w/ Laser Fenestration | TEVAR w/ Laser Fenestration of Intimal Dissection Flap
aneurysmalchapterchronicdissectionfenestrationflaplaserlumenperfusionretrogradeseptumviscera
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
Case 3 - Right iliac occlusion | Subintimal Recanalization | Complex Above Knee Cases with Re-entry Devices and Techniques
AngioDymanicscatheterchapterCordiscritical limb ischemiadeviceenosfootguysiliacocclusionOUTBACK® ELITE Re-Entry Catheterproximalre-entry deviceSOS Omni Selective Catheterstentvessel
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
Treatment Options- CAS- Embolic Protection Device (EPD)- Proximal Protection | Carotid Interventions: CAE, CAS, & TCAR
angioplastyantegradearteryaspirateballoonballoonsbloodcarotidcarotid arterychaptercirclecirculationclampclampingcolumncommoncontralateralcrossdebrisdeflatedevicedevicesdilateddistaldistallyexternalexternal carotidfilterflowincompleteinflateinflatedinternalinternal carotidlesionmarkerspatientpressureproximalretrogradesheathstentstepwisesyringesyringestoleratevesselwilliswire
Endoleak Case |
Endoleak Case | "Extreme"-ly Obvious IR
accessaheadalgorithmaneurysmangiogramanteriorapproacharterialarterybringcablechaptercontrastendoendoleakfeedingfeeding vessel not identifiedFollow up angiogram shows a type 1b edoleakguysidentifyiliacimagingleaklimbpatientplaypuncturesheathslidestherefore planned an extension of the left aortic limbtrackingtransTranscaval approach to repair a likely type 2 endoleaktypevesselvideo
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
Case- May Thurner Syndrome | Pelvic Congestion Syndrome
arterycatheterizecausingchapterclassiccliniccommoncommon iliaccompressioncongestionendovascularevidenceextremitygonadalhugeiliaciliac veinimagingincompetenceincompetentMay Thurner Syndromeobstructionoccludedpelvicpressuresecondarystentsymptomstreatmentsvalvularvaricositiesvaricosityveinveinsvenavenous
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
Q&A Pulmonary Embolism | Management of Patients with Acute & Chronic PE
acuteangiogramassistedcatheterchapterchroniccontrastdiagnosticechocardiogramembolismisisNonepressurepulmonarythrombolysistreatmentultrasound
Case 2- Massive PE | Massive Pulmonary Emoblism
Case 2- Massive PE | Massive Pulmonary Emoblism
anesthesiologistanticoagulationchapterclotECMOPEpracticingpressorsstentsystolic
Transcript

- [Speaker] Good morning everybody thanks for attending the session and again thanks for the invitation. These are my disclosures. I will start by illustrating one of the cases where we did not use cone beam CT and evidently there were numerous mistakes on this

from planning to conducting the case. But we didn't notice on the completion of geography in folding of the stent which was very clearly apparent on the first CT scan. Fortunately we were able to revise this and have a good outcome.

That certainly led to unnecessary re intervention. We have looked at over the years our usage of fusion and cone beam and as you can see for fenestrated cases, pretty much this was incorporated routinely in our practice in the later part of the experience.

When we looked at the study of the patients that didn't have the cone beam CT, eight percent had re intervention from a technical problem that was potentially avoidable and on the group that had cone beam CT, eight percent had findings that were immediately revised with no

re interventions that were potentially avoidable. This is the concept of our GE Discovery System with fusion and the ability to do cone beam CT. Our protocol includes two spins. First we do one without contrast to evaluate calcification and other artifacts and also to generate a rotational DSA.

That can be also analyzed on axial coronal with a 3D reconstruction. Which essentially evaluates the segment that was treated, whether it was the arch on the arch branch on a thoracoabdominal or aortoiliac segment.

We have recently conducted a prospective non-randomized study that was presented at the Vascular Annual Meeting by Dr. Tenario. On this study, we looked at findings that were to prompt an immediate re intervention that is either a type one

or a type 3 endoleak or a severe stent compression. This was a prospective study so we could be judged for being over cautious but 25% of the procedures had 52 positive findings. That included most often a stent compression or kink in 17% a type one or three endoleak

in 9% or a minority with dissection and thrombus. Evidently not all this triggered an immediate revision, but 16% we elected to treat because we thought it was potentially going to lead to a bad complication. Here is a case where on the completion selective angiography

of the SMA this apparently looks very good without any lesions. However on the cone beam CT, you can see on the axial view a dissection flap. We immediately re catheterized the SMA. You note here there is abrupt stop of the SMA.

We were unable to catheterize this with a blood wire. That led to a conversion where after proximal control we opened the SMA. There was a dissection flap which was excised using balloon control in the stent as proximal control.

We placed a patch and we got a good result with no complications. But considerably, if this patient was missed in the OR and found hours after the procedure he would have major mesenteric ischemia. On this study, DSA alone would have missed

positive findings in 34 of the 43 procedures, or 79% of the procedures that had positive findings including 21 of the 28 that triggered immediate revision. There were only four procedures. 2% had additional findings on the CT

that were not detectable by either the DSA or cone beam CT. And those were usually in the femoro puncture. For example one of the patients had a femoro puncture occlusion that was noted immediately by the femoro pulse.

The DSA accounts for approximately 20% of our total radiation dose. However, it allows us to eliminate CT post operatively which was done as part of this protocol, and therefore the amount of radiation exposed for the patient

was decreased by 55-65% in addition to the cost containment of avoiding this first CT scan in our prospective protocol. In conclusion cone beam CT has allowed immediate assessment to identify technical problems that are not easily detectable by DSA.

These immediate revisions may avoid unnecessary re interventions. What to do if you don't have it? You have to be aware that this procedure that are complex, they are bound to have some technical mistakes. You have to have incredible attention to detail.

Evidently the procedures can be done, but you would have to have a low threshold to revise. For example a flared stent if the dilator of the relic gleam or the dilator of you bifurcated devise encroach the stent during parts of the procedure. Thank you very much.

(audience applauding)

are in the room here's a case of an 80

year old with a previous mi had a left hand are directing me and it's gonna go for a coronary bypass graft but they want this carotid stenting significant card accenting lesion to be treated first there's the non-invasive blow

through this but there's the lesion had a prior carotid endarterectomy so had that surgery we talked about first but at the proximal and distal ends of that patch has now a stone osis from the surgical fix that's developed so we

don't want to go back in surgically that's a high resolution we want for a transfer Merle approach and from there here's what it looks like an geographically mimics what we saw on the CT scan you can see the the marker and

the external carotid artery on the right that's the distal balloon and then proximally in the common carotid artery and they're noted there and then when you inflate the balloons you can see them inflated in the second image in the

non DSA image that's the external carotid room carotid artery balloon that's very proximal the common carotid balloon is below or obscured by the shoulders and ultimately when you inflate the common carotid balloon you

just have stagnant blood flow then we treat them you can see both balloons now and the external carotid and common carotid in place we have our angioplasty balloon across the lesion and then ultimately a stent and this is what it

looked like before this is what it looks like after and tolerated this quite well and we never had risk of putting the patient for dis Lombok protection or to salamba lusts overall I'm not gonna go over this real

so just a compliment what we everybody's talked about I think a great introduction for diagnosing PID the imaging techniques to evaluate it some of the Loney I want to talk about some of the above knee interventions no disclosures when it sort of jumped into

a little bit there's a 58 year old male who has a focal non-healing where the right heel now interestingly we when he was referred to me he was referred to for me for a woman that they kept emphasizing at the anterior end going

down the medial aspect of the heel so when I literally looked at that that was really a venous stasis wound so he has a mixed wound and everybody was jumping on that wound but his hour till wound was this this right heel rudra category-five

his risk factors again we talked about diabetes being a large one that in tandem with smoking I think are the biggest risk factors that I see most patient patients with wounds having just as we talked about earlier we I started

with a non-invasive you can see on the left side this is the abnormal side the I'm sorry the right leg is the abnormal the left leg is the normal side so you can see the triphasic waveforms the multiphasic waveforms on the left the

monophasic waveforms immediately at the right I don't typically do a lot of cross-sectional imaging I think a lot of information can be obtained just from the non-invasive just from this the first thing going through my head is he

has some sort of inflow disease with it that's iliac or common I'll typically follow within our child duplex to really localize the disease and carry out my treatment I think a quick comment on a little bit of clinicals so these

waveforms will correlate with your your Honourable pencil Doppler so one thing I always emphasize with our staff is when they do do those audible physical exams don't tell me whether there's simply a Doppler waveform or a Doppler pulse I

don't really care if there's not that means their leg would fall off what I care about is if monophasic was at least multiphasic that actually tells me a lot it tells me a lot afterwards if we gain back that multiphase the city but again

looking at this a couple of things I can tell he has disease high on the right says points we can either go PITA we can go antegrade with no contralateral in this case I'll be since he has hide he's used to the right go contralateral to

the left comment come on over so here's the angio I know NGOs are difficult Aaron when there's no background so just for reference I provided some of the anatomy so this is the right you know groin area

right femur so the right common from artery and SFA you have a downward down to the knee so here's the pop so if we look at this he has Multi multi multiple areas of disease I would say that patients that have above knee disease

that have wounds either have to level disease meaning you have iliac and fem-pop or they at least have to have to heal disease typically one level disease will really be clot against again another emphasis a lot of these patients

since they're not very mobile they're not very ambulatory this these patients often come with first a wound or rest pain so is this is a patient was that example anyway so what we see again is the multifocal occlusions asta knows

he's common femoral origin a common femoral artery sfa origin proximal segment we have a occlusion at the distal sfa so about right here past the air-duct iratus plus another occlusion at the mid pop to talk about just again

the tandem disease baloney he also has a posterior tibial occlusion we talked about the fact that angio some concept so even if I treat all of this above I have to go after that posterior tibial to get to that heel wound and complement

the perineal so ways to reach analyze you know the the biggest obstacle here is on to the the occlusions i want to mention some of the devices out there I'm not trying to get in detail but just to make it reader where you know there's

the baiance catheter from atronics essentially like a little metal drill it wobbles and tries to find the path of least resistance to get through the occlusion the cross or device from bard is a device that is essentially or what

