Create an account and get 3 free clips per day.
Chapters
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
Value Of Troponin Measurements Before All Vascular Procedures - Open Or Endo
accuracyamputationcardiacclinicalcomplicationscontrollingcorrelateddatadiagnosticelevatedelevationendovascularhazardhighlyidentificationindependentlevelsmajormorbiditymortalitypatientpatientsperioperativepostoperativepredictivepredictorpreoperativeprospectiveratioriskstratificationstudysurgerysurgicalsurvivalundergoingvascular
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Terumo Aortic Relay Thoracic Endograft For TEVAR In Complex Aortic Pathology With Angles >90°: Advantages And Results
Gore Tag (Gore Medical) / Valiant (Medtronic) / Zenith Alpha (Cook Medical)RelayPlusstent graft systemTerumo Aortictherapeutic
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
Update On The Advantages, Limitations And Midterm Results With The Terumo Aortic 3 Branch Arch Device: What Lesions Can It Treat
4 branch CMD TAAA deviceacuteAscending Graft Replacementcardiac arrestRelayBranchRepair segment with CMD Cuffruptured type A dissection w/ tamponadestent graft systemTerumo Aortictherapeutic
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
Value Of Parallel Grafts To Treat Chronic TBADs With Extensive TAAAs: Technical Tips And Results
GORE MedicalGORE VIABAHNL EIA-IIA bypassleft carotid subclavian bypassstent graft systemTBAD with TAAAtherapeutic
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
Octopus Technique To Treat Urgent Or Ruptured TAAAs With OTS Components: What Is It, Technical Tips And Results
6.8 cm TAAAGORE MedicalGore Viabahn VBXOctopus Endovascular Techniquestent graft systemtherapeuticviabahn
Transcript

- Good morning. Thank you for the opportunity to speak. So thirty day mortality following unselected non-cardiac surgery in patients 45 years and older has been reported to be as high as 1.9%. And in such patients we know that postoperative troponin elevation has

a very strong correlation with 30-day mortality. Considering that there are millions of major surgical procedures performed, it's clear that this equates to a significant health problem. And therefore, the accurate identification of patients at risk of complications

and morbidity offers many advantages. First, both the patient and the physician can perform an appropriate risk-benefit analysis based on the expected surgical benefit in relation to surgical risk. And surgery can then be declined,

deferred, or modified to maximize the patient's benefit. Secondly, pre-operative identification of high-risk patients allows physicians to direct their efforts towards those who might really benefit from additional interventions. And finally, postoperative management,

monitoring and potential therapies can be individualized according to predicted risk. So there's a lot of data on this and I'll try to go through the data on predictive biomarkers in different groups of vascular surgery patients. This study published in the "American Heart Journal"

in 2018 measured troponin levels in a prospective blinded fashion in 1000 patients undergoing non-cardiac surgery. Major cardiac complications occurred overall in 11% but in 24% of the patients who were having vascular surgery procedures.

You can see here that among vascular surgery patients there was a really high prevalence of elevated troponin levels preoperatively. And again, if you look here at the morbidity in vascular surgery patients 24% had major cardiac complications,

the majority of these were myocardial infarctions. Among patients undergoing vascular surgery, preoperative troponin elevation was an independent predictor of cardiac complications with an odds ratio of 1.5, and there was an increased accuracy of this parameter

in vascular surgery as opposed to non-vascular surgery patients. So what about patients undergoing open vascular surgery procedures? This is a prospective study of 455 patients and elevated preoperative troponin level

and a perioperative increase were both independently associated with MACE. You can see here these patients were undergoing a variety of open procedures including aortic, carotid, and peripheral arterial. And you can see here that in any way you look at this,

both the preoperative troponin, the postoperative troponin, the absolute change, and the relative change were all highly associated with MACE. You could add the troponin levels to the RCRI a clinical risk stratification tool and know that this increased the accuracy.

And this is additionally shown here in these receiver operator curves. So this study concluded that a combination of the RCRI with troponin levels can improve the predictive accuracy and therefore allow for better patient management.

This doesn't just happen in open-vascular surgery patients. This is a study that studied troponin levels in acute limb ischaemia patients undergoing endovascular therapy. 254 patients all treated with endovascular intervention

with a 3.9% mortality and a 5.1% amputation rate. Patients who died or required amputation more frequently presented with elevated troponin levels. And the relationship between troponin and worse in-hospital outcome remains significant even when controlling for other factors.

In-hospital death or amputation again and amputation free survival were highly correlated with preoperative troponin levels. You can see here 16.9% in patients with elevated troponins versus 6% in others. And the cardiac troponin level

had a high hazard ratio for predicting worse in-hospital outcomes. This is a study of troponins just in CLI patients with a similar design the measurement of troponin on admission again was a significant independent predictor

of survival with a hazard ratio of 4.2. You can see here that the majority of deaths that did occur were in fact cardiac, and troponin levels correlated highly with both cardiac specific and all-cause mortality. The value of the troponin test was maintained

even when controlling for other risk factors. And these authors felt that the realistic awareness of likely long term prognosis of vascular surgery patients is invaluable when planning suitability for either surgical or endovascular intervention.

And finally, we even have data on the value of preoperative troponin in patients undergoing major amputation. This was a study in which 10 of 44 patients had a non-fatal MI or died from a cardiac cause following amputation.

A rise in the preoperative troponin level was associated with a very poor outcome and was the only significant predictor of postoperative cardiac events. As you can see in this slide. This clearly may be a "Pandora's box".

We really don't know who should have preoperative troponins. What is the cost effectiveness in screening everybody? And in patients with elevated troponin levels, what exactly do we do? Do we cancel surgery, defer it, or change our plan?

However, certainly as vascular surgeons with our high-risk patient population we believe in risk stratification tools. And the RCRI is routinely used as a clinical risk stratification tool. Adding preoperative troponin levels to the RCRI

clearly increases its accuracy in the prediction of patients who will have perioperative cardiac morbidity or mortality. And you can see here that the preoperative troponin level had one of the highest independent hazard ratios at 5.4. Thank you very much for your attention.

- So thank you to the organizers and to Dr. Veith, and thank you to Dr. Ouriel for giving me the introduction of the expense of an unsuitable procedure for pain patients. We have no disclosures.

I think when you look at MRV or Venous interventions, you can look at it as providing you a primary diagnosis, confirming a diagnosis if there's confusion. Procedural planning, you can use it as a procedural adjunct,

or you can use it as a primary procedural modality. In general, flow-dependent MRI has a low sensitivity and a slow acquisition time, making it practically impractical. Flow-independent MRI has become more popular, with sensitivity and specificities

rounding at 95 to 100%. There's a great deal of data on contrast-enhanced MRI, avoiding adanalenum using the iron compounds, and you'll hear later from Dr. Black about Direct Thrombus Imaging. There has been significant work on Thrombus Imaging,

but I will leave it up to him to talk about it. MR you can diagnose a DVT, either in both modalities, and you can see here with the arrows. It will also provide you data on the least inaccessible areas for duplex and other modalities,

such as the iliac veins and the IVC, as can be seen here. It is also perhaps easier to use than CTV, because at least in my institution CTV always comes out as a CTA, and I can't help that no matter what happens.

MR can also show you collaterals, which may be very important as you are trying to diagnose a patient. And in essence it may show you the smaller vein that you're more interested in, particularly in pelvic congestion syndrome,

such as this patient with an occluded internal iliac vein. It can also demonstrate, for those of you who deal with dialysis access, or it's central line problems, central venous stenosis and Thrombus. But equally importantly

it may show you that a stenosis is not intrinsic to the wall, but it's actually intrinsic to extravascular inflammation, as in this patient with mediastinal fibrosis, and which will give you a different way of what you wish to do and treat.

The European guidelines have addressed MR in it's future with chronic venous disease and they give it a 1C rating, and they recommend that if doesn't work you should proceed to Ibes. It can be used for the diagnoses of pulmonary embolism,

it can eliminate the use of ECHO, one can diagnose both the presence of the Thrombus, the dilatation of the ventricul, and if one is using Dynamic MR Imaging one can also see mcconnell sign or the equivalent on the septum between the two ventricles.

More interestingly it can also be used now in the chronic thrombuc, pulmonary hypertension, where it can show both the legions that are treatable and untreatable, as some of you may have heard from Dr. Roosevelt

earlier in the day, where they're now treating the outlying lesions with balloon angioplasty serial sessions. It can also look at the ventricul and give you some idea of where the ventricul stands with regard to it's performance,

we're looking at and linking this to the lungs. It can also show you the unusual, such as atresia of the IVC or it can help with you the diagnosis of Pelvic Congestion Syndrome. And it is extremely valuable

in dealing with AVM's, although it may take one, two, or three sessions with differing contrast bulosus to identify both the arterial, the intrinsic lesion, and the outflow lesions,

but a very valuable adjunct. In renal carcinoma it has two values, one is that it can may diagnosis venous invasion, and it may also let you understand whether or not you are dealing with bland thrombus or tumor thrombus,

which can change the staging for the patient and also change the actual intervention that you may perform. If you use flash imaging one will get at least an 89% sensitivity of the nature of thrombus,

whether it's bland or tumor thrombus, which may change what you need to do during the procedure. It could also tell you whether there's actual true wall invasion, which will require excision of the IVC

as opposed to the simple thromboendarterectomy. And this can run up to a specificity of 88% to exclude it. In the brain it's commonly used to diagnose the intra tumor vasculature. Diagnosing between veins and arterial systems, which can be helpful

particularly if one is considering percutaneous or other interventions. With regard to central venous stenosis there is some data and most people are now using an onlay technique where they take the MRI,

they develop the lines for the vessels and then use that as guide in one or two dimensions with fusion imaging to achieve access with a wire, catheter and balloon, as opposed to a blind stick technique.

There is data to show that you can image with the correct catheter balloons within the vessels and do serial MR's to show that it works. And finally with guidance catheters EP is now able to guide the catheter further and further in to achieve from the,

either the jugular or the venous access across the septum and to burn the entrium as appropriate. And finally, one can use MR to actually gain access, burn, and then actually use the MR to look at the specific tissue,

to show that you've achieved a burn at the appropriate area within the cardiac system and thus prove that your modality has achieved it. So in summary, we can use it for primary diagnosis, confirmatory diagnosis,

procedural planning, and procedural adjunct, but we're only still learning how to use it as a primary procedural modality. Thank you so much.

- You'll be pleased to know we've got a bit better at using ceiling mounted lead shields and goggles, but there's still room for improvement. These are my disclosures. I thought I'd start just by putting into context the exposures that we receive as operators. So medical diagnostics scans

can be anything up to 25 millisieverts. If you're a classified radiation worker you can only get 20 millisieverts per year. Background radiation, depending on where you live, is something between one and 10 millisieverts per year. And it varies from department to department.

But for a complex endovascular branch and fenestrated case you get typically 50 microsieverts of radiation outside the lead. What is irrefutable is that once you get to 100 millisieverts you have got a raised risk of solid cancers and leukemia.

What we do not know, we simply don't know, is what is the dose response below that 100 millisievert threshold, and is there any individual differences in sensitivity to radiation? Why don't we know?

Because we're no good at following up operators and patients after they receive an exposure. What we need is stringent study design, we need well defined populations, they need to be large studies, 10s of thousands, we need to control for

all the confounding factors for cancer, we need really high quality followup, and we need to know what dose we're receiving. This is my interventional radiology colleague. He's been there since the inception of the complex endovascular program at St. Thomas',

and I asked him to tell me what he did over the past 10 years. And you can see that this is his logbook. It excludes quite a number of perhaps lower exposure cases including GI cases, dilatations, nephrostomies. So he's done 1071 cases in 10 years.

He doesn't know his dose. But if you think per case exposure is 20, 40, or 60 microsieverts you can see that the exposures quickly build up. And in a 20-year career he's going to breach probably that 100 microsievert threshold.

So these numbers are just worth thinking about. So what evidence do we have that exposure causes DNA damage? It has been looked at in mice. If you expose mice they have an increased instance of lung tumors, for example. The radiation at low dose causes DNA damage.

It shortens the life span, and importantly, the risk is synergistic with other risks like smoking. In the course of this DNA damage and repair process, the repair process is not perfect. And eventually you get genomic instability,

and that's what causes cancer. When the cell is irradiated with low doses you also get generation of bad factors such as ROS and inflammatory factor. And we have shown in in operators that you get DNA damage before and after

you carry out fluoroscopically guided case. You can see here foci of this gamma H2AX which signal DNA damage in operators. And what happens over long term? There are markers you can look for long term that show that you're exhibiting genomic instability,

and this includes diccentrics. You can see these chromosomes are abnormal, and that happens as result of chronic radiation exposure. And micronuclei, so you can see that these cells express micronuclei. That is abnormal.

That is genomic instability and that means that your risk of cancer is increased. We haven't measured for these yet in operators, but they may well be present. So I think you need a combination of physical and biological dosimetry.

How do you do that? Well you need high throughput methods for doing it, which we don't have as yet. The current methods are laborious. You need to cont lots of cells and it takes a long time to do it.

But perhaps with the next generation high throughout sequencing this is what we'll be doing. Regular samples from operators and deciding whether there exhibiting genomic instability or not, should they be doing something other than carrying out endovascular operations.