I call is a frakking device they're examples they'll take a little peppermint they'll sort of tap away don't roll the hole peppermint so it's like a fracking device essentially it's a water jet

that's pulse hammering and then but but to be honest I think the most effective method is traditional wire work sorry about that there are multiple you know you're probably aware of just CTO wires multi weighted different gramm wires 12

gram 20 gram 30 gram wires I tend to start low and go high so I'll start with the 12 gram uses supporting micro catheter like a cxi micro catheter a trailblazer and a B cross so to look at here the sheath I've placed a sheet that

goes into the SFA I'm attacking the two occlusions first the what I used is the micro catheter about an 1/8 micro catheter when the supporting my catheters started with a trailblazer down into the crossing the first

occlusion here the first NGO just shows up confirmed that I'm still luminal right I want to state luminal once I've crossed that first I've now gone and attacked the second occlusion across that occlusion so once I've cross that

up confirm that I'm luminal and then the second question is what do you want to do with that there's gonna be a lot of discussions on whether you want Stan's direct me that can be hold hold on debate but I think a couple of things we

can agree we're crossing their courageous we're at the pop if we can minimize standing that region that be beneficial so for after ectomy couple of flavors there's the hawk device which

essentially has a little cutter asymmetrical cutter that allows you to actually shave that plaque and collect that plaque out there's also a horrible out there device that from CSI the dime back it's used to sort of really sort of

like a plaque modifier and softened down that plaque art so in this case I've used this the hawk device the hawk has a little bit of a of a bend in the proximal aspect of the catheter that lets you bias the the device to shape

the plaque so here what I've done you there you can see the the the the the teeth itself so you can tell we're lateral muta Liz or right or left is but it's very hard to see did some what's AP and posterior so usually

what I do is I hop left and right I turned the I about 45 degrees and now to hawk AP posterior I'm again just talking left to right so I can always see where the the the the AP ended so I can always tell without the the teeth

are angioplasty and then here once I'm done Joan nice caliber restored flow restored then we attacked the the common for most enosis and sfa stenosis again having that device be able to to an to direct

that device allows me to avoid sensing at the common femoral the the plaque is resolved from the common femoral I then turn it and then attack the the plaque on the lateral aspect again angioplasty restore flow into the common firm on the

proximal SFA so that was the there's the plaque that you can actually obtain from that Hawk so you're physically removing that that plaque so so that's you know that's the the restoration that flow just just you know I did attack the

posterior tibial I can cross that area I use the diamond back for that balloon did open it up second case is a woman

it's obviously either done with general

anesthesia or perhaps a regional block at our institution is generally done with general anesthesia we have a really combined vascular well developed combined vascular practice we work closely with our surgeons as well as

you know those who are involved in the vascular interventional space as far as the ir docs and and in this setting they would do generally general anesthetic and a longitudinal neck incision so you've got that and the need for that to

heal ultimately dissect out the internal carotid the external carotid common carotid and get vessel loops and good control over each of those and then once you have all of that you hyper NIH's the patient systemically not unlike what we

do in the angio suite and then they make a nice longer-term longitudinal incision on the carotid you spot scissors to cut those up and they actually find that plaque you can see that plaque that's shown there it's you know actually

pretty impressive if you've seen it and let's want to show an illustrative picture there ultimately that's open that's removed you don't get the entirety of the plaque inside the vessel but they get as much as they can and

then they kind of pull and yank and that's one of the pitfalls of this procedure I think ultimately is you don't get all of it you get a lot more than you realize is they're on on angiography but you don't get all of it

and whatever is left sometimes can be sometimes worse off and then ultimately you close the wound reverse the heparin and closed closed it overall and hope that they don't have an issue with wound healing don't have an issue with a

general anesthetic and don't have a stroke in the interim while they've clamped and controlled the vessel above and below so here's a case example from our institution in the past year this is a critical asymptomatic left internal

carotid artery stenosis pretty stenotic it almost looks like it's vocally occluded you can see that doesn't look very long it's in the proximal internal carotid artery you can see actually the proximal external carotid artery which

is that kind of fat vessel anteriorly also looks stenotic and so it's going to be addressed as well and this is how they treated it this is the exposure in this particular patient big incision extractors place and you can see vessel

loops up along the internal and external carotid arteries distally along some early branches of the external carotid artery off to the side and then down below in the common core artery and ultimately you get good vessel control

you clamp before you make the incision ultimately take out a plaque that looks like this look how extensive that plaque is compared to what you saw in the CT scan so it's not it's generally much more

impressive what's inside the vessel than what you appreciate on imaging but it's the focal stenosis that's the issue so ultimately if yet if the patient was a candidate stenting then you just place a stent

across that and he stabilized this plaque that's been removed and essentially plasti to that within the stent so it doesn't allow any thrombus to break off of this plaque and embolize up to the brain that's the issue of raw

it's the flow through there becomes much more turbulent as the narrowing occurs with this blockage and it's that turbulent flow that causes clot or even a small amount of clot to lodge up distally within the intrical in

terrestrial vasculature so that's the issue here at all if you don't take all that plaque out that's fine as long as you can improve the turbulent blood flow with this stent but this is not without risk so you take that plaque out which

looks pretty bad but there are some complications right so major minor stroke in death an asset which is a trial that's frequently quoted this is really this trial that was looking at medical therapy versus carotid surgery

five point eight percent of patients had some type of stroke major minor so that's not insignificant you get all that plaque out but if you know one in twenty you get a significant stroke then that's not so bad I'm not so good right

so but even if they don't get a stroke they might get a nerve palsy they might get a hematoma they may get a wound infection or even a cardiovascular event so nothing happens in the carotid but the heart has an issue because the

blockages that we have in the carotid are happening in the legs are happening in the coronary so those patients go through a stress event the general anesthetic the surgery incision whatever and then recovery from that I actually

put some stress on the whole body overall and they may get an mi so that's always an issue as well so can we do something less invasive this is actually a listing of the trials the talk is going to be available to you guys so I'm

not going to go through each of this but this is comparing medical therapy which I started with and surgery and comparing the two options per treatment and showing that in certain symptomatic patients if they have significant

stenosis which is deemed greater than 70% you may be better off treating them with surgery or stenting than with best medical therapy and as we've gotten better and better with being more aggressive with best medical therapy

this is moving a little bit but here's the criteria for treatment and so you have that available to you but really is

plan as well so I wanted to talk a

little bit about imaging I know with our residents and fellows and radiology that's all we do is talk about the imaging and then when go on to IR we talked to them about the intervention but I think it's important

for everyone in this room to see more imaging and see what we're looking at because it's very important for us all to be doing on the same page whether you're a nurse a technologist a physician or anybody else in the room

we're all taking care of that patient and the more information we all have the better it is for that patient so quick primer on a PE imaging so this is a coned in view of a CT pulmonary angiogram so yeah sometimes you'll see

CTS that are that are set for a pulmonary artery's and you'll see some that are timed for the aorta but if the pulmonary arteries are well pacified you're gonna see thrombus so I have two arrows there showing you thrombus that's

sort of blocking the main pulmonary arteries on the left and right side on the patient's left so the one with the arrow that is a sort of very classic appearance of an intro luminal thrombus you can see a little rim of contrast

surrounding it and it's usually at branch points and it's centered in the vessel the one on the right with the arrow head is really at a big branch point so that's where the right lower lobe segmental branches are coming off

and you can see there's just a big amount of thrombus there you can see distal infarct so if you're looking in the long windows you'll see that there's this kind of it's called a mosaic perfusion but it also what kind of looks

like a cobweb and that's actually pulmonary infarct and maybe some blood there which actually will change what we're gonna do because in those cases freaken we will not perform PE thrombolysis it's also important to note

that acute and chronic PE which we're here to talk about today may look very similar on a CT scan and they have completely different treatment methods so here's a sagittal view from that same patient you can see the CT scan so

between the arrow heads is with the tram track appearance so you'll see that there's thrombus the grey stuff in the middle and you'll see the white contrasts surrounding it and kind of like a tram track and that's very

classic for acute PE and then of course where the big arrow is is just the big thrombus sitting there here's another view of a coronal this is actually on a young woman which I think we show some images on but you can see cannonball

looking thrombus in the main pulmonary arteries very classic variants for acute PE and then this is that same patient in a sagittal view again showing you in the left pulmonary kind of those big cannon balls of

thrombus here's some examples from the literature showing you the same thing when you're looking at an acute PE it's right centered on all the image all the way in the left if the classic thrombus is centered right in the middle of the

vessel you can usually see a rim of normal contrast around it and you can see on a sagittal or coronal view kind of like a thin strip of floating thrombus so the main therapies for acute

talk here with something that's new on the horizon believe it or not it was actually on the horizon 20 years ago and then it went away because there were a lot of patients that were treated with a

lot of complications and it's making a resurgence and this is balloon pulmonary angioplasty or BPA for short so this is an intervention which may be feasible in non-operative candidates so I mentioned to the Jamison classification earlier

type 1 and type 2 disease should be treated with surgery again it should be treated is curative but patients with type 2 and a half or 3 disease can be treated with balloon pulmonary angioplasty in the right in the right

frame which means that a surgeon has said I cannot operate on this a medical doctor has said boy they're not going to get better with their medicine let's try something else well this is that something else and that's what involves

everyone in this room so this is these are usually staged interventions with potentially high radiation and contrast dose if you think about it it's like Venis recan and a pulmonary AVM all-in-one so it's a potentially a long

complex procedure with a lot of contrast and a lot of radiation but it can provide a lot of benefit to these patients I'm going to talk about the comp potential complications at the end which is one reason why not

everyone should do these all the time so this is a pulmonary angiogram from the literature when you're injecting a selective pulmonary artery you can see that this patient has multiple stenosis there's no real good flow there the

vessels look shriveled up like I mentioned to you before you can get a balloon across it and balloon the areas and then you can see afterwards so the image a on the left is before an image D is afterwards believe it or not this are

in the most experienced hands because the most experienced hands are for palm the BP AR in Japan they do hundreds of cases of these a year at each hospital I've personally only done five so but this is a something that I'm very

interested in and you can see how how much benefit it has for that patient another way you can see these are the webs and the bands that I mentioned to you earlier so what's interesting is that if you look on the first set of

images on the top and the images on the bottom those are the same patients it's the same view before top rows before and the bottom rows after balloon pulmonary angioplasty so the first image is a pulmonary angiogram where if you kind of

see this there's there's some area areas of haziness those are the webs and bands the image on the the middle is the blown-up views and you can see those areas and then the image on the right is intravascular ultrasound which I use

every day in my practice it's a catheter with an ultrasound on it and when you look at it on the top image image see you can see a lot of thrombus you're actually not seeing flow and on image F on the bottom you're seeing red which is

the blood flow so these patients can actually improve the luminal diameter bye-bye ballooning them you can treat occlusions again image on the left shows you a pulmonary artery with a basically an occlusion proximally and then after

you reek analyze it and balloon it you can see that they can get much more

quick I did want to mention t-carr briefly and try to get you guys closer to back on time this is a hybrid procedure this is combining the surgical procedure we talked about first and carotid stenting it takes combined

carotid exposure at the base of the clavicle or just above the clavicle and reverses blood flow just like we talked about but tastes slightly different technique or approach to doing this and then you put the stent in from a drug