In the meantime, radiation is really dangerous. I think that's what we've got to assume. No matter how much of a dose you're getting it's dangerous. The ALARA principles, you should hopefully all be familiar with, maximal shielding, and as mentioned,

the zero gravity suit. We've started using this. And obviously we wear leg shields. Just as something different, I mentioned that when your cell gets irradiated it produces lots of nasty factors

such as radioactive oxygen species and pro-inflammatory factors, and that can again cause DNA damage. Kieran Murphy spoke earlier on in the previous session about effective low-dose exposure. What they've done is given a cocktail of antioxidants

to patients who have cancer staging. And that actually reduces DNA damage. This is another study that came out recently, another cocktail of antioxidants, exposed to cells in vitro that were irradiated, and this is probably a less relevant study

because it's all in vitro. But again, in a very controlled situation these antioxidants do reduce the production of inflammatory factors in DNA damage. So perhaps we should all be taking a cocktail of pills before we operate.

So in summary, we live in a world of increasing radiation exposures. The health effects are unknown. We need better radiation in epidemiology, a combination of biological and physical dosimetry probably, and in the meantime we have to insist

on maximal protection and assume that all radiation is dangerous. Thank you very much.

- Thank you, Mr. Chairman. Good morning ladies and gentleman. I have nothing to disclose. Reportedly, up to 50 percent of TEVARs need a left subclavian artery coverage. It raises a question should revascularization cover the subclavian artery or not?

It will remain the question throughout the brachiograph available to all of us. SVS guidelines recommend routine revascularization in patients who need elective TEVAR with the left subclavian artery coverage. However, this recommendation

was published almost ten years ago based on the data probably even published earlier. So, we did nationwide in patient database analysis, including 7,773 TEVARs and 17% of them had a left subclavian artery revascularization.

As you can see from this slide, the SVS guideline did affect decision making since it was published in 2009, the left subclavian artery revascularization numbers have been significantly increased, however, it's still less than 20%.

As we mentioned, 50% of patient need coverage, but only less than 20% of patient had a revascularization. In the patient group with left subclavian artery revascularization, then we can see the perioperative mortality and morbidities are higher in the patient

who do not need a revascularization. We subgroup of these patient into Pre- and Post-TEVAR revascularization, as you can see. In a Post-TEVAR left subclavian revascularization group, perioperative mortality and major complications are higher than the patient who had a revascularization before TEVAR.

In terms of open versus endovascular revascularization, endovascular group has fewer mortality rate and major complications. It's safer, but open bypass is more effective, and durable in restoring original profusion. In summary, TEVAR with required left subclavian artery

revascularization is associated with higher rates of perioperative mortality and morbidities. Routine revascularization may not be necessary, however, the risks of left subclavian artery coverage must be carefully evaluated before surgery.

Those risk factors are CABG using LIMA. Left arm AV fistula, AV graft for hemodialysis. Dominant left vertebral artery. Occluded right vertebral artery. Significant bilateral carotid stenosis.

Greater than 20% of thoracic aorta is going to be or has been covered. And a history of open or endovascular aneurysm repair. And internal iliac artery occlusion or it's going to be embolized during the procedure. If a patient with those risk factors,

and then we recommend to have a left subclavian artery revascularization, and it should be performed before TEVAR with lower complications. Thank you very much.

- Thank you. Thank you again for the invitation, and also my talk concerns the use of new Terumo Aortic stent graft for the arch. And it's the experience of three different countries in Europe. There's no disclosure for this topic.

Just to remind what we have seen, that there is some complication after surgery, with mortality and the stroke rate relatively high. So we try to find some solution. We have seen that we have different options, it could be debranching, but also

we know that there are some complications with this technique, with the type A aortic dissection by retrograde way. And also there's a way popular now, frozen elephant trunk. And you can see on the slide the principle.

But all the patients are not fit for this type of surgery. So different techniques have been developed for endovascular options. And we have seen before the principle of Terumo arch branch endograft.

One of the main advantages is a large window to put the branches in the different carotid and brachiocephalic trunk. And one of the benefit is small, so off-the-shelf technique, with one size for the branch and different size

for the different carotids. This is a more recent experience, it's concerning 15 patients. And you can see the right column that it is. All the patients was considered unfit for conventional surgery.

If we look about more into these for indication, we can see four cases was for zone one, seven cases for zone two, and also four cases for zone three. You can see that the diameter of the ascending aorta, the min is 38,

and for the innominate artery was 15, and then for left carotid was eight. This is one example of what we can obtain with this type of handling of the arch with a complete exclusion of the lesion, and we exclude the left sonography by plyf.

This is another, more complex lesion. It's actually a dissection and the placement of a stent graft in this area. So what are the outcomes of patients? We don't have mortality, one case of hospital mortality.

We don't have any, sorry, we have one stroke, and we can see the different deaths during the follow-up. If we look about the endoleaks, we have one case of type three endoleak started by endovascular technique,

and we have late endoleaks with type one endoleaks. In this situation, it could be very difficult to treat the patient. This is the example of what we can observe at six months with no endoleak and with complete exclusion of the lesion.

But we have seen at one year with some proximal type one endoleak. In this situation, it could be very difficult to exclude this lesion. We cannot propose this for this patient for conventional surgery, so we tried

to find some option. First of all, we tried to fix the other prosthesis to the aortic wall by adjusted technique with a screw, and we can see the fixation of the graft. And later, we go through the,

an arrangement inside the sac, and we put a lot of colors inside so we can see the final results with complete exclusion. So to conclude, I think that this technique is very useful and we can have good success with this option, and there's a very low

rate of disabling stroke and endoleaks. But, of course, we need more information, more data. Thank you very much for your attention.

- Well, thank you Dr. Veith, and thank you very much for allowing me to speak on the topic. I have no disclosures. This is a nice summary that Dr. Veith is actually second author, that summarize what we know about predicting who will benefit from intervention among the patients with asymptomatic aortic disease.

You look at this eight means that we have, you realize that only one of those related to the fluid deprivation. The rest of them are related to embolic events. And that's very interesting because we know that antiplatelets have very little effect

on prevention of this. That's summarizing that review. Partially because what we focused on is that mechanism of thrombosis which requires platelet activation and attachment to the wall.

And that's where those antiplatelets that we use, act upon. However, you realize if you just look at the any ultrasound, that because of the velocities that we have and the lengths of the stenosis in carotid disease there is no way how the platelets can be attached to that

due to that mechanism. They just fly away too fast and don't have any time to do this. And it's even more because all the studies, basic science, show that at those shear rates that we have in carotid disease

that is more that 70%. There is very little probability of either platelet attachment or Von Willebrand factor attachment, or as a matter of fact even fibrinogen attachment in that particular area. So on the other hand we also know

that at those shear rates that we have, the Von Willebrand factor molecules unfold revealing tens of thousands more adhesive sites that allow them, not only to the platelets but also to the wall at that particular spot. And then the most likely mechanism

of what we dealing with in the carotid disease is this that the Von Willebrand factor attach and this unactivated platelets form conglomerates which can easily, because they don't attach to each other, easily fly. And that is probably one of

the most likely causes of the TIA. So if you look at the antiplatelet that we use on this particular mechanism, is right here. And those aspirin and clopidogrel, and combination of those we usually use, have very little, if any, effect on this particular mechanism.

So if, on the other hand, you can see that, if you specifically address that particular site you may have a much substantial effect. Now, how can we identify it? Well actually, the calculation of near-wall shear rate is quite simple.

All you need is just highest velocity and smallest diameter of the vessel. Of course, it is an estimate and actual shear rate is much higher but that's even more, because you, better than you prevent, more higher rate. Just to demonstrate, you can have the same velocity,

similar velocity, but different diameters. This stenosis technique will give different shear rate, and vice versa. So it's not really duplicating neither one of them. So we decided to look at this. We did a case control study that was published,

still online in the Journal of Vascular Surgery. And what you can see on the ROC curve, that in fact shear rate predicts symptomatic events much better than either velocity or the degree of the stenosis. And we look specifically at this group

with this thresh point of 8,000 per second and you can see that those patients who have those shear rates and the stenosis are 12 times more likely to have ischemic events. We look at the other means like microembolism. It's ongoing study, it's unpublished data that I show you.

And it's a very, very small sample but so far we have the impression that those microemboli that we can decide for, make a decision for intervention, actually happen only in this category of patient that have high shear rate. Based on this, this is our proposed algorithm,

how we deal with this. If you have asymptomatic patients with more than 70% degree of their stenosis and shear rate that exceeds certain level, we think it's about 8,000 per second, that may be an indication for intervention.

On the other hand if you a have lower shear rate then you can use other means. And what we use is microembolis per hour. Then you can duplicate their areas. If TCD on the other hand is normal you can continue best medical therapy and repeat the ultrasound in a year.

It's arbitrary. This is proposal agreed and based on our studies and that's, I'm thankful for the opportunity to share it with you. Thank you very much.

- Thank you Rod and Frank, and thanks Doctor Veeth for the opportunity to share with you our results. I have no disclosures. As we all know, and we've learned in this session, the stakes are high with TEVAR. If you don't have the appropriate device, you can certainly end up in a catastrophe

with a graph collapse. The formerly Bolton, now Terumo, the RelayPlus system is very unique in that it has a dual sheath, for good ability to navigate through the aortic arch. The outer sheath provides for stability,

however, the inner sheath allows for an atraumatic advancement across the arch. There's multiple performance zones that enhance this graph, but really the "S" shape longitudinal spine is very good in that it allows for longitudinal support.

However, it's not super stiff, and it's very flexible. This device has been well studied throughout the world as you can see here, through the various studies in the US, Europe, and global. It's been rigorously studied,

and the results are excellent. The RelayPlus Type I endoleak rate, as you can see here, is zero. And, in one of the studies, as you can see here, relative to the other devices, not only is it efficacious, but it's safe as well,

as you can see here, as a low stroke rate with this device. And that's probably due to the flexible inner sheath. Here again is a highlight in the Relay Phase II trial, showing that, at 27 sites it was very effective, with zero endoleak, minimal stent migration, and zero reported graph collapses.

Here again you can see this, relative to the other devices, it's a very efficacious device, with no aneurism ruptures, no endoleaks, no migration, and no fractures. What I want to take the next couple minutes to highlight, is not only how well this graph works,

but how well it works in tight angles, greater than 90 degrees. Here you can see, compliments and courtesy of Neal Cayne, from NYU, this patient had a prior debranching, with a ascending bypass, as you can see here.

And with this extreme angulation, you can see that proximally the graph performs quite well. Here's another case from Venke at Arizona Heart, showing how well with this inner sheath, this device can cross through, not only a tortuous aorta, but prior graphs as well.

As you can see, screen right, you can see the final angiogram with a successful result. Again, another case from our colleagues in University of Florida, highlighting how this graph can perform proximally with severe angulation

greater than 90 degrees. And finally, one other case here, highlighting somebody who had a prior repair. As you can see there's a pseudoaneurysm, again, a tight proximal, really mid aortic angle, and the graph worked quite well as you can see here.

What I also want to kind of remind everybody, is what about the distal aorta? Sometimes referred to as the thoracic aorta, or the ox bow, as you can see here from the ox bow pin. Oftentimes, distally, the aorta is extremely tortuous like this.

Here's one of our patients, Diana, that we treated about a year and a half ago. As you can see here, not only you're going to see the graph performs quite well proximally, but also distally, as well. Here Diana had a hell of an angle, over 112 degrees,

which one would think could lead to a graph collapse. Again, highlighting this ox bow kind of feature, we went ahead and placed our RelayPlus graph, and you can see here, it not only performs awesome proximally, but distally as well. And again, that's related to that

"S" shaped spine that this device has. So again, A, it's got excellent proximal and distal seal, but not only that, patency as well, and as I mentioned, she's over a year and a half out. And quite an excellent result with this graph. So in summary, the Terumo Aortic Relay stent graph is safe,

effective, it doesn't collapse, and it performs well, especially in proximal and distal severe angulations. Thank you so much.

- [Lindsay] I would like to discuss three aspects of radiation safety that hopefully will set the basis for subsequent talks in this session. These are my financial disclosures, none of which are relevant to this talk. Over 100 years ago, radiologists developed finger and hand damage, because they were using

their own hands to adjust the radiation prior to diagnostic studies. Now we are seeing disturbing levels of radiation-induced injury, such as posterior cataract in interventionists. The knowledge of radiation biology, has evolved,

to the point that we can say there are no safe levels of radiation. That's because each of us have individual thresholds to radiation damage. Furthermore, eyes and brain are much more radiosensitive, than was previously thought.

The second concept I would like to discuss is that our protective devices are likely giving us a false sense of security. First we'll talk about aprons, because of ergonomic concerns, protective aprons use various lightweight materials in place of lead.

And they are sold on the basis of being easier on the back, but rarely is there any discussion, of their effectiveness as being a barrier to radiation. When they are looked at independently, there is considerable variable, variability and their effectiveness.

In one study, the thicker of the lightweight aprons, equivalent to 0.5 mm of lead, stopped only up to 1.6% of radiation at 70 kV and 6.7% at 100 kV, from striking our less radiosensitive, but highly-valued anatomies. Lead glasses have even more variability.

In one independent study, glasses claiming the same equivalence varied in degree of attenuation by 35-95% when the beam is directed directly at the glasses. This effect is compounded by the shape of the glasses and the position of one's head in relation to the source.