carotid access here's the components of the device right up by the neck there is where the incision is made just above the clavicle and you have this sheet that's about eight French in size that only goes in about us to 2 cm or 1 and a

half cm overall into the vessel and then that sheath is sutured to the the chest wall and then it's got a side arm that goes what's labeled number six here is this flow reversal urn enroute neuroprotection kit it reverses the

blood flow and then you get a femoral sheath in the vein right in the common femoral vein and you reverse the blood flow so this is a case a picture from our institution up on the right is the patient's neck and that's the carotid

exposure and the initial sheath is in place so the sidearm of that sheath is the enroute protection system which is going up up at the top of the image there we're gonna back bleed that let that sidearm of that sheath continue to

bleed up to the very top and then connect that to the common femoral venous sheet that we have in place there's a stepwise of that and then ultimately what we see at the end of the procedure is that filter inside that

little canister can be interrogated after and you can see the debris this is in the box D here on the bottom left the debris that we captured during the flow reversal and this is a what we call a passive and then active flow reversal

system so once the system is in place the direct exposure carotid sheath in place the flow controller and AV shunt in place you see the direction of blood flow so now all that blood flow in that common carotid artery is going reverse

direction and so when you place a sheath or wire and and ultimately through that sheath up by the carotid artery there's no risk for distal embolization because everything is flowing in Reverse here's a couple

case examples ferns from our institution this is a patient who had a symptomatic critical greater than 90% stenosis has tandems to nose he's so one proximal at the origin and one a little bit more distal we you can see the little

retractors down at the base of the image there in the sheath that's essentially the extent of the sheath from the bottom of that image into the vessel only about a cm or two post angioplasty instant patient tolerated that quite well here's

another 71 year-old asymptomatic patient greater than 90% stenosis pretty calcified lesion a little more extensive than maybe with the CT shows there's the angiography and then ultimately a post stent placement using the embolic

protection device and overall the trials have shown good good safety met profile overall compared to carotid surgery so it's a minimum minimal exposure not nearly as large the risk of stroke is less because you're not mucking around

up there you're using the best of a low profile system with flow reversal albeit with a mini surgical exposure overall we've actually have an abstract or post trip this year's meeting this is just a snapshot of that you can check it out

this is our one year experience we've had comparable low complication rates overall in our experience so in summary

I like to talk about brain infarc after Castro its of its year very symbolic a shoe and my name is first name is a shorter and probably you cannot remember my first name but probably you can remember my email address and join ovation very easy 40 years old man presenting with hematemesis and those coffee shows is aphasia verax and gastric barracks and how can i use arrow arrow on the monitor no point around yes so so you can see the red that red that just a beside the endoscopy image recent bleeding at the gastric barracks

so the breathing focus is gastric paddocks and that is a page you're very X and it is can shows it's a page of Eric's gastric barracks and chronic poor vein thrombosis with heaviness transformation of poor vein there is a spline or inertia but there is no gas drawer in urgent I'm sorry tough fast fast playing anyway bleeding focus is gastric barracks but in our hospital we don't have expert endoscopist

for endoscopy crew injections or endoscopic reinjection is not an option in our Hospital and I thought tips may be very very difficult because of chronic Peruvian thrombosis professors carucha tri-tips in this patient oh he is very busy and there is a no gas Torino Shanta so PRT o is not an option so we decided to do percutaneous there is your embolization under under I mean there are many ways to approach it

but under urgent settings you do what you can do best quickly oh no that's right yes and and this patience main program is not patent cameras transformation so percutaneous transit party approach may have some problem and we also do transit planning approach and this kind of patient has a splenomegaly and splenic pain is big enough to be punctured by ultrasonography and i'm a tips beginner so I don't like tips in this difficult

case so transplanting punch was performed by ultrasound guidance and you can see Carolus transformation of main pervane and splenorenal shunt and gastric varices left gastric we know officios Castries bezier varices micro catheter was advanced and in geography was performed you can see a Terrell ID the vascular structure so we commonly use glue from be brown company and amputee cyanoacrylate MBC is mixed with Italy

powder at a time I mixed 1 to 8 ratio so it's a very thin very thin below 11% igloo so after injection of a 1cc of glue mixture you can see some glue in the barracks but some glue in the promontory Audrey from Maneri embolism and angiography shows already draw barracks and you can also see a subtraction artifact white why did you want to be that distal

why did you go all the way up to do the glue instead of starting lower i usually in in these procedures i want to advance the microcatheter into the paddocks itself and there are multiple collateral channels so if i in inject glue at the proximal portion some channels can be occluded about some channels can be patent so complete embolization of verax cannot be achieved and so there are multiple paths first structures so multiple injection of glue is needed

anyway at this image you can see rigid your barracks and subtraction artifacting in the promenade already and probably renal artery or pyramid entry already so it means from one area but it demands is to Mogambo region patient began to complain of headache but american ir most american IRS care the patient but Korean IR care the procedure serve so we continue we kept the procedure what's a little headache right to keep you from completing your

procedure and I performed Lippitt eight below embolization again and again so I used 3 micro catheters final angel officio is a complete embolization of case repair ax patients kept complaining of headache so after the procedure we sent at a patient to the city room and CT scan shows multiple tiny high attenuated and others in the brain those are not calcification rapado so it means systemic um embolization Oh bleep I adore mixtures

of primitive brain in park and patient just started to complain of blindness one day after diffusion-weighted images shows multiple car brain in park so how come this happen unfortunately I didn't know that Porter from Manila penis anastomosis at the time one article said gastric barracks is a connectivity read from an airy being by a bronchial venous system and it's prevalence is up to 30 percent so normally blood flow blood in the barracks drains into the edge a

ghost vein or other systemic collateral veins and then drain into SVC right heart and promontory artery so from what embolism may have fun and but in most cases in there it seldom cause significant cranker problem but in this case barracks is a connectivity the promontory being fired a bronchial vein and then glue mixture can drain into the rapture heart so glue training to aorta and system already causing brain in fog or systemic embolism so let respectively

so we kind of had a bunch of portal vein cases I think we'll stick with that theme and this is a 53 year old woman who presented to the emergency room with severe abdominal pain about three hours after she ate lunch she had a ruin why two weeks prior the medications were

really non-contributory and she had a high lactic acid so she they won her a tan on consi t scan and this is you can see back on the date which is two years ago or a year and a half ago we're still seeing her now and follow-up and there

was a suggestion that the portal vein was thrombosed even on the non con scan so we went ahead and got a duplex and actually the ER got one and confirmed that portal vein was occluded so they consulted us and we had this kind of

debate about what the next step might be and so we decided well like all these patients we'll put her on some anticoagulation and see how she does her pain improved and her lactate normalized but two days later when she tried to eat

a little bit of food she became severely symptomatic although her lactate remain normal she actually became hypotensive had severe abdominal pain and realized that she couldn't eat anything so then the question comes what do you do for

this we did get an MRA and you can see if there's extensive portal vein thrombus coming through the entire portal vein extending into the smv so what do we do here in the decision this is something that we do a good bit of

but these cases can get a little complicated we decided that would make a would make an attempt to thrombolysis with low-dose lytx the problem is she's only two weeks out of a major abdominal surgery but she did have recurrent

anorexia and significant pain we talked about trying to do this mechanically and I'd be interested to hear from our panel later but primary mechanical portal vein thrombus to me is oftentimes hard to establish really good flow based on our

prior results we felt we need some thrombolysis so we started her decided to access the portal vein trance of Pataca lee and you can see this large amount of clot we see some meds and tera collaterals later i'll show you the SMB

and and so we have a wire we have a wide get a wire in put a catheter in and here we are coming down and essentially decide to try a little bit of TPA and a moderate dose and we went this was late in the afternoon so we figured it would

just go for about ten or twelve hours and see what happened she returned to the IRS suite the following day for a lysis check and at that what we normally do in these cases is is and she likes a good bit but you can see there's still

not much intrahepatic flow and there's a lot of clots still present it's a little hard to catheterize her portal vein here we are going down in the SMB there's a stenosis there I'm not sure if that's secondary to her surgery but there's a

relatively tight stenosis there so we balloon that and then given the persistent clot burden we decide to create a tips to help her along so here we are coming transit paddock we have a little bit of open portal vein still not

great flow in the portal vein but we're able to pass a needle we have a catheter there so we can O pacify and and pass a needle in and here we are creating the tips in this particular situation we decide to create a small tips not use a

covered stent decide to use a bare metal stent and make it small with the hope that maybe it'll thrombosed in time we wouldn't have to deal with the long-term problems with having a shunt but we could restore flow and let that vein

remodel so now we're into the second day and this is you know we do this intermittently but for us this is not something most of the patients we can manage with anticoagulation so we do this tips but again the problem here is

a still significant clot in the portal vein and even with the tips we're not seeing much intrahepatic flow so we use some smart stance and we think we could do it with one we kind of miss align it so we

end up with the second one the trick Zieve taught me which is never to do it right the first time joking xiv and these are post tips and yo still not a lot of great flow in the portal vein in the smv

and really no intrahepatic flow so the question is do we leave that where do we go from here so at this point through our transit pata catheter we can pass an aspiration catheter and we can do this mechanical

aspiration of the right and left lobes you see us here vacuuming using this is with the Indigo system and we can go down the smv and do that this is a clot that we pull out after lysis that we still have still a lot of clot and now

when we do this run you see that s MV is open we're filling the right and left portal vein and we're able to open things up and and keep the the tips you see is small but it's enough I think to promote flow and with that much clot now

gone with that excellent flow we're not too worried about whether this tips goes down we coil our tract on the way out continue our own happened and then trance it kind of transfer over to anti platelets advanced or diet she does

pretty well she comes back for follow-up and the tips are still there it's open her portal vein remains widely Peyton she does have one year follow-up actually a year and a half out but here's her CT the tip shuts down the

portal vein stays widely Peyton the splenic vein widely Peyton she has a big hematoma here from our procedure unfortunately our diagnostic colleagues don't look at any of her old films and call that a tumor tell her that she

probably has a new HCC she panics unbeknownst to us even though we're following her she's in our office she ends up seeing an oncologist he says wait that doesn't seem to make sense he comes back to us this is 11 3 so

remember we did the procedure in 7 so this is five months later at the one year fault that hematoma is completely resolved and she's doing great asymptomatic so yeah the scope will effect right that's exactly right so so

in summary this is it's an interesting case a bit extreme that we often don't do these interventions but when we do I think creating the tips helps us here I think just having the tips alone wasn't going to be enough to remodel so we went

ahead and did the aspiration with it and in this case despite having a hematoma and all shams up resolved and she's a little bit of normal life now and we're still following up so thank you he's

my last case here you have a 54 year old patient recent case who had head and neck cancer who presents with severe bleeding from a tracheostomy alright for some bizarre reason we had two of these

in like a week all right kind of crazy so here's the CT scan you can see the asymmetry of the soft tissue this is a patient who had had a neck cancer was irradiated and hopefully what you can notice on the

right side of the screen is the the large white circles of contrast which really don't belong there they were considered to be pseudo aneurysms arising from the carotid artery all right that's evidence of a bleed he was

bleeding out of his tracheostomy site so here's a CTA I think the better image is the image on the right side of the screen the sagittal image and you can see the carotid artery coming up from the bottom and you can see that round

circle coming off of the carotid artery you guys see that so here's the angiogram all that stuff that is to the right to the you know kind of posterior to the right of the screen there it doesn't belong there that's just

contrast that's exiting the carotid artery this is a carotid blowout we'll call it okay just that word sounds bad all right so that's bad so another question right what do you want to do here

I think embolization is reasonable but probably not the thing we can do the fastest to present a patient to treat a patient is bleeding out of the tracheostomy site so in this particular case this is a great covered stent case

alright and here's what it looked like after so we can go right up and just literally a cover sent right across the origin of that pseudoaneurysm and address the patient's bleeding alright

one pain geography as we know it was first described in 1955 by Kenneth in

the UK and I always find it interesting that you know we sit here we talk about how not fun it used to be but he said well lymphatic vessels at least the normal ones are much smaller than our deserve Eanes they're hard to see they

contain colorless lengths etc so this is something that has not been a state secret for for a long time but in this case he actually I used the microscope you see a needle he's doing hand injection and he did a surgical incision

across the foot and when he did that he was able to generate these images so one of them is a normal empathic you see a very fine vessel with a hemostat at the bottom of the image and the other one that has his tortuous winding vein or

vein appearance or varicose vein appearance is actually an abnormal lymphatic so this technique was described in fifty five seven years later was described in Pediatrics very similar about

much more difficult as well and they were able to get some very nice images you see these examples of abnormal lymphatics and these pediatric patients so in my fellowship at Brigham we were still doing PETA limp angiography during

my training and usually whenever we started and sat around talk with our text and nurses in the morning you could hear the groans and you could see the frowns but basically we knew that we closed down a room for one day and it

would start by us injecting a freezing solution in the inners web spaces of the toes and then injecting this methylene blue dye we would then milk the foot up until the dorsum of the foot had a blue streak and that's where we knew the

lymphatic vessel was we'd make this vertical incision and skeletonize the vessel we tie it off with some silk we tape it down and then we would get to work trying to catheterize this little skinny vessel with a 30 gauge needle now

this process alone would usually take a couple hours and a lot of patience and then we'd fix our catheter up and attach it to a pump and it would go at a rate of five to eight CC's an hour it'd take a couple hours to get the pictures

through the leg a couple more hours to go from the leg to the rest of the retroperitoneum etc so now you've talked now you're talking six plus hours and you haven't even really done the case yet elegant images you see how fine and

wispy these vessels are we have many more lymphatics than you do any other vessel in your body we don't really have a good grasp with the distribution of of all the different variants that you have from person to person but there's a lot

of variation obviously a technically challenging procedure to have high-quality peda lymph angiography it's time-consuming invasive to patients you have this incision that would take several mattress sutures and a couple

weeks to heal but the images have good resolution it was diagnostic it was therapeutic in some cases of lymphatic injury leaks as well no to lymph

for it's very it at centers where CTA protocols are very good it's basically equivalent to a angiography has been shown in multiple papers to be so newer studies show that

CTA and Emory are equivalent so I don't know it depends on your institution there are a lot of places that still practice with the MRA is kind of the gold standard but CTA is just so much more available that CTA is becoming kind

of the new gold standard for for quick vascular assessment often like to use it to help us plan our intervention so if we don't know what's going on above the level of the groin CTA could be helpful to see whether or

not we could even go from right to left how calcified the vessels are or whether or not there's concomitant aneurysms things that we don't like to discover at the time of the procedure because we might not have the equipment we need to

treat it one of the strengths is that it's quick and that it's cheap but of course it uses contrast and just like you know we like to minimize the amount of contrast that we're using at knee and rogram this can use anywhere from 75 to

150 cc's of contrast or not a small amount and if you're gonna do an intervention the same or the next day that's a lot of dough that's a lot iodine in a couple days these are examples of what we can see at the time

of the procedure there's a 3d reconstruction and a BU these are kerf planer reformatted images what basically they draw a line down the image and you can lay the entire vessel out even if it's very squiggly and then this isn't

this an angiogram and that same patient you can see that they correlate exactly another example a patient with aortic calcification you can see that it can be potentially challenging this patient with diabetes to determine whether or

not these vessels in below the level of the knee are paetynn or not because I can tell you that the one that's closest to the small bone there is actually occluded it's just all calcified you can't really tell what's going on and

the one that's behind that is actually Payton so it could be difficult to tell whether it's calcium or contrast that you're seeing this is where MRA can be

next is me talking about Egypt and Ethiopia and how I are how IRS practice in Egypt and Ethiopia and I think feather and Musti is gonna talk a little bit about Ethiopia as well he's got a

lot of experience about in about Ethiopia I chose these two countries to show you the kind of the the the the difference between different countries with within Africa Egypt is the 20th economy worldwide by GDP third largest

economy in Africa by some estimates the largest economy in Africa it's about a hundred million people about a little-little and about thirty percent of the population in the u.s. 15 florist's population worldwide and has

about a little over a hundred ir's right now 15 years ago they had less than ten IRS and fifteen years ago they had maybe two to three IRS at a hundred percent nowadays they're exceeding a hundred IRS so tremendous gross in the last 15 years

in the other hand Ethiopia is a very similar sized country but they only have three to five IRS that are not a hundred percent IRS and are still many of them are under training so there are major differences between countries within

within Africa countries that still need a lot of help and a lot of growth and countries that are like ten fifteen years ahead as far as as far as intervention ready intervention radiology

most of the practice in Ethiopia are basic biopsies drainages and vascular access but there is new workshops with with embolization as well as well as well as vascular access in Egypt the the ir practice is heavily into

interventional oncology and cancer that's the bulk that's the bulk of their of their practices you also get very strong neuro intervention radiology and that's mostly most of these are French trained and not

American trains so they're the neuro IRS in Egypt or heavily French and Belgian trains with with french-speaking influence but the bulk of the body iron that's not neuro is mostly cancer and it involves y9e tastes ablations high-end

ablations there's no cryoablation in Egypt there is high-end like like a nano knife reverse electric race electroporation in Egypt as well but there is no cryo you also get a specialty embolization such as fibroids

prostate and embroiders are big in Egypt they're growing very very rapidly especially prostates hemorrhoids and fibroids is an older one but it's still there's still a lot of growth for fibroid embolization zyou FES in Egypt

there's some portal portal intervention there's a lot of need for that but not a lot of IRS are actually doing portal intervention and then there's nonvascular such as billary gu there's also vascular access a lot of

the vascular access is actually done by nephrology and is not done by not not done by r is done by some high RS varicose veins done by vascular surgery and done by IRS as an outpatient there's a lot of visceral angiography as well

renal and transplants stuff so it's pretty high ends they do not do P ad very few IR s and maybe probably two IR s in the country that actually do P ad the the rest of the P ad is actually endovascular PA DS done by vascular

surgery a Horta is done all by vascular surgery and cardiothoracic surgery it's not done it's not done by IR IR s are asked just to help with embolization sometimes help with trying to get a catheter in a certain area but it's

really run by by vascular surgeons but but most more or less it's it's the whole gamut and I'm going to give you a little example of how things are different that when it comes to a Kannamma 'kz there's no dialysis work

they don't do Pfister grams they don't do D clots the reason for that is the vascular surgeons are actually very good at establishing fishless and they usually don't have a

lot of problems with it sometimes if the fistula is from Beau's door narrowed it's surgically revised they do a surgical thrombectomy because it's a lot cheaper it's a lot cheaper than balloons sheaths and and trying to and try a TPA

is very expensive it's a lot cheaper for a surgeon to just clean it out surgically and resuture it there's no there's no inventory there are no expensive consumables so we don't see dialysis as far as fistula or dialysis

conduits at all in Egypt and that's usually a trend in developed in developed countries next we'll talk

strategies so some things that we have

in place right now our peer review Grand Rounds CPOE this is one of my one of my favorite process improvements is is making the right thing the easiest thing and you do that through standardization of processes so that's standard work so

that's your order sets that's the things pop-ups although you don't want to get into pop-up fatigue but pop-ups help our providers for little gentle reminders to guide them to what's right for the patient and to cover everything that we

need we need to cover to ensure the safety of our patient so recently in the fall of last year we had a TPA administration err that occurred it involved a 69 year old patient who two weeks prior had had some stenting in her

right SFA she presented to our clinic when our clinics with some heaviness in her leg and some pain and when she was looked at from an ultrasound standpoint it was determined that her stents were from Bost so she was immediately taken

to the cath lab and it was after angiography did indeed show that there was clot inside these stents they did start catheter directed thrombolysis in the cath lab they also did started concurrent heparin often oftentimes done

with CDT what's usual for our institution is that we have templates that pull in the active problem list for a patient in this case the active problem list or a templated HMP was not used had they

used the template at agent p they would have found that the second active problem on this patients list was a cerebral aneurysm so some physicians will tell you some ir docs will tell you that's an absolute

contra contraindication for TPA however the SI r actually lists it as a relative contraindication so usually we're used to when you when you start a final Isis case you know you're gonna be coming in every 24 hours to check in

that patient in this case we started the the CDT on a Thursday the intent was to bring her back on Monday the heparin many ir nurses will know that we will run it at a low rate usually 500 units an hour and we keep the patient sub-sub

therapeutic on their PTT although current literature will show you that concurrent heparin can also be nurse managed keeping the patient therapeutic in their PTT which is what was done in this case so what ended up the the

course progression of this patient was that so remember we started on Thursday on Saturday she regained her distal pulses in her right leg no imaging Sunday she lost her DP pulse it was thought that it was part of a piece of

that clot that was in the the stent had embolized distally so they made the decision with the performing physicians they consulted him to increase the TPA that was at one milligram an hour to 2 milligrams by Sunday afternoon the

patient had an altered mental status she went to the CT scan which showed a large cerebral hemorrhage they ain't we intubated to protect her airway and by Monday we were compassionately excavating her because

she me became bred brain-dead so in the law there's something that's called the but for argument so the argument can be made that this patient would not have died but for the TPA that we gave her in a condition that she should not have had