The traditional glasses with side panel, the ones that make you look like your granddad, are most effective for all geometries, and more commonly used and stylish sport-style glasses are less effective. Caps and hoods are a subject of debate.

An optimized setting using phantoms, a leaded surgical cap only reduced whole brain dose by 3.3%, the leaded cap with side drape by 55%. Again, the effect is dependent on head position in relation to the source. Remember, this is an optimized situation.

In real life, these numbers will be even lower. You will hear later in this session about the benefit of ceiling shields. We will have also added protection extending to the floor. More importantly, remember that if you double the distance that you stand from the source of scatter,

you can 1/4 of the dose, three times 1/9. So if you don't need to stand next to the tube step away. The third and final thing I'd like to discuss is that knowledge and technique are essential. The main source of exposure to you and your staff is scatter radiation.

When the primary beam strikes the table, the patient and the detector, it is scattered circumferentially, most markedly, on the tube side. Practical means to reduce your dose is really effectively described in this article

from JVS in 2012. One of the maneuvers that really increases the dose is tube angulation. When angling the tube, you're effectively making the patient much (mumbles) causing the machine to increase the dose.

LAO angulation markedly increases the dose to anyone standing on the patient's right. In addition, when angling the tube it makes it harder to use various barriers, therefore compounding the effect of angulation. This effect of LAO angulation and how the scatter

is greater than RAO angulation to someone standing on the right was quantified, again in the same article in JVS. So the take home messages I would like you to take from this talk are firstly, there are no safe doses of radiation.

Secondly, all measures to reduce radiation are additive. Just having new equipment does not really suffice. And finally, have all of your protective devices tested by your own physicist. Don't believe what the brochures say. Thank you for your attention.

- I have no disclosures. - So the eye lens is a highly radiosensitive tissue. And the radiation damage is a cataract, this is a cancer-like pathology resulting from mutating events. It's a posterior sub-capsular cataract. And in several studies we have seen quite a large number of interventionalists or vascular surgeons or cardiologists

showing this exact type of posterior lens changes, characteristic of radiation exposure. About half of the interventionalists in this study. The risk increases with duration of work years and decreases with regular use of protection. So the conclusion in this paper was

that radiation injuries to the lens can be avoided. By, for example, reducing the dose. So this is obvious that we should do in every way we can do it. And there are many steps shown in this excellent paper published in the European Journal of Vascular Surgery.

And, on top of that, of course, use radiation shields. And I've been focused today on different eye shields. So we tested the eye dose reduction with several commercially-available protection glasses and shields during realistic endovascular procedures in an experimental setting,

using phantoms and dosimeters at the front of the eyes, the left and the right eyes. And this was an EVAR protocol using a Siemens C-arm. So we tested the more modern sports glasses. The reduction to the left eye was only 15 to 50 percent, or in some glasses just 10 to 15 percent.

So much, much lower than what's promised in the brochure. The fit over glasses protected best, especially if you don't use them over personal glasses. So this is because of the, it's if there is just a small gap between the cheek and the glasses, there's scattered radiation pulsing in there.

And it also scatters on your face up to the eye lens. We also tested visors and you can see the effect of having them at a correct angle. They should be downward-angled, and you have a pretty good protection. But the best of all was the ceiling-mounted shield,

if it's properly used with a very high reduction, 90 to 95 percent. So this is an image from our hospital. I'm in the middle with these fit-over glasses that we have all now beginning to use. So in this paper, it was nicely shown that the position

of the shield also is very important. So it should be very tight to the patient and close to the femoral access. Other protective measures like these surgical drapes, we use them and there is a good additive reduction of radiation exposure

to the chest and hands, shown by this paper. But no one has ever related the reduction to the head or the eye. And the latest addition in our center is this zero-gravity suit that has been shown to significantly reduce radiation exposure

to the whole body, including the head and the eyes. So I think this is a very important new device. In this study, from the London group, we can see that adherence to use these kinds of shields is depressingly low. Use of lead-protective glasses was only 36 percent

among the operators and ceiling-mounted leaded shields, no one uses them, at that time at least. So, in conclusion, there are several radiation protection eyeglasses used today. They offer a highly limited dose reduction, giving a false sense of security.

A proper use of ceiling mounted lead shields is essential for adequate protection to the eye lens. And the protection eyeglasses and visors should only be used as a complement. And consider also using additional devices as full-body protection to maximize your protection, thank you.

- [Neil] Thanks Tom and thanks Jose and Lowell for inviting me to participate in this great symposium. And I have no relevant disclosures to this talk. Clinical decision making, communication amongst ourselves, in the literature, and to some extent prognosis of patients is dependent a bit on the pattern of reflux in a given patient.

So that's the topic of today's talk for me. Those can be categorized into three rough bins, great saphenous vein reflux, small saphenous vein reflux, and non-saphenous vein or non-truncal reflux. More than one pattern can exist in a given patient, and that obviously has implications

in terms of what needs to be done in recurrence. Even great saphenous vein reflux can be divided into different components based on a variety of elements such as the source of the reflux, which we typically think of

as saphenofemoral junction derived. But the source can be below the junction, either from perforating veins or tributary veins. Sometimes those tributary veins are pelvic derived as in the image on the right. The extent of reflux is obviously very variable.

Sometimes it ends in varicose veins in the thigh and calf and obviously those patients are different than those that have reflux going all the way down to the malleolus or reflux that would be segmental, where it involves the trunk, leaves the trunk into tributaries,

and then comes back into the trunk. The anterior accessory great saphenous vein and saphenofemoral junction can be a cause of great saphenous vein reflux as well as depicted in this diagram where varicose veins shunt the flow from the anterior accessory great saphenous vein

to the great saphenous vein, leading the saphenous vein reflux. Some of the co-panelists for today's session, Dr. Chastanet and Dr. Pitaluga have looked at 1800 patients and categorized their ultrasounds to look at the patterns that exist

in great saphenous vein reflux and identified five different types. The most common type was great saphenous vein reflux with saphenofemoral junction incompetence leading to varicose veins. The second most common type was great saphenous vein

tributary reflux alone. And the third most common type was great saphenous vein reflux with varicose veins without saphenofemoral junction incompetence. This is more than just an academic exercise because if we look at these two types,

type three and type four we'll see that there's a difference in these patients in terms of the phenotypes that they present with their venous disease, specifically in the absence of saphenofemoral junction incompetence,

although, the great saphenous vein and varicose veins are both reflux in the incidence of advanced C4 through C6 venous disease is only 1%. But if you add the saphenofemoral junction component to that patient, the incidence of C4 through C6 disease is 10%.

So that's where the prognosis comes in. Small saphenous vein reflux can be categorized as well. The typical form is derived from the saphenofemoral, sorry, saphenopopliteal junction and leads to sapheno, sorry small saphenous vein reflux and varicose veins.

But that reflux can begin at a higher level, in this case in a perforating vein on the posterior thigh involving the thigh extension and then the small saphenous vein with downward reflux. And it could also begin even in the pelvis with varicose veins leading

to thigh extension reflux downward into the small saphenous vein. Or even at the saphenofemoral junction with reflux through the posterior circumflex vein into the thigh extension and down into the small saphenous vein.

A unique form of what we might call paradoxical reflux that involves the posterior circulation of the venous system superficially would be saphenopopliteal junction where that reflux, in essence, decompresses upward and leads to great saphenous vein reflux and varicose veins.

So all of these different patterns likely have different means to treat, but certainly also may have different long-term prognoses. And then finally varicose veins can be coming from non-saphenous veins. Up to 30% of patients have

non-saphenous related varicose veins. The majority of these patients are female and a lot of these are pelvic-derived varicose veins as you see in the diagram on the right. And many of these are also related to incompetent perforating veins in a number of locations,

particularly the mid thigh, lateral thigh, and popliteal fossa. So in conclusion categorizing reflux in patterns

- [Presenter] Thanks Bill. And again I have no disclosures to make on this particular presentation. So, in terms of variance, the anterior accessory GSV is not a variant. It's present in most of us, but it's an unusual cause of primary varicose veins,

although a very common cause of secondary varicose veins after primary treatment. It runs parallel to the great saphenous vein, in the saphenous space, and courses a bit more anteriorly in the thighs, so that on ultrasound, you'll see a lining here,

in this case inside the saphenous space, aligning with the superficial femoral artery and the femoral vein. In some cases, it can be the primary saphenous vein along the medial aspect of the thigh, in association with hypoplasia of the great saphenous vein

as listed on the left, and the right picture with aplasia of the great saphenous vein. And many times physicians are treating what they think is the great saphenous vein, and really it's this embryologic variant,

the anterior accessory vein, with a different takeoff. A different vein to talk about in terms of variance is the superficial accessory saphenous vein. It's present in many patients. It's really a tributary of the great saphenous vein,

running in the subcutaneous fat outside the superficial fascia that eventually joins into the great saphenous vein. So on this longitudinal view, it creates this sort of appearance with the great saphenous vein below its entry

as a smaller caliber vein. Consequently, it has the name of the H-vein, and on ultrasound, below the level of its joining with the great saphenous vein, the great saphenous vein is small,

and in this particular case with varicose veins, associated with reflux in the superficial accessory saphenous vein. It's a larger caliber, and then up higher, you can see that it drains into the great saphenous vein, and it's no longer visible.

The small saphenous vein has a lot of variability related to the differences in its termination on the posterior aspect of the calf and the thigh. Many patients have what we can call saphenopopliteal junction dominant drainage, and other patients have what we might consider

thigh extension dominant drainage. It's a spectrum, most patients have these connections, and if you look carefully, you'll find the thigh extension connection even in the majority of patients that have primarily saphenopopliteal junction termination.

The termination higher on the thigh can be into a perforator on the back of the thigh, it can be into the gluteal venous system in the pelvis, and it can travel up through an intersaphenous or Giacomini vein toward the inner thigh,

and sometimes to the great saphenous vein. Duplications of the deep system are very common, particularly in the femoral vein in up to 20% of the patients. Isolated popliteal vein duplications are uncommon, but in association with femoral duplications

occur in up to 6% of the variations. These duplications all travel through the adductor canal and follow the normal course of the vein. In contrast, remnants of the sciatic vein can introduce different variants. The sciatic vein is an embryonic vein

that was the primary drainage of the lower limb in a very small fetal stage. At some point, most of it regresses, and so the popliteal vein, which is the sciatic vein remnant, eventually connects up with the pelvic circulation

through the common femoral vein and the external iliac vein which develop later. The saphenous remnants regress, with the exception of the popliteal vein, and portions of the internal iliac vein. A true sciatic vein variant is a less common variant,

where the popliteal vein is in continuity with a large caliber vein that follows the sciatic nerve up into the pelvis, draining into the internal iliac vein. But in contrast, sciatic vein remnants are not uncommon,

and it's not unusual for one to find the primary drainage of the popliteal vein not going through the adductor canal, but to ascend upward variable lengths along the course of the sciatic vein, to eventually terminate either in the femoral vein directly

or into the deep femoral vein up higher, with or without hypoplasia, or in rare cases, aplasia of the femoral vein. And so it's important to recognize these variants in distinction to post-thrombotic changes

in the femoral vein. When you have a small vein, that small vein can be normal anatomically by all other features, and may represent a variant rather than a post-thrombotic complication.

And this was recognized by Dr. Raju in 1991 in a publication where he demonstrated venograms in a patient with a post-thrombotic femoral vein, and well-formed collaterals between the popliteal vein and the profunda, in contrast to this patient,

which had no post-thrombotic changes in the femoral vein, but well-defined congenital variation connections between the popliteal vein and the deep femoral vein. So in summary, superficial venous variability is related to the variable terminations

of the small saphenous vein, the anterior accessory saphenous vein, which is inside the saphenous sheath, superficial accessory saphenous veins, which are outside the saphenous space. It's important to recognize deep vein variablity,

'cause you want to avoid false negative diagnoses of acute deep vein thrombosis by not recognizing thrombosis in a duplication, and you want to avoid false positive diagnoses of post-thrombotic syndrome when you're really dealing

with a congenital sciatic vein dominant anatomic variability. Thank you very much.

- [Presenter] Thanks Bill. And again I have no disclosures to make on this particular presentation. So, in terms of variance, the anterior accessory GSV is not a variant. It's present in most of us, but it's an unusual cause of primary varicose veins,

although a very common cause of secondary varicose veins after primary treatment. It runs parallel to the great saphenous vein, in the saphenous space, and courses a bit more anteriorly in the thighs, so that on ultrasound, you'll see a lining here,

in this case inside the saphenous space, aligning with the superficial femoral artery and the femoral vein. In some cases, it can be the primary saphenous vein along the medial aspect of the thigh, in association with hypoplasia of the great saphenous vein

as listed on the left, and the right picture with aplasia of the great saphenous vein. And many times physicians are treating what they think is the great saphenous vein, and really it's this embryologic variant,

the anterior accessory vein, with a different takeoff. A different vein to talk about in terms of variance is the superficial accessory saphenous vein. It's present in many patients. It's really a tributary of the great saphenous vein,

running in the subcutaneous fat outside the superficial fascia that eventually joins into the great saphenous vein. So on this longitudinal view, it creates this sort of appearance with the great saphenous vein below its entry

as a smaller caliber vein. Consequently, it has the name of the H-vein, and on ultrasound, below the level of its joining with the great saphenous vein, the great saphenous vein is small,

and in this particular case with varicose veins, associated with reflux in the superficial accessory saphenous vein. It's a larger caliber, and then up higher, you can see that it drains into the great saphenous vein, and it's no longer visible.

The small saphenous vein has a lot of variability related to the differences in its termination on the posterior aspect of the calf and the thigh. Many patients have what we can call saphenopopliteal junction dominant drainage, and other patients have what we might consider

thigh extension dominant drainage. It's a spectrum, most patients have these connections, and if you look carefully, you'll find the thigh extension connection even in the majority of patients that have primarily saphenopopliteal junction termination.

The termination higher on the thigh can be into a perforator on the back of the thigh, it can be into the gluteal venous system in the pelvis, and it can travel up through an intersaphenous or Giacomini vein toward the inner thigh,

and sometimes to the great saphenous vein. Duplications of the deep system are very common, particularly in the femoral vein in up to 20% of the patients. Isolated popliteal vein duplications are uncommon, but in association with femoral duplications

occur in up to 6% of the variations. These duplications all travel through the adductor canal and follow the normal course of the vein. In contrast, remnants of the sciatic vein can introduce different variants. The sciatic vein is an embryonic vein

that was the primary drainage of the lower limb in a very small fetal stage. At some point, most of it regresses, and so the popliteal vein, which is the sciatic vein remnant, eventually connects up with the pelvic circulation

through the common femoral vein and the external iliac vein which develop later. The saphenous remnants regress, with the exception of the popliteal vein, and portions of the internal iliac vein. A true sciatic vein variant is a less common variant,

where the popliteal vein is in continuity with a large caliber vein that follows the sciatic nerve up into the pelvis, draining into the internal iliac vein. But in contrast, sciatic vein remnants are not uncommon,

and it's not unusual for one to find the primary drainage of the popliteal vein not going through the adductor canal, but to ascend upward variable lengths along the course of the sciatic vein, to eventually terminate either in the femoral vein directly

or into the deep femoral vein up higher, with or without hypoplasia, or in rare cases, aplasia of the femoral vein. And so it's important to recognize these variants in distinction to post-thrombotic changes

in the femoral vein. When you have a small vein, that small vein can be normal anatomically by all other features, and may represent a variant rather than a post-thrombotic complication.

And this was recognized by Dr. Raju in 1991 in a publication where he demonstrated venograms in a patient with a post-thrombotic femoral vein, and well-formed collaterals between the popliteal vein and the profunda, in contrast to this patient,

which had no post-thrombotic changes in the femoral vein, but well-defined congenital variation connections between the popliteal vein and the deep femoral vein. So in summary, superficial venous variability is related to the variable terminations

of the small saphenous vein, the anterior accessory saphenous vein, which is inside the saphenous sheath, superficial accessory saphenous veins, which are outside the saphenous space. It's important to recognize deep vein variablity,

'cause you want to avoid false negative diagnoses of acute deep vein thrombosis by not recognizing thrombosis in a duplication, and you want to avoid false positive diagnoses of post-thrombotic syndrome

- Thank you very much, Gustavo, you read the abstract so now my task is to convince you that this very counter-intuitive technique actually works, you are familiar with Petticoat, cover stent to close a proximal entry tear and then uncover stents, bear stents, downstream. This what it would look like when we open up

the bare stent, you know dissect the aorta. So here's a case example, acute type B with malperfusion, the true lumen is sickle shaped, virtually occluded. So we use Petticoat, and we end up with a nice reopening of the true lumen, it is tagged here in green, however if you look more closely you see that here

wrapping around the true lumen there is a perfused false lumen. This is not an exception, not a complication, this is what happens in most cases, because there are always reentries in the celiac portion of the aorta.

So the Stablise concept was introduced by Australian group of Nixon, Peter Mossop in 2012, after you do the Petticoat, you are going to voluntarily balloon inside both the stent graft and the bare stents in order to disrupt, to fracture the lamel, obtain a single-channeled aorta.

This is what it looks like at TEE, after deployment of the stent graft, you see the stent graft does not open up completely, there is still some false lumen here, but after the ballooning, it is completely open. So the results were immediately very, very good, however technique did not gain a lot of consensus,

mainly because people were afraid of rupturing the aorta, they dissect the aorta. So here's a Stabilise case, once again, acute setting, malperfusion, we do a carotid subclavian bypass because we are going to cover the subclavian artery, we deploy

the cover stent graft, then with one stent overlap, we deploy two bare stent devices all the way down to the iliacs and then we start ballooning from the second stent down, so you see Coda balloon is used here, but only inside the cover stent with fabric.

And then more distally we are using a valvuloplastic balloon, which is noncompliant, and decides to be not larger than the aorta. So, I need probably to go here, this is the final result, you can see from the cross-sections that the dissection is completely gone and

the aorta is practically healed. So you might need also to address reentries at the iliac levels, attention if you have vessels that only come from the false lumen, we want to protect them during the ballooning, so we have a sheath inside this target vessel, and we are

going to use a stent afterwards to avoid fragments of the intima to get into the ostium of the artery. And this is a one-year control, so as you can see there is a complete remodeling of the aorta, the aorta is no longer dissected, it's a single channel vessel, here we can see stents in two vessels that came

from the false lumen, so very satisfactory. Once again, please remember, we use compliant latex balloons only inside the the cover stent graft, and in the bare stents we use non-compliant balloons. We have published our first cases, you can find more details in the journal paper, so in conclusion,

dear colleagues, Stabilise does work, however we do need to collect high-quality data and the international registry is the way to do this, we have the Stabilise registry which is approved by our ethical committee, we have this group of initial friends that are participating,

however this registry is physician initiated, it's on a voluntary base, it is not supported by industry, so we need all the possible help in order to get patients as quickly as possible, please join, just contact us at this email, we'd be more than happy to include everybody who is

doing this technique according to this protocol, in order to have hard data as soon as possible, thank you very much for your attention.

- Thank you, Mr. Chairman. Ladies and gentleman. I'd also like to thank Dr. Veith for the kind invitation. This presentation really ties to the presentation of Erik Verhoven, I believe. These are my disclosures. So we basically have, obviously, two problems. We treat a dynamic disease by fairly static means.

One of the problems, a local problem, is aortic neck degeneration which is the problem basically of progression of disease. We know in general if you stent them, if you operate them, if you don't treat them they will just dilate and it's a question of time

whether you have a problem or not. So, they will inevitably, if patients live long enough, cause a change of geometry of the aorta and the branch vessels and that cause obviously, that can cause stent fractures and other problems.

That's just one of many papers Erik also has shown a migrated graft. With his fenestrated grafts showing that the problem is also prevalent in M stents and Z stents, and obviously also in

as in the Fenestrated Anaconda. So I'll talk briefly about our experience. In Vienna where we have treated so far 179 patients with either double, triple, or quadruple fenestrated grafts. Majority nowadays are quadruple in our series

where we have also treated patients with extensions of thoracic stent grafts or extensions further down to the iliac arteries. In these patients we've had relevant neck degenerations in five cases. Where either the branches had issues

or the graft had migrated relevantly. And these basically represent three different faces of the problem. So one is neck degeneration with migration and loss of seal. Certainly the biggest problem that can cause ruptures. That's one of the cases in 2015

what is certainly important is to have a look at the super celiac area of the aorta and you see it's degenerated, it's dilated. So we have a nice ring of aorta at the visceral segment but above it wasn't. And it was a

you see the saddle of the stent graft and one and a half years later the saddle (cough) has flattened out. We've had a stent fracture of the left renal stent.

We screwed it with anchors and fixed the stent graft. We believe that's going to be the solution. We were wrong. Yet anothe leak and a further migration of the case.

So we had to put in a thoracic endograft and bring in a 4 fen and a mono-iliac crossover solution. The other problem would be neck degeneration or progression of disease without migration or loss of seal. As in this case where we have implanted a 4 fen case and you can see here that there is

a diseased proportion of the thoracic aorta. Could look like a penetrating ulcer. And again we had to put in a thoracic stent graft and a 4 fen solution with a mono-iliac ending and a crossover. What's more important, I believe,

is the progression of general, generalized aortic disease. So there is no real migration, as in this case in 2013. You can see a nice saddle and very straight iliac limbs. 2018 you can see that the saddle is actually flattened out. Renal arteries look upwards, so you would actually believe in

a migration of the stent graft. Also if you look at the iliac limbs you can see that they have actually compressed somewhat. But if you look closely at the difference between the ring and the SMA, so that's lateral view, you can see that there is no difference.

The stent graft actually has not migrated. What happened is that the patient developed a thoracic aneurysm of 7.5cm and the whole aorta is not only increased in diameter but also in length. So the whole thing has moved its confirmation without basically a migration of the

not yet. So, Mr Chairman, Ladies a lessons we have learned is- and I could also repeat wh

seal in the healthiest proportion of the aorta. So if you see a nice visceral ring and above that you see a diseased proportion of the aorta, as in this case, where you have already a degenerated thoracic aorta.

You should really treat this as well and not go for a 2 or 3 fen case. And also the progressio the general progression of disease is an issue. So even if you have no migrations

you may end up with real problems and target vessel occlusions or stent graft fractures. Thank you very much

- Mister Chairman, ladies and gentlemen. Good morning. I am excited to present some of the data on the new device here. These are my disclosure. There are opportunities to improve current TEVAR devices. One of that is to have a smaller device,

is a rapid deployment that is precise, and wider possibilities to have multiple size matrix to adapt to single patient anatomy. The Valiant device actually tried to meet all these unmet needs, and nowadays the Navion has been designed on the platform

of the Valiant Captivia device with a completely different solution. First of all, it's four French smaller than the Valiant Captivia, and now it's 18 French in outer diameter for the smallest sizes available.

The device has been redesigned with a shorter tip and longer length of the shaft to approach more proximal diseases, and the delivery system deploys the graft in one step that is very easy to accomplish and precise.

The fabric has been changed with nowadays the Navion having the multi-filament weave of the Endurant that already demonstrates conformability, flexibility, and long-term durability of the material. It's coming with a wide matrix of options available. In terms of length, up to 225 mm.

Diameters as small as 20 mm, and tapered device to treat particular anatomical needs. But probably the most important innovation is the possibility to have two proximal configuration options: the FreeFlo and the CoveredSeal.

Both tied to the tip of the device with the tip-capture mechanism that ensures proximal deployment of the graft that is very accurate. This graft is being under trial in a global trial

that included 100 patients all over the world. The first 87 patients have been submitted for primary endpoint analysis. 40% of the patients were females. High risk patients showed here by the ASA class III and IV. Most of the patients presented

with a fusiform or saccular aneurysm, and the baseline anatomy is quite typical for these kinds of patients, but most of the patients have the very tortuous indices, both at the level of the access artery tortuosity and the thoracic aorta tortuosity.

Three-fourths of the patients had been treated with a FreeFlo proximal end of the graft, while one-fourth with the CoveredSeal. Complete coverage of the left subclavian occurred in one-fifth of the patients. Almost all had been revascularized.

Procedure was quite short, less than one and half hour, percutaneous access in the majority of cases. There were no access or deployment failures in this series. And coming to the key clinical endpoints, there were two mortality reported out of 87 patients.

One was due to the retrograde type A dissection at day one, and one was not device related almost at the end of the first month. Secondary procedures were again two. One was in the case of retrograde type A dissection, and the second one in a patient

that had an arch rupture due to septicemia. Type 1a endoleak was reported in only one case, and it was felt to be no adverse event associated so was kept under surveillance without any intervention. Major Adverse Events occurred in 28% of the cases. Notably four patients had a stroke

that was mild and not disabling, regressing in two weeks. Only one case of spinal cord ischaemia that resolved by drainage and therapy in 20 days. In summary, we can say that the design enhancement of Valiant Navion improved upon current generation TEVAR.

Acute performance is quite encouraging: no access or deployment failure, low procedural and fluoro times, low rate of endoleaks, Major Adverse Events in the range expected for this procedure.

Nowadays the graft is USA FDA approved as well as in Europe CE mark. And of course we have to wait the five years results.

- The only disclosure is the device I'm about to talk to you about this morning, is investigation in the United States. What we can say about Arch Branch Technology is it is not novel or particularly new. Hundreds of these procedures have been performed worldwide, most of the experiences have been dominated by a cook device

and the Terumo-Aortic formerly known as Bolton Medical devices. There is mattering of other experience through Medtronic and Gore devices. As of July of 2018 over 340 device implants have been performed,

and this series has been dominated by the dual branch device but actually three branch constructions have been performed in 25 cases. For the Terumo-Aortic Arch Branch device the experience is slightly less but still significant over 160 device implants have been performed as of November of this year.

A small number of single branch and large majority of 150 cases of the double branch repairs and only two cases of the three branch repairs both of them, I will discuss today and I performed. The Aortic 3-branch Arch Devices is based on the relay MBS platform with two antegrade branches and

a third retrograde branch which is not illustrated here, pointing downwards towards descending thoracic Aorta. The first case is a 59 year old intensivist who presented to me in 2009 with uncomplicated type B aortic dissection. This was being medically managed until 2014 when he sustained a second dissection at this time.