TPA for namely that aneurysm so this shows how standard work can be very important in our care of our patients and how standard work drives us down the right way making the easiest thing the safest thing so since that time

we've had a process improvement group that we've established an order set specifically for use and thrombolysis from a peripheral standpoint and then also put together a guideline that was not in place so it's some of that Swiss

cheese that just kind of we didn't have a care set we didn't have a guideline you know we didn't use our template so all those holes lined up and we ended up with a very serious patient safety event so global human air reduction strategies

oops sorry let's go back these are listed in a weaker two stronger and some of what we're using in that case is some checklists so we developed a checklist that needs to be done to cover the

absolute contraindications as well as the relative and it's embedded in the Ulta place order that the physician has to review that checklist for those contraindications and also there to receive a phone call from pharmacy

just to double-check and make sure that they have indeed done that that it's not somebody just checking it off so we have a verbal backup sorry so the just

know we're running a bit short on time so I want to briefly just touch about

some techniques with comb beam CT which are very helpful to us there are a lot of reasons why you should use comb beam CT it gives us the the most extensive anatomic understanding of vascular territories and the implications for

that with oncology are extremely valuable because of things like margin like we discussed here's an example of a patient who had a high AF P and their bloodstream which tells us that they have a cancer in her liver we can't see

it on the CT there but if you do a cone beam CT it stands up quite nicely why because you're giving levels of contrast that if you were to give them through a peripheral IV it would be toxic to the patient but when you're infusing into a

segment the body tolerates at the problem so patient preparation anxa lysis is key you have them exhale above three seconds prior to that there's a lot of change to how we're doing this people who are introducing radial access

power injection anywhere from about 50 to even sometimes thirty to a hundred percent contrast depends on what phase you're imaging we have a Animoto power injector that allows us to slide what contrast concentration we like a lot of

times people just rely on 30% and do their whole the case with that some people do a hundred percent image quality this is what it looks like when someone's breathing this is very difficult to tell if there's complete

lesion enhancement so if you do your comb beam CT know it looks like this this is trying to coach the patient and try to get them to hold still and then this is the patient after coaching which looks like this so you can tell that you

have a missing portion of the lesion and you have to treat into another segment what about when you're doing an angio and you do a cone beam CT NIT looks like this this is what insufficient counts looks like on comb beam so when you see

these sort of Shell station lines that are going all over the screen you have to raise dose usually in larger patients but this is you know you either slow down the acquisition speed of your comb beam or

you raise dose this is what it looks like after we gave it a higher dose protocol it really changes everything those lines are still there but they're much smaller how do you know if you have enhancement or a narrow artifact you can

repeat with non-contrast CT and give the patient glucagon and you can find the small very these small arteries that pick off the left that commonly profuse the stomach the right gastric artery you can use your comb beam CT to find

non-target evaluation even when your angio doesn't suggest it so this is a patient they have recurrent HCC we didn't angio from here those arteries down there where those coils were looked funny even though the patient was

quote-unquote coiled off we did a comb beam CT and that little squiggly C shape structures that duodenum that's contrast going in it this would be probably a lethal event for the patient or certainly would require surgery if you

treated that much with y9t reposition the catheter deeper towards the lesion and you can repeat your comb beam CT and see that you don't have an hands minh sometimes you have these little accessory left gastric artery this is

where we really need your help you know a lot of times everyone's focused and I think the more eyes the better for these kind of things but we're looking for these little tiny vessels that sometimes hop out of the liver and back into the

stomach or up into the esophagus there's a very very small right gastric artery in this picture here this patient post hepatectomy that rides along the inferior surface of the liver it's a little curly cube so and this is a small

esophageal branch so when you do comb beam TT this is what the stomach looks like when it enhances and this is what the esophagus looks like when it enhances you can do non contrast comb beam CTS to confirm ablation so you have

a lesion this is the comb beam CT for enhancement you treat with your embolic and this is a post to determine that you've had completely shin coverage and you can see how that correlates a response so the last thing we're going

stamp placement we talked a little bit about it I'm gonna talk to you a little

bit more about it and ideal stance is a straight stance that has a nice smooth curve with a portal vein and a nice smooth curve with a bad igneous end well you don't want is it is a tips that T's the sealing of the hepatic vein okay

that closes it okay and if there's a problem in the future it's very difficult to select okay or impossible to select okay you want it nice and smooth with a patek vein and IVC so you can actually get into it and it actually

has a nice hemodynamic outflow the same thing with the portal thing what you don't want is slamming at the floor of the portal vein and teeing that that floor where where it actually portly occludes your shunts okay or gives you a

hard time selecting the portal vein once you're in the tips in any future tips revisions okay other things you need it nice and straight so you do not want long curves new or torqued or kinks in your tips you

a nice aggressive decompressive tips that is nice and straight and opens up the tips shunt okay we talked a little bit you don't want it you don't want to tee the kind of the ceiling of the of the hepatic vein another problem that we

found out you want that tips stance to extend to the hepatic vein IVC Junction you do not want it to fall short of the paddock vein IVC Junction much okay much is usually a centimeter or centimeter and a half is it is acceptable

the problem with hepatic veins and this is the same pathology as the good old graft dialysis grafts what is the common sites of dialysis graft narrowing at the venous anastomosis why for this reason it's the same pathogenesis veins whether

it's in your arm for analysis whether it's in your liver or anywhere are designed for low flow low turbidity flow of the blood okay if you subject a vein of any type to high turbot high velocity flow it reacts by thickening its walls

it reacts by new intimal hyperplasia so if you put a big shunt which increases volume and increased flow turbidity in that area in that appear again the hepatic vein reacts by causing new into our plays you actually get a narrowing

of the Phatak vein right distal to the to the to the Patek venous end of the shunt so you need to take it all the way to the Big C to the IVC okay how much time do I have half an hour huh 17 minutes okay

Viator stents is one way let's say you don't have a variety or stent many countries you don't have a virus then what's an alternative do a barre covered stem combination you put a wall stent and then put a covered stance on the

inside okay so put a wall stent a good old-fashioned you know oldie but a goodie is is a 1094 okay you just put a ten nine four Wahl cent which is the go to walls down so I go to stand for tips before Viator

and then put a cover sentence inside whatever it is it's a could be a fluency it could be a could be a vibe on and and do that so that's another alternative for tips we talked about an ace tips as a central straight tips and it's not out

and fishing out in the periphery okay this is an occlusion with a wall stance this is why we use think this is why now we use stent grafts this is complete occlusion of the tips we're injecting contrast this is not the coral vein this

is actually the Billy retreat visit ptc okay that's a big Billy leaked into the into the tips okay and that's why we use covered stance I'm gonna move forward on this in early and early and experienced

so my Xtreme ir case is a TVR with on a patient with a type you tie section and then we use laser to find a straight the dissection flap and I just want to before I start I just want to give a big shout-out to my attending dr. Kasia and Rudy pump Adi on our IR resident Rudy

put these really cool illustrations together as you will see on these upcoming slides and dr. Kaja he did this case and basically it helps me with everything so since your old male patient presenting with history of

chronic type UTI section um he was medically managed with and I'll G Saxena antihypertensives and then he came into the ER a couple months later and it was complaining of severe back and chest pain so a CTA was

performed and and they found that there was a significant growth in the descending thoracic aorta and so we have a couple images here we have a 3d reconstruction of the aorta as well as the sagittal image of that CTA and does

anyone notice anything about this 3d on aorta no so this patient has a variant he has a bull vine arch actually so the left common carotid is coming off the right you nominate um but vessel the arteries so it's nice for us when we're

placing that and negraph we have more more of a landing zone so we're not covering any of important structures other than the less left subclavian artery and so we're the two arrow heads are on the sagittal image you will see

that there's reentry tears so if you look at the 3d image so the dissection is that line right in the middle and so it's starting at the origin of near the LSA and ending at the level of the celiac artery okay so we obtained right

and left common femoral access and you obtain left brachial access as well and the reason for left particular access is once we get our enter graph gen we're going to go ahead and I'm pass the wire through and a laser through and find us

to find a straight through that under graft so you can have flow but I will talk about that later so we put a twenty French dry seal sheath and the right groin and in the left groin we had a 8 by 45

she's and that was basically to accommodate IVA so they can kind of get a feel for what we're doing it just like another resource we have so we have two IVs images here the one on the left with the yellow arrow basically is just

showing us that thickened dissection flap and the Ibis on the right is the love of the celiac artery so the celiac artery is where that green arrow is pointing to and the white arrow head is basically just showing us that reentry

tear at that level and so through the right through the right the sheet on the right hand side the 20 French try seal sheets we placed the 7 by a 55 Aptus on steerable tour tour guide sheath so that basically can angle up to 180 degrees so

we place that up to sheath in the true lumen of the aorta and pointing towards the false lumen and then I just put some pictures up of what a dissection looks like I don't know if a lot of people a lot of you guys on do dissection their

frustrations I mean your practice but I just thought it would be nice to show and so once we have the Aptus sheep up in the true lumen and have it pointed towards on the false women we confirmed with the eye this just to make sure

we're on the right spot and we're not we're not going to harm any other structures when we laser so once we have that up we use laser to kind of poke a hole and fenestrated create that's here and once we did that we dragged while

the laser was on we dragged the baptists sheath down 4 centimeters and created a large terror so the whole goal is to open up that dissection so we could eventually place that under graph so once and that there's a florist got the

image of ibis and apt the Aptus sheath and all that and so we created a large tiara and then what we did was we passed the 18 wire into the false live and we angioplasty with the 14 by 4 centimeter balloon and as you can see that there is

some waste on that balloon and then eventually it dilated up to you know now I'm gonna burst rate which was 18 and so that Ibis is basically showing us that's here that we just made in our dissection flap

okay am I not there we go okay so once we angioplasty be repeated the same thing so we put the laser back up get a small tear right underneath large penetrations here that we just said and then we angioplasty it so once we

angioplasty we connected that top tier and bottom tear together we opened it all up and we angioplasty it again after that so once that I mean go back so once the angioplasty so right underneath that big tear that we just made so between

the tear that we just made and the re-entry is here at the level of a celiac you still have that little piece of a dissection flap that we still need to open to place our under graft so once we did that once we angioplasty through

the right groin we passed up a glide catheter and the true lumen and pointed it towards the false women and through on the tear that we just made we passed the v18 wire and through the left groin we went up with a 20 millimeter loop

snare and so we grabbed the the 18 wire and so that loop snare went and that reentry tear and like into the false lumen so our whole point is to get through and through access with that wire so we can use as a wire cutter to

cut the remaining flaps so that's what we did so we we grabbed that snare we grab that v18 with the snare we pulled it out of the left groin and we obtained through and through access okay so you're just ripping it down yeah

basically it's like it she goes somewhere yeah yeah you got it yeah that's exact don't ask a question to what you don't want the answer so basically that's what we did so once we got through into access we advanced both