An acute ruptured type A dissection and sustaining emergent repair with an ascending graft. Serial imaging shortly thereafter demonstrated a very rapid growth of the Distal arch to 5.7 cm. This is side by side comparison of the pre type A dissection and the post type A repair dissection.

What you can see is the enlargement of the distal arch and especially the complex septal anatomy that has transformed as initial type B dissection after the type A repair. So, under FDA Compassion Use provision, as well as other other regulatory conditions

that had to be met. A Terumo or formerly Bolton, Aortic 3-branch Arch Branch device was constructed and in December 2014 this was performed. As you can see in this illustration, the two antegrade branches and a third branch

pointing this way for the for the left subclavian artery. And this is the images, the pre-deployment, post-deployment, and the three branches being inserted. At the one month follow up you can see the three arch branches widely patent and complete thrombosis of the

proximal dissection. Approximately a year later he presented with some symptoms of mild claudication and significant left and right arm gradient. What we noted on the CT Angiogram was there was a kink in the participially

supported segment of the mid portion of this 3-branch graft. There was also progressive enlargement of the distal thoracoabdominal segment. Our plan was to perform the, to repair the proximal segment with a custom made cuff as well as repair the thoracoabdominal segment

with this cook CMD thoracoabdominal device. As a 4 year follow up he's working full time. He's arm pressures are symmetric. Serum creatinine is normal. Complete false lumen thrombosis. All arch branches patent.

The second case I'll go over really quickly. 68 year old man, again with acute type A dissection. 6.1 cm aortic arch. Initial plan was a left carotid-subclavian bypass with a TEVAR using a chimney technique. We changed that plan to employ a 3-branch branch repair.

Can you advance this? And you can see this photo. In this particular case because the pre-operative left carotid-subclavian bypass and the extension of the dissection in to the innominate artery we elected to...

utilize the two antegrade branches for the bi-lateral carotid branches and actually utilize the downgoing branch through the- for the right subclavian artery for later access to the thoracoabdominal aorta. On post op day one once again he presented with

an affective co arctation secondary to a kink within the previous surgical graft, sustaining a secondary intervention and a placement of a balloon expandable stent. Current status. On Unfortunately the result is not as fortunate

as the first case. In 15 months he presented with recurrent fevers, multi-focal CVAs from septic emboli. Essentially bacteria endocarditis and he was deemed inoperable and he died. So in conclusion.

Repair of complex arch pathologies is feasible with the 3-branch Relay arch branch device. Experience obviously is very limited. Proper patient selection important. And the third antegrade branch is useful for later thoracoabdominal access.

Thank you.

- [Clark] Well, dear chairmen, Frank, thanks for the invitation. In this talk, I'd like to focus on the role of calcifications in the aortic wall, and whether we could use it for clinical risk assessment. My disclosures. Well, an aortic calcification is, of course,

a clear anatomical entity. It's not that difficult to visualize it. Obviously, for a meaningful assessment, we need to quantify it. This can be done by a simple, abdominal aortic calcium score, AAC 0.8.

The severity of calcification is measured in points assigned to the presence of high-density signaling on the anterior and posterior walls of the aorta between the first and the fourth lumbar vetrabra. The cumulative points of both anterior and posterior walls represent the AAC 0.8 score.

This is a cut from (mumbles) for event-free survival in 2 1/2 thousand individuals, and it shows the prognostic value of AAC for cardiovascular outcomes. A high AAC score predicts future events, and it says something about overall survival.

Now, occlusive and aneurysmal disease are not the same, but calcifications also occur in the aneurysmal wall, and they can be assessed with CTA, quite simply. The effects of calcification are unclear, and we don't know whether it's protective or it's generative.

To verify the roles of these calcifications, patients with an aneurysm confirmed by CT in a six-year period were included. Three groups were distinguished on the likelihood of rupture. The elective group were patients,

who had received elective surgery. Acute aneurysms were either symptomatic, nonruptured, or ruptured confirmed CTA. Doing so, significant differences in diameter and calcification were found between ruptured and elective patients.

Using the AAC score, symptomatic patients were significantly more calcified than elective ones. Then after logistic regression, comparing elective versus nonelective aneurysms, female gender came out as the most important risk factor. Compared to diameter, the AAC was better able to distinguish

acute from elective aneurysms. Now, it's obvious that the conclusions of the few studies we have on the prognostic value of calcification in triple A, directly linked to reliability of the methods of measuring the extent of calcification.

Fully quantitative measurements are considered to be best. Mass and volume and several software tools are currently being used, but without exact knowledge on accuracy or, ultimately, use of these tools. This one, we used the Phantom with calcium rods

of pre-established, massive volumes, which were scanned with the specifics D protocol for coronary arteries and one for the abdominal aorta. This was done to see whether calcification tools tested on coronary arteries can be directly applied to the aorta without adjustments.

Five CT scans for each protocol were performed, and the Phantom was moved two to five millimeters in a random direction between each scan to mimic patients' movement. For each measurement tool and for both scanning protocols, the mass and volume were greatly overestimated.

It appears that the error and the variability of the results increased, when the size and the mass of the calcium element decreased. Also, the presence of contrast has a significant effect on aortic calcification's course. To assess the size of this effect

on the clinical conditions, 50 four-phased liver CT scans were retrospectively collected and analyzed in patients over 65 years of age. The first phase was with contrast, followed by three... No, without contrast followed by three contrast

and have phases of different intensity. Here we saw that measuring calcifications under contrast-enhanced conditions overestimated the calcium volume by a significant margin, yet it underestimated the mass of calcification significantly.

As the results, there's no provision factor to adjust for the error. Clinically-relevant small calcifications are most erroneously measured. Tools validated for coronary arteries that can now be extrapolated to the abdominal aorta,

and patients will need two instead of one CT scan, so, with and without contrast. Most striking, I believe, the previous research using calcification scoring tools on the abdominal aorta, especially with contrast, should be highly scrutinized. As a final conclusion, I think it's clear

that before future studies are implemented, we should first harmonize protocols and software packages to get reliable calcium measurement results. Thank you for your attention.

- Well thank you and um, it's kind of a how to do it, how to tie your shoes type talk. And clearly now that these venous assessment tools have been present for more than two decades. It has created a common landscape for communication, for comparing outcomes.

And with that common language we really have a good guide of what to use. So. From a favorable standpoint you know the CEAP. And this is the revision from 2004. Really established good classification

across the clinical, etiologic, anatomic, pathophysiologic categories. And certainly with the clinical side of things, that really has taken off. Where the EAP has been more on the research side. But with this common language has come the ability

to communicate like versus like. And clearly if you look at the clinical classifications system. There's a clear line drawn really from C4 and greater, and some would include C3. Versus the C 1&2 in terms of disease severity.

And I think we're all familiar with classifications. But these are very categorical type classifications. And you know if you look at population based studies, certainly the c1 2 category counts for most. Where C3 is about 15% of population, and C4 grade are anywhere from 3-5% of the population.

You know the upsides of CEAP it's really proven to be effective in assisting in evaluation of various treatment modalities. Allows comparison of results from different institutions using universal language. It's really enhanced our understanding with these categories

of potential etiologic factors. And by doing so it's improved the scientific standards in the evidence. And allows for meaningful research and comparison of cohorts. Bu there's certainly some limitations to CEAP.

There's a degree of complexity that makes utilization difficult across all spectrums of clinical care. It's limited as a severity classification system, in that it's relatively static. And then even with improvement there's sometimes a little change that happens within the categories.

There's lack of reversibility. There's some problems with differentiation especially when you look at the clinical categories. Varicose veins, edema, and such. Clinical use of C category has been widely adapted. Where there's more limited use of EAP.

And really has raised the need and question to freshen up CEAP with reclassification. So over the last year or so, there's an American VF formed task force. Which has been tasked with revising CEAP. And I apologize I can't present the information just yet.

Because it's still under modification and maybe next year we'll have the revised CEAP classification to promote. With that in mind the Venous Clinical Severity Scoring came in behind CEAP. As a more sensitive scale to determine changes in treatment,

and it's really meant as a compliment to CEAP. And it has both clinical utility and research applications most recently revised in 2010. And again most of us are familiar with VCSS. In that it's several attributes that are rated across the spectrum of severity from 0-3.

From the standpoint of the revised system. It has been studied and it has been shown to have good inter and intra user reproducibility. Which is important in that it makes it consistent across users. And if you look at Michael Vasquez's publication here.

It shows a good practical use of both CEAP and VCSS. And that in this particular patient with some hemosiderin, a pigment change, a C4 category. When you plug in the VCSS it's a 15. And then after treatment there's still a C4,

but there VCSS fell to 11. And similarly the same patient here who starts with a CEAP of six and VCSS of 27. And then across the spectrum of treatment, still is a V6 about mid-treatment, but has improved to VCSS of 19.

And then after completion of treatment the best they can get is going from a C6 to a C5. But they're VCSS is now 5. And most of the benefit comes with pain, varicosity, and edema.

That's where you see most of the change in VCSS. And certainly the guidelines support the use of CEAP. This is varicose vein guidelines where the basic of more for clinical practice than the full CEAP for research. And same thing with the venous ulcer guidelines.

And I'll just leave you with this app which you can pull up on your phone. SVS iPG. Which actually has CEAP and VCSS embedded so you can have it at the bedside. Or you can embed it in your clinical templates.

So in conclusion yes they're helpful. There is no one universal tool but certainly both CEAP and VCSS used together, do achieve the needs of what they're intended to do. There's certainly some improvements that will be forthcoming with CEAP.

And I thank you.

- Thank you, thank you Frank for inviting me, again. The ascending aorta, as you know, is still the holy grail of endovascular aortic therapy. Especially, when dealing with true aortic aneurysms. There are a lot of contraindications to ascending stenting as we have listed here. So, these are all good cases for aortic surgery.

On the other hand there isn't a reason to treat some of these patients as partially high-risk patients with Endo. What about the technique? Transvalvular manipulation is essential. You basically have to do what cardiologists

are doing when they perform a TAVI procedure. And you have to know how to get across the aortic valve. There are straight forward cases like pseudo aneurysms as you can see here, which you can treat with coronary angioplasty and subsequent stenting. But the problem

or the real challenge are true ascending aneurysms. So, there are two options, bending of the ascending aorta in order to create a proximal landing zone or bending of all the ascending aorta. What about the technical details? Of course, a mediastinotomy is required.

You can use a mediastinotomy and we prefer a polypropylene mesh, which you see here. Which is additionally covered with a PTFE wrap. Just in case a recent otomy is required to prevent adhesions between the posterior

surface of the sternum and the ascending aorta. This creates downsizing of the aorta and facilitates endo-grafting here. Here typical example, the usual configuration of the true ascending aortic aneurysm wrapping with polypropylene mesh is what you get.

So, here you have your landing zone for the stent graft. When you dissect you have to circumferentially dissect the aorta. You have to make sure that you don't get into too close contact with the pulmonary artery. Here again, mediastinotomy in most cases,

is sufficient to do the procedure. Diameter reduction can be calculated according to this formula then I do know the length of my graft. You can combine this with supraoptic de-branching or bypass procedures whatever is

necessary in order to deal with this. In a lot of these cases get a landing zone for complete endo-treatment of the aortic arch with Sandwich grafts or similar techniques. We do know from these bio-mechanical studies that wrapping of the aorta reduces shear stress.

The whole concept only works in an ascending aorta up to a diameter of 6.5 cm, but no more. Here typical example, downsizing all the proximal landing zone. Subsequently, what you do get in some of these cases is in falling through here a stent graft makes sense

and then you can treat these patients with a stent graft. You would use a chimney in order to avoid compromising the origin of the innominate artery. Again, a typical example. The question is why do I have to use a stent graft at all after wrapping.

The answer is because you want to get a smooth inner surface and you don't want to have thrombus inflammation where the wrapping causes in-folding, but in all these cases you get very good results. Durable result, in term of the mediastinotomy. The mediastinotomy is very well tolerated

by these high risk patients. When you look at the age of these patients we have no neurological complications. No severe adverse events. This is a procedure, which can be offered to high risk patients

who have a lot of contraindications for open aortic surgery. Of course, this will be the future but not until maybe in ten years from now. Thank you very much.

- Thank you Dr. Melissano for the kind interaction. TEVAR is the first option, or first line therapy for many pathologies of the thoracic aorta. But, it is not free from complications and two possible complications of the arch are the droop effect and the bird-beak. I was very interested as Gore came up with the new

Active Control System of the graft. The main features of this graft, of this deployment system are that the deployment is staged and controlled in putting in the graft at the intermediate diameter and then to the full diameter. The second important feature is that we can

optionally modify the angulation of the graft once the graft is in place. Was very, very interesting. This short video shows how it works. You see the graft at the intermediate diameter, we can modify the angulation also during this stage

but it's not really used, and then the expansion of the graft at the full diameter and the modification of the angulation, if we wished. This was one of the first cases done at our institution. A patient with an aneurysm after Type B dissection. You see the graft in place and you see the graft after

partial deployment and full deployment. Perhaps you can appreciate, also, a gap between the graft and the lesser curvature of the arch, which could be corrected with the angulation. As you can see here, at the completion angiography we have an ideal positioning of the graft inside the arch.