sheets and we kind of like pull down to to cut the remaining flap so once we did that we basically had everything open so we were ready to place our under graft so we did angiography and then we ended up

deploying the descent and then so once we would deploy the stent we basically covered that LSA the left subclavian artery so that's exactly why we got brachial access so we pass the wire through and got to the origin of the LSA

and then we ended up putting the laser down and then we turn the laser on poked a hole and so now we have this hole and this endograft so once we did that we angioplasty it and then we deploy the stents okay and so now we have a diagram

of the pates and LSA following stenting so we sent in the aorta and where the dissection was and then resented the LSA so we have nice nice flow the REC lab donal angiogram basically is just demonstrating feeling of the celiac in

superior mesenteric artery as you can see in that middle image distally so one of our missions that Rudy made which is pretty awesome so illustration of fenestrated t-bar with LSA sensing and adequate just so Co following the

dissection flap that we usually there's open so BAM there you go so that's Rudy and I in the middle my one of my co-workers Kevin and when my mentor is dr. Kaja dr. Marley and myself so thank you hi dr. Kasia thanks for joining

here's another patient 62 year old male

patient just a similar case who had head in that cancer again after radiation therapy who experienced some bright red blood while coughing all right here's the CT scan and what I want to draw your attention to a little tough to see I

think I'll let me go up up here point it out with a mouse well I don't have a mouse so I guess not is basically you can see right in the middle of the two lungs kind of right in front of the trachea which is the black

circle alright just go right in front of that up to the top you can see the round white circle which is the brachiocephalic artery and just projecting off the back of that is another little kind of outpouching of

contrast a little nipple coming off of of the brachiocephalic artery that doesn't belong there all right here's the angiogram and it's a little difficult to see but there is a see if I can describe it better to you alright I

think this is actually a video so I'm sorry I don't know the ability to run it unless you can click on it can you guys click on the back up so if you want to look at it again you see the angiogram kind of running and just at the origin

of the brachiocephalic artery which is the first branch of the aortic arch you can see that outpouching of contrasts coming right to the right of that vessel that's a pseudoaneurysm and again we went through the same thought process we

said you know I want to put a covered stent across that but my problem was that we didn't just have the right size that would not block one of the carotid arteries and not extend too far into the aorta so we had no choice but to

consider embolization in this particular case so here's what we did here we actually put a micro catheter if you can just click I think that's a video to the left no I guess not you know what it's okay

what we did for this particular case was we went in from the arm and we put a micro catheter directly into that pseudoaneurysm because we couldn't feel we didn't feel we could put a stent across it so we put the micro catheter

in there we started to put some coils and it actually went further than we thought outside of the artery and here's the post image so you can see our final image you can see the coils that are sitting just adjacent to the

brachiocephalic artery and we preserved good flow there to end this basically

very helpful these patients the calcium this and the vessels can be

seen through with the MRA it doesn't it doesn't cause as much artifact so it could be easier to see what's going on in calcified vessels additionally you saw an image in Marc's talk as well of this is an example of a time-resolved

image of an MRA or you can basically recreate exactly what you're seeing in an angiogram and this could be very helpful to kind of determine what kind of TVL disease you're getting yourself into

newer MRI techniques that we're using in the evaluation patients with PID functional MRI which compares the ratio of how much oxygen versus deoxygenated hemoglobin we have in a tissue so we can apply this to a pre and post exercise

scenario in patients to have claudication as well although it's not it's only approved in research protocols this is an example of what you see for that so pre intervention here's the CTA image reconstruct

in 3d with a long segment an iliac occlusion and then post intervention you can see there's a standard reconstructed vessel and the you can both chart this out and do it and superimpose it on the MRA image and you're gonna get an actual

quantitative amount of tissue reperfusion but studies are still ongoing to determine just how much increasing the amount of red that's in that image is important we don't know the answer to that yet here's just

another example a patient underwent an anterior tibial artery recanalization and you can see the improvement in the t2 star which is just one of the one of the measurements that you can use on these images so what's on the horizon

patient who experienced the heart attack who had right little quadrant pain after a cardiac catheterization all you like oh so here's the cat scan and what you should appreciate there is in the front of that first image which is the axial

image all right you can see the hematoma that's brewing kind of in the front you notice how all these pictures kind of look the same that's the good part about giving a lecture on bleeding and trauma because they all kind of look the same

so that's the hematoma on the front part of the pelvis and on the on the right image which is more of a coronal like looking at the patient image you can see it right near the right groin you can see that hematoma all right so our next

step was to do an angiogram and this is what the angiogram looks like who wants to volunteer what do they say all right I saw someone raise his hand over here some walk over here what do you think yeah well yes so it is a retro hematoma

would you say describe the angiogram for everybody right where it's at the external iliac down the common femoral looks like there's contrast going up to the left and down to the right probably close to where they accessed yeah

probably but so yeah probably probably too high but the other thing is that's probably a pseudoaneurysm that probably is the evidence that there was a bleed there we're not seeing Frank extrapolation of contrast in a literally

contrast pouring out but we are seeing the effects of an injury to the artery and the constraining of the the remaining normal tissue to hold on to that bleed so the question is what do we want to do no that was very good because

I fooled you it's not always embolization so sorry I lied so in today's world a lot of times when we see this type of pathology we have again relatively new technology available to us again we

could go into that pseudoaneurysm and embolize it and that would be a legitimate treatment but my friend here is right you know this is a great case for a covered stent so we could go in and put a stent right across that area

of injury and stent it so these days looking at coverage stands as an option for patients with arterial injury is a very legitimate option you just have to be able to deliver it has to be the right artery you have to be able to get

the stent where it needs to go we all work with vascular surgeons who are great and they can put these stents and iliacs and aortas but they can't make those turns into livers and kidneys and spleens it's got to be the right artery

this is this is the right artery okay we saw this patient and we said well we could kind of get a micro catheter into that area of injury and embolize it or we could just put a cover sent across it and all go home to have dinner with our

kids so that was option B is what we chose here so this is a great cover stent case okay here's another patient

patient female patient who has the sudden onset of upper abdominal pain here's the CT we did all these cases in one day it was crazy it was terrible so so here's a big hematoma a big peritoneal hematoma you

can see it anterior to the right kidney you can see the white blob of contrast right in the middle of the hematoma that's a pseudoaneurysm or even active extravagance um less experienced people would probably say it's active

extravagant I think most of us would prefer that it be called kind of a pseudoaneurysm this active extrapolation would be much more cloudy and spread out this is more constrained and you can see on the

coronal image you get a sense that there's that hematoma same type of problem all right is there more imaging that we can do to figure out the next step again I said earlier earlier in this lecture

that sometimes we use CTA now sometimes a CTA is worthwhile I do find that for a lot of these patients I think we're getting smarter and we're doing CTAs right at the beginning of this whole thing you know when a trauma

patient comes in we're getting CTAs so we can max out the amount of information that we get on the initial diagnostic imaging here's what we're seeing on the CTA and in this particular case I think it's pretty clear that you can see the

pseudoaneurysm arising from what looks like a branch of the superior mesenteric artery so this is just an odd visceral and Jake visceral aneurysm which looks like it probably ruptured I don't have an explanation for it led to a big

hematoma here's what that is and now we're gonna do an angiogram the neat thing is it just perfectly correlated with a conventional angiogram so here's our super mesenteric angiogram all right the supreme mesenteric artery

on the first image to the left is that vessel going downward towards the right side of the screen all those vessels coming off are really just collateral vessels going up to the liver through the gastroduodenal artery again that

left one looks pretty good it's not until you see the delayed image on the right that you see that area of contrast all right so that's the finding that correlates with the CT scan all right here we're able to get in there you put

a micro catheter in that vessel alright the key next step for this patient as I mentioned earlier is the whole concept of front door and back door so here we're technically in the front door the next thing that we do is we put the

catheter past the area of injury and now we embolize right across the injury because remember once you embolize one thing flow is gonna change we screw it up body the body wants to preserve its flow if we block flow

somewhere the body's gonna reroute blood to get to where we blocked it so we want to think ahead and we want to say okay we're blocking this vessel how's the body going to react and let's let's get in the way of that happening that's what

we did here so we saw the pathology we went past it we embolized all across the pathology and boom now we don't have anymore bleeding and the likelihood of recurrence is gonna be very low for that patient because we went all the way

across the abnormality and I think from

who came in with just over she had a four month with delayed heal wound she finally presented at us after the wound

healed because she had rest pain that wasn't recognized they thought the pain was due to the the wound the wound healed and they realized oh she still has pain well that's because she has crippled limb ischemia and so she was

she was brought in for that just you know she has bilateral disease I'm just gonna concentrate on talking about the right leg for for today's discussion but she does have inflow disease in these types of patients I do get

cross-sectional imaging so I can determine just how extensive the iliac diseases or if it involves the aorta to then determine what it what to make sort of jumping into it so the right leg again she has about a 10-7

occlusion of the bright SFA this occlusion here's the femur for reference the knee is actually down way down here so this is actually just above the a doctor again tried to use in this case I did do wire work I got past a good

portion of it here's my wire right here and here's the O pacified lumen so what you can see is the wires actually adjacent to the lumen so at this point I'm re said suspecting that I'm sub intimal I confirm that by removing the

wire do little puff there's blushing that blush is up intimal so I know I'm sub intimal so at this point what were the things you can do obviously the first things you do try to pull that back try to find a different space a

different location to wreak analyze when that's not successful then you start thinking about southern super recanalization multiple devices for that there's the outback device which is a little hook that you can try to spear

yourself into the main lumen and pass a wire there's also device from Medtronic about the anterior device what this is it's a balloon that you inflate to sort of stick yourself into that wall it has two ports that are on the side one

points one direction one points the other direction it allows you to find that open lumen and we use a re-entry angled wire to get back in so in this case just as a cartoon here's the the anterior device place downward this is

would be the balloon inflated you would basically jab into the port into the into the main lumen so that's sort of basically what I did here again here's the agile device each of the ports you can see as a little divot once you put

it sideways you can determine which we are going to stick there's my wire right into the lumen and there it is down further into the rest of the the vessel subsequent to that pre-dive it with a three and then overlapping

since were used finally here is her post i did treat both legs but you can see just the dramatic difference going from the monophasic waveforms to tri-phasic waveforms restoration table api's for her I couldn't help but throw this in

there a better option this is where a carotid artery stenting was developed over a couple decades ago and this is a

less invasive viable option for treating carotid artery stenosis it was generally started off as a trends ephemeral approach but I'll show you what the new approach is that many of us are involved in it involves the use of

in volunteer tection so it's one of the unique vascular territories where embolic protection is required if you're gonna get Medicare reimbursement for this you have to involvement and bollocky protection if you do without

you can do the procedure but you won't get it you won't get reimbursed and ultimately it's it was proven to show much better outcomes if you use involved protection because even doing the procedure and trying to place the stent

there is some small embolic degree that that that shuttles off and if it happens in the foot you may or may not lose a toe but if it happens in the brain you're gonna lose brain cells and it's gonna be potentially catastrophic so

significant adjunct to the stenting procedure is doing embolic protection and there's two types of embolic protection there's distal and there's proximal I'll walk through each of those with some diagrams here and then anyone

that gets a carotid stent has to be on dual antiplatelet therapy so if they have an allergy they're unable to be on aspirin and plavix they don't get a stent because there's early stent thrombosis that can't occur in these

patients if they don't have that dual antiplatelet therapy so let's go through

to talk about is indirect angiography this is kind of a neat trick to suggest to your intervention list as a problem solver we were asked to ablate this lesion and it looked kind of funny this patient had a resection for HCC they

thought this was a recurrence so we bring the comb beam CT and we do an angio and it doesn't enhance so this is an image here of indirect port ography so what you can do is an SMA run and see at which point along the

run do you pacify the portal vein and you just set up your cone beam CT for that time so you just repeat your injection and now your pacifying the entire portal vein even though you haven't selected it and what to show

well this was a portal aneurysm after resection with a little bit of clot in it the patient went on some aspirin and it resolved in three months so back to our first patient what do you do for someone who has HCC that's invading the

heart this patient underwent 2y 90s bland embolization microwave ablation chemotherapy and SBRT and he's an eight-year survivor so it's one of those things where certainly with the correct patient selection you can find the right

things to do for someone I think that usually our best results come from our interdisciplinary consensus in terms of trying to use the unique advantages that individual therapies have and IO is just one of those but this is an important

lesson to our whole group that you know a lot of times you get your best results when you use things like a team approach so in summary there are applications to IO prior to surgery to make people surgical candidates there are definitive

treatments ie your cancer will be treated definitively with curative intent a lot of times we can save when people have tried cure intent and weren't able to and obviously to palliate folks to try to buy them time

and quality of life thermal ablation is safe and effective for small lesions but it's limited by the adjacent anatomy y9t is not an ischemic therapy it's an ablative therapy you're putting small ablative radioactive particles within

the lesion and just using the blood supply as a conduit for your brachytherapy and you can use this as a new admin application to make people safer surgical candidates when you apply to the entire ride a panic globe

thanks everyone appreciate it [Applause] [Music]

actually I have a quick question for you so we had a similar case last week at UVA and was a 32 year old female and she had connective tissue disorder and she had had an eighth inning repair five years ago and she subsequently developed

a type V dissection okay and this type B dissection they have been just basically monitoring for a couple years and so now we have this or chronic dissection flap and I actually made drop to dr. Kasia because we were

planning on doing an T bar and propping open the true limit but my concern is because that's the technologists are always thinking like if this doesn't work what am I gonna have available in the room and so I was thinking if we

prop up in this true lumen and we collapse the false lumen which was feeding a good bit of the viscera how am I going to successfully finish straight open this this chronic dissection flap and I don't have any experience with

laser we usually use the colon to needle we use that kind of approach and so my question is do you guys routinely use this in both chronic and okay well we don't use doing a B arcade typically but this was something new that we did dr.

Koch oh yeah so this is something new right you've never done a laser fenestration before yep bigger voice [Music] the laser septum II is something that we thought of I think which was a new thing

we also are kind of planning new ways to do that I think the main point that Sam mentioned is you want to create a total a single lumen that gets a full seal so you don't have persistent retrograde perfusion and I know from Y training at

UVA that we used to do the used to do T bars and hope that that overtime remodels but you still get a lot of retrograde flow and then you can get false lumen degeneration and then aneurysmal formation and by doing it

this way you don't get that anymore from anybody else this is open and back and forth no hard questions just joking I got I got my backup I got dr. Kajal I got Rudy and Anthony and magnetized okay

her I couldn't help but throw this in

just talking about back device here's a patient that had a iliac occlusion the right it was very difficult to get past the very proximal plaque cap so in this case I did a sub into a we can remember I talked about that out back device it

has like a little L and upside down L that you can use to point into the vessel lumen so what I did was on the healthy side I put in a sauce on me this allows me to know exactly where the arches and where the right coming he

like origin is certainly I don't want to be out backing into the aorta deeply right so this allows me to identify where that location is once I've out backed into the vessel here then I just pre dilated and then stent it up into

the vessels so just sort of interesting case one thing since I am Austin there's a couple of places just you may or may not be aware of this is a Barton Creek it's actually not just a cross town lake not far from here it's about a seven

mile a little Greenbelt inside the city where basically you don't feel like getting your traffic your gaze definitely away from everything this is called the land bridge oops so there's a couple of guys right here

that's about probably about a 20-foot jump there's this guy right here who just took off from that ledge it's about a 40 50 foot drop I did try to get up to that part one time it's about it one foot with ledge so I didn't get the ax

courage to do it now I'm sort of happy because during the summer months it does get just dry up so what I noticed with this is this is about a 10 12 foot depth here this guy's jumped in something's about

12 to 15 deep so it's sort of interesting the the balls enos of these guys some guys are doing backflips out there there is water there so you know if you guys have a chance check it out

if you do happen to find it I'm not encouraging it excited I wanna get sued but if you want to take a jump off have fun all right thank you [Applause]

of these issues filters are generally still use or were used up until a few years ago or five years ago almost exclusively and then between five years and a decade ago there was this new concept of proximal protection or flow

reversal that came about and so this is the scenario where you don't actually cross the lesion but you place a couple balloons one in the external carotid artery one in the common carotid artery and you stop any blood flow that's going

through the internal carotid artery overall so if there's no blood flowing up there then when you cross the lesion without any blood flow there's nothing nowhere for it to go the debris that that is and then you can angioplasty and

or stent and then ultimately place your stent and then get out and then aspirate all of that column of stagnant blood before you deflate the balloons and take your device out so step-by-step I'll walk through this a couple times because

it's a little confusing at least it was for me the first time I was doing this but common carotid artery clamping just like they do in surgery right I showed you the pictures of the surgical into our directa me they do the vessel loops

around the common carotid approximately the eca and the ICA and then actually of clamping each of those sites before they open up the vessel and then they in a sequential organized reproducible manner uncle Dee clamp or unclamp each of those

sites in the reverse order similar to this balloon this is an endovascular clamping if you will so you place this common carotid balloon that's that bottom circle there you inflate you you have that clamping that occurs right

so what happens then is that you've taken off the antegrade blood flow in that common carotid artery on that side you have retrograde blood flow that's coming through from the controller circulation and you have reverse blood

flow from the ECA the external carotid artery from the contralateral side that can retrograde fill the distal common carotid stump and go up the ica ultimately then you can suspend the antegrade blood flow up the common

carotid artery as I said and then you clamp or balloon occlude the external carotid artery so now if you include the external carotid artery that second circle now you have this dark red column of blood up the distal common carotid

artery all the way up the internal carotid artery up until you get the Circle of Willis Circle of Willis allows cross filling a blood on the contralateral side so the patient doesn't undergo stroke because they've

got an intact circulation and they're able to tolerate this for a period of time now you can generally do these with patients awake and assess their ability to tolerate this if they don't tolerate this because of incomplete circle or

incomplete circulation intracranial injury really well then you can you can actually condition the patient to tolerate this or do this fairly quickly because once the balloons are inflated you can move fairly quickly and be done

or do this in stepwise fashion if you do this in combination with two balloons up you have this cessation of blood flow in in the internal carotid artery you do your angioplasty or stenting and post angioplasty if need be and then you

aspirate your your sheath that whole stagnant column of blood you aspirate that with 320 CC syringes so all that blood that's in there and you can check out what you see in the filter but after that point you've taken all that blood

that was sitting there stagnant and then you deflate the balloons you deflate them in stepwise order so this is what happens you get your o 35 stiff wire up into the external carotid artery once it's in the external cart or you do not

want to engage with the lesion itself you take your diagnostic catheter up into the external carotid artery once you're up there you take your stiff wire right so an amp lats wire placed somewhere in the distal external carotid

artery once that's in there you get your sheath in place and then you get your moment devices a nine French device overall and it has to come up and place this with two markers the proximal or sorry that distal markers in the

proximal external carotid artery that's what this picture shows here the proximal markers in the common carotid artery so there's nothing that's touched that lesion so far in any of the images that I've shown and then that's the moma

device that's one of these particular devices that does proximal protection and and from there you inflate the balloon in the external carotid artery you do a little angiographic test to make sure that there's no branch

proximal branch vessels of the external carotid artery that are filling that balloon is inflated now in this picture once you've done that you can inflate the common carotid artery once you've done that now you can take an O on four

wire of your choice cross the lesion because there's no blood flow going so even if you liberated plaque or debris it's not going to go anywhere it's just gonna sit there stagnant and then with that cross do angioplasty this is what

it looks like in real life you have a balloon approximately you have a balloon distally contrast has been injected it's just sitting there stagnant because there's nowhere for it to go okay once the balloons are inflated you've

temporarily suspends this suspended any blood flow within this vasculature and then as long as you confirm that there's no blood flow then you go ahead and proceed with the intervention you can actually check pressures we do a lot of

pressure side sheath pressure measurements the first part of this is what the aortic pressure and common carotid artery pressures are from our sheath then we've inflated our balloons and the fact that there's even any

waveform is actually representative of the back pressure we're getting and there's actually no more antegrade flow in the common carotid artery once you've put this in position then you can stent this once the stent is in place and you

think you like everything you can post dilated and then once you've post dilated then you deflate your balloon right so you deflate your all this debris that's shown in this third picture is sitting there stagnant

you deflate the external carotid artery balloon first and then your common carotid artery and prior to deflating either the balloons you've aspirated the blood flow 320 CC syringes as I said we filter the contents of the third syringe

to see if there's any debris if there's debris and that third filter and that third syringe that we actually continue to ask for eight more until we have a clean syringe but there's no filter debris out because

that might tell us that there's a lot of debris in this particular column of blood because we don't want to liberate any of that so when do you not want to use this well what if the disease that you're dealing with extends past the

common carotid past the internal carotid into the common carotid this device has to pass through that lesion before it gets into the external carotid artery so this isn't a good device for that or if that eca is occluded so you can't park

that kampf balloon that distal balloon to balloon sheath distally into the external carotid artery so that might not be good either if the patient can't tolerate it as I mentioned that's something that we assess for and you

want to have someone who's got some experience with this is a case that it takes a quite a bit of kind of movement and coordination with with the physician technologists or and co-operators that