Our experience consisted only on 43 cases done during the last months. Mostly thoracic aneurysm, torn abdominal aneurysm, and patients with Type B aortic dissection. The results were impressive. No mortality, technical success, 100%,

but we had four cases with problems at the access probably due to the large bore delivery system as you can see here. No conversion, so far and no neurological injury in this patient group. We have some patients who came up for the six months follow-up and you see here we detected one Type 1b endoleak,

corrected immediately with a new graft. Type II endoleak which should be observed. This was our experience, but Gore has organized all the registry, the Surpass Registry, which is a prospective, single-arm, post market registry including 125 patients and all these patients

have been already included in these 20 centers in seven different countries in Europe. This was the pathology included, very thorough and generous, and also the landing zone was very different, including zone two down to zone five. The mean device used per patient were 1.3.

In conclusion, ladies and gentlemen, the Active Control System of the well known CTAG is a really unique system to achieve an ideal positioning of the graft. We don't need to reduce the blood pressure aggressively during the deployment because of the intermediate diameter

reached and the graft angulation can be adjusted in the arch. But, it's not reversible. Thank you very much for your attention.

- I wanted to discuss this topic because some of us are more sensitive to DNA damage than others. And it's a complicated ethical issue. I have a disclosure in that I developed a formulation to premedicate patients prior to CT and x-ray. We all know that we stand in fields of radiation for most of our careers,

and we also know that many of us have no hair for example on the outside of our left leg. This is a picture that a bunch of us took for fun demonstrating this. But this is in fact radiation dermatitis. We know that the founders of our field

suffered consequences from the chronic high doses that they received in the 1920's. And they lost digits, they lost ears, they lost noses any many of them died of cancers or cardiovascular disease. The mechanism of injury is the x-rays

impinge upon water molecules in our cells. They create free radicals. These free radicals bind with our DNA and then Oxygen binds with that site resulting in an oxidative injury which can be reduced by the use of anti-oxidants.

I studied this over the last eight or nine years and I looked at the issue of chronic low dose radiation. Now this is different from the data that we collect from Nagasaki and Hiroshima and from Chernobyl and elsewhere. There are cancer risks but there

are also cardiovascular risks. And there are risks from chronic inflammation from increased reactive Oxygen species circulating with our system. I've been in touch with the IAEA recently about this and they didn't actually

realize that we don't wear our badges. So they thought the data they were getting on the doses that we were receiving were accurate. So that was a very interesting conversation with them. So cardiologists have been known

to get lifetime doses of of over one Gray. There's a lot of literature on this in public health literature. For example for every 10 milliSieverts of low dose ionizing radiation and received by patients with acute MI's,

there's a 3% increase in age and sex adjusted cancer risk in the follow-up five years. There's an excellent paper from Kings College London demonstrating that when endovascular surgeons were studied with two specific immunofluorescence tests, P53 and H2 alpha,

they were able to demonstrate that some endovascular surgeons are more sensitive to radiation dose than others. So why would that be? Well it's interesting if you look at this genetically and you look at the repair mechanisms

and in this whole thing I think in fact the lens is kind of the canary in the coal mine. When you get radiation induced cataracts, it's in the posterior chamber of the lens not the middle or anterior, which is where age-related injury occurs.

And this is the germinal layer or reproductive layer. The growth layer in the lens itself. And this is where cataracts develop. And this is really kind of a harbinger I think of injury that occurs elsewhere in our system. We know that when we wear DLDs on our chest,

on our bodies, on our arms, that the dose to the left side of our head is six times higher than to the right. In fact they dosed the left lens as higher than the right. And most of us who have lens replacements have it of the left eye.

This literature from adjacent fields that we may no be aware of. In the flight safety literature for pilots and stewardesses. There's extensive literature on cosmic radiation to flight crews who's doses annually are in the same range as ours.

So when you look at medical staff, you have to look at the overall context of the human in the Angio suite. Many of our medical staff will not be well. They may have chronic cardiac disease. They may be on say drugs for auto

immune disease or Methotrexate. They may have other illnesses such as Multiple Myeloma. They may have antibiotics on board that alter the DNA repair ability like Tetracycline. And they have chronic stress and sleep dysfunction. Cigarettes and alcohol use.

All of these things decrease their ability to repair DNA damage. If you look at DNA repair mechanisms, there are constantly the terms BRCA1 and two, PARP, P53, and ATM that show up. And deficiencies in these,

I'm going to skip all this to show you, can result in increased injury from a same dose being received by two different individuals. Now who is at risk from this is well understood in adjacent fields.

Here are 37 references from the public health literature related to mutations and SNPs or polymorphisms in DNA structure known to cause increased sensitivity to radiation. So I would propose that in, and here are papers on that topic

in adjacent fields that we don't read. So when we talk about personalized medicine for our patients, we need to also think about personalized career choices based on our DNA repair ability when we decide what we do. This has to be done in the context

of empathetic compassionate approach. It may begin with screening based on family history and personal history, and then advance in the right context to genetic screening through mutations and SNPs that can decrease their ability

to repair DNA damage from our occupational exposure. I'll skip all this because I'm out of time. But one other issue to think about, mitochondrial DNA is inherited purely maternally. So maternal DNA damage, mitochondrial DNA damage could be transmitted across generations

in female interventionalists. Also screening is important. It's emotionally complex. It's ethically complex. But it's an important conversation to begin to have. Thank you.

- Thank you, thanks to Dr. Veith and the program committee for allowing me to present this morning. My disclosure. So, uh, I think that there's been an abundance of literature over the years that is suggested that venography may have poured diagnostic sensitivity for identifying iliac and, and

common femoral vein obstruction. Uh, in uh published literature, 34% of patients who have chronic venous symptoms of a severe degree had iliac vein obstruction on imagining techniques other than venography such as IVUS with normal venograms and often times

patients have significant outflow obstruction and there are no pelvic collaterals present so this is not a reliable though maybe specific indicator of outflow obstruction. The video study was designed to prospectively compare multiplanar venography vs. IVUS

to address the question if you do enough views on venogram do you find the same lesions that you might detect with IVUS. And we also wanted to look, does the imaging that you do to look for iliac and common femoral vein outflow track obstruction

effect your clinical decision about intervention. These are the patients in the video trial CEAP 4 through CEAP 6. And so 100 patients were randomized in this or not randomized, but rather entered entered this prospective multi-center single-arm study

at 14 sites in the US and Europe. This was half CEAP 6 patients and the remainder were CEAP 4 and 5. The patients underwent multiplanar venography. The site investigator was asked to make a decision about whether there was a significant lesion

and how they would treat that lesion and then once that was recorded IVUS was preformed and then again after the pull back the investigator was asked to make a decision about whether there was a significant lesion and how they would treat it.

We standardized venography with a hand injection in 3 views as noted. A 30 degree RAO and LAO and an AP view and the catheter was placed at the cranial portion of the femoral vein we adopted the standards and the literature

of a 50% diameter stenosis. And venography in a 50% CSA reduction on IVUS as a significant lesions. The uh, study cohort was approximately 43 women. The left leg was the index limb and 2 to 1 ratio to uh, to the right.

The age average 62 and you can see the majority of the patients were CEAP 4 and CEAP 6. What we identified with IVUS is a 21% greater (mumbling) identification of outflow obstruction. Venography was a lot less sensitive

at identifying these lesions and therefor suggesting that IVUS is a more sensitive imaging modality for identifying outflow obstruction vs. multiplanar venography. And when you looked at the core lab over read

this was for both the IVUS imaging and for the venography. And we at first calculated the diameter stenosis for both modalities we saw that with the multiplanar venography you tended to underestimate

the degree of diameter stenosis compared to IVUS and this resulted in missing about a quarter of the lesions that were greater than 50% diameter stenosis. And in part IVUS intended to score the lesions more severe for the same lesions compared to venography and this was statistically significant.

When we looked at CSA measurements from the IVUS system and also calculated off the venography in the core lab we saw again that venography missed about 18% of the significant greater than 50% CSA lesions even with reviews.

And this resulted in a change of procedure in about 60% of the patients there was a change in the decision about whether to treat of not and in 50 of the patients the number of stents changed from either no stent to 1 stent or 1 stent to 2 stents.

So without IVUS your likely under treating iliac and common femoral vein obstruction. This was the uh, rVCSS scores after treatment in this group. On the right here in green is the improvement on the left worsening.

And you can see in large part these patients all improved uh, expect for this outlier here and then some patients there was no improvement and when you looked at a score a VCSS score greater than 4 as being significant at 1 and 6 months there was a significant improvement post intervention.

And we see here in this receiver operating curve that IVUS best predicted clinical improvement at 6 months. And so we see that IVUS was more sensitive accurate for identifying significant lesions and the iliac and common femoral vein segments. It was the best guide for stent intervention

and it appears that if use a 50% cut off either diameter or CSA reduction it best predicts that intervention will lead to an improved clinical outcome at 6 months. Thank you.

- Thank you, my disclosure says it pertains to this Centerline Biomedical specifically. As many of you know, real-time Dose Monitoring has shown that the EVAR procedures really exposes to the most amount of radiation, Of all the endovascular procedures that we do. Obviously the complexity of those

has something to do with that. But even a straight forward EVAR shows that. And most studies show that vascular surgeons are probably the least educated and knowledgeable about ways to reduce your exposure to radiation. Now Gustavo talked about this,

when you look at the radiation scatter when you're in a hybrid room you see that once the imaging intensifier moves to anything other than AP position the amount of scatter starts to increase. And it's that scatter which exposes most of us

that are near the patient to this. In addition, I will tell you that most of your patients that we operate on were right near the imaging beam, where as most peripheral interventions we do step out of the room,

during any of the major flouroscopic treatment time in DSA angiograms, as Gustavo said. So what can you do from protection strategy standpoint? Well you can use protective equipment, which includes drapes and shielding which I go over.

But the majority of it is what procedural details much of which Gustavo has gone over. Now in our institution I highlighted two things there, for many years I've used the zero gravity suit this has two advantages, number one it covers your head from exposure,

but it does not extend down to below the legs and I'll talk about that. I know that Bijan is on the podium and he probably has better education, and can talk more about his study than I know. But we have added leggings to that aspect.

The other thing about the Zero Gravity Suit is from a longevity for you as a physician you do not have the weight of the lead on your shoulders so over time the amount of neck and injuries from that aspect is probably going to be decreased. Now this is taken from Bijan's paper

it's about the Radiation Induced DNA Damage and you can see that patients that are people that did EVAR procedures had an increase in the amount of radiation damage, compared to if they did an open repair. And you can see the difference there

in purple between EVAR and branched and fenestrated repairs but the most important thing, I think that many of us took away from his paper, was that when you added leggings to it you can see in the bottom left, the amount

of radiation and DNA damage was the same. But the amount of DNA damage went way down on the black bars there, compared to the red bars pre-imposed. So why that was, is probably the subject of many more papers

and a lot of grant money for Bijan to do. I think this is going to be a very important topic in the next several years. Now Gustavo had eight things, I have a list of ten things that you can do, to help during procedure. But the biggest as he mentioned, was the

obliquity of the orientation of the tube. Eye protection is a very important approximately about 30% of the radiation comes around your eye protection wear. So either using the shield like I showed you from zero gravity, or side shields are very important.

You need to save images, optimize images use non DSA or exit the room for DSA things. Varying the technique, adding barriers, slow your frame rate down. Now Gustavo says, he said seven and a half or typically a two.

If I wanted to get a better image I will go to three or to a seven. But generally we are at two frames per second for most of our work. I unfortunately do not have yet digital zoom that's probably coming in the next version

of the models that we use. Increasing the table height, getting the table high and the imaging intensifier down is very important. What about other things? Well we have to change our habits,

most of this is getting in the right habit. And most of our radiation badges tell us a month later what happened. But we don't know what case and what we did during the case to change it. That's more modern day badges,

this is an early detection system. Basically you see your dose on the screen, as the case is going along. And it gives you direct feedback that you might need to change what you're doing. Add barriers to between you and the source

so when your dose is going higher than other people in the room. It's kind of like the concept of the canary in the coal mine. When the canary is starting to have problems and went to the bottom of the cage

the coal miners new that they needed to get ut of the coal mine because they were being exposed to lethal gasses. So what does this do? If you look at the dose aware data, it shows you here in purple

that the level of radiation exposure, once they started to use the Dose Aware, went down compared to the number of incidents of over-exposure, in the system. Gustavo talked a little bit about Intra-Operative Guidance,

vessel deformation, and customized options. Are coming down the guidelines. And you can see this is a paper with Stephan Haulon and Rob Rhee about how they reduced their dose. Lastly we need to think about moving

away from fluoroscopy and this is what's coming down the future, with Centerline Biomedical. Using electro-magnetic navigation to track devices, cathers, and wires through the system, Without ionizing radiation. And this will be the future.

So in conclusion, current advancements in vascular therapy significantly increase the exposure of vascular specialists, to the harmful effects of ionizing radiation. Maximal efforts should be employed by proceduralists to protect themselves.

Including the legs, and the neck, and the head. An immediate intra-procedural feedback is important for developing proper techniques and prevention. Future research should be focused at identifying non-ionizing methods for navigation and device implantation.

Thank you.