my talk is titled extremely obvious IR and I think as we move through these slides you guys are going to be able to pick up really quickly on why I elected for that title so this is a patient this is a 67 year old male he had an Evo repair in 2014 in 2015 he

underwent two repairs for persistent type 2 endo leak and this was done via transsexual approach in 2018 we got a CTA that demonstrated an enlarging aneurysm sac so here's just some key critical images from the CT I had the CT

and its entirety today but I had to like panic dump a lot of slides off of my powerpoint I'm always the girl at the airport that you see transferring things from one suitcase to the other like right when it's about to get onto the

airplane so what do we notice about where we see the contrast in these in these images so is it anterior is it posterior anyone its anterior so what if I told you that we see contrast in the anterior sac but this patient has an

included ima where is it coming from so we get the CTA we see any large aneurysm sac we see it an endo leak we bring them into clinic we go through the routine things the patient denies abdominal pain they deny back pain and so we go ahead

and all of our infinite wisdom and we schedule them for a trans cable approach to repair what we call a type 2 and delete now one of the most the most important key sentences from the workup is we say this is likely a type 2 in the

leak but a feeding vessel is not identified okay so our usual algorithm at UVA if we get a patient we do a CTA we bring we see any sort of endo leak if we cannot identify a feeding vessel usually what we do and you can let me

know if this is the same at your practice or if it's different we'll bring them in and we'll do some dynamic imaging from an arterial approach and we'll try to see you know is it really type 2 can we identify a feeding vessel

and oftentimes what happens in those situations is you you identify oh it is a type 2 we just see where it was from and we're gonna have to bring them back and we're gonna have to put them prone and we're gonna

have to stick the stack directly so we thought we were gonna outsmart it this time like we we were gonna just identify that it was typed to you right from the get-go do I have the play button or do you have the play button awesome all

right so this is our trans cable access so what we're doing these days to do our trans cable access and our fenestrations is we're actually using a t lab kit so we're using the transjugular liver biopsy sheath and we're putting our

65-centimetre cheap a needle through that so everything's going great so far we see our sheath in access goes smoothly I might have gone for two slides can you hit the I'm not sure yeah go ahead and hit that nope go ahead and

go one for slide and then just play that video for me yes please awesome so this happens pretty quickly can you play that video again and just keep playing it through on a loop and so we do an injection from our microcatheter from

our trans cable approach and what do you guys noticing where are you noticing the contrast tracking yeah in the red circle [Music] it is now right so everybody at UVA is is a proficient Monday Morning

Quarterback let me tell you so we see the contrast tracking down outside of the iliac limb so now we're all going okay can you go ahead all right go ahead and play this video all right so we get access into the femoral artery

just to make sure because at this point we're hoping against hope we haven't put this on the patient we haven't put this patient on the table MANET made a trans cable puncture only to identify that this patient does in fact have a type 1

B in delete but our arterial access proved that is exactly what we did the junction of the yes we did we did a trans cable puncture to identify that it was a junction leak so that's a problem right because we have

this action going on right so we have a trans cable puncture as dr. Haskell just adapt ly summarized we have a trans cable puncture we've done nothing so far but identify that this patient has the type 2 in a week so it is a micro

catheter right it's just it's just a party foul and then it was the fellow's dream because you pull out and there's nothing to hold pressure on there's nobody's dream at that point so I want to stop here and I want to just take a

moment you guys can live my psych at night so do you ever your so my normal algorithm for my patient since I come in in the morning I look at the patient's chart I review their prior imaging and I try to

do all of these things before looking at my attendings plan because one of the things that I realized is that challenges me to try to figure out what's my plan for the patient what do I think the most appropriate inventory

would be and every once in a while you see something in the plan that doesn't quite jive and you're like there's this is likely a type 2 in the league although a feeding vessel is not identified so I have two options at this

point I either walk down to the reading room and I say hey someone tell me what's going on we don't identify that type - is it worth doing a diagnostic imaging or anyway I just roll with it and this

was a day where I elected to roll with it and so I just want to take a moment and reiterate it's always important for all of us to you know you have a voice and use it and you want to bring up these

things that's sometimes we all start going through the motions where you work with someone that you trust a lot it's really easy to say like Oh someone's smarter than me caught that right so going back it's like it's like that

terrible joke what is the radiologists favorite plant the hedge mmm that's what that is it's like well it could be but it might be and ray'll right you go ahead and play this so this is just our walk of shame as

we're casually embolizing our track out of our trans cable approach and here we are back in clinic so again this is a 67 year old manual with recent angiogram that demonstrates significant type 1b endo leak and we plan for an extension

of the left aortic lab so we bring the patient back we do a standard comment from our artery approach we get into the internal iliac we identify the iliolumbar all kit all standard things we drop an amp at Sur plug to prevent

any sort of further type to end a leak into the limb that we go ahead and extend we put in the iliac limb we balloon it open we'll go ahead and play this video and our follow-up angiogram reveals a resolved type to end a week so

ultimately we did it so what are

now other causes this is a little bit different different scenario here but it's not always just as simple as all

there's leaky valves in the gonadal vein that are causing these symptoms this is 38 year old Lafleur extremity swelling presented to our vein clinic has evolved our varicosities once you start to discuss other symptoms she does have

pelvic pain happiness so we're concerned about about pelvic congestion and I'll mention here that if I hear someone with exactly the classic symptoms I won't necessarily get a CT scan or an MRI because again that'll give me secondary

evidence and it won't tell me whether the veins are actually incompetent or not and so you know I have a discussion with the patient and if they are deathly afraid of having a procedure and don't want to have a catheter that goes

through the heart to evaluate veins then we get cross-sectional imaging and we'll look for secondary evidence if we have the secondary evidence then sometimes those patients feel more comfortable going through a procedure some patients

on the other hand will say well if it's not really gonna tell me whether the veins incompetent or not why don't we just do the vena Graham and we'll get the the definite answer whether there's incompetence or not and you'll be able

to treat it at the same time so in this case we did get imaging she wanted to take a look and it was you know shame on me because it's it's a good thing we did because this is not the typical case for pelvic venous congestion what we found

is evidence of mather nur and so mather nur is compression of the left common iliac vein by the right common iliac artery and what that can do is cause back up of pressure you'll see her huge verax here and here for you guys

huge verax in that same spot and so this lady has symptoms of pelvic venous congestion but it's not because of valvular incompetence it's because of venous outflow obstruction so Mather 'nor like I mentioned is compression of

that left common iliac vein from the right common iliac artery as shown here and if you remember on the cartoon slide for pelvic congestion I'm showing a dilated gonna delve a non the left here but in this case we have obstruction of

the common iliac vein that's causing back up of pressure the blood wants to sort of decompress itself or flow elsewhere and so it backed up into the internal iliac veins and are causing her symptoms along with her of all of our

varicosities and just a slide describing everything i just said so i don't think we have to reiterate that the treatments could you go back one on that I think I did skip over that treatments from a thern er really are also endovascular

it's really basically treating that that compression portion and decompressing the the pelvic system and so here's our vena Graham you can see that huge verax down at the bottom and an occluded iliac vein so classic Mather nur but causing

that pelvic varicosity and the pelvic congestion see huge pelvic laterals in pelvic varicosities once we were able to catheterize through and stent you see no more varicosity because it doesn't have to flow that way it flows through the

way that that it was intended through the iliac vein once it's open she came back to clinic a week later significant improvement in symptoms did not treat any of the gonadal veins this was just a venous obstruction causing the increased

pressure and symptoms of pelvic vein congestion how good how good are we at

happy to take any questions or in

ultrasound we don't usually use contrast but one of the procedures were doing for the treatment management of a pulmonary embolism is the ultrasound assisted Rumble Isis do we need contrast so for the thrombolysis is the catheter itself

so you still need to give contrast two to do the procedure but while the catheter is running you don't need to give any contrast four for that is that what you're we don't usually use contrast for ultrasound but

all right when you're treating how will you know that it sliced the clot is less what you frequently do is check the pressures so that catheter allows you to check the pressure and so once you start a patient so you do a pulmonary

angiogram which requires contrast and you put the ultrasound assisted thrombolysis catheter in the eCos catheter then after 24 hours or 12 hours you can measure a pressure directly through that catheter and if the

patient's pressure is reduced you don't have to give them anymore injections yeah and if we are using ultrasound for treatment is it possible to do it for diagnostic purposes No so not for non the prominent artists for

diagnostic imaging unless you're doing an echocardiogram which is technically ultrasound in the heart but for treatment otherwise you need you will need to inject some dye oh thank you

hi I'm Katrina I'm NGH I have one more question okay for your patients with chronic PE do most of them begin with acute PE or if they very separate sort of presentations that's that's a great question so all of them

had acute PE because you can't have chronic without acute but a lot of them are not ever caught so you'll have these patients who had PE that was silent that maybe one day they woke up and had a little bit of chest pain and then it

went away couple days later they thought they had a bronchitis or a cold and then you find out five years later that they had a huge PE that didn't affect them so badly and then they have these chronic findings they usually show up to their

family practice doctor again with hey I just can't walk as far as I can I have a little heaviness they rule them out from a heart attack but it turns out that they have CTF so you you all of them had a Q PE but it takes a lot of time and

effort to find out whether they truly have chronic PE so it's usually in a delayed fashion thank you all right well thank you guys again appreciate it [Applause]

a Thursday or not a lot of questions come up I showed this case four years at places hoping that people would say smart things about it at meeting and I never got that feedback but have any of

you had this same case happened where they get into IR you're gonna do something in a pulmonary artery and disaster that's not nothing okay multiply that by a zillion practicing IRS here's 2017 in contrast it's the

back half of this this is 75 year old woman worsening PE physiology after three days of anticoagulation and it's three weeks after that back surgery as well her bps are a hundred and fourteen systolic and they dropped to 81

she starts getting pressors and increasing oxygen and we get in to start doing stuff because now it's an urgent case on that morning and nothing was really working well some of this clot was hard if you've you've seen or use

these devices you know they ain't perfect they're not like the ads where there's a picture of gauze and there's always some clot on it that like like clot porn picture of look what I took out which may have little to do actually

with clinical benefit but it's sales and she has a respiratory arrest and CPR and the difference was is that I call for I run out to another room more than it and there's an anesthesiologist and I say can you get somebody down here can we

start ECMO so she gets ECMO and I'll explain it on another slide if you haven't seen this before and we now suddenly have somebody who is being supported on the equivalent of cardiac bypass and now we can do stuff we

stopped CPR so we go from five people in the room to seven people to 20 people in the room and a whole bunch of crew in gear and she spends two days on ECMO and you can see how aggressive the case became because I don't know if there's a

pointer but that big black arrow is pointing to a wall stent and actually of a some sort of self expanding scent that I placed them to PA to basically just say make space and what wasn't opening I

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.