- Thanks (mumbles) I have no disclosures. So when were talking about treating thoracoabdominal aortic aneurysms in patients with chronic aortic dissections, these are some of the most difficult patients to treat. I thought it would be interesting

to just show you a case that we did. This is a patient, you can see the CT scrolling through, Type B dissection starts pretty much at the left subclavian, aneurysmal. It's extensive dissection that involves the thoracic aorta, abdominal aorta,

basically goes down to the iliac arteries. You can see the celiac, SMA, renals at least partially coming off the true and continues all the way down. It's just an M2S reconstruction. You can see again the extent of this disease and what makes this so difficult in that it extends

from the entire aorta, up proximally and distally. So what we do for this patient, we did a left carotid subclavian bypass, a left external to internal iliac artery bypass. We use a bunch of thoracic stent grafts and extended that distally.

You can see we tapered down more distally. We used an EVAR device to come from below. And then a bunch of parallel grafts to perfuse our renals and SMA. I think a couple take-home messages from this is that clearly you want to preserve the branches

up in the arch. The internal iliac arteries are, I think, very critical for perfusing the spinal cord, especially when you are going to cover this much. And when you are dealing with these dissections, you have to realize that the true lumens

can become quite small and sometimes you have to accommodate for that by using smaller thoracic endografts. So this is just what it looks like in completion. You can see how much metal we have in here. It's a full metal jacket of the aorta, oops.

We, uh, it's not advancing. Oops, is it 'cause I'm pressing in it or? All right, here we go. And then two years post-op, two years post-op, you can see what this looks like. The false lumen is completely thrombosed and excluded.

You can see the parallel grafts are all open. The aneurysm sac is regressing and this patient was successfully treated. So what are some of the tips and tricks of doing these types of procedures. Well we like to come in from the axillary artery.

We don't perform any conduits. We just stick the axillary artery separately in an offset manner and place purse-string sutures. You have to be weary of manipulating around the aortic arch, especially if its a more difficult arch, as well as any thoracic aortic tortuosity.

Cannulating of vessels, SMA is usually pretty easy, as you heard earlier. The renals and celiac can be more difficult, depending upon the angles, how they come off, and the projection. You want to make sure you maintain a stiff wire,

when you do get into these vessels. Using a Coda balloon can be helpful, as sometimes when you're coming from above, the wires and catheters will want to reflux into that infrarenal aorta. And the Coda balloon can help bounce that up.

What we do in situations where the Coda doesn't work is we will come in from below and a place a small balloon in the distal renal artery to pin the catheters, wires and then be able to get the stents in subsequently. In terms of the celiac artery,

if you're going to stent it, you want to make sure, your wire is in the common hepatic artery, so you don't exclude that by accident. I find that it is just simpler to cover, if the collaterals are intact. If there is a patent GDA on CT scan,

we will almost always cover it. You can see here that robust collateral pathway through the GDA. One thing to be aware of is that you are going to, if you're not going to revascularize the celiac artery you may need to embolize it.

If its, if the endograft is not going to oppose the origin of the celiac artery in the aorta because its aneurysmal in that segment. In terms of the snorkel extent, you want to make sure, you get enough distal purchase. This is a patient intra-procedurally.

We didn't get far enough and it pulled out and you can see we're perfusing the sac. It's critical that the snorkel or parallel grafts extend above the most proximal extent of your aortic endograft or going to go down. And so we take a lot of care looking at high resolution

pictures to make sure that our snorkel and parallel grafts are above the aortic endograft. This is just a patient just about a year or two out. You can see that the SMA stent is pulling out into the sac. She developed a endoleak from the SMA,

so we had to come in and re-extend it more distally. Just some other things I mentioned a little earlier, you want to consider true lumen space preserve the internals, and then need to sandwich technique to shorten the parallel grafts. Looking at a little bit of literature,

you can see this is the PERCLES Registry. There is a number of type four thoracos that are performed here with good results. This is a paper looking at parallel grafting and 31 thoracoabdominal repairs. And you can see freedom from endoleaks,

chimney graft patency, as well as survival is excellent. This was one looking purely at thoracoabdominal aneurysm repairs. There are 32 altogether and the success rates and results were good as well. And this was one looking at ruptures,

where they found that there was a mean 20% sac shrinkage rate and all endografts remained patent. So conclusion I think that these are quite difficult to do, but with good techniques, they can be done successfully. Thank you.

- Thank you for the opportunity to present this arch device. This is a two module arch device. The main model comes from the innominated to the descending thoracic aorta and has a large fenestration for the ascending model that is fixed with hooks and three centimeters overlapping with the main one.

The beginning fenestration for the left carotid artery was projected but was abandoned for technical issue. The delivery system is precurved, preshaped and this allows an easy positioning of the graft that runs on a through-and-through wire from the

brachial to the femoral axis and you see here how the graft, the main model is deployed with the blood that supported the supraortic vessels. The ascending model is deployed after under rapid pacing.

And this is the compilation angiogram. This is a case from our experience is 6.6 centimeters arch and descending aneurysm. This is the planning we had with the Gore Tag. at the bottom of the implantation and these are the measures.

The plan was a two-stage procedure. First the hemiarch the branching, and then the endovascular procedure. Here the main measure for the graph, the BCT origin, 21 millimeters, the BCT bifurcation, 20 millimeters,

length, 30 millimeters, and the distal landing zone was 35 millimeters. And these are the measures that we choose, because this is supposed to be an off-the-shelf device. Then the measure for the ascending, distal ascending, 35 millimeters,

proximal ascending, 36, length of the outer curve of 9 centimeters, on the inner curve of 5 centimeters, and the ascending model is precurved and we choose a length between the two I cited before. This is the implantation of the graft you see,

the graft in the BCT. Here, the angiography to visualize the bifurcation of the BCT, and the release of the first part of the graft in the BCT. Then the angiography to check the position. And the release of the graft by pushing the graft

to well open the fenestration for the ascending and the ascending model that is released under cardiac pacing. After the orientation of the beat marker. And finally, a kissing angioplasty and this is the completion and geography.

Generally we perform a percutaneous access at auxiliary level and we close it with a progolide checking the closure with sheet that comes from the groin to verify the good occlusion of the auxiliary artery. And this is the completion, the CT post-operative.

Okay. Seven arch aneurysm patients. These are the co-morbidities. We had only one minor stroke in the only patient we treated with the fenestration for the left carotid and symptomology regressed completely.

In the global study, we had 46 implantations, 37 single branch device in the BCT, 18 in the first in men, 19 compassionate. These are the co-morbidities and indications for treatment. All the procedures were successful.

All the patients survived the procedure. 10 patients had a periscope performed to perfuse the left auxiliary artery after a carotid to subclavian bypass instead of a hemiarch, the branching. The mean follow up for 25 patients is now 12 months.

Good technical success and patency. We had two cases of aneurysmal growth and nine re-interventions, mainly for type II and the leak for the LSA and from gutters. The capilomiar shows a survival of 88% at three years.

There were three non-disabling stroke and one major stroke during follow up, and three patients died for unrelated reasons. The re-intervention were mainly due to endo leak, so the first experience was quite good in our experience and thanks a lot.

- Thank you very much for the presentation. Here are my disclosures. So, unlike the predecessor, Zenith Alpha has nitinol stents and a modular design, which means that the proximal component has this rather gentle-looking bear stents and downward-looking barbs.

And the distal part has upward-looking barbs. And it is a lower-profile device. We reported our first 42 patients in 2014. And now for this meeting we updated our experience to 167 patients operated in the last five years.

So this includes 89 patients with thoracic aneurysms. 24 patients in was the first step of complex operations for thoracoabdominals. We have 24 cases in the arch, 19 dissections, and 11 cases were redos. And this stent graft can be used as a single stent graft,

in this case most of the instances the proximal component is used or it can be used with both components as you can see. So, during the years we moved from surgical access to percutaneous access and now most of the cases are being done percutaneously

and if this is not the case, it's probably because we need some additional surgical procedures, such as an endarterectomy or in cases of aorto-iliac occlusive disease, which was present in 16% of our patients, we are going to need the angioplasty,

this was performed in 7.7% of cases. And by this means all the stent grafts were managed to be released in the intended position. As far as tortuosity concerned, can be mild, moderate, or severe in 6.6% of cases and also in this severe cases,

with the use of a brachio-femoral wire, we managed to cross the iliac tortuosity in all the cases. Quite a challenging situation was when we have an aortic tortuosity, which is also associated with a previous TEVAR. And also in this instances,

with the help of a brachio-femoral wire, all stent grafts were deployed in intended position. We have also deployed this device both in chronic and acute subacute cases. So this can be the topic for some discussion later on. And in the environment of a hybrid treatment,

with surgical branching of the supoaortic tranch, which is offered to selected patients, we have used this device in the arch in a number of cases, with good results. So as far as the overall 30-day results concerned, we had 97.7% of technical success,

with 1.2% of mortality, and endoleaks was low. And so were reinterventions, stroke rate was 1.2%, and the spinal cord injury was 2.4%. By the way we always flash the graft with CO2 before deployment, so this could be helpful. Similar results are found in the literature,

there are three larger series by Illig, Torsello, and Starnes. And they all reported very good technical success and low mortality. So in conclusion, chairmen and colleagues, Zenith Alpha has extended indications

for narrow access vessels, provide safe passage through calcified and tortuous vessels, minimize deployment and release force, high conformability, it does retain the precision and control of previous generation devices,

however we need a longer term follow up to see this advantages are maintained over time. Thank you very much.

- This is from some work in collaboration with my good friend, Mike Dake. And, a couple of years of experience at Stanford now. First described by Kazy? years ago. This technical note of using multiple main-body endographs in a sandwich formation.

Up at the top but, then yielding multiple branches to get out to the visceral vessels and leaving one branch for a bifurcated graft. We've sort of modified it a little bit and generally either use multiple

grafts in order to create a branch the celiac and SMA. Left the celiac sometimes for a chimney, but the strategy really has been in one of the limbs to share both renals and the limb that goes down to the legs. We noticed early on that this really was not for

non-operative candidates, only for urgent cases and we recognize that the visceral branches were the most important to be in their own limb. I'll just walk you through a case. 6.8 centimeter stent for foraco above

the prior opened repair. The plan drawn out here with multiple main bodies and a second main body inside in order to create the multiple branches. The first piece goes in. It's balloon molded at the level of pulmonary

vein with enough length so that the ipsalateral limb is right next to the celiac. And we then, from above get into that limb and down into the celiac vessel and extend with either a limb or a viabahn. Next, we deploy a second main body inside

of the gate, thus creating now another two limbs to work through. And then through that, extend in its own branch a limb to the SMA. This was an eight by 79 vbx. Then we've got a third limb to go through.

We put a cuff that measures about 14. This is the math so that the double renal snorkle plus the main body fills up this hole. Now, double sheath access from above, looking for both renals. Sheaths out into both renals with viabahns

inside of that. Deployment of the bottom device and then a final angiogram with a little bit of a gutter that we often see when we have any kind of parallel graft configuration. Here's the post-op CT scan wherein

that limb is the two shared renals with the leg. This is the one year post-op with no endo leaks, successful exclusion of this. Here's another example of one of an eight and a half centimeter stent three thorico similar strategy, already with an occluded

celiac. Makes it a little bit easier. One limb goes down to the superior mesenteric artery and then the other limb then is shared again bilateral renals in the lower main body. Notice in this configuration you can get all the way up to the top then by putting a thoracic component

inside of the bifurcated subabdominal component. There's the final CT scan for that. We've spent some time looking at the different combinations of how these things will fill up to minimize the gutters through some more work. In collaboration with some friends in Kampala.

So we've treated 21 patients over the last couple of years. 73 years of age, 48 percent female usual comorbid factors. Oh, I thought I had more data there to show you. O.K. I thought this was a four minute talk.

Look at that. I'm on time. Octopus endovascular strategy is a feasible off the shelf solution for high risk patients that can't undergo open repair. You know obviously, sort of in this forum and coming to this meeting we see what's

available outside of the U.S. and I certainly am awaiting clinical trial devices that will have purpose specific teacher bi-graphs. The end hospital morbidity has still been high, at four percent. The one year survival of 71 percent in this select

group of 21 patients is acceptable. Paraplegia is still an issue even when we stage them and in this strategy you can stage them by just doing the top part plus the viscerals first and leaving the renals for another day. And branch patency thus far has been

in the short term similar to the purpose specific graft as well as with the parallel graft data. Thank you.

- I have no disclosures. So I'm going to show you some pictures. Which of the following patients has median arcuate ligament syndrome? A, B, C, D, or E? Obviously the answer is none of these people.

They have compression of their celiac axis, none of them had any symptoms. And these are found, incidentally, on a substantial fraction of CT scans. So just for terminology, you could call it celiac compression

if it's an anatomic finding. You really should reserve median arcuate ligament syndrome for patients who have a symptom complex, which ideally would be post-prandial pain with some weight loss. But that's only I think a fraction of these patients.

Because most of them have sort of non-specific symptoms. So I'm going to say five things. One, compression of the celiac artery is irrelevant in most patients. It's been found in up to 1/3 of autopsies, MRIs, diagnostic angiography, CT.

This is probably about par, somewhere in that 5% or 10% of CT scans that are in asymptomatic patients will have some compression of the celiac axis. The symptoms associated with median arcuate ligament syndrome are non-specific,

and are really not going to tell you whether patients have the disease or not. So for instance, if you look here's like 400 CT scans, 19 of these patients had celiac compression. But the symptom complex in patients

who had abdominal pain for other reasons looked exactly the same as it did for people who had celiac compression. So symptoms isn't going to pull this apart. So you wind up with this kind of weird melange of neurogenic, vascular,

and you got to add a little psychogenic component. Because if any of you have taken care of these people, know that there's a supertentorial override that's pretty dramatic, I think, in some fraction of these people. So if you're not dizzy yet, the third thing I would say,

symptom relief is not predicted by the severity of post-operative celiac stenosis. And that's a little distressing for us as vascular surgeons, because we think this must be a vascular disease, it's a stenotic vessel. But it really hasn't turned out that way, I don't think.

There's several papers, Patel has one just in JVS this month. Had about a 66% success rate, and the success did not correlate with post-op celiac stenosis. And here's a bigger one,

again in Annals of Vascular Surgery a couple years ago. And they looked at pre- and post-op inspiratory and expiratory duplex ultrasound. And basically most patients got better, they had an 85% success rate. But they had patients,

six of seven who had persistent stenosis, and five of 39 who didn't have any symptoms despite improved celiac flow. So just look at this picture. So this is a bunch of patients before operation and after operation,

it's their celiac velocity. And you can see on average, their velocity went down after you release the celiac, the median arcuate ligament. But now here's six, seven patients here who really were worse

if you looked at celiac velocity post-op, and yet all these people had clinical improvement. So this is just one of these head scratchers in my mind. And it suggests that this is not fundamentally a vascular problem in most patients. It goes without saying that stents are not effective

in the presence of an intact median arcuate ligament. Balloon expandable stents tend to crush, self-expanding stents are prone to fracture. This was actually published, and I don't know if anybody in the audience will take credit for this.

This was just published in October in Vascular Disease Management. It was an ISET online magazine. And this was published as a success after a stent was put in. And you can see the crushed stent

because the patient was asymptomatic down the road. I'm not discouraging people from doing this, I'm just saying I think it's probably not a great anatomic solution. The fifth thing I'd say is that comorbid psychiatric diagnoses are relatively common

in patients with suspected median arcuate ligament syndrome. Chris Skelly over in Chicago, they've done an amazing job of doing a very elaborate psych testing on everybody. And I'll just say that a substantial fraction of these patients have some problems.

So how do you select patients? Well if you had a really classic history, and this is what Linda Riley found 30 years ago in San Francisco. If they had classic post-prandial pain with real weight loss and a little bit older patient group,

those people were the easiest and most likely to have a circulatory problem and get better. There are some provocative tests you can do. And we did a test a few years ago where we put a catheter in the SMA and shoot a vasodilator down,

like papaverine and nitroglycerin. And I've had patients who spontaneously just said, "That's the symptoms I've been having." And a light bulb went off in our head and we thought, well maybe this is actually a way you're stealing from the gastroduodenal collaterals.

And this is inducing gastric ischemia. I think it's still not a bad test to use. An alternative is gastric exercise tonometry, which is just incredibly elaborate. You got to sit on a bicycle, put an NG tube down to measure mucosal pH,

get an A-line in your wrist to check systemic pH, and then ride on a bike for 30 minutes. There's not many people that will actually do this. But it does detect mucosal ischemia. So for the group who has true circulatory deficiency, then this is sort of a way to pick those people up.

If you think it's fundamentally neurogenic, a celiac plexus block may be a good option. Try it and see if they react, if maybe it helps. And the other is to consider a neurologic, I mean psychologic testing. There's one of Tony Sadawa's partners

over at the VA in Washington, has put together a predictive model that uses the velocity in the celiac artery and the patient's age as a kind of predictive factor. And I'll let you look it up in JVS. Oddly enough,

it sort of argues again that this is not a circulatory problem, in that the severity of stenosis is sort of inversely correlated with the likelihood of success. So basically what I do is try to take a history,

look at the CTA, do inspiratory and expiratory duplex scans looking for high velocities. Consider angiography with a vasodilator down the SMA. If you're going to do something, refer it to a laparoscopist. And not all laparoscopists are equal.

That is, when you re-op these people after laparoscopic release, you often times find a lot of residual ligament. And then check post-operative duplex scans, and if they still have persistent symptoms and a high-grade stenosis,

then I would do something endovascular. Thank you.

- Thank you very much. The stuff Rubiole said about magic methods, but not concerning the large veins, as we heard, would be also about that or something. I don't have disclosures. We all like probably to treat such a pathology. It's quite common in our offices.

And most of us treat them without the problems. But probably we will be not much happy to having such a patients to treat, especially if we see such a pathologies, not this what you, really, I like, especially if patient is coming with the recurrence

in the same place for the third or fourth time. So of course, reflux identifications, we heard this based on ultrasounds. Small vessels, feeding vessels can be seen on the ultrasound and torso transillumination. In most cases, this will be probably sufficient,

but as we have no doubt about this case what to do. In many cases, or at least in some cases, we see the patient coming with sclerotherapy failure. And then probably the first thing that we should look for, it's a feeding vein. Persistence or persistent of a large vessel.

Reflux, what else, except physical examination, except transillumination we can use? Near Infrared light technology. And ultrasound especially. Ultrasound with high frequency that allows you to do exactly this what the static medicine doctors do.

So, to see the skin in a very good quality matches. So, concerning Vein Viveror of this transillumination, often of this wentetrotite methods that I think most of your are familiar with, this, we can use this in some cases, but as in this case it is quite easy and possible.

In this case, on the right side, I not sure what's really a problem in this patient because probably the feeding veins comes goes from, goes from the down in a perpendicular manner. So if you have such a lesion without any feeding veins visible in transillumination or in almentoteratity,

what can we do to close this? Then, I would like to encourage you to use high resolution ultrasound. This is the same lesion with 0.6 millimeter vessel just below, but this vessel goes perpendicular to one of the quite big perforators as you can see,

in a very perpendicular manner, probably none other methods can show us this kind of pathology. With this high resolution high frequency ultrasound, you can see reticular veins, but this is what is especially interesting,

you can see the connection with all vessels being below the lesion that can be not visible in any other technology. Perforators going oblique and going perpendicular are quite good visible. I can try to find the reflux in compressing the skin,

but quite often the reflux can be seen using the simple valsalva maneuvre, as the vessels are very small. Some examples what we can see the perforators, but also like on the right side, the novus scleroization coming from the

small vessels after this thing is removal. And we made some small study of 50 C1 lesions resistance to sclerotherapy failure, treated after the diagnosis made by augmented reality and 18 megahertz probe Venous ultrasound. All these lesions were previously treated,

as you can see some of them even three times, no major vessel reflux, no large branches, no axial reflux, and no vessel is visible in transillumination in the series. We found that in 50% there were the vertical or oblique course vessels feeding this lesions and

vertical plus horizontal additional 26, so we had the perpendicular going pathological reflux in 3/4ths of the patients, reflux sources in 62% were perforators or deep vein connectors. On this patient were treated with ultrasound guided sclerotherapy, or with augmented reality

guided sclerotherapy. And as you can see, 66% of the feeding veins were recognized by 18 megahertz ultrasound and we could probably not find this in any other way after six months follow-up. 90% of these lesions were obliterated.

However, 1/3 required the repeated treatments. In conclusion, the combined approach based on the augmented reality and the 18 megahertz ultrasound feeding vein identification improved the C1 sclerotherapy efficacy in the treatment of pathologies not applicable for the primary treatment

and is not for the standard approach. And we currently don't use this in standards approach, we use this for lesions that you saw. Thank you very much.

- This is a controversial topic. Basically we have been following standard set-up on the arterial side to grade venous stenosis. But duplex, many people would look at the stenosis either by venogram or duplex and then compare it to the adjacent normal segment.

In arteries the stenosis is usually focal so this approach works well. But in iliac veins particularly, does not work well. On venogram this looks normal but actually on IVUS it's a severe stenosis, 67 square millimeters,

it should be somewhere around 200. So, you are looking at a 70% stenosis. So, just the standard does not work well in veins. You have, does not happen, that type of rokitaskis stenosis does not happen, all the time but is present in varying degrees in about 20% of patients.

Another standard that we have applied, without thinking too much, is so-called critical threshold. Most major arteries, as we know, is not hemodynamically significant until is is somewhere around 70% or so. If the region of resistance is low,

it maybe a little bit low, somewhere around 60%, 70%, 80% depending on local resistance. Why does that happen? It happens because of autoregulation. As increases stenosis there is pressure flow of arterial dilation.

At some point, usually somewhere around 70%, 80% the pressure flow of compensating vasodilation is maxed out. So as increases stenosis the flow goes down and the pressure goes up. I want to point out that the pressure going up is proximal, not downstream.

The pressure goes down downstream. And pressure does go up upstream but is so well compensated on the arterial side by off-load to other areas. Another way to look at it is consider peripheral assistance, as a stenosis in aggregate.

Now there's a fall of blood pressure from 100 mean to somewhere around 30 millimeters post arterial. So that represents a very high-grade stenosis. So any proximal stenosis, by the principle of tandem stenosis, has to exceed

this high value to become hemodynamically significant. So that's why the 70% critical threshold. On the venous side there's no autoregulation. And the only distal downstream stenosis is abdomen. Not very much, about five millimeters of mercury pressure. So, on the venous side, pressure rises

with incremental stenosis. There's no critical threshold, it's nonlinear but no sudden inflection point. So this theory of 70% should not hold on the venous side. As a practical matter, most stenosis are in that range. They are in the 60%, 70% range.

But every once in awhile, say about 10%-15% of cases, where you will come across a 20% or 30% stenosis, which is clinically significant, because the veins are post-thrombotic and they have poor compliance. So even a slight stenosis will increase the pressure.

This is a concept of inflow outflow. If the inflow matches outflow, then the pressure will be normal. So you can calculate from the size of the outflow, we know what is the optimal outflow, you can calculate from the outflow size

whether the stenosis is significant or not. Critics will say this is a morphologic method. Yes and no. It's morphologic but it is tightly connected to flow. So it is a quasi hemodynamic method to measure the outflow size.

And again, calculated by various, by flow femoral size. Thank you.

- Thank you very much. Thank you, Frank, for inviting me again. No disclosures. We all know Onyx and the way it comes, in two formulas. We want to talk about presenter results when combining Onyx with chimney grafts. The role of liquid embolization or Onyx is listed here.

It can be used for type I endoleaks, type II endoleaks and more recently for treatment of prophylaxis of gutters. So what are we doing when we do have gutters? Which is not quite unusual. We can perform a watchful waiting policy, pro-active treatment in high flow gutters,

pro-active treatment low flow gutters, or we can try to have a maximum overlap, for instance with ViaBahn grafts 15 centimeters in length or we can use sandwich grafts in order to reduce these gutters in type I endoleaks. Here, a typical example of a type I leak treated with Onyx.

And here we have an example of a ruptured aneurysim treated with a chimney graft. And here is what everybody means when they're talking about gutters. Typical examples, this is what you get. You can try to coil these

or you can try to use liquid embolization. Here's the end result after putting a lot of coils into these spaces. What are these issues of the chimney-technique type I endoleak? Which are not quite infrequent as you see here.

Most of these resolve, but not all of them. So can we risk to wait until they resolve? And my bias opinion is probably not. Here, the incidents of these type endoleaks is still pretty high. And when you go up to the Arch

the results can even be different. And in our own series published here, type I endoleak at the Arch were as high as 28%. A lot of these don't resolve over time simply because it's a very high flow environment. Using a sandwich technique is one solution

which helps in a lot of cases but not all of these simply because you have a longer outlet compared to a straightforward chimney graft. You can't rely on it. So watchful waiting? There are some advocates who

prefer watchful waiting but in high flow gutters this is certainly not indicated. And the more chimneys you have, like in a thoracoabdominal aneurysm with four chimneys, the less you can wait. You have to treat these very actively,

like you see here, in these high flow areas. Here a typical example, again symptomatic aneurysm with sealing. Here Onyx was used but without any success. So what we did is we had to add another chimney and plus polymer sealing and then we had a good result.

Here some results, only small serious primary gutter sealing using Onyx with good results in a type I leak. But again, this is only a small series of patients. Sandwich technique already mentioned. When you use, like we did here for chimney grafts in the arteries, you do need Onyx otherwise you

always get problems with these gutters and they do not seal over time. Another example where liquid polymer was used. And here again, you see the polymer. The catheter in order to inject the polymer is very difficult to see but with a little bit of experience

you know where you are. And again, here it is, the Onyx, a typical example. Here another example of the Arch, bird beacon effect, extension, chimney graft. Again the aneurysm gets bigger. And so a combination of using proximal extensions

plus chimneys plus liquid embolization solves this problem after quite a long period of time. And here typically is what you see when you inject the Onyx. This does not work in all cases. Here we used Onyx in order to seal up the origin of the end tunnel.

This works very nicely but there is so ample space for improvement and in some cases it's probably better to use a fenestrated branch graft or even the opt two stabler instead of using liquid embolization. Thank you very much.

Disclaimer: Content and materials on Medlantis are provided for educational purposes only, and are intended for use by medical professionals, not to be used self-diagnosis or self-treatment. It is not intended as, nor should it be, a substitute for independent professional medical care. Medical practitioners must make their own independent assessment before suggesting a diagnosis or recommending or instituting a course of treatment. The content and materials on Medlantis should not in any way be seen as a replacement for consultation with colleagues or other sources, or as a substitute for conventional training and study